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Abstract—As research into continuum robots flourishes, there
are more and more types of continuum robots, which require
researchers to tirelessly design robot-specific motion control
algorithms. Besides, the convergence time of control systems
for continuum robots has received very little attention. In this
paper, we propose a novel predefined-time convergent zeroing
dynamics (PTCZD) model, which ensures that the associated
error-monitoring function converges to zero in predefined-time.
Based on the PTCZD model, we design an inverse kinematics
solver and a state estimator for continuum robots, thereby ob-
taining a generic predefined-time convergent control method for
heterogeneous continuum robots for the first time. Simulations
and experiments based on cable-driven continuum robots and
concentric tube continuum robots are performed to verify the
efficacy, robustness and adaptability of the proposed control
method. In addition, comparative studies are carried out to
demonstrate its advantages against existing control methods for
continuum robots.

I. INTRODUCTION

Biologically inspired continuum robots have received con-
siderable scholarly attention in recent years because of their
dexterity, interaction safety and easy miniaturization. Unlike
conventional rigid-link robots, this class of robots are usu-
ally made of soft or elastic materials, empowering them to
work in unstructured or constraint space compliantly. As a
result of these benefits, continuum robots are becoming new
apparatuses covering a lot of applications, such as medical
treatment [18], search and rescue operations in congested
environments [26] and grasp of soft objects. Along with the
prevalence of continuum robots, however, there is increasing
concern over their motion control problem.

Several challenges have been faced by researchers on con-
tinuum robots. To begin with, as a result of their structural
and material peculiarities, continuum robots usually deform
irregularly due to their own and environmental influence.
The irregular deformation undoubtedly brings great difficulties
to the modeling and control of continuum robots. Besides,
many heterogeneous continuum robots have been designed
and fabricated in the past decades, including but not limited
to cable-driven continuum robots [8], pneumatic continuum
robots [10], concentric tube continuum robots and parallel
continuum robots [2]. The diversity of continuum robots gives
rise to the demand for the development of robot-specific
control algorithms, which needs much effort. Furthermore, the
convergence of control systems, which is interpreted as the
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Fig. 1. Illustration of two heterogeneous continuum robots. (a) Cable-driven
continuum robot (CDR). (b) Concentric tube continuum robot (CTR).

process of task-space error approaching a steady state, has
always been a concern for the control of conventional rigid-
link robots. Accordingly, how to ensure that the control system
for continuum robots converges as expected is also a problem
worth studying.

The motion control problem of continuum robots and con-
ventional rigid-link robots mainly involves the convergence of
position error (in point-to-point tasks) or trajectory tracking
error (in tracking control tasks). Through years of unremitting
efforts by researchers, different types of convergence have
been achieved for the motion control of rigid-link robots,
such as exponential convergence, super-exponential conver-
gence, finite-time convergence, fixed-time convergence and
predefined-time convergence [20]. In comparison, the conver-
gence of control systems for continuum robots has received
much less attention. Control systems with exponential and
finite-time convergence have been proposed for the motion
control of continuum robots [1, 24]. However, these studies
have suffered from notable shortcomings. It has been proven
that it takes infinitely long time for exponentially convergent
controllers to drive the error function to zero [15], whereas the
task duration is usually limited in practice. To make steady-
state residual error arbitrarily small, related design parameters



must be set large enough or infinitely large, which is not
feasible in practice because the design parameters may exceed
available processing power [23]. As for the control system
with finite-time convergence property, it only expresses the
convergence time as a function of control gains and other
factors, and it may not be easy to determine the parameters of
control systems based on desired convergence time. However,
the intuition is that it would be preferable to allow us to
set the convergence time of control systems directly, rather
than tediously tuning the control gains to achieve desired
convergence. These issues have led to a better convergence
property, namely predefined-time convergence, which requires
that the parameters of control systems should be explicitly
designed with user-defined time constraint, thereby ensuring
that end-effector tasks are fulfilled by continuum robots in
predefined time. However, to the best of the authors’ knowl-
edge, predefined-time convergent motion control for continu-
um robots has not yet been studied in the available literature.

This paper seeks to develop a generic motion control method
for heterogeneous continuum robots with predefined-time con-
vergence. Specifically, the present study makes the following
noteworthy contributions to the research on continuum robots:

1) A novel predefined-time convergent zeroing dynamics
(PTCZD) model is designed. Theoretically, we rigorous-
ly prove that the proposed PTCZD model is capable of
driving the indefinite error function associated with the
model to converge to zero in predefined time.

2) By utilizing two PTCZD models, we design an inverse
kinematics solver and a state estimator for continuum
robots, respectively, thereby achieving the predefined-
time convergent motion control of continuum robots for
the first time.

3) A cable-driven continuum robot (CDR) and a concentric
tube continuum robot (CTR), as shown in Fig. 1, are
adopted to verify the effectiveness and adaptability of
proposed control method for heterogeneous continuum
robots.

