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Abstract

Multiple antennas at both the transmitter and receiver ends of a wire-
less digital transmission channel may increase both data rate and reli-
ability. Reliable high rate transmission over such channels can only
be achieved through Space-Time coding. Rank and determinant code
design criteria have been proposed to enhance diversity and coding
gain. The special case of full-diversity criterion requires that the differ-
ence of any two distinct codewords has full rank.

Extensive work has been done on Space-Time coding, aiming at
finding fully diverse codes with high rate. Division algebras have been
proposed as a new tool for constructing Space—Time codes, since they
are non-commutative algebras that naturally yield linear fully diverse
codes. Their algebraic properties can thus be further exploited to
improve the design of good codes.



The aim of this work is to provide a tutorial introduction to the
algebraic tools involved in the design of codes based on cyclic divi-
sion algebras. The different design criteria involved will be illustrated,
including the constellation shaping, the information lossless property,
the non-vanishing determinant property, and the diversity multiplexing
trade-off. The final target is to give the complete mathematical back-
ground underlying the construction of the Golden code and the other
Perfect Space—Time block codes.

Keywords: Cyclic algebras; division algebras; full diversity; golden
code; non-vanishing determinant; perfect space—time
codes; space—time coding.



1

Introduction

Algebraic coding has played an important role since the early age of
coding theory. Error correcting codes for the binary symmetric chan-
nel were designed using finite fields and codes for the additive white
Gaussian channel were designed using Euclidean lattices.

The introduction of wireless communication required new coding
techniques to combat the effect of fading channels. Modulation schemes
based on algebraic number theory and the theory of algebraic lattices
were proposed for single antenna Rayleigh fading channels thanks to
their intrinsic modulation diversity.

New advances in wireless communications led to consider systems
with multiple antennas at both the transmitter and receiver ends, in
order to increase the data rates. The coding problem became more
complex and the code design criteria for such scenarios showed that
the challenge was to construct fully-diverse codes, i.e., sets of matri-
ces such that the difference of any two distinct matrices is full rank.
This required new tools, and from the algebraic side, division algebras
quickly became prominent.
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1.1 Division Algebra Based Codes

Division algebras are non-commutative algebras that naturally yield
families of fully-diverse codes, thus enabling to design high rate, highly
reliable Space—Time codes, which are characterized by many optimal
features, deeply relying on the algebraic structures of the underlying
algebra.

The idea of using division algebras was first introduced in [51], where
so-called Brauer algebras were presented, and in [50], where it was
shown that the acclaimed Alamouti code [1] can actually be built from a
simple example of division algebras, namely the Hamilton quaternions.
Quaternion algebras were more generally used in [6], where the notion
of non-vanishing determinant was introduced.

Different code constructions appeared then in [52], based on field
extensions and cyclic algebras. In [7, 44] and then in [21], perfect codes
were presented as division algebra codes which furthermore satisfy a
shaping property and have a non-vanishing determinant. In [53], infor-
mation lossless codes from crossed product algebras, a new family of
division algebras, are presented. In [31], codes from maximal orders
of division algebras are investigated. In [39] some non-cubic shaping,
non-vanishing determinant codes are proposed based on cyclic division
algebras.

In parallel, in [7, 15, 33, 63], the first 2 x 2 codes achieving the
diversity-multiplexing gain trade-off of Zheng and Tse [64] were found.
It was furthermore shown [63] that a necessary condition to achieve the
trade-off for a 2 x 2 code is actually to have a non-vanishing determi-
nant (though not stated with this terminology). In [7], it was shown
that the algebraic structure of cyclic division algebras was the key for
constructing 2 x 2 non-vanishing determinant codes. In [20], it was
shown more generally that division algebra codes are a class of codes
that achieve the trade-off, thanks to the non-vanishing determinant.

All the notions mentioned in the above short history of division alge-
bra based codes will be explained in this work. We will focus on cyclic
division algebras, a particular family of division algebras. These will be
built over number fields, with base field Q(i) or Q(j), with i2 = —1 and
43 =1, which are suitable to describe QAM or HEX constellations.
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The notion of constellation shaping will be explained, thanks to an
underlying lattice structure. We will show how this is related to the
information lossless property. Furthermore, having Q(i) or Q(j) as a
base field will allow us to get the so-called non-vanishing determinant
property, which will be shown to be a sufficient condition to reach the
diversity-multiplezing trade-off.

1.2 Organization

This paper is organized as follows. Chapter 2 details the channel model
considered. It recalls the two main code design criteria derived from
the pairwise probability of error, namely: the rank criterion and the
determinant criterion. It then discusses the modulations used, QAM
and HEX constellations. Decoding is furthermore considered, which
also enlightens the importance of the constellation shaping in the code
performance.

In Chapter 3, performance of the code is considered from an infor-
mation theoretic perspective. The goal is to explain the role of the
diversity-multiplezing gain trade-off, as well as the information lossless
property, which guarantees that a coded system will have the same
capacity as an uncoded one assuming QAM input symbols.

Chapters 2 and 3 give a characterization of the properties a Space—
Time code should achieve to be efficient. Codes based on cyclic division
algebras have been shown to fulfill those properties. Their construc-
tion is however involved, and it is the goal of Chapter 4 to introduce
the algebra background necessary to construct those codes. No alge-
bra background is required to read this chapter. Division algebras are
introduced, as well as number fields. We also define concepts such as
algebraic norm and algebraic trace, that will be important for the code
construction.

Once the algebra background is set, Chapter 5 explains the con-
struction of the Golden code and some other Perfect Space—Time block
codes for small number of antennas, namely up to six.

The last chapter briefly presents future applications of those tech-
niques, toward coding for wireless networks, and trellis/block coded
modulations.
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The MIMO System Model

2.1 Introduction

Multiple transmit and multiple receive antennas have emerged as a
promising technique for improving the performance of wireless digital
transmission systems [25, 58]. The limited resources of a wireless com-
munication system, such as spectrum and power, can be efficiently used
with multiple antennas to provide good quality and large capacity to a
wide range of applications requiring high data rate.

Multiple antenna systems are described by a multiple-input
multiple output (MIMO) system model, where the propagation
environment is a quasi-static and frequency-flat Rayleigh fading
channel [8]. This assumption is necessary to establish simple code
design criteria. Nevertheless, the codes designed under this simplify-
ing assumption yield good performance in a wide variety of real world
scenarios.

Consider a system with n; transmit antennas and n, receive anten-
nas. The complex baseband channel, within a single fading block of
T symbol durations, can be expressed as

anXT - HnrxntXntXT + anXT- (21)

6
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The subscripts indicate the corresponding matrix dimensions and will
be omitted for simplicity in the following. The h;; element of the chan-
nel matrix H corresponds to the channel coefficient between the jth
transmit and the ith receive antenna and it is modeled as a complex
Gaussian random variable with zero mean and unit variance N;(0,1).

The matrix Z corresponds to the spatially and temporally addi-
tive white noise, whose independent entries are complex Gaussian ran-
dom variables N (0, Ny), where Nj is the noise power spectral density.
The x;. entry of X corresponds to the signal transmitted from the
ith antenna during the kth symbol interval for 1 < k <T. We let the
time T coincide with the coherence time, i.e., the time during which
the channel coefficients remain constant. It is also assumed that H is
independent of both X and Z.

Let Es = E[|z;£]?] denote the signal energy transmitted from each
antenna. We define the signal-to-noise ratio (SNR) at the receiver as

E[[HX[?] _nE,
E[lZIF ~ No

(2.2)

where || - || denotes the Frobenius norm of the matrix argument. For
this kind of channels, the capacity at high SNR scales with min(n,n,),
[25]:

C(n¢,ny, SNR) ~ min(ng, n,)log(SNR). (2.3)

This means that by using appropriate processing, the additional spa-
tial degrees of freedom (with respect to single transmit single receive
antenna) allow the transmission of independent data flows through the
channel and the separation of these flows at the receiver side. Equation
(2.3) indicates how MIMO techniques enable the data rate of wireless
systems to increase. In fact, we can observe that MIMO offers approx-
imately min(n¢,n,) parallel spatial channels between the transmitter
and the receiver. Several schemes have been proposed to effectively
exploit this spatial multiplexing [24, 61].

In the case of sufficiently spaced transmit and receive antenna
arrays, the ngn, channels between all pairs of transmit and receive
antennas are independent. This suggests that MIMO can be also used
to combat fading using diversity techniques, i.e., different independently
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faded replicas of the information symbols are sent over the independent
channels and are available at the receiver side. In other words, a signal
is lost only when all its copies are lost, resulting in higher immunity
against channel fades.

A maximum diversity advantage of nsn,., corresponding to the num-
ber of channels between the transmitter and the receiver, can be
achieved. In order to exploit the transmit diversity, several Space—
Time Block Codes (STBC) have been proposed in the literature
[1, 12, 14, 26, 27, 33, 38, 40, 55]. Space—Time Trellis Codes (STTC)
have also been extensively studied in the literature developing from
[56]. In this work, we will focus on algebraic constructions of STBCs.

Note that the terminology Space—Time Codes for multiple antennas
codes comes from the fact that we are indeed coding over “space” (since
we have several antennas) and “time.” The same codes can be applied
over a multipath channel by swapping time with frequency and using a
multicarrier modulation technique such as OFDM. In this setting these
codes are known as Space-Frequency codes [9].

2.2 Design Criteria for Space-Time Codes

Design criteria for Space-Time codes depend on the type of receiver
that is considered. Two major classes of receivers have been considered
in the literature: coherent and non-coherent. In the first case, consid-
ered throughout this work, it is assumed that the receiver has recovered
the exact information about the state of the channel (this is also known
as perfect Channel State Information (CSI)). In practice this can be
obtained by introducing some pilot symbols that enable accurate chan-
nel estimation, so that we can assume that the channel matrix H is
known at the receiver. For the non-coherent case, many different solu-
tions are available and we address the reader to [5, 29].

Definition 2.1. An STBC is a finite set C of n; x T complex matrices
X and we denote by |C| the cardinality of the codebook.

Under the assumption of perfect CSI, mazimum likelihood (ML)
decoding corresponds to choosing the codeword X that minimizes the
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squared Frobenius norm:
min||Y — HX|]? .
XeC

An estimate of the error probability P(e) can be obtained using the
union bound

Ple)< =53 P(X —X), (2.4)
|C| XeCx+£xX

where P(X — X) is the pairwise error probability, i.e., the probability
that, when a codeword X is transmitted, the ML receiver decides erro-
neously in favor of another codeword X, assuming only X and X are
in the codebook. It can be shown that

[H(X - X)|
(o),

where Q is the Gaussian tail function, X — X is the codeword difference

P(X—-X)=E

matriz and the average is over all realizations of H.
In the case of independent Rayleigh fading (h;; ~ N(0,1)), we can
write

P(X — X) <det [T, +

(2.6)

X -X) X -x)t] "

4Ny '
Let r denote the rank of the codeword difference matrix. If r = n;
for all pairs (X,X), we say that the code is full rank. If we denote by

Aj,j =1,...,r the non-zero eigenvalues of the codeword distance matrix

A=(X-X)X-X)f (2.7)
we can rewrite (2.6) as

P(X—>X)§1:[1<1+ZX}O>_ (2.8)

For high signal-to-noise ratios (small Ny), we have

. 1 —Trng,
— < AT — .
PX—X)<A <4N0> , (2.9)
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where A =J[;_; A;. Then we can write

P(X —X)< VAT 2.1

In the union bound (2.4) the asymptotically dominant terms in the
sum have the lowest exponent rn,..