II. RELATED WORK

In recent years, there has been a growing number of pub-
lications focusing on the motion control of continuum robots.
Typically, the piecewise constant curvature (PCC) model [27],
which approximates continuum robots as multiple circular arcs
of constant curvature, has been widely applied to the motion
control of continuum robots [3, 7, 11]. To avoid the issues
of standard parametrization for the PCC model, such as dis-
continuities and singularities, Della Santina et al. [4] proposed
an improved state parametrization for soft continuum robots.
Due to the effect of load or environment, continuum robots
are often unable to maintain a constant curvature shape, which
leads to nonconstant or variable curvature models [9, 17, 21].

Considering the modeling complexity of continuum robots,
control systems that are independent of analytic models of
continuum robots have been devised [13, 19, 28, 32]. In
particular, Yip and Camarillo [31] firstly developed a model-
less control method for a tendon-driven continuum robot,

which utilizes the quadratic programming method to solve
the inverse kinematics problem and to estimate the Jacobian
matrix of the robot respectively. There are also learning-based
motion control methods for continuum robots. For instance,
Lee et al. [12] reported a nonparametric online learning con-
trol method for effective endoscopic navigation. Most of the
above mentioned motion control methods were only applied to
specific types of continuum robots. In comparison, we make
the breakthrough towards the development of a generic motion
control method for heterogeneous continuum robots in this
paper.

Despite the preliminary advance in the motion control of
continuum robots, the convergence time of control systems
has received very little attention. Tan et al. [25] proposed
a neurodynamic approach for the pose tracking control of
continuum robots, which can achieve exponential convergence.
Ayala-Carrillo et al. [1] presented a cascade control method for
robust tracking of pneumatic continuum robots with finite-time
convergence. Predefined-time attitude stabilization control has
been investigated for continuum robots [5]. However, as far
as we know, predefined-time convergent motion control (e.g.,
trajectory tracking control) has never been reported in the
field of soft continuum robots. The present study fills the gap
in the literature by developing a motion control system with
predefined-time convergence for continuum robots.

Zeroing dynamics models have been proposed and widely
studied for the solution of a variety of time-variant problems
since the early years of this century [33, 34]. By utilizing
different activation functions, zeroing dynamics models ex-
hibit different types of convergence. Typically, when using a
linear activation function, the zeroing dynamics model ensures
that the associated error-monitoring function converges to
zero exponentially. Many nonlinear activation functions have
been designed for zeroing dynamics models to improve the
convergence [30]. Xiao et al. [29] designed a finite-time
zeroing dynamics model by devising a nonlinear activation
function. Likewise, Lv et al. [16] proposed a zeroing dynam-
ics model activated by weighted sign-bi-power function to
achieve finite-time convergence. Furthermore, Li [14] designed
several nonlinear activation functions to obtain predefined-
time convergent zeroing dynamics models. However, these
zeroing dynamics models were only applied to time-variant
matrix inversion, time-variant equation solving and the motion
control of rigid-link robots. In this paper, we propose a
novel PTCZD model and firstly achieve the predefined-time
convergent motion control of continuum robots based on the
model.

III. METHOD

In this section, we first present the proposed PTCZD model
and prove its predefined-time convergence theoretically. Sub-
sequently, we introduce how to design a state estimator and
an inverse kinematics solver for continuum robots with the
PTCZD model.



A. PTCZD Model

In the design procedure of zeroing dynamics, an indefinite
error-monitoring function ξ(t) ∈ R is first defined at the
time t according to the specific objective. To drive the error-
monitoring function to converge to zero, the design formula
of zeroing dynamics is usually given as follows

ξ̇(t) = −νH (ξ(t)) (1)

where ξ̇(t) denotes the first time derivative of ξ(t), ν is a posi-
tive constant dominating the convergence speed of the model,
H (·) could be a linear or nonlinear activation function. To
achieve predefined-time convergence, we design the following
PTCZD model

ξ̇(t) = −νH (ξ(t))

H(z) =
exp

(
|z|2−2p + |z|2+2p

)
|z|2p−1sign(z)

2 (1− p+ (1 + p)|z|4p)

ν =
1− exp

(
−|ξ(0)|2−2p − |ξ(0)|2+2p

)
tc

(2)

where p ∈ (0.5, 1) is a parameter of the model, sign(·) is
the sign function, ξ(0) denotes the initial value of the error-
monitoring function and tc is the desired convergence time
defined by users. The choice of p can ensure that the activation
function H(z) is monotonically increasing provided that the
input z is in a reasonable range. Finally, by expanding the
zeroing dynamics model with user-defined error-monitoring
function ξ(t), we can obtain a differential-equation-based
dynamic system to solve specific problems. Regarding the
proposed PTCZD model, the following theorem is provided
to ensure its predefined-time convergence.

Theorem 1: Starting from initial error ξ(0) 6= 0, the
PTCZD model (2) ensures that the error-monitoring function
ξ(t) converges to zero in predefined time tc.