Definition 2.2. We call min{rn, } the diversity gain of the code, which
represents the asymptotic negative slope of the error probability in a
log—log scale plot versus SNR.

In the case of full rank codes (r = n;), we have
ne
A =]]A =det(A) # 0 for all A
j=1

and we say that the code has full diversity. This means that we
can exploit all the ngn, independent channels available in the MIMO
System.

It is well known that the truncated union bound, taking into account
only some of the terms in the sum (2.4), is not very accurate with fad-
ing channels. Nevertheless it provides a reasonably simple code design
criterion if only the dominant term in the sum is considered. In the case
of full diversity codes, the dominant term in the union bound (2.4) is
given by the so called minimum determinant of the code,

Apin = min det(A). (2.11)
X£X

The term (Apin)/™ is also known as the coding gain [56).

Definition 2.3. We define a linear STBC as an STBC C such that

vX, X' ecX+tX eC.

This linearity property can only be true for an infinite code Coo, i.€.,
a code with an infinite number of codewords.
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This definition parallels the one of lattice constellations carved from
infinite lattices: a finite STBC can be carved from a linear STBC. We
will see below that the performance analysis of these codes can be
greatly simplified.

In the case of linear codes the sum or difference of any pair of
codewords is a codeword, hence the union bound reduces to

1

Ple) < > P(0—X) (2.12)
and we have
Apin = mi xXxt). 2.1
X;g)li?wdet ( ) (2.13)

A finite STB code C C Co has a minimum determinant A, (C) >
Amin(Cso). In order to simplify the design problem, we will only consider
linear infinite codes. Moreover, linearity implies a lattice structure and
enables the application of the Sphere Decoder (see Section 2.4).

Remark 2.1. The “pseudo-distance” A, is similar to the minimum
Euclidean distance in the case of finite constellations carved from infi-
nite lattices.

In order to increase reliability,
we will focus on full diversity linear codes

with large minimum determinant Apjy.

2.3 Modulations and Full-Rate Codes

We assume that transmitted bits label some QAM or HEX informa-
tion symbols. As basic modulation schemes we consider Q-QAM and
Q-HEX constellations, where () = 27 for some positive integer ¢, which
offer great flexibility in terms of rates and are well suited for adaptive
modulation schemes. When no outer coding is considered, the ¢ infor-
mation bits are usually mapped to information symbols by using either
a Gray mapping for QAM symbols, or a mapping that mimics a Gray
mapping for HEX symbols.
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In the case of QAM, we assume the constellation is scaled to match
(k+1/2) + (£ + 1/2)i for k,f € Z, i.e., the minimum Euclidean dis-
tance dg min = 1 and it is centered at the origin. The average energy
Es is 0.5, 1.5 and 2.5 for @ = 4,8,16.

Similarly, we consider Q-HEX constellations [22] carved from the
translated hexagonal lattice Ay defined by the generator matrix [11]

(1}2 \/5?/2> ’

which guarantees a minimum Euclidean distance dg min =1 between
the modulation points. The 4-, 8- and 16-HEX are shown in Figures 2.1,
2.2, and 2.3, where the respective translation vectors (1/2,0), (1/2,0),
and (1/4,0) guarantee a zero mean constellation. The bit labeling shown

00

10 01

11

Fig. 2.1 The 4-HEX constellation.

100 .~ 110" 010
° ° °

101 000

111 7 011 001
° ° [}

Fig. 2.2 The 8-HEX constellation.
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0110_-0010

1000 1010 0001 0000
L 4 L J L J L J
1001 1011 001 0101
1101 - 1111 -} 0111 - 0100
L J o L J

[ ]
1100 - 1110

Fig. 2.3 The 16-HEX constellation.

in the figures was optimized to mimic a Gray labeling as close as pos-
sible, in order to minimize bit error probability.

The error probability performance is usually plotted as a function
of SNRy = n¢Ey /Ny, where Ej, = Eg/q is the energy per bit. We have
Ny = 202, where ¢ is the noise variance per real dimension, which can
be adjusted as

o2 — ne Ly 10~ (SNRp)dB/10

Let x denote the number of information symbols (QAM or HEX)
that are encoded in the STBC codewords. The spectral efficiency of
the MIMO system will be = kq/T bits per channel use (bpcu) or
alternatively ns = /T symbols per channel use (spcu).

Definition 2.4. We say that a code has full rate when x = n,T.

In the next section, we will see that a linear full rate code can be
decoded using a sphere decoder, whenever the codeword matrix entries
are linear functions of the x information symbols (linear encoding).
Linearly encoded linear codes with x > n,T" will incurr in a larger ML
decoding complexity.
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We will focus on the case where n; =n, =T =n, then we can
encode k = n? information symbols, i.e., 17, = n spcu.

In order to maximize the overall spectral efficiency,
we will focus on full rate STBCs.

2.4 Decoding

We will now see how the problem of decoding linear codes can be
reformulated as a lattice decoding problem, for which a Sphere Decoder
can be applied [28, 60].

Consider the column-wise matrix vectorization function vec(-) which
also separates real () and imaginary (-) parts as

VGC(Y) = (%(yll)v %(y11)7 ceey %(ynr1)7 %(ynr1)7 sy
RW1T), SWIT)s - R 1) Sy 1)) "

and the complex-to-real matrix conversion ri(-) which replaces each
complex entry of a matrix H = (h;;) with a 2 x 2 real matrix

(iR(hij) —3(’%]')>
S(hij)  R(hij)
The MIMO channel Y = HX + Z can be rewritten as a 2n;T real
vector channel y = Hx + z, where y,H,x, and z are given by
ri(H) 0
vec(Y) = x vec(X) + vec(Z).
0 ri(H)
The codewords in an STBC correspond to points x in the N = 2n;T
dimensional Euclidean space RY. When the STBC is a linear infinite

code, the points x form a lattice A defined by some generator matrix
R, so that we identify the code with the lattice

Coo=A={x=Ru:ueczV}.

We say that the infinite code linearly encodes the information sym-
bols that are mapped to the integer component vector u in the integer
component domain Z" .
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A finite code C C Cs corresponds to a finite constellation carved
from the infinite lattice A

C={x=Ru:u=(uy,...,un),
Usgg + tugp—1 € Q-QAM for k=1,...,N/2}.

Alternatively we can write C = BN A 4 xg, where B is the bounding
region and Xy is an offset vector which is needed to minimize the average
transmitted energy.

Let Q-QAMN?2 =8N ZN + uy where S = R™1B is the bounding
region in the integer component domain and uy = R~ !'xg. Given the
received vector y = vec(Y), the ML decoder has to compute

min|ly — Hx[|*= min [y - HRul*= min ||y — HRul?,
xeC ueSNZN +ug uesnzN
where y =y — HRxg. This shows that the ML decoder is equivalent
to a bounded lattice decoding problem which can be efficiently solved
using the Sphere Decoder [13].

2.5 Constellation Shaping

In the previous section, we have seen that the MIMO system once vec-
torized is equivalent to a vector fading channel. The STB codewords
correspond to points in a multidimensional signal space. Performance
of a multidimensional constellation is partly determined by the shape
of its bounding region B. Since E[||X|]]% = E[||x||]* = n:T Es, the code-
words of C should be packed as efficiently as possible inside B.

In [23], the shaping gain s is defined relatively to a cubic bounding
region for which v, = 0dB. The bounding region with maximal ~; is
spherical for any dimension, and for the dimension growing to infinity it
can be shown that 75 — 1.56 dB. On the contrary any skewed bounding
region can result in a substantial shaping loss (i.e., 75 < 0dB) due to
the higher average energy required to transmit the same number of
constellation points.

Although the spherical bounding region is attractive due to its
shaping gain it has the drawback that labeling the constellation
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points requires a look-up table, which can be impractical for large
constellations.

This forces our choice in favor of cubic constellations, which can be
easily labeled and do not exhibit any shaping loss (i.e., 7s = 0dB). We
refer to this property as cubic shaping. In the following chapter (Section
3.6), we will also show that cubic shaping is related to the concept of
information lossless STBCs.

The problem of constellation shaping can be illustrated by a toy
example based on a two transmit and one receive antenna system with
channel matrix h = (hq, hs) and real independent Rayleigh fading coef-
ficients. Consider a diagonal Space-Time code with codebook [12] C
with 2 x 2 diagonal matrices

X — (1‘1 0 >’
0 xT9
where x = (71,72)T = M(s1,82)7, 51,80 € {£1/2,£3/2} and M is a

2 x 2 matrix defining the above code. Let y = hX + z be the received
vector, where z is the Gaussian noise vector. Then ML decoding is

G- (0 mm(s)

Performance of this code can be asymptotically estimated from the

given by

2

min||y — hX|]* = min
XeC s1,82€{£1/2,+3/2}

dominant term in the union bound. This term is governed by the rank
of the codeword distance matrices A in (2.7) and, when full rank, by
the minimum determinant

Apin = min det(A) = min [lz; — &1?[|22 — &2[* = d} 1,
X£X X£X ’

where d;min is the square minimum product distance among all pairs
of vectors (z1,x2), (Z1,22). Note that d;mm is invariant by translations

of the constellation and scales with E2.

Full rank diagonal STBCs correspond to full modulation diversity
constellations (i.e., no two points have one or more coordinates in com-
mon) [43].
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Figures 2.4(a), 2.4(b), and 2.5 show the transmitted signal set cor-
responding to different codes defined by the matrices M. In general
the receiver will see a compressed or expanded signal set on the z- and
y-axis depending on the fading coefficients hy and hs.

2 1 -2

-4 : -4

4 ) 0 2 4 4 -2 0 2 4
(a) (b)

Fig. 2.4 (a) On the left, the 16-QAM constellation with d%}mm =0,dgmin =1, and Es =

2.5, (b) on the right, an algebraic constellation with diversity, d2

'p,min = 4/25’ dE,min =
0.8944, and Es = 12.5.

-2+

4
—4 -2 0 2 4

Fig. 2.5 Algebraically rotated 16-QAM constellation with diversity, d?2

'p,min = 1/5’
dE,min = 1, and Es = 2.5.
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We will use these three codes to illustrate the trade-off among diver-
sity, coding gain and constellation shaping. In the following, dg min will
denote the minimum Fuclidean distance.

The 16-QAM constellation in Figure 2.4(a) with M the identity
matrix and dg min = 1 has an average energy of E, = 2.5, but due to
the lack of diversity cannot deliver the full information if one of the
two channels is completely faded (h; ~ 0). In this case the constella-
tion points seen by the receiver collapse onto each other giving rise to
systematic errors even in the presence of very little noise.

If we consider the algebraic constellation of Figure 2.4(b) with M
given by the canonical embedding of Q(v/5) (see Section 4.4.1 and [43])

()
M=c¢ 1 1=v6
2

we get the full modulation diversity. The coefficient ¢ is used for nor-
malization purposes. Setting ¢ =1/ V2 we have dg min = 1 but this
requires an average energy of Fy = 3.125 (25% more); alternatively with
c =4/2/5 we have the same energy Es = 2.5 but dg min = 0.8944. The
same modulation diversity can be obtained by an algebraic rotation

[43], which also preserves the original average energy Es = 2.5 without
sacrificing dg min (see Figure 2.5). The corresponding matrix is given by

o L[Vt 0 (1 1”5)'

2
V5 0 24155 ) \1 S

Intuitively, the diagonal matrix is designed to skew the constellation in
Figure 2.4(b) into the cubic shaped one in Figure 2.5 without loosing
the full diversity (see [43]).

Considering Apin = d? the 16-QAM constellation in Figure 2.4(b)

p,min’
has d]%’min =0 since it is not full rank, while the other two exhibit
a positive dgvmm. This can be estimated using the infinite lattice

constellation and (2.13). Using the theory of algebraic and ideal lattices

[3] we find d;min =4/25 for the algebraic lattice constellation and
d;min = 1/5 for the algebraically rotated 16-QAM [43].

The performance of the codeword error probability for the three
codes is shown in Figure 2.6. It is clear that the 16-QAM has a slope
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10

—>— 16-QAM
—©— Algebraic lattice 16 pts.
—+H— Rotated 16-QAM

P(e)

0 5 10 15 20
SNRde

Fig. 2.6 Comparison of the codeword error probability for the three codes.

corresponding to a diversity one, while the other two have diversity
two. The rotated 16-QAM exhibits a better performance thanks to the
higher value of Apin.

In order to save on the average transmitted energy,
we will require cubic shaping of the STBCs.

Raj Kumar and Caire [46] recently proposed a nonlinear mapping
encoder which can result in some shaping gain of the transmitted con-
stellation. This can outperform the above choice of cubic shaping at
the price of some additional complexity at the encoder.

Let us conclude this section by a few remarks, about another code
property required for the design, called mon-vanishing determinant
(NVD).

Adaptive modulation schemes require the transmission of different
size constellations. It is therefore important that the coding gain of
the code does not depend on the constellation size. In particular, we
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are interested in infinite codes with nonzero A,. We call this the
non-vanishing determinant property. This property was first proposed
in [6]. Previous STBC constructions proposed in the literature had a
minimum determinant decreasing with the constellation size and even-
tually vanishing for the infinite code.

NVD codes are also useful in bandwidth efficient concatenated cod-
ing schemes, where the outer code redundancy can be absorbed by a
constellation expansion. A vanishing determinant can drastically reduce
the overall coding gain [32].

The NVD property is a necessary and sufficient condition for an ST
coding scheme to achieve the diversity-multiplexing trade-off [20]. In
the following chapter we will show that

In order to achieve the diversity-multiplexing trade-off,

we will focus on NVD linear codes.

Let us conclude this chapter by briefly summarizing what will be
our target design criteria: we aim at designing linear Space—Time block
codes with n; =n, =T, that are fully-diverse with large minimum
determinant, to increase the system reliability. To maximize spectral
efficiency, we will focus on full rate codes, and cubic shaping is needed
to save on the average transmitted energy. Finally, we require the codes
to have a non-vanishing determinant.

In the next chapter, we will look at the code design from an infor-
mation theoretic point of view.
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An Information Theoretic Perspective

In this chapter, we will see that two main features are important, to
ensure the good performance of a coding scheme from an informa-
tion theoretic point of view: (i) reaching the diversity-multiplexing gain
trade-off and (ii) using information lossless codes. We will see that both
these properties will correspond to other properties already required.
Namely, the non-vanishing determinant property will be shown to be
a sufficient condition to reach the diversity-multiplexing gain, and the
cubic shaping will give information lossless codes.!

Historically, the first 2 x 2 Space-Time code to achieve the
diversity-multiplexing gain trade-off has been found by Yao and Wor-
nell in [63], where they show that for a 2 X 2 code, having a mini-
mum determinant bounded away from zero when the constellation size
increases with SNR is a sufficient condition to reach the trade-off. This
notion later on appeared to be similar to the non-vanishing determi-
nant property introduced independently by Belfiore and Rekaya [6]. In
[20], the non-vanishing determinant property is shown to be in general
a sufficient condition for division algebra codes to reach the trade-off.

LPart of this chapter is inspired by the book [59].

21
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3.1 Mutual Information of a Gaussian MIMO Channel

Let us start by considering a MIMO Gaussian channel characterized
by a fized n, x n; complex matrix H = [h;j]. Recall that each term
hi;j is the complex attenuation factor between receive antenna i and
transmit antenna j. At each symbol time, the received signal is the
ny-dimensional vector

y:HnrxntX+Z7 (31)

where x is the transmitted vector of dimension n; and z, which repre-
sents the noise, is a Gaussian vector with n, 4.i.d. components.

Note that this is a particular realization of the original channel (2.1),
where the coherence time is T = 1, and the channel matrix is fixed.

Theorem 3.1 [58]. Assume that the vector x has circularly complex
Gaussian distributed components and H is deterministic. Then, the
expression of the mutual information is

1
I(x;y¢}1)::10g2(kﬂ;<1nr +—211ch1T> : (3.2)
g

where I, is the identity matrix with dimension n,, o2 is the variance
of each real component of the noise z and Q is the covariance matrix
of x,

Q = E[xx]. (3.3)

When the transmitter knows perfectly H, then it can optimize
mutual information with water-filling [58, 59] which achieves

aen ) 64
where Py is the maximum power available at the transmitter.

We now consider the case where the receiver knows the channel,
but this channel is random. Here, we follow Telatar in [58, p. 22] who
conjectures that when the channel matrix is random, non-ergodic, then,
in the high SNR region, the optimal covariance matrix for the source is
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Qopt = (Px/ny) - I,,. By using this value of Qopt, we deduce the value
of mutual information

SNR
I(x;y) = logy det (IW + HH' ) : (3.5)
nt
which corresponds to a strategy where the source transmits the signal
isotropically (that is, its probability density function is invariant to
multiplication by a unitary matrix).

3.2 The Outage Probability

The outage probability is a key concept in wireless communications. If
we assume that the channel is not fixed but can be represented by a ran-
dom matrix H, then the mutual information given by (3.5) becomes a
random variable which is denoted by C(H). When we consider a quasi-
static channel, we assume that the channel matrix remains constant
during the transmission of a codeword, say of length T, as in (2.1):

YnTXT - Hnrmenth + ZnTXT-

Whenever the data rate R is lower than C(H), then it is possible to find
a code which achieves an arbitrarily low error probability. But when
C(H) < R, then we say that the channel is in outage. We define the
outage probability as

Definition 3.1. The outage probability of a MIMO channel is

PAOR) = o iy Pr{losadet (L + HQH') <R} (36)

The optimal covariance matrix depends on the SNR and on the
rate R. The choice Q = (Px/ny) - I, is often used as it is a good approx-
imation of the optimal covariance matrix. Since we are interested in the
SNR exponent of the outage which is the same in both cases, we will
use a definition of the outage probability when using an 1i.i.d. source,

. NR
PMIMO.iid () _ Pr{lodeet <Im L3 HHT> < R}. (3.7)

out ny
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Definition 3.2. The diversity order of a channel is defined as the
negative of the slope of the outage probability when plotted in a log—
log scale versus SNR.

Similarly to this definition of the channel diversity, we can define
the diversity order of a coding scheme,

Definition 3.3. The diversity order of a coding scheme is defined as
the negative of the slope of the word error probability when plotted in
a log—log scale versus SNR.

We note that the diversity order of the channel gives the maximum
diversity gain achievable by any coding scheme operating over such
channel.

3.2.1 The SISO Case

We consider the case where we have only one transmit and one receive
antenna (Single Input Single Output), that is

y=hr + z.

Let h be a zero-mean Gaussian random variable with variance 1. The
fading of the channel is thus assumed to be Rayleigh distributed, which
means that |h|2 is exponentially distributed. The outage probability is
given by

PSISO(R) = Pr{log2 (1 4+ SNR|R?) < R} =Pr|h) < 2t -1
out SNR

We get

R
SISO 1 _ _ (2 — 1)
Pout (R) =1 exp ( SNR >

which gives at high SNR,

SISOy o, 20— 1
We remark that the outage probability asymptotically decays as 1/SNR

for a fixed rate. This channel has diversity order one.
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3.2.2 Receive Diversity: The SIMO Case

In the Single Input Multiple Output case (SIMO), the receiver is
assumed to be equipped with an antenna array in order to increase
the spatial diversity order of the channel. Here, the transmitted vec-
tor is in fact a scalar and the channel is a column vector h with n;
components,

y=hyx+ z

The outage probability for the SIMO case is

PO (R) = Pr{logy(1 + SNR|[h|*) < R}, (3.9)
which yields
PSIMO(RY — Pr %W<2R_1 (3.10)
out SNR . .

If we suppose that the channel coefficients are Gaussian zero-mean
and spatially uncorrelated, then ||h||? is a y-square distributed random
variable with 2n; degrees of freedom. Its probability density function

(pdf) is

1 1

where 15 is the indicator function of the set S. Let € be an arbitrarily
small positive real number. Then, by approximating e~* by 1 for z
small, we get

Pr{||h)? < e} ~ —€™. (3.12)

—c
n,!

By applying (3.12) to the expression of the outage probability at high
SNR, we get

2" -y™
nISNR™

Q

PSIMO (R)

out

(3.13)

Now, the outage probability asymptotically decays as 1/SNR"", hence
n, is the diversity order of this channel.
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3.2.3 Transmit Diversity: The MISO Case
In the Multiple Input Single Output (MISO) case
y=hixnx+ 2

the channel is a row vector h with n; components, which are assumed
to be i.i.d. zero-mean Gaussian. The outage probability for the MISO
case is

SNR
PR = pr{ion, (14 S F ) <rf. @)
t
which yields
R
MISO( ppy _ 2 _m(2 1)
o (R)_Pr{|h|| <M (3.15)

The same calculation as for the SIMO case yields
npt (28 — 1)™
ny!SNR™

enlightening a transmit diversity order equal to n;.

PMISO (R) ~

out

(3.16)

3.2.4 The MIMO Case

The calculation of the outage probability for the MIMO case is more
difficult than for the previous above cases, but we can start by intu-
itively explaining the behavior of the SNR exponent. We follow the
method developed in [59]. In the MIMO case, the channel matrix H
is a n, X ny matrix with zero-mean Gaussian i.i.d. components. Let
g =min{n;,n,}. Then the outage probability is given by

q
PMIMO(R) = Pr {Zlogg (1 - SNRA?) < R}, (3.17)

n
i=1 t

where \;s are the singular values of the matrix H. The MIMO channel
exhibits ¢ modes of transmission, each corresponding to an instanta-
neous SNR equal to (SN R)\%) /n¢. How effective each mode is depends
on how large the instantaneous SNR is. For large values of SNR, we say
that mode i is effective if (SNR)\?) /ny is of order SNR and not effective
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if (SNRAZ) /ny is of order 1 or less. Consider (3.17), there is an outage
event when none of the modes are effective. That means that all )\? are
of order 1/SNR or less. Remark that

q
N =Te(HH') =) |hyl.
i=1 2

So there is an outage event when each |h;;|* is of order 1/SNR or less.
Since all |h;j|* are independent and Pr{|hi;|? < 1/SNR} ~ 1/SNR, the
outage probability is

1
P%%MO(R) = Pr{ﬂ <|h’LJ|2 < 1/SNR) } =0 (SNRntnT) . (318)
1,3
The channel diversity order obtained from the outage probability cal-

culation in the MIMO case is n,n;.

3.3 Diversity-Multiplexing Gain Trade-off
of MIMO Channels

This section is mainly inspired by [59] and [64]. In the following, DMT
will stand for Diversity-Multiplexing Trade-off.