Proof: To begin with, the following function is defined

L(t) = ξ2(t) ≥ 0. (3)

By deriving the above function with respect to time t, the
following result is attained

L̇(t) = 2ξ(t)ξ̇(t). (4)

By utilizing (2) and replacing the variable z in H(z) with ξ,
we can further obtain

L̇(t) =− 2νξ(t)H (ξ(t))

=
−ν|ξ(t)| exp

(
|ξ(t)|2−2p + |ξ(t)|2+2p

)
|ξ(t)|2p−1

1− p+ (1 + p)|ξ(t)|4p

=
−ν exp

(
|ξ(t)|2−2p + |ξ(t)|2+2p

)
(1− p)|ξ(t)|−2p + (1 + p)|ξ(t)|2p

.

(5)
The above equation can be rewritten as

L̇(t) =
dL

dt
=
−ν exp

(
L1−p(t) + L1+p(t)

)
(1− p)L−p(t) + (1 + p)Lp(t)

, (6)

which yields

− (1− p)L−p(t) + (1 + p)Lp(t)

exp (L1−p(t) + L1+p(t))
dL = νdt. (7)

Assume that the error-monitoring function ξ(t) converges to
zero at the time ts, which means the function L(t) converges
to zeros at ts. By integrating both sides of (7) from t = 0 to
ts, the following result is obtained∫ 0

L(0)

− (1− p)L−p(t) + (1 + p)Lp(t)

exp (L1−p(t) + L1+p(t))
dL =

∫ ts

0

νdt,

exp
(
−L1−p(t)− L1+p(t)

) ∣∣0
L(0)

= νt
∣∣ts
0
,

1− exp
(
−L1−p(0)− L1+p(0)

)
= νts.

(8)

Considering the definition of ν in (2), we have

ts =
1− exp

(
−L1−p(0)− L1+p(0)

)
ν

=
1− exp

(
−L1−p(0)− L1+p(0)

)
1− exp (−|ξ(0)|2−2p − |ξ(0)|2+2p)

tc

= tc.

(9)

The above result indicates that the convergence time of the
error-monitoring function ξ(t) is the predefined time tc. The
proof is thus completed.

B. State Estimator

For model-based control methods, there are two major
problems: 1) The modeling of continuum robots is of great
difficulty and complexity. 2) It is tedious to design specific
models and control algorithms for heterogeneous continuum
robots. Therefore, we are aimed at developing a generic model-
free control system, which is independent of the robot model,
to achieve the motion control of heterogeneous continuum
robots.

Typically, the forward kinematics of a continuum robot can
be simply described by

ra(t) = F(φ(t)) (10)

where ra(t) ∈ Rm denotes the position of robot end-effector
in the m-dimension task space, φ(t) ∈ Rn denotes the state
of the n actuators of the continuum robot and F(·) denotes
a nonlinear kinematic mapping function. Accordingly, the
differential kinematics of the continuum robot is as follows

ṙa(t) = J(t)φ̇(t) (11)

where ṙa(t) denotes the first time derivative of ra(t) and
J(t) = ∂F(φ(t))/∂φ(t) ∈ Rm×n is the Jacobian matrix
of the continuum robot. Without building a model for the
robot, the mapping function and the Jacobian matrix can not
be analytically calculated. To solve this problem, we design a
Jacobian-based state estimator for the continuum robot.

First, inspired by (11), the following vector-valued error-
monitoring function is defined

ε(t) = ṙa(t)− JA(t)φ̇(t) ∈ Rm (12)



where JA(t) is the unknown Jacobian matrix to be estimat-
ed for the continuum robot. Then, modifying the proposed
PTCZD model to vector-valued version and replacing ξ(t)
with ε(t) lead to

ε̇(t) = −νsH(ε(t)) (13)

where H(·) ∈ Rm is an activation function array with each
element being H(z) and νs is a constant designed according
to (2). Next, by expanding (13) with (12), the following
dynamic equation is derived

r̈a(t)− J̇A(t)φ̇(t)−JA(t)φ̈(t) = −νsH(ṙa(t)−JA(t)φ̇(t))
(14)

where r̈a(t) denotes the second time derivative of ra(t).
Finally, the evolution of the estimated Jacobian matrix follows
the dynamic equation below

J̇A(t) = (r̈a(t)−JA(t)φ̈(t)+νsH(ṙa(t)−JA(t)φ̇(t)))φ̇†(t)
(15)

where φ̇†(t) denotes the pseudo-inverse of φ̇(t).