3.3.1 Diversity and Multiplexing Gain
For the scalar Gaussian channel,
y = ha' + 7, h fixed,
or equivalently
Yy=x+ z,

there is a trade-off between the data rate that can be transmitted and
the performance that we can expect. Since the capacity of the scalar
Gaussian channel is given by

C =log, (1 + SNR) (3.19)

expressed in bits per channel use (or bits pcu), we have a natural way of
characterizing the rate/performance trade-off. The rate is represented
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by the capacity when performance is represented by the minimum nec-
essary SNR to achieve the rate C. Asymptotically (SNR — oo), we see
that in order to have 1 bit pcu more, we need 3dB more.

Now, consider the case of a parallel (vector) Gaussian channel where
the transmitter does not know the values of SNRs as depicted in
Figure 3.1. As there is no channel side information at the transmit-
ter, then the transmitter shares the total available power among all
channels. Thus when the noise power decreases by 3 dB, then all SNR;s
increase by 3dB giving rise to an increased data rate equal to 1 bit per
channel and pcu, which gives an increase of ¢ bits pcu. So, asymptoti-
cally, the capacity of the parallel Gaussian channel varies as glogy SNR
bits pcu.

A MIMO Rayleigh fading channel, when the transmitter does not
know the channel matrix H, has an instantaneous capacity

q

SNR
1=

where \;s are the singular values of H = H,,, x5,.. This channel can be

viewed as a vector Gaussian channel with SNR; = SNR)\Z2 /n¢. Like the

Gaussian vector channel, the MIMO channel exhibits ¢ transmission

modes where ¢ = min{n;,n,}.

i SNR, L,
T2 SNR, L Y2,
e SNR, LYo,

Fig. 3.1 Compound Gaussian channel.
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Since the MIMO channel has thus ¢ = min{n;,n,} degrees of free-
dom, this means that we can at most transmit 7, = ¢ symbols per
channel use reliably.

Note furthermore that these ¢ modes are random since \;s are ran-
dom. So, C'(H) cannot represent some data rate anymore. Performance
cannot be represented by the SNR either, since the relationships (3.20)
are much more complicated than in the Gaussian case.

A good performance criterion is the outage probability. But this
probability depends on the rate and on the SNR. The analysis of what
happens in the SISO, SIMO, and MISO cases will provide some under-
standing on this problem. In order to eliminate one variable among
three (Pout, SNR, and R), we examine the behavior of P,y at high
SNR and force R to vary as if the channel was equivalent to r parallel
subchannels, namely

R =rlog,SNR.

The diversity order d is the exponent of 1/SNR in the asymptotic
expression of Py, and we define the multiplexing gain r as being the
number of subchannels of the MIMO channel asymptotically viewed
as a parallel channel. More formally, we have the following definitions
given by the expression of the outage probability.

Definition 3.4. A diversity gain? d*(r) is achieved at multiplexing
gain r if

~ lim log Pout (logy SNR)
SNR—+00 log SNR

= d*(r). (3.21)

3.3.2 The SISO Case
By writing that R = rlog,SNR in (3.8), we get

SISO SNR”

P (rlogQSNR)%W.

out

2Note that it is a channel diversity gain (see Definition 3.2).
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Hence, by Definition 3.4, we have

diso(r) =1—r (3.22)

for0 <r<1.

3.3.3 The SIMO/MISO Case
For the SIMO case, (3.13) with R = rlog, SNR gives

NR" "
PSIMO (1108, SNR) ~ SNRT

out

n,|SNR"™"
Thus
dsmvo(r) =ny (1 — 1) (3.23)
for 0 <r < 1. The same calculation for the MISO case gives
daiso(r) = ne (1 — 7). (3.24)

3.3.4 The MIMO Case

The general case is much more difficult to obtain. The main result is
the following theorem which is proven in [64].

Theorem 3.2. The diversity-multiplexing gain trade-off of a MIMO
ny X ny i.1.d. Rayleigh fading channel is a piecewise linear curve joining

the points
<(”t - k)k(nr - k))

with k € {0,1,...,¢} and ¢ = min{n¢,n,}.

The proof is difficult but we can give some intuitive sketch of the
proof. It generalizes in fact the result of (3.18). We calculate, for high
values of SNR, with R = rlog, SNR,

SNR
PM%MO {ZlogQ < + )\2> < rlogy SNR} . (3.25)
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ny =4 r=2 n, =4 ng =4 r=3 n, =4

Fig. 3.2 Graph of a MIMO channel with r data flows.

Fix r being a positive integer. At high SNR, the outage region is the
region where r of the modes are effective and the other ones not. That
means that r singular values of H are of order 1 and the other ones of
order 1/SNR or less. So it implies that H is close to a rank r matrix.
For the case » =0, the outage event is when H is close to a rank 0
matrix. So, by Equation (3.18), the diversity gain is di;;0(0) = nen,.
Another interpretation is given in Figure 3.2. If r is an integer, then it
can be viewed as some “network flow” of the graph, and d(r) becomes
the minimum “cost” to limit the network flow to r. In particular, d(0)
is the “disconnection cost.” For example, if r = 2, then it remains four
edges that one needs to cut in order to keep two data flows. Four is equal
to d(2) for a ny = 4,n, =4 MIMO channel. With this interpretation,
we can also deduce that dy, », (1) = dp,—rn,—r(0) when r is an integer.
For the general case, let

q
O (r,SNR) = {H | ZlogQ(l + SNR\;) < rlogy SNR} (3.26)
k=1
be the outage region of the channel. We get?
q

O(T,SNR)—{a—(al,...,aq):Z(l—ak)+<r}, (3.27)
k=1
where A\, = SNR™“F. It has been shown [64] that

q
pa(a) = SNR™°® where eq = Z(Zk: — 1+ ng —ng|) oy
k=1

3 The notation (z)% is for max(0,z).
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and x = y means that

. logz . logy
SNR—0c10g SNR — SNRo0log SNR”

In fact, since we are interested by the exponent of SNR, this “exponen-
tial” equality is enough to derive the DMT of the channel. So,

P%%MO (rlogySNR) = /pa(a)doz
O

i/SNR‘eada£SNR_infoea, (3.28)
o

which gives
d*(r) = infeq = mi
(r) infeq, = minecy

that can be solved via a linear programming approach in order to give
the result of Theorem 3.2.

3.4 Trade-off Achieving Codes

Similarly to the definition of the diversity order, we can define the
DMT of the channel and the DMT of a coding scheme. The first one
has already been defined. We give here the definition of the second one,

Definition 3.5. A diversity gain d*(r) is achieved at multiplexing
gain r, for a given coding scheme, if

~ lim log P(e) (rlogy SNR)

— " 2
SNR 00 log SNR (), (3.29)

where P(e) is the word error rate of the coding scheme used on the
given channel. This is the DMT of the coding scheme.

A trade-off achieving code is a code whose DMT is equal to the
channel DMT, which means that the DMT calculated from the code-
word error probability of the scheme is equal to the DMT of the channel
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(calculated from the outage probability). Zheng and Tse [64] proved the
achievability of the DMT of the channel by using a family of random
Gaussian codes if the code length satisfies

T>ns+n, — 1. (3.30)

A second family of DMT-achieving codes, named LAST codes, has then
been proposed in [17]. The main advantage of these codes compared
to the Gaussian ones is that they are much more easily decodable.
However, the constraint on the delay (see (3.30)) remains the same.
This constraint has been relaxed in [20] where T' > n; + n, — 1 has
been extended to T > ny.

The concept of approzimately universal codes that are able to
achieve the diversity multiplexing gain trade-off (DMT) of the channel
was introduced in [57].

Definition 3.6. An approzimately universal code (in fact a family of
codes with varying rates) is a code which is able to achieve an arbitrarily
small error probability in the high SNR regime when the channel is not
in outage or, equivalently, (see [59, Chapter 9]) a coded scheme which
is in deep fading only when the channel itself is in outage.

This is sufficient to achieve the DMT of the outage probability (see
Definition 3.4). In this work, we do not often use the concept of approx-
imately universal codes even if all the codes that we will construct are
in fact approximately universal.

As it has already been noticed, a single coding scheme is not enough
to achieve the DMT. As we must rewrite the spectral efficiency as
R = rlogySNR, that means that we need a family of coding schemes
with increasing spectral efficiencies. We explain this concept below by
starting with some simple examples.

3.4.1 SISO Channel: QAM is DMT Achieving

Let the channel be a scalar channel with H = h, where h is a Gaus-
sian normalized complex random variable. The energy of a QAM
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Fig. 3.3 16-QAM constellation.

constellation carrying R bits (pcu) is

d* (2% —1)

Eqam(R) = 5

(3.31)
for a fixed minimum squared Euclidean distance equal to d? (see
Figure 3.3). For a fixed channel coefficient h, we get the expression
of the symbol error probability

6SNR
PM(e|p) =4 e |h)? 3.32
(elh) Q( g ) (332)
u2
where Q(z) is the error function, Q(z) = f;oo \/%e_Tdu. At high
SNR, we replace R with 7logy SNR and average over |h|* which is expo-
nentially distributed. So, as it was stated above, the spectral efficiency
of the scheme goes to infinity with the SNR. By setting R = rlog, SNR,

we get an approximation of the average error probability in the high
SNR region,

PAAM ()  SNR™UT),

The exponent of SNR is the same as the outage probability one. So,
QAM is DMT achieving. The same conclusion applies for HEX modu-
lation (see Section 2.3).
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3.4.2 SIMO Channel: QAM is DMT Achieving

By using a Maximum Ratio Combiner, we get

6SNR -
=1

As for the SISO case, at high SNR, we replace R with rlog, SNR and
average over the vector (hy,hs,...,hy, ). By setting R = rlog, SNR, we
get an approximation of the average error probability in the high SNR
region,

POAM () ~ SNR™P(177),

The exponent of SNR is still equal to the DMT of the SIMO channel
so that we can state that QAM modulation achieves the DMT.

3.4.3 MISO Channel: The Alamouti Code

We will show now that the Alamouti code [1] with QAM symbols is
DMT achieving for n, = 1 receive and n; = 2 transmit antennas.
An Alamouti codeword is of the form:

S1 —S82
X = 2
52 S1

where s1,so are the information symbols and ~ denotes the complex
conjugation. Note that the Alamouti code is fully diverse since

det(X) = [s1]* + |s2|* > 0,

for any s1,s2 € C nonzero. The Alamouti code became popular thanks
to its excellent performance. Alamouti designed it to be fully diverse,
and when the diversity-multiplexing has been understood, it appeared
that the Alamouti code is actually DMT achieving for the MISO case,
which we will explain now.

When using the Alamouti code, the received signal

[y1 y2] = [h1 ho [z; _Sﬂ + [21 2]
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vl | he
72| |he —M

The two columns of the matrix $) containing the channel coefficients are

can be written as

S1 Z1

+ (3.34)

52 <2

orthogonal and have the same magnitude, so that, by multiplying the
received vector in (3.34) by ﬁT, we get a new vector with components
r; with,

{7“1—(“&1\24- !h2|2)81+’w1 (3.35)

ro = (\h1|2 + \h2!2)82 + wo,

where the noise terms w; and ws are i.i.d. We remark that, for each
symbol s;, the channel is now equivalent to a SIMO channel. So, the
error probability is approximately given, in the high SNR region, by

PAlamouti(e) ~ SNR_2(1_T).

Thus the Alamouti code achieves the DMT of a MISO channel with
ny = 2 transmit antennas.