C. Predefined-Time Convergent Inverse Kinematics Solver

Similarly, to achieve the predefined-time convergent motion
control of the continuum robot, the following vector-valued
error-monitoring function is defined

e(t) = rd(t)− ra(t) ∈ Rm. (16)

In a tracking control task, rd(t) denotes the reference path that
needs to be tracked by robot end-effector. In a point-to-point
task, we can simply set rd(t) as the reference point, which
implies the point-to-point task is a special case of the tracking
control task. Our objective is to drive the error-monitoring
function e(t) to zero in predefined time. By adopting the
PTCZD model (2) again, we have

ė(t) = −νcH(e(t)) (17)

where νc is a constant designed according to (2). Then,
expanding (17) with (16) yields

ṙd(t)− J(t)φ̇(t) = −νcH(rd(t)− ra(t)). (18)

Therefore, the actuation signal can be determined by the
following dynamic equation

φ̇(t) = J†(t) (ṙd(t) + νcH(rd(t)− ra(t))) . (19)

However, the analytic Jacobian J(t) can not be directly
used because the kinematic model of the continuum robot
is unknown. By replacing the analytic Jacobian J(t) with
the estimated Jacobian JA(t), the adaptation of the actuation
signal follows the dynamic equation below

φ̇(t) = J†A(t) (ṙd(t) + νcH(rd(t)− ra(t))) . (20)

(a) (b)

Fig. 2. Graphic analysis of h(z, p). (a) z ∈ (0, 1). (b) z ∈ (−1, 0).

D. Control System for Heterogeneous Continuum Robots

Finally, a control system based on the state estimator (15)
and the inverse kinematics solver (20) is obtained for the
model-free motion control of continuum robots. There are
several facts worth pointing out regarding the proposed control
system. First, taking advantage of the proposed PTCZD model,
the proposed control system can drive the tracking error (in
tracking tasks) or position error (in point-to-point tasks) to
zero in predefined time. Second, it is not difficult to find that
the proposed control method is independent of the analytic
model and structure of continuum robots, which means it
is applicable to heterogeneous continuum robots. Third, the
selection of the convergence speed parameter in the PTCZD
model is a key step to ensure the convergence of the error-
monitoring function. Generally the convergence speed ν is
set according to (2). Specifically, in the inverse kinematics
solver (20), the convergence speed is set as

νc =
1− exp

(
−|emax(0)|2−2p − |emax(0)|2+2p

)
tc

(21)

where emax(0) denotes the element in e(0) with the largest
absolute value. In the state estimator (15), the convergence
speed parameter is set to satisfy νs ≥ 1/tc for simplicity.
Besides, it can be seen from the dynamic equations (15)
and (20) that the end-effector position, velocity and acceler-
ation are required to solve the equations. Unfortunately, the
velocity and acceleration are not easy to be directly measured
sometimes, which could be a limitation of the proposed
method. In this case, one can utilize differentiators or filters
to estimate the velocity and acceleration [6, 22]. Moreover,
the dynamic equations (15) and (20) could be solved by
numerical tools (e.g., ode45 in MATLAB) as long as the
initial values are provided. The initial value of the actuation
signal could be set to any reasonable value, whereas the
initial value of the estimated Jacobian should follow specific
procedures. Generally, one can increase the value of the i-
th (i = 1, 2, · · · , n) actuation signal by a sufficiently small
amount ∆φi ∈ R+ and measure the end-effector displacement
∆ri ∈ Rm of the continuum robot. By repeating the procedure
for each actuator, one can initialize the estimated Jacobian as
JA(0) = [∆r1/∆φ1,∆r2/∆φ2, · · · ,∆rn/∆φn].



E. Stability Analysis
In this part, we analyze the stability of the proposed control

system. Firstly, based on the error-monitoring functions, the
following positive semi-definite Lyapunov candidate is defined

V =
1

2

(
eT(t)Λe(t) + εT(t)Λε(t)

)
≥ 0 (22)

where (·)T is the transpose operation and Λ ∈ Rn×n is
an identity matrix. Considering (13) and (17), the first time-
derivative of the candidate is as follows

V̇ = eT(t)Λė(t) + εT(t)Λε̇(t)

= −νceT(t)H(e(t))− νsεT(t)H(ε(t))

= −νc
n∑

i=1

ei(t)H(ei(t))− νs
n∑

i=1

εi(t)H(εi(t))

(23)

where the subscript (·)i indicates the i-th element of the
vector. Next, we analyze the property of the activation function
H(z) in (2). According to the design philosophy of zeroing
dynamics, the activation function should be monotonically
increasing. When z 6= 0, we have

dH(z)

dz
=

2 exp
(
|z|2−2p + |z|2+2p

)
h(z, p)

4 ((1− p)|z|1−2p + (1 + p)|z|1+2p)
2 (24)

where

h(z, p) =2
(
(1− p)|z|1−2p + (1 + p)|z|1+2p

)2
− (1− p)(1− 2p)|z|−2p − (1 + p)(1 + 2p)|z|2p.