3.4.4 MIMO Channel: Approximately Universal Codes

For a MIMO channel, recall (see (2.5)) that the pairwise error prob-
ability of detecting the codeword X, when the codeword X; # Xy
has been sent, conditioned on a MIMO channel realization H is
given by

3.36
N (3.36)

Now, the main idea to derive a design criterion for approximately uni-
versal codes consists of saying that:

(1) The MIMO channel has ¢ = min{n;,n,} eigen directions.

(2) Remark in (3.36) that the worst-case channel not in outage
aligns itself in the weakest directions of the codeword differ-
ence matrix, i.e., the directions corresponding to the smallest
singular values of the codeword difference.
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(3) In the high SNR region, it is equivalent to maximize the prod-
uct distance

|)\1 ')‘2"')\q|,

where A1,..., A\ are the ¢ smallest singular values of the dif-
ference matrix Xy — Xg (when n; < n,, they are all the sin-
gular values of X; — X3).

It has been shown in [57] that a sufficient condition to have approxi-
mately universal codes is that for all pairs of distinct codewords,
c

2
M Ao Aglt >

(3.37)
where ¢ is some positive constant.

Moreover, a code satisfying (3.37) for an ny x ng MIMO channel is
also approximately universal for an n; x n, channel for every value of
n,, the number of receive antennas, which can be stated as

Proposition 3.3. An approximately universal Space—Time code for a
MIMO n; x n; channel is approximately universal for a MIMO n; X n,
channel, V n,.

Thus, in the following, we restrict our study to the case of symmetric
channels n, = ny.

3.5 Non-Vanishing Determinant Codes

If a Space-Time code satisfies property (3.37), then it is approximately
universal and if it is approximately universal, then it achieves the Diver-
sity Multiplexing gain Trade-off of the MIMO channel. We derive here
a simple sufficient condition for a Space—Time code to fulfill property
(3.37). Consider a square ny x n; linear dispersion Space—Time block
code [27]. The entries of a codeword X are thus linear combinations
of information symbols. We suppose that these information symbols
are carved from a QAM or an HEX constellation. Remark that both
constellations are approximately universal for a SISO channel. Now
suppose that there are, in the codeword X, n% information symbols.
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Finally, assume that we consider non-normalized information symbols,
which means that, for example, (see Figure 3.3) the minimum distance
of the constellation, d, remains the same when the spectral efficiency
varies. It is obvious that if the minimum determinant of our code is
lower bounded by some constant when the spectral efficiency increases,
then this code fulfills condition (3.37). This leads to the definition of
non-vanishing determinant codes.

Definition 3.7. A Space—Time block code C is a non-vanishing deter-
minant code (NVD code) for an ny x ny MIMO channel if

(1) C is a linear dispersion code.

(2) Entries of the codewords depend on n? QAM or HEX infor-
mation symbols.

(3) The minimum determinant of C is

Smin(C(R)) 2 min |detX|* > >0, 3.38
(C(R)) Xg(},l\rgo}\e "> (3.38)

where 1 does not depend on R, the spectral efficiency of the
code.

A counterexample which is a vanishing determinant code can be found
in [14]. This 2x2 STB code has a minimum determinant which tends
to 0 when R increases.

NVD codes are a very important class of codes due to the following
result (proved first in dimension 2 in [63] and then more generally
in [20]):

Theorem 3.4. NVD codes are approximately universal codes and,
thus, they achieve the DM trade-off.

Remark 3.1. The NVD property was introduced in Chapter 2 as a
requirement to preserve the coding gain for the entire coding scheme.
Here we have explained why the NVD property also implies achieving
the DMT.
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3.6 Information Preserving Codes

Trade-off achieving codes are optimal codes in the sense of the DMT.
Among this family of codes, we will consider NVD codes which show
a good behavior in the large SNR region and for large values of R. In
order to design good codes for all regions of SNR, in Chapter 2 we
discussed cubic shaping. Here we will find that cubic shaping results
into another information theoretic property.

Definition 3.8. Assume a MIMO Gaussian channel with Gaussian
inputs. A linear dispersion Space—Time code is information lossless if
the mutual information of the equivalent channel obtained by including
the encoder in the channel is equal to the mutual information of the
MIMO channel. Note that, in Figure 3.4, this definition is equivalent
to I[(X1,Y1) =I1(X,Y).

The equivalent channel is obtained by vectorizing the received signal
matrix. From

YnTXT = HanTLt . XntXT =+ ZnTXTa (339)

where the subscripts indicate matrices dimensions and 7' is the tempo-
ral code length, we obtain the equivalent channel, given by

H
vec(Y)nTTxl =
NNt XNpNt
S1
Xq)nT»ntXntT . + VeC(Z)n,.Txh (3.40)
SnyT
X Y
Channel | — >
_ %1 | space-Time Channel .
Encoder

Fig. 3.4 Equivalent channel without and with the Space—Time encoder.
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where s; are the information symbols and @® is the matrix defining
the linear dependencies between the entries of X and the information
symbols.

Proposition 3.5. A linear dispersion Space—Time block code associ-
ated to a unitary matrix ® is an information lossless code.

Proof. The mutual information per channel use of the equivalent chan-
nel is

I°9(X;Y)

SNR

= %logdet L,n, +
g

1 NR r
= —logdet (Inr + SHHT>
T Ty

SNR
= logdet (Im + HHT>
Uz

O

Remark 3.2. Note that once the matrix ® is chosen to be unitary, we
automatically obtain the cubic shaping described in Section 2.5.

Chapters 2 and 3 have now settled the code design criteria to opti-
mize in order to obtain efficient Space—Time codes. The next chapter
will be dedicated to introducing the algebra background necessary to
understand the construction of codes based on cyclic division algebras.
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Cyclic Division Algebras

This chapter is devoted to the mathematical background necessary for
building codes from cyclic division algebras. While introducing the def-
initions and results that we need, we keep in mind to emphasize the
coding applications, alternating the theory with examples. The first
section aims at introducing the notion of division algebra, the key con-
cept for Space—Time coding, since it gives a way of building fully-diverse
Space-Time codes. The Alamouti code is used as an illustration. In
order to increase the throughput of the codes, we introduce algebras
over number fields. Number fields will be shown to allow encoding of
QAM and HEX constellations. Then a particular family of algebras,
namely cyclic algebras built over number fields, will yield, for n trans-
mit antennas, n x n Space-Time codewords that send n? information
symbols encoded into n? signals. We further exploit the algebraic prop-
erties of a number field, and work in its ring of integers, which results,
in terms of coding, in the non-vanishing determinant property. Finally,
rings of integers of number fields can be used to build algebraic lattices.
The lattice structure helps us to control the transmitted energy when
encoding the Space-Time codes.

41
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4.1 Fields and Algebras

The goal of this first section is to provide definitions and examples
for algebraic structures such as ring and field, so as to end up with
the notion of algebra. We end the section by describing the algebra of
Hamilton’s quaternions, which will be an example of division algebra.

4.1.1 Commutative and Non-Commutative Fields

Let Z be the set of rational integers {...,—2,—1,0,1,2,...}, Q be the set
of rational numbers Q = {% la,b#0 € Z}, R denote the real numbers,
and C the complex numbers.

Definition 4.1. Let A be a set endowed with two internal operations
denoted by + and -
AxA — A AxA — A

d
(a,b) +— a+bd an (a,b) — a-b

The set (A,+,-) is a ring if

(1) (A,+) is an Abelian (or commutative) group,

(2) the operation - is associative, i.e., a - (b-¢) = (a - b) - ¢ for all
a,b,c € A and has a neutral element 1 such that 1 -a=a -1
for all a € A,

(3) the operation - is distributive over +, i.e.,a - (b+¢)=a-b+
a-cand (a+0b)-c=a-c+b-cforall abce A.

The ring A is commutative if a - b="b-a for all a,b € A. The set of
elements of A that are invertible for the operation - is called the set of
units of A, and is denoted by A*.

The set Z is easily checked to be a ring. Its units are Z* = {1,—1}.

Definition 4.2. Let A be a ring such that A* = A\{0}. Then A is said
to be a skew field or division algebra. If A is moreover commutative, it

is said to be a field.
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Looking the other way round, a division algebra is a non-
commutative field. Division algebras will be our object of study for
the rest of this chapter.

4.1.2 Algebras and Division Algebras

The most well known examples of fields are the sets QQ, R, and C. They
are all commutative. In this section, we will present a non-commutative
field, the Hamilton’s quaternions, which will be used to build the Alam-
outi code.

Combining the more familiar notion of vector space with the one of
ring, we arrive at the notion of algebra.

Definition 4.3. An algebra A is a set over a field K with operations
of addition, multiplication, and multiplication by elements of K that
have the following properties:

(1) A is a vector space with respect to addition and multiplica-
tion by elements of the field.

(2) A is a ring with respect to addition and multiplication.

(3) (Aa)b=a(Ab) = A(ab) for any A € K, a, b€ A.

The set M,,(R) of n x n matrices with entries in R is an algebra over

2 gver R. Tt is a non-commutative

R. It is a vector space of dimension n
ring with respect to the usual addition and multiplication of matrices.

The rest of this section is devoted to the most famous example
of non-commutative field, the Hamilton’s quaternions. It also has a
structure of algebra, and will first be presented as such. Let {1,4,j,k} be
a basis for a vector space of dimension 4 over R. These elements satisfy
the rules i2 = —1, j2 = —1, k? = —1, and k = ij = —ji. The Hamilton’s
quaternions is the set H defined by

H={z+yi+ zj + wk | z,y,z,w € R}.

It has a structure of ring, since addition and multiplication are well-
defined, though one has to be careful about the non-commutativity
when doing computations! See Table 4.1 for the multiplication table.
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Table 4.1 The multiplication table for the Hamilton’s quaternions.

1 i J 2
1 1 i b k
i i -1 k —j
j j —k —1 i
k k j —i -1

Let us now prove that the Hamilton’s quaternions are a divi-
sion algebra, that is, every nonzero element g € H is invertible. Like
for complex numbers, one can define the conjugate of a quaternion
g=z+ yi + zj + wk as

qg=x—yi — zj — wk.

It is a straightforward computation to check that
qq:x2+y2+z2+w2.

We call §q=qq=|q|>=N(q) the norm of a quaternion. Since

z,y,z,w € R, q§ >0, unless x =y = z = w = 0. Thus the inverse of a
quaternion ¢ is given by
=1

qq
and all nonzero elements have an inverse.

We end this section by motivating why algebraic structures such
as Hamilton’s quaternions are of interest for coding purposes. Since
coding for multiple antennas involves sending matrices, let us first see
that there is a natural correspondence between elements of H and 2 x 2
matrices with coefficients in C.

Note that any quaternion ¢ = x + yi + zj + wk can be written as

(x + yi) + (2 — wji) = og + JPBqg,

where oy =2 +yi € C, B, =2 —wi € C. Thus H is a right C-vector
space (that is scalars multiply on the right), with C-basis {1,7}. In this
basis, ¢ = (o, ). Note that H is not a C-algebra. Consider the left
multiplication by v, that is m,(q) = vq. In the basis {1,j}, we have

(i 0 (0 1y (0
o =)0 "\ o) TP\ o)
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Check for example how &k multiplies (on the left) the basis elements
{15}
. N e S (0 —i
b(L3) = (ki) = Giidd) = (=) = (1) (& ).