(25)
Next, our objective is to find the parameter value of p to
ensure h(z, p) is positive. It is worth noting that h(z, p)
is non-convex, which implies there may be more than one
parameter range that meets the requirement and we only
need to determine an appropriate parameter range. Considering
that the workspace of continuum robots is usually limited,
it is reasonable to assume that the initial value of the error-
monitoring function stays within a limited range (−δ, δ), e.g.,
δ = 0.5. For those continuum robots with larger workspace,
which may cause that the initial absolute value of the error-
monitoring function exceeds δ, we can decompose the task into
several sub-tasks, where the initial absolute value of the error-
monitoring function of each sub-task is less than δ. Then, the
graphical illustration of h(z, p) is depicted in Fig. 2. Provided
that the value of z satisfies the above assumption, it can
be seen that the value of h(z, p) could be positive when p
is properly selected from (0.5, 1). It is worth pointing out
that h(z, p) → +∞ when z → 0 and p ∈ (0.5, 1). After
determining an appropriate value for p, we have h(z, p) > 0,
which means

dH(z)

dz
> 0 (26)

where z ∈ (−δ, 0) ∪ (0, δ). Therefore, we can further get the
following result

H(z)


> 0, 0 < z < δ

= 0, z = 0

< 0, −δ < z < 0

. (27)
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Fig. 3. Some configurations of the CDR tracking the reference path in
simulations.

Considering (26) and (27), it is not difficult to find that H(z)
is monotonically increasing when z ∈ (−δ, δ), which implies
zH(z) ≥ 0. According to the definition of νc and νs, both of
them are positive. Then, we can get V̇ ≤ 0, and V̇ = 0 if and
only if both the error-monitoring functions e(t) and ε(t) are
zero. Finally, when e(t) 6= 0 and ε(t) 6= 0, we have V > 0
and V̇ < 0. According to the Lyapunov’s second method, we
can conclude that the proposed control system is asymptotic
stable.

IV. SIMULATIONS AND EXPERIMENTS

In this part, simulations and experiments based on heteroge-
neous continuum robots are performed to validate the proposed
predefined-time convergent control method.

A. Simulations

1) Settings: In simulations, a cable-driven continuum robot
(CDR) and a concentric tube continuum robot (CTR) are
adopted to validate the proposed control system. Specifically,
the CDR is controlled by the proposed method to track a
Lissajous path and the CTR is controlled to track a circular
path. Apart from the tracking tasks, a point-to-point task is also
adopted for the CTR to verify the effectiveness of the proposed
method. We assume that the reference paths and points are
within the workspace of the robots. The task duration of the
tracking tasks is set as 10 s while the predefined convergence
time is set to tc = 1 s. For the point-to-point task, the
predefined convergence time is set to tc = 5 s. In addition, the
parameter of the PTCZD model is set as p = 0.9 throughout
this paper.

2) Cable-Driven Continuum Robot: Some configurations
of the CDR for tracking the Lissajous path are illustrated
in Fig. 3. The CDR is composed of two connected segments.
We can find that the actual path of the robot end-effector is
almost the same as the reference path. The profiles of tracking
error and control signal of the CDR are depicted in Fig 4. It
can be seen that the tracking error of the continuum robot
almost converges to zero before t = 1 s, which satisfies the
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Fig. 4. Simulation results of the CDR for tracking the reference path. (a)
Profiles of tracking error. (b) Profiles of control signal.
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Fig. 5. Some configurations of the CTR tracking the reference path in
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Fig. 6. Simulation results of the CTR for tracking the reference path. (a)
Profiles of tracking error. (b) Profiles of control signal.

requirement (tc = 1 s). The steady state tracking error of the
CDR is less than 1× 10−3 m during the tracking process.

3) Concentric Tube Continuum Robot: Some configura-
tions of the CTR when tracking the circular path are illustrated
in Fig. 5. The CTR consists of inner tube, mid tube and outer
tube. It can be found that the actual path of the robot end-
effector is almost the same as the reference path. The profiles
of related tracking error and control signal of the CTR are
illustrated in Fig 6. We can see that the tracking error of the
CTR almost converges to zero before t = 1 s, which also
satisfies the requirement (tc = 1 s). Besides, a point-to-point
task is also finished by the CTR with the aid of the proposed
method. As shown in Fig. 7, the robot end-effector moves from
the start point to the reference point as expected. The profiles
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Fig. 7. Some configurations of the CTR finishing the point-to-point task in
simulations.
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Fig. 8. Simulation results of the CTR for the point-to-point task. (a) Profiles
of position error. (b) Profiles of control signal.

TABLE I
QUANTITATIVE COMPARISON OF STEADY-STATE TRACKING ERROR WITH

EXISTING TRACKING CONTROLLERS.

Method
Noise-free Noise-polluted

eRMSE (m) emax (m) eRMSE (m) emax (m)

AKF 1.2× 10−3 2.4× 10−3 4.8× 10−3 4.9× 10−3

OZND 1.5× 10−3 4.4× 10−3 2.3× 10−3 5.0× 10−3

Ours 1.0× 10−4 5.1× 10−4 5.0× 10−4 8.5× 10−4

of position error and control signal of the CTR are illustrated
in Fig 8. One can find that the point-to-point task is fulfilled
before t = 5 s, which satisfies the requirement (tc = 5 s).

4) Comparison: For the sake of revealing the merits of
the proposed method, two existing model-free methods are
adopted as a comparison in this part. The first method is the
adaptive-Kalman-filter-based (AKF) method proposed in [13],
which resorts to a Kalman filter to estimate the state of
the continuum robot and control the robot with a Jacobian
pseudo-inverse method. The second method is the zeroing
neurodynamic approach proposed in [25], which utilizes the
original zeroing neurodynamic model (OZND) to achieve the
tracking control of continuum robots. All the three methods are
implemented to control the CDR to finish the same tracking
task. As depicted in Fig. 9, these methods are compared from
two perspectives, i.e., tracking error and Jacobian estimation.
It can be seen from Fig. 9(a) and Fig. 9(b) that the tracking
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Fig. 9. Simulation results of comparative studies in the tracking task of the CDR. (a) Tracking error of the AFK method. (b) Tracking error of the OZND
method. (c) Tracking error of the proposed control method. (d) Profiles of Jacobian matrices in the AFK method. (e) Profiles of Jacobian matrices in the
OZND method. (f) Profiles of Jacobian matrices in the proposed method.

error of the AFK method converges to zero rapidly and
the tracking error of the OZND method converges to zero
exponentially. However, there are noticeable residual steady
state errors when adopting these two methods. In comparison,
the tracking error generated by the proposed method converges
to zero in predefined time and the residual steady state error
is almost zero as illustrated in Fig 9(c). For quantitative
comparison, we summarize the root mean squared tracking
error eRMSE and maximum error emax of these three methods
at the steady state in Table I. Especially, we also compare the
performance of these methods in the presence of time-varying
noise. The quantitative results indicate that the errors achieved
by our method are one order of magnitude smaller than those
achieved by existing two methods in both the noise-free and
the noise-polluted cases, which reveals the accuracy of our
method. The comparison between the actual Jacobian matrices
and the estimated Jacobian matrices by different methods is
illustrated in Fig. 9(d)-9(f). For clarity and brevity, we only
present the changes in some of the elements of the Jacobian
matrices. We can find that the Jacobian matrix estimated by the
AFK method oscillates around the actual Jacobian matrix. The
OZND method has much better performance than the AFK
method in terms of Jacobian estimation while the performance
of the proposed method is slightly better than the OZND
method. Moreover, the AFK method and the OZND were only
validated on a single type of continuum robot and the OZND
method was only validated in simulations. In comparison, our

(a)

(b)

Fig. 10. Overview of the experiment platforms. (a) Cable-driven continuum
robot (CDR). (b) Concentric tube continuum robot (CTR).

control system is proposed for and validated on heterogeneous
continuum robots.



Fig. 11. Experiment snapshots of the CDR in the tracking task.

B. Experiments

1) Settings: Our experiment platforms are illustrated in
Fig. 10, including the robots, the computer and the Micron
tracker. The Micron tracker is utilized to measure the position
of the marker attached to robot end-effector. The end-effector
velocity and acceleration are estimated by low-pass filters.
The robots are driven by motors, which are directly con-
trolled by proportional-integral-differential (PID) controllers.
The proposed control system is implemented via Simulink,
which sends actuation signal to the PID controllers, thereby
actuating the motors. The cable-driven continuum robot (CDR)
is controlled by the proposed method to track a Lissajous path
and the concentric tube continuum robot (CTR) is controlled
to finish a point-to-point task. The task duration of the tracking
task is set as 60 s while the predefined convergence time is
set to tc = 3 s. For the point-to-point task, the predefined
convergence time is set to tc = 5 s.

2) Cable-Driven Continuum Robot: Experiment snapshots
of the CDR tracking the Lissajous path are shown in Fig. 11,
where the actual path of the end-effector is highlighted with
red. The specific experiment results of the tracking task are
illustrated in Fig. 14. The figures show that the tracking error
of the CDR almost converges to zero before t = 3 s, which
satisfies the requirement (tc = 3 s). Then, the end-effector
moves along the reference path with the steady state error less
than 2× 10−3 m.

3) Concentric Tube Continuum Robot: The initial configu-
ration and final configuration of the CTR in the point-to-point
task are depicted in Fig 12. The specific experiment results
of the task are illustrated in Fig. 15. It can be found that the
point-to-point task is successfully achieved by the CTR. The

(a) (b)

Fig. 12. Snapshots of the CTR in the point-to-point task. (a) Initial
configuration. (b) Final configuration.

(a) (b)

Fig. 13. Configurations of CDR. (a) Without loads. (b) With a load.

robot end-effector moves from the start point to the reference
point as expected. More importantly, one can find that the
position error converges to zero at t = 5 s, which satisfies the
requirement (tc = 5 s).

4) Robustness Test: In this part, we test the robustness
of the proposed control system when imposing loads and
disturbance to the CDR. The CDR is required to track a
circular path, with predefined convergence time being tc = 5
s and the control frequency being 10 Hz. First, we consider
a load along the robot. As depicted in Fig. 13, the load is
heavy enough to cause changes to the configuration of the
robot. The robot is required to finish the tracking task with the
load attached to it. The related experiment results is shown in
Fig. 16. According to Fig. 16(b) and Fig. 16(c), we can find
that the end-effector of the robot can still converge to the
desired path in predefined time, which reveals the robustness
of the proposed controller in the presence of a load along the
robot. Then, we consider to impose an external disturbance to
the robot when it is performing the tracking task. As illustrated
in Fig. 17, we use a bottle to push the body of CDR when
t ∈ (25, 30) s, which leads to the deviation between the desired
path and the robot as shown in Fig. 17(b) . Nevertheless,
Fig. 17(c) illustrates that the tracking errors still converge to
zero after the disturbance, which further reveals the robustness
of the proposed controller.