More generally, if x,y € R, we have

[z O y 0\ (¢ O\ [xz+uyi 0
mx“’l_(o 3«")+<0 y)<0 —73>_< 0 x+yi>'

Thus, for a general quaternion v = «, + j3, (ay, B, € C) we have

my, = @: ﬁ”) (4.1)

This construction gives a correspondence between an element v in the

Hamilton’s quaternions and a 2 x 2 matrix with coefficients in C of the
form (4.1).

Example 4.1 (The Alamouti code). Let C be the following set of

matrices
T
cz{@ _f> \a,ﬁec}.

It corresponds to the codewords of the Alamouti code, introduced in
Section 3.4.3, where the code has been shown to be fully-diverse. The
full-diversity can also be derived from the Hamilton’s quaternions being
a division algebra as follows.

Let v=a+ j8 e H. If X=m, €C, then

det(X) = |af? + 8] = N(v),

the norm of the quaternion v. Thus N(v) =0 <= v =0.

4.2 Algebras on Number Fields

In the previous section, we gave as example of algebra the Hamilton’s
quaternions, which are based on the field R. In this section, we are
interested in building algebras over number fields.
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4.2.1 Introducing Number Fields

Consider the set of rational numbers Q, which is easily checked to be
a field. Other fields can be built starting from Q. Take for example
the element i, such that 2 = —1, which is not an element of Q. One
can build a new field “adding” i to QQ, the same way ¢ is added to R
to create C. Note that in order to make this new set a field, we have
to add all the multiples and powers of i. We thus get a new field that
contains both Q and 4, and only Q-linear combination of 7, that we
denote by Q(i). We call it a field extension of Q. Note that we can
iterate this procedure, and start with the field Q(7). Then, adding for
example the element /5 (which does not belong to Q(3)), its multiples
and powers, we get a new field, denoted by Q(4,+/5). Thus Q(i,v/5) is
an extension of Q(7), which is itself an extension of Q. Let us formalize
this procedure.

Definition 4.4. Let K and L be two fields. If K C L, we say that L
is a field extension of K. We denote it by L/K.

It is useful to note that if L/K is a field extension, then L has
a natural structure of vector space over K, where vector addition is
addition in L and scalar multiplication of « € K onv € L is just av € L.
For example, an element = € Q(¢) can be written as x = a + b, where
{1,i} are the basis “vectors” and a,b € Q are the scalars. The dimension
of Q(i) as vector space over Q is two. Similarly, an element of Q(4,/5)
can be written w = x + /5, with z,y € Q(i), or also w = (a + ib) +
V5(c +id), a,b,c,d € Q. Thus, Q(i,+/5) is a vector space of dimension
two over Q(7), or of dimension four over Q. It is often useful to draw a
picture to see the hierarchy of fields (see Figure 4.1).

Definition 4.5. Let L/K be a field extension. The dimension of L as
vector space over K is called the degree of L over K and is denoted by
[L: K]. If [L: K] is finite, we say that L is a finite extension of K.

A particular case of finite extension will be of great importance for our
purpose.
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Q(i, V5)
| 2
Q(d)
| 2

Q

Fig. 4.1 This diagram shows field extensions, with the degree on the branches.

Definition 4.6. A finite field extension of Q is called a number field.

Remark 4.1. The number fields

Qi) ={a+0bi|abeQ}, QU)={a+bj|abeqQ},

where j is a primitive 3rd root of unity (j2 = 1 and j2 # 1) are of par-
ticular interest. In fact, restricting a and b to Z we can obtain the set of
Gaussian integers Z[i] and the set of Eisenstein integers Z[j] (see Def-
inition 4.19). The QAM constellations are included in Z[i] + (1 +7)/2
while HEX constellations are included in Z[j].

Going on with our previous example, observe that a way to describe ¢
is to say that this number is the solution of the equation X? + 1 = 0.
Building Q(7), we thus add to Q the solution of a polynomial equation
with coefficients in Q, which is not in Q.

Definition 4.7. Let L/K be a field extension, and let o € L. If there
exists a nonzero irreducible monic (with highest coefficient 1) poly-
nomial p € K[X] such that p(a)) = 0, we say that « is algebraic over K.
Such a polynomial is called the minimal polynomial of o over K. We
denote it by pg.

In our example, the polynomial X2 + 1 is the minimal polynomial of
i over Q. The number i is algebraic over Q. Similarly, X2 — 5 is the
minimal polynomial of v/5 over Q(i).
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Definition 4.8. If all the elements of L are algebraic over K, we say
that L is an algebraic extension of K.

Remark 4.2. Since it can be shown that a finite extension is an alge-
braic extension (see [54, p. 23]), we also call equivalently a number field
(c.f. Definition 4.6) an algebraic number field.

4.2.2 Embeddings and Galois Group

Now that we set up the framework, we will concentrate on the particular
family of fields that are number fields, that is field extensions K/Q, with
[K : Q)] finite. In the following, K will denote a number field.

We start with a result which simplifies the way of describing a num-

ber field.

Theorem 4.1 [54, p. 40]. If K is a number field, then K = Q(#) for
some algebraic number § € K, called primitive element.

As a consequence of Theorem 4.1, K is a Q-vector space generated
by the powers of f. If K has degree n over Q, then {1,0,62,... 6" '} is
a basis of K, i.e., x € K can be written as x = Z?:_ol z;0%, z; € Q, and
the degree of the minimal polynomial of 8 is n.

Example 4.2 (Primitive Element). Consider the number field
Q(i,v/5). We will show that Q(i,v/5) = Q(i + v/5). Clearly, Q(i +
v5) € Q(i,V/5). Now

(i + v5)® = 14i + 2v5 € Q(i + V5),
so that
(i + V5)* — 2(i + V5) = 12i € Q(i + V/5).

Thus i, and consequently /5 belong to Q(i + v/5). A basis of Q(4,v/5)
over Q is for example given by {1,i + v/5,(i + v/5)%,(i + v/5)3}.
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We will now see how a number field K can be represented, we say
embedded, into C. Recall that if A and B are rings, a ring homomor-
phism is a map v : A — B that satisfies, for all a,b € A

(1) ¢(a+b) =(a) + ¢ (b)
(2) ¥(a-b)=1(a) - ¥(b)
(3) ¥(1) =1

Definition 4.9. Let K/Q and L/Q be two field extensions of Q. We
call p: K — L a Q-homomorphism if ¢ is a ring homomorphism that
satisfies p(a) = a for all a € Q, i.e., that fizes Q.

Definition 4.10. A Q-homomorphism ¢ : K — C is called an embed-
ding of K into C.

Note that an embedding is an injective map, so that we can really
understand it as a way of representing elements of K as complex
numbers.

Theorem 4.2. [54, p. 41] Let K = Q(#) be a number field of degree
n over Q. There are exactly n distinct embeddings of K into C: o; :
K —C, 0;(0)=0;,i=1,...,n, where 0; are the distinct zeros in C of
the minimum polynomial of § over Q.

Notice that one of the o;, say o1, is the identity mapping, i.e.,
o1(x) =z, for all x € K. When we apply the embedding o; to an arbi-
trary element z of K, z =) _, ap0%, aj, € Q, we get, using the prop-
erties of Q-homomorphisms

oi(x) = 0i<zak9k>7 ar, € Q
= Zai(ak)ai(ﬂ)k = Zakef eC
k=1 k=1

and we see how the image of any x under o; is uniquely identified by 6;.
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For example, since X2+ 1= (X +1i)(X —1i), there are two
embeddings

o1: Q@)—C
a+bi—a+bi

o2: Qi) —C
a+bi—a—bi

It is interesting to notice in this example that both embeddings are
also mappings from Q(7) to itself. This is not always the case. Consider
for example, the polynomial

XP—2=(X - jV2)(X - j*V2)(X - V2),

where j is a primitive 3rd root of unity. Consider now the field Q(+/2).
We have the three embeddings

o1: Q(V2) —C
V22
@:Q(W)—NC
V2 V2
o3: Q(v2) — C
Vi 2V

But since Q(v/2) # Q(j+v/2), o2 is not a mapping from Q(+/2) to
itself. In the following, we will need to restrict ourselves to number fields
whose embeddings are mappings to themselves. Let us now formalize
the concept.

When o, : =1,...,n are defined from K to K, note that they are
just a permutation of the roots of the minimal polynomial. They are
then bijective (and thus called Q-automorphisms of K, that is, maps
from a field to itself that are bijective and fix Q).

Such automorphisms do not only exist for an extension K/Q. Con-
sider again our example with Q(z’,\/g), as a field extension of degree
two of Q(7). It can be defined, as already pointed out, by the poly-
nomial X2 — 5 over Q(i). Since X2 — 5= (X — +/5)(X + v/5), both
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+v/5 € Q(4,/5), we can define two automorphisms of Q(i,+/5) as fol-
lows, a,b € Q(i):
o1 Q(i,v/5) — C
a+b/5—a+b/5
o2:  Q(i,v/5) = C
a+bV/5—a—b/5

Notice that o1 and o9 are Q(i)-automorphisms of Q(i,+/5), that is, they
satisfy o;(z) =z, j = 1,2, for all z € Q(q).

These examples about field automorphisms prepared us for the fol-
lowing theorem and definition:

Theorem 4.3 [54, p. 72]. Let L/K be a field extension. The set of
K-automorphisms of L forms a group under composition of maps.

Though this result is not hard to prove, it is fundamental for a whole
theory called Galois Theory. Let us give its first definitions.

Definition 4.11. A number field extension L/K is a Galois extension
if every irreducible polynomial over K which has at least one zero in L
has in fact all its zeroes in L. The Galois group of the extension L/K,
denoted by Gal(L/K), is the group of all K-automorphisms of L under
composition of maps.

We have already noticed that both embeddings of Q(7) are mappings
from Q(7) to itself. In other words, both roots of the minimal polyno-
mial X2 + 1 belong to Q(i). Thus Q(i)/Q is a Galois extension. The
two embeddings 01,09 of Q(i) form a group with two elements for the
law given by the composition. The identity is given by o1, and since
o9(oa(x)) =z for all z € Q(i), o2 is invertible. Thus Gal(Q(i)/Q) =
{Id,a + ib +— a — ib}. Similarly Gal(Q(i,v/5)/Q(i)) = {Id,a + v/5b —
a — /5b}.

Notice that in both examples, the Galois group is generated by one
element, that is, all the elements of the group are obtained as the powers
of one element of the group. We call such a group a cyclic group.
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Definition 4.12. A cyclic group G is a group generated by one
element. Writing the group law multiplicatively, we have G =
{9,9%,...,g" 1,1} if G has n elements. We denote G = (g).

We will usually denote a cyclic Galois group by (o), where o is the
generator of the group.

We close this section with the following remark. We have shown
that the polynomial X3 — 2 over Q yields three embeddings that are
not automorphisms of Q(+/2). One may also have considered adding
the roots of X3 — 2 to Q(i) instead of Q. We then still have the three
embeddings given by the three roots of X3 — 2. To differentiate them,
we call them relative embeddings.

Definition 4.13. Let L/K be a field extension of degree n. We call
relative embeddings the n K-homomorphisms (i.e., homomorphisms
fixing K) of L into C.

4.2.3 Introducing Cyclic Algebras

We are now ready to define our main object of study, namely the family
of cyclic algebras.