V. CONCLUSION

In this paper, a novel PTCZD model has been proposed to
ensure the predefined-time convergence of the associated error-
monitoring function. Based on the PTCZD model, a state esti-
mator and an inverse kinematics solver have been designed for
the motion control of heterogeneous continuum robots. Finally,
extensive simulations and experiments have been performed on
cable-driven continuum robots and concentric tube continuum
robots to reveal the efficacy and merits of the proposed control
system. Based on the results, we have the following findings:
1) The proposed control system is applicable to heterogeneous
continuum robots, including CDRs and CTRs. 2) The proposed
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Fig. 14. Experiment results of the CDR for tracking the reference path. (a) Profiles of the reference path and the actual path. (b) Profiles of tracking error.
(c) Profiles of control signal.
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Fig. 15. Experiment results of the CTR in the point-to-point task. (a) Profiles of the reference point and the actual path. (b) Profiles of position error. (c)
Profiles of control signal.
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Fig. 16. Experiment results of the CDR with an unknown load for tracking a circular path. (a) A load is attached to the CDR. (b) Profiles of the reference
path and the actual path. (c) Profiles of tracking error.

control system can ensure that the tracking error (in tracking
tasks) and position error (in point-to-point tasks) converge
to zero in predefined time. 3) The proposed control system
has better performance than the AFK method and the OZND
method in terms of tracking error and Jacobian estimation.
Nevertheless, there are also some limitations of this work.
For example, the proposed control method has been validated
by only two types of heterogeneous continuum robots. The
efficacy and merits of the proposed control method could be
further revealed by applying the method to other types of

continuum robots in the future, e.g., pneumatic continuum
robots.

ACKNOWLEDGMENTS

This research was supported by the National Natural Sci-
ence Foundation of China (62173352), the Guangdong Basic
and Applied Basic Research Foundation (2021A1515012314)
and the Key-Area Research and Development Program of
Guangzhou (202007030004).



(a)

0.514
0.518

0.040.07
0.06 0.02

0.05
00.04

0.03 -0.02

Reference path
Actual path

Start point

External disturbance

(b)

0 10 20 30 40 50 60
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(c)

Fig. 17. Experiment results of the CDR for tracking a circular path in the presence of external disturbance. (a) Imposing external disturbance during the
tracking task. (b) Profiles of the reference path and the actual path. (c) Profiles of tracking error.

REFERENCES

[1] Jorge E. Ayala-Carrillo, Vicente Parra-Vega, Ernesto
Olguı́n-Dı́az, and Christian A. Trejo-Ramos. Cascade
control for robust tracking of continuum soft robot-
s with finite-time convergence of pneumatic system.
IEEE Control Systems Letters, 7:577–582, 2023. doi:
10.1109/LCSYS.2022.3206211.

[2] Caroline E Bryson and D. Caleb Rucker. Toward parallel
continuum manipulators. In IEEE International Confer-
ence on Robotics and Automation, pages 778–785, 2014.
doi: 10.1109/ICRA.2014.6906943.

[3] Salvador Cobos-Guzman, David Palmer, and Dragos
Axinte. Kinematic model to control the end-effector of a
continuum robot for multi-axis processing. Robotica, 35
(1):224–240, 2017. doi: 10.1017/S0263574715000946.

[4] Cosimo Della Santina, Antonio Bicchi, and Daniela Rus.
On an improved state parametrization for soft robots with
piecewise constant curvature and its use in model based
control. IEEE Robotics and Automation Letters, 5(2):
1001–1008, 2020. doi: 10.1109/LRA.2020.2967269.

[5] Meng Ding, Hailei Wu, Xianjie Zheng, and Yu Guo.
Adaptive predefined-time attitude stabilization control of
space continuum robot. IEEE Transactions on Circuits
and Systems II: Express Briefs, 2022. doi: 10.1109/
TCSII.2022.3204840.

[6] Takanori Emaru, Kazuo Imagawa, Yohei Hoshino, and
Yukinori Kobayashi. Estimation of velocity and ac-
celeration by nonlinear filter using sliding mode and
application to control systems. In Asia International
Symposium on Mechatronics, pages 212–217, 2008. doi:
10.1299/kikaic.75.2547.

[7] Valentin Falkenhahn, Frank A. Bender, Alexander Hilde-
brandt, Rudiger Neumann, and Oliver Sawodny. Online
TCP trajectory planning for redundant continuum manip-
ulators using quadratic programming. In International
Conference on Advanced Intelligent Mechatronics, pages
1163–1168, 2016. doi: 10.1109/AIM.2016.7576927.