Definition 4.14. Let L/K be a Galois extension of degree n such that
its Galois group G = Gal(L/K) is cyclic, with generator o. Choose an
element 0 # v € K. We construct a non-commutative algebra, denoted
by A= (L/K,o,v), as follows:

A=L®elL @ - D" 'L
such that e satisfies
e"=v and Ae=-eo(N\) forAelL,

and @ denotes the direct sum. Such an algebra is called a cyclic algebra.

We first comment this definition. The algebra A is defined as a direct
sum of copies of L, which gives its vector space structure and means
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that an element x in the algebra is written as

r=xo+ex; 4+ -+ e a1,
with z; € L. To define its ring structure, we need a multiplication. Since
the algebra is non-commutative, the rule Ae = eo () explains how to
do computations when the element e is multiplied on the left. By anal-
ogy, one may think of the rule ij = —ji defined for the Hamilton’s
quaternions.

The reason why these cyclic algebras are interesting for our pur-
pose is the existence of a correspondence! between an element x of
the algebra A and a matrix X € M, (L). Let z € A, and as for the
Hamilton’s quaternions, consider the left multiplication of an element
of the algebra by x in the basis {1,e,e?,...,e" '}. The matrix of left
multiplication by x can be checked to be given by

zo  Yo(Tp-1) Y0 (Ta-2) ... Yo" H(a1)
1 o(wo)  y0(@a-1) ... 0" H(aa)
3 (4.2)
Tno 0(tn-3) 0°(Tn_4) Yo" 2y 1)
Tp—1 O’(xn_g) 0'2($n_3) O’nfl(.%'0>

We illustrate the computation on an example. For n = 2, we have

xy = (o + ex1)(yo + ey1)
= XoYo + Toey1 + er1yo + ex1eyy
= zoyo + eo(xo)y1 + ex1yo + yo(x1)y1
= (zoyo + vo(z1)y1) + e(o(x0)y1 + T1Y0),

2 = 4. In matrix form, in the basis {1,e}, this yields

= (7)) (),

I To be rigorous, one can show that there is an isomorphism between the algebra A ®p L

and My (L).

since e
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Example 4.3 (Encoding codes from cyclic algebras). Similarly
to the Alamouti code in Example 4.1, codebooks for two antennas made
from cyclic algebras have the following form:

x o(xy) g
C= ( ° 7 | ) ‘x07 NS L )
x1  o(xo)
where we consider the cyclic extension L/K.

Let us now discuss the encoding and the rate of such codes. Suppose
that the information symbols to be sent are carved from QAM or HEX

constellations.
If = belongs to a cyclic algebra A, then x = ZZ;& eFxy. Recall
that the coefficients z;, i =0,...,n — 1, are elements of a field L,

which is an extension of K. Consider our example, where L = Q(i,/5).
Then

xo = ao + VBby, x1 =ay + V5bi, ag,a1,bo,b; € Q7).

Since QAM symbols can be seen as elements of Q(¢) (from Remark
4.1), they belong to the base field K = Q(7). So both xg and z; encode
two QAM information symbols, ag,by and ai,by, respectively.

In general, if L/ K has degree n, each coefficient x, of x = Zz;é efxy,
will encode n information symbols. Since the element = € A has n coef-
ficients, it encodes n? information symbols. Codes made from cyclic
algebras are said to be full rate (see Section 2.3), in the sense that
they transmit n? signals that encode n? information symbols. In our
previous example, the codebook is given by

T
_ ag + v/5bg y(ap — \/5b1)
€= {<CL1 + \/gbl ag — \/5[)0 |(10,a1,b07b1 c Q-QAM )

where v will be chosen in order to optimize the code performance as
we will see in the following.

Remark 4.3. Since commonly used signal constellations are QAM
and HEX, this means that we consider field extensions L/K where
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K is either Q(i) or Q(j), where j is a primitive 3rd root of unity, by
Remark 4.1.

Note that the same n information symbols are distributed within
one layer of the codeword.

Definition 4.15. We define a layer (or thread [18]) ¢, for £ =1,...,n,
of the codeword the set of matrix entries in positions

(k, ¢+ k —1) mod(n) + 1), for k=1,...,n.

4.3 Norm and Ring of Integers

In the previous section, we introduced cyclic algebras, and showed how
to build them. We are now interested in their properties, and how to
use them to get good Space—Time codes. In particular, we will explain
how to get full diversity, and furthermore non-vanishing determinants.

4.3.1 Norm and Full-Diversity

With the notion of embeddings (see Definition 4.13), we first define two
quantities that will appear to be very useful, namely the norm and the
trace of an algebraic element.

Definition 4.16. Let L/K be a field extension of degree n, where
01,...,0, denote the n relative embeddings of L. Let x € L. The ele-
ments o1(z),02(x),...,0,(x) are called the conjugates of = and

N(z)= Hai(x), Tr(z) = Zai(m)

are called, respectively, the norm and the trace of x.

Whenever the context is not clear, we write Try, /g, resp. Ny /i to
avoid ambiguity.

A definition of norm is also available for an element of a cyclic
algebra.
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Definition 4.17. Let x be an element of a cyclic algebra A. Then the
determinant of its corresponding matrix, as given in (4.2), is called the
reduced norm of x.

In order to determine whether a code C is fully diverse, recall from
Section 2.2 that we have to check that det(X; — X;) # 0, for any X; #
X; € C. By linearity of the algebra, codes from cyclic algebras satisfy

det(X; — Xj) = det(X), X; # X;, Xe€ C.

We are thus interested in knowing when det(X) # 0 for all X # 0, or
equivalently, when A is a division algebra (i.e., all elements of A are
invertible, see Definition 4.2).

Definition 4.18. A cyclic algebra which is also a division algebra is
called a cyclic division algebra.

Let us now determine when a cyclic algebra is actually a cyclic division
algebra.

Example 4.4 (An algebra of degree 2). If n =2, we have
xo yo(zy)
det = - =N — N .
e (961 o (x0) > zoo(z0) — yr10(71) L/K(ﬂﬁo) y L/K(xl)

Thus

det(X) =0 <= 'YZNL/K <.T(])’
I

since multiplicativity of the norm follows from the multiplicativity of
the relative embeddings. We thus have to check whether ~ is a norm of
some element of L.

A statement similar to the above one for determining whether a cyclic
algebra is a division algebra is in fact true for any dimension n, though
it cannot be proved the same way.



4.3 Norm and Ring of Integers 57

Proposition 4.4 [45, p. 279]. Let L/K be a cyclic extension of
degree n with Galois group Gal(L/K) = (o). If 0 £ ~v,7%,...,y" L e K
are not a norm of some element of L, then (L/K,0,7) is a cyclic division
algebra.

4.3.2 Ring of Integers and Non-Vanishing Determinants

In this section, we are interested in showing something beyond the
full-diversity, namely, giving a lower bound on the determinant of the
difference of two matrices. This property is called non-vanishing deter-
minant. We let the reader refer to Sections 2.5 and 3.5 to recall why
such a property is useful. In order to reach our goal, we need to intro-
duce a new concept, the ring of integers of a number field K.

One of the first goals of algebraic number theory was to study
the solutions of polynomial equations with coefficients in Z. Given the
equation

an X"+ an 1 X" 't a1 X +ag=0, a;€Z foralli,

what can we say about its solutions? It is first clear that there may be
solutions not in Q, as v/5 or ¢, which means that in order to find the
solutions, we have to consider fields larger than Q.

Definition 4.19. We say that a € K is an algebraic integer if it is a
root of a monic polynomial with coefficients in Z. The set of algebraic
integers of K is a ring called the ring of integers of K, denoted by Ok

The fact that the algebraic integers of K form a ring is a strong result
[54, p. 47], which is not so easy to see. The natural idea that comes
to mind is to find the corresponding minimal polynomial. Take /2
and 2. Both are algebraic integers of Q(v/2). How easy is it to find the
minimal polynomial of v/2 + 2? How easy is it to find such a polynomial
in general?

In this example, it can be shown [54, p. 60] that the algebraic inte-
gers are the set Z[v/2] = {a + bv/2, a,b € Z}. Similarly, the ring of inte-
gers of Q(¢) is given by Z[i| = {a + bi, a,b € Z}. Care should be taken
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in generalizing this result (see the following example). Note that Z[v/2]
is a ring since it is closed under all operations except for the inversion.
For example (2 + 2v/2)~! = (2 — v/2)/6 does not belong to Z[/2].

In the following, we will first look at the structure of Ok, the ring
of integers of a number field. In the special case K = Q(i), we have
seen that O = Z[i], which means that Ok has a basis over Z given
by {1,i}. We call Ok a Z-module. An A-module, where A is a ring, is
a generalization of the notion of K-vector space, where K is a field. In
our case, we have that K has a structure of vector space over the field
@, while we only have a structure of module for Ok over the ring Z.
This is formalized as follows:

Theorem 4.5 [54, p. 51]. Let K be a number field of degree n. The
ring of integers O of K forms a free Z-module of rank n (that is,
there exists a basis of n elements over Z).

Definition 4.20. Let {w;}!" ; be a basis of the Z-module Ok, so that
we can uniquely write any element of Ok as Z?zl ajw; with a; € Z for
all i. We say that {w;}}'_; is an integral basis of K.

We give another example of number field, where we summarize the
different notions seen so far.

Example 4.5 (Ring of Integers and Basis). Take K = Q(V/5).
We know that any algebraic integer 5 in K has the form a + bv/5 with
some a,b € Q, such that the polynomial pg(X) = X? — 2aX + a® — 5b
has integer coefficients. By simple arguments it can be shown that
all the elements of O take the form 3 = (u + vv/5)/2 with both wu,v
integers with the same parity. So we can write 3= h + k(1 + v/5)/2
with h,k € Z. This shows that {1,(1 + 1/5)/2} is an integral basis. The
basis {1, \/5} is not integral since a + bv/5 with a,b € Z is only a subset
of Ok. Note that, (1 ++/5)/2 is also a primitive element of K with
minimal polynomial X2 — X — 1.
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Consider again the example L = Q(,+/5). In Definition 4.19, its ring of
integers O, has been described as having a Z-basis. Since Q(i,v/5) is
an extension of degree 2 of Q(7), one may wonder about the existence
of a Z[i]-basis for Or,. It does indeed exist, and it can be shown that

1+5
2

OLZZ[i][(1+\/S)/2]:{u+U ]u,ve@(i)}.
Thus {1,(1 + v/5)/2} is a Z[i]-basis for Or. Note that in that sense,

(1 +/5)/2 is an algebraic integer since it has a minimal polynomial
X? - X —1€Z[i|[X].

Theorem 4.6 [54, p. 54]. Let L/K be a field extension. For any
v €L, we have Ny g(x) and Trp g(z) € K. If 2 €O, we have
Np/k(z) and Trp i (7) € Ok.

Let us illustrate this last result. The roots of the minimal polynomial
X2 - X —1laref=(1++/5)/2and (1 —+/5)/2. Thus

o1(0) =1 ++V5)/2 and o09(f) = (1 — V5)/2.
We have

X2 X —1=(X—-0100)(X — a9(0))
= X? — X(01(0) + 02(0)) + 01(0)02(0)
= X? - Tr(0)X + N(6).

Since  Tro;,/5)/04)(?) = Tro(/a)lf) =1 and  Nog 5)/qa)(0) =
N@(\/B)/Q(Q) = —1, they are indeed in Z, the ring of integers of Q, and

thus in Z[i], the ring of integers of Q(7). Note that by definition, an
element of Oy, is root of a polynomial whose coefficients are in Z.

Let us now come back to the computation of the minimum deter-
minant. Consider the case n = 2. We have seen in Example 4.4 that

det (i? 7;53) = Ny k(z0) — YNL /K (71).
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We now show how to get the non-vanishing determinant property in
two steps:

(1) First, since wo,z1 € L, by Theorem 4.6, N i (7o) and
Np/k(71) are in K. Since v € K C L, then det(X) € K.

(2) Now, if we restrict xzg,z1 € Of, then again by Theorem 4.6,
we get that Ny /i (7o) and Np, /g (z1) are in Of. By choosing
v € Ok, we conclude that det(X) € Ok.

When transmitting QAM or HEX symbols, we noticed in Remark 4.3
that K has to be Q(4), resp. Q(j). Since Z[i], resp. Z[j] is included in
Op, by taking a suitable v € Ok, we have that

det(X) € Z[i],Z[j] = |det(X)|* € Z
so that
|det(X)|?>1, X #0.

In other words, this means that prior to SNR normalization, the min-
imum determinant does not depend on the spectral efficiency, which
motivated the term “non-vanishing determinant”.

This procedure can be generalized to higher dimensions n. However,
the first step cannot be proved the same way, since explicit computa-
tions of the determinant in higher dimension gets more complicated.
We need

Theorem 4.7 [49, p. 296 and p. 316]. Let A= (L/K,0,7) be a
cyclic algebra, then its reduced norm belongs to K.

Then similarly, the coefficients x,...,x,_1 are chosen in O, and ~ has
to be chosen in Og.

Remark 4.4 Note that forcing v to be in O is a strong requirement.
It may not always be possible to find such a . In [21], the authors show
how the non-vanishing determinant property can be further obtained
in considering v € K. The idea is that if v € K, then v = v, /74, with
Yn,Yd € Ok . By putting into factor the denominator, one can use again
the above argument. An example of this procedure will be detailed in
the next chapter, Section 5.5.
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4.4 Shaping, Lattices and Discriminant

To briefly summarize, we have seen so far how cyclic division alge-
bras of degree n over L/K yield n x n linear Space—Time block codes,
encoding n? information symbols, with full diversity. Furthermore,
if the coefficients of the Space—Time code are chosen in the ring of
integers Op, and with the parameter v € Ok, we obtain the non-
vanishing property, that is, a lower bound on the minimum determi-
nant that does not depend, prior to SNR normalization, on spectral
efficiency.

In this section, we first show how the structure of the ring of integers
can be further exploited to construct an algebraic lattice. We then show
how algebraic lattices can be useful to define a shaping property (see
Section 2.5) on the constellation to be sent.

4.4.1 Algebraic Lattices

Let us give here the minimum necessary background on algebraic lat-
tices. The interested reader can refer to [3, 4]. A self contained intro-
duction to algebraic lattices can also be found in [43].

Algebraic lattices are built using the so-called canonical embedding
of a number field:

Definition 4.21 Let 01,...,0, be the n embeddings of a number field
K, and let us order the o;s so that, for all z € K, o;(z) e R, 1 <1i <y,
and 04, () is the complex conjugate of () for ry + 1 < j <y + ro.
Note that r1 4+ 2ro =n. We call canonical embedding o : K — Rrit2r2
the isomorphism defined by

U(.%') = (Ul (.T}), <o 0py ($)7§RO—7’1+1<$)7%UT1+1($)7 EER)

§)%0-7“1 +r2 (:L‘) ) %Jn +r2 (:E) ) :

We can define a similar embedding if we consider instead of the exten-
sion K/Q a more general extension L/K:
c: L—-C"

€T — 0'(:17) = (01({13),...70'”(117)),
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where o1,...,0, are relative embeddings of L/K, i.e., o; fixes K for
all 7.

Recall [11, 43] that a lattice A can be expressed by means of its
generator matrix M

A={x=AM eR"| XAeZ"}.

The lattice generator matrix M of an algebraic lattice, that is, of a
lattice built using the canonical embedding of K, is given by

0'1((4)1) arl(wl) 5]%0-7‘1-{-1(("}1)7"'7%0-7‘1-‘1-7’2(0')1)
: )
o1(wn) oo op(wn) Ropp1(wn),...,S0r 4ry (wn)
where {w,...,wp} is here a basis of O. This gives a real lattice.

Similarly, a complex lattice A€ is given by
AN={x=AM €C" | A€ Z[i]" or Z[j]"}.

Now its generator matrix is given, using the embedding o(x)=
(Ul(l‘),...,dn(ﬂf)), by

Ul(wl) 0'2((4)1) an(wl)
01(w2) Ug(u)g) Jn(wQ)
, (4.3)
o1(wn) o2(wn) ... op(wn)
where {wi,...,w,} is a basis of O, over K, and o1,...,0, are relative

embeddings of L/K.

Example 4.6 (Algebraic Lattices). Figure 4.2 shows an algebraic
lattice from K = Q(v/5). As seen before (see Example 4.5), the inte-
gral basis of K is {1, 1+2\/g}' The two embeddings are o1(v/5) = /5,
02(v/5) = —V/5 and the lattice generator matrix becomes

o1(1) oa(1) 1 1
M= 1+\/5) 1+x/5) =l 1+v5 1-v5 |-
2 2
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)

Fig. 4.2 Algebraic lattices from Q(+/5).

So far, we have used the ring of integers O to build algebraic
lattices. In the following, we will show how algebraic lattices can be
obtained in a more general manner, by considering ideals of Oy,.

Definition 4.22 An ideal 7 of a commutative ring A is an additive
subgroup of A which is stable under multiplication by A, i.e., aZ CT
for all a € A.

Among all the ideals of a ring, some of them have the special property
of being generated by only one element. These will be of particular
interest for us.

Definition 4.23 An ideal 7 is principal if it is of the form:
IT=(x)A={xy, yc A}, z€T.

If A is clear from the context, we may write Z = ().

Example 4.7 (Principal Ideals). If R =7, we have that nZ is a
principal ideal of Z for all n.
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We can define the norm of an ideal. In the case of a principal ideal, it
is directly related to the norm of a generator of the ideal.

Definition 4.24 Let Z = (z)Or be a principal ideal of Of. Its norm
is defined by N(Z) = |N(z)|.

An algebraic lattice A’ built from an ideal Z C Oy, gives a sublattice
[11, 43] of the algebraic lattice A built from Oy. If T = aOy, then the
generator matrix M is given by

ol(awl) 0'2(04(4)1) an(awl)
o1(aws) oa(aws) ... op(aws)
M= _ R (4.4)
o1(awy) oz2(awy) ... op(awy)
where {w1,...,wy} is a basis of Of, over K, and o1,...,0, are the rel-

ative embeddings. Equivalently, the matrix (4.4) is the matrix (4.3)
multiplied by the diagonal matrix

o1(a) 0

0 on(a)

Given the above lattice generator matrix, it is easy to compute the
determinant of the lattice. By definition, we have

det(A) = |det(M)[* = |det[o;(aw)]|* = [N (a) *|detor; (w)]|*.

This determinant is actually related to an inwvariant of the number
field, called the discriminant. Let us first define the discriminant for an
extension K/Q.

Definition 4.25 Let {w1,w2,...,w,} be an integral basis of K. The
discriminant of K is defined as di = det[oj(w;)]?.(It can be shown that
the discriminant is independent of the choice of a basis [48].)
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Fig. 4.3 The structure of the compositum field of of L’ and K.

For code constructions given in Chapter 5, we will restrict ourselves
to extension fields L/K of a special kind, namely L/K = L'K/K, i.e.,
L is the smallest field containing both L’ and K. We call L the composi-
tum of L' and K (see Figure 4.3). Furthermore, L' K/K will have the
property that the relative embeddings o1,...,0, of L'K/K are actu-
ally the same as the embeddings of L'/Q. This is certainly not true in
general. Under this assumption we have that the determinant of the
lattice is

det(A) = | Ng g (@)*|dx |,
for a lattice built on K/Q, while
det(A) = |Np/k (@)*|dp| (4.5)

for a lattice built on the compositum L'K/K.

Example 4.8 (Discriminant). Let us compute the discriminant dg
of the field Q(v/5). Applying the two Q-homomorphisms to the integral
basis {w,wa} = {1,(1 + v/5)/2}, we obtain

2 2
P det o1(1) o2(1) det 1 1 5
K =de =de B =5.
01(1+2\/5) 02(1+2\/5) 1+2\/5 1 2\/5
The determinant of the lattice is 5.

4.4.2 Shaping

Let us now explain what we mean by a shaping constraint on the
constellation to be sent in the case of cyclic algebra based codes.
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In Section 2.5, the importance of constellation shaping in MIMO sys-
tems was explained on a small example. In Section 3.6, shaping was
shown to be related to the information lossless property. It was proved
that linear codes associated to a unitary matrix are information loss-
less. In the following, we will show how to obtain such a unitary matrix
for cyclic algebra based codes.

Recall that a codeword (4.2) has the form:

zo o (va_1) Y02 (Tn—2) ... o H(w1)

1 o(xo) 702(azn_1) ... ’ya”_l(xg)
Tn—2 U(xn—?)) o? (xn—4) o PVJnil (xn—l)
Tno1 o(Tp_o) o (Tn3) ... o™ (xg)

where each layer (see Definition 4.15) is, up to multiplication by =, of
the form (z;,0(x)),...,0" (7)), 1 =0,...,n — 1.

The shaping constraint requires that each layer of the codeword
is of the form Mv, where M is a unitary matrix and v is a vector
containing the information symbols. Let {wi,...,w,—1} be a basis of
O . Each layer of a codeword is of the form:

w1 w9 Wn, U0 x
o(wy) olws) ...  o(wy) i o(x1)
Un—l(wl) Un—l(w2) U”_l(wn) T Jnil(l‘l)

(4.6)

for x; = ZZ;(% uppwr+1 € Op. Since wuy, takes discrete values, we can
see the above matrix multiplication as generating points in a lattice.
The matrix M is thus the generator matriz of the lattice, whose Gram
matriz is given by MMT.

We would like M to be unitary, which translates into saying that
the lattice we would like to obtain for each layer is a Z[i]"lattice,
resp. a Z[j]"lattice, since QAM and HEX symbols are finite subsets of
Z[i], resp. Z[j]. Note that the matrix M may be viewed as a precoding
matrix applied to the information symbols.
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Finally, note that the 2n?-dimensional real lattice generated by the
vectorized codewords, where real and imaginary components are sepa-
rated, is either Z2"* (for QAM constellation) or ASQ (for HEX constel-
lation), where As is the hexagonal lattice [11], with generator matrix

(v va)

Interpreting the unitary matrix M as the generator matrix of a
lattice allows us to use the well studied theory of algebraic lattices
briefly outlined above.

We have seen in (4.5) that the determinant of an algebraic lat-
tice A built over a principal ideal Z = (a)Op, where L/K = L'K/K, is
given by

det(A) = [N (0)?ldp .

In order to get A = Z[i]™ (resp. Z[j]"), or a scaled version A" = (c¢Z[i])"
(resp. (cZ[j])™), a necessary condition is to find in Of, an element o of
suitable norm, since

det ((¢Z[i))"™) = ™.

Given an extension L'K/K, the discriminant is given. Thus one has to
find an element « such that

IN(o)Pdp| = "

This condition is however not sufficient, and once this element is found,
one way to check that we indeed found the right lattice is to compute
the Gram matrix MM, and make sure we get the identity matrix.
Since M is given by

oi(awr) o2(awy