[8] Michele Giorelli, Federico Renda, Marcello Calisti, An-
drea Arienti, Gabriele Ferri, and Cecilia Laschi. Neural
network and Jacobian method for solving the inverse stat-

ics of a cable-driven soft arm with nonconstant curvature.
IEEE Transactions on Robotics, 31(4):823–834, 2015.
doi: 10.1109/TRO.2015.2428511.

[9] Xinjia Huang, Jiang Zou, and Guoying Gu. Kinematic
modeling and control of variable curvature soft continu-
um robots. IEEE/ASME Transactions on Mechatronics,
26(6):3175–3185, 2021. doi: 10.1109/TMECH.2021.
3055339.

[10] Hao Jiang, Xinghua Liu, Xiaotong Chen, Zhanchi Wang,
Yusong Jin, and Xiaoping Chen. Design and simulation
analysis of a soft manipulator based on honeycomb
pneumatic networks. In IEEE International Conference
on Robotics and Biomimetics, pages 350–356, 2016. doi:
10.1109/ROBIO.2016.7866347.

[11] Bryan A. Jones and Ian D. Walker. Kinematics for
multisection continuum robots. IEEE Transactions on
Robotics, 22(1):43–55, 2006. doi: 10.1109/TRO.2005.
861458.

[12] Kit Hang Lee, Denny K.C. Fu, Martin C.W. Leong,
Marco Chow, Hing Choi Fu, Kaspar Althoefer, Kam Yim
Sze, Chung Kwong Yeung, and Ka Wai Kwok. Non-
parametric online learning control for soft continuum
robot: An enabling technique for effective endoscopic
navigation. Soft Robotics, 4(4):324–337, 2017. doi:
10.1089/soro.2016.0065.

[13] Minhan Li, Rongjie Kang, David T. Branson, and Jian S.
Dai. Model-free control for continuum robots based
on an adaptive Kalman filter. IEEE/ASME Transactions
on Mechatronics, 23(1):286–297, 2018. doi: 10.1109/
TMECH.2017.2775663.

[14] Weibing Li. Predefined-time convergent neural solution
to cyclical motion planning of redundant robots under
physical constraints. IEEE Transactions on Industrial
Electronics, 67(12):10732–10743, 2020. doi: 10.1109/
TIE.2019.2960754.

[15] Hang Liu, Tie Wang, and Dongsheng Guo. Design
and validation of zeroing neural network to solve time-
varying algebraic Riccati equation. IEEE Access, 8:
211315–211323, 2020. doi: 10.1109/ACCESS.2020.
3039253.

[16] Xuanjiao Lv, Lin Xiao, Zhiguo Tan, and Zhi Yang.



Wsbp function activated Zhang dynamic with finite-time
convergence applied to Lyapunov equation. Neurocom-
puting, 314:310–315, 2018. doi: 10.1016/j.neucom.2018.
06.057.

[17] Tobias Mahl, Alexander Hildebrandt, and Oliver Sawod-
ny. A variable curvature continuum kinematics for
kinematic control of the bionic handling assistant. IEEE
Transactions on Robotics, 30(4):935–949, 2014. doi:
10.1109/TRO.2014.2314777.

[18] Milad S Malekzadeh, Sylvain Calinon, Danilo Bruno,
and Darwin G Caldwell. Learning by imitation with the
STIFF-FLOP surgical robot: A biomimetic approach in-
spired by octopus movements. Robotics and Biomimetics,
1:13, 2014. doi: 10.1186/preaccept-1725134953134311.

[19] Achille Melingui, Othman Lakhal, Boubaker Daachi,
Jean Bosco Mbede, and Rochdi Merzouki. Adaptive
neural network control of a compact bionic handling arm.
IEEE/ASME Transactions on Mechatronics, 20(6):2862–
2875, 2015. doi: 10.1109/TMECH.2015.2396114.

[20] Jonathan Obregon-Flores, Gustavo Arechavaleta, Hec-
tor M. Becerra, and America Morales-Diaz. Predefined-
time robust hierarchical inverse dynamics on torque-
controlled redundant manipulators. IEEE Transactions
on Robotics, 37(3):962–978, 2021. doi: 10.1109/TRO.
2020.3042054.

[21] Andrew L. Orekhov, Elan Z. Ahronovich, and Nabil
Simaan. Lie group formulation and sensitivity analysis
for shape sensing of variable curvature continuum robots
with general string encoder routing. IEEE Transactions
on Robotics, 2023. doi: 10.1109/TRO.2022.3232273.

[22] Richard Seeber, Hernan Haimovich, and Martin Horn.
Robust exact differentiators with predefined convergence
time. Automatica, 134:109858, 2021. doi: 10.1016/j.
automatica.2021.109858.

[23] Theodore E. Simos, Vasilios N. Katsikis, Spyridon D.
Mourtas, and Predrag S. Stanimirović. Finite-time con-
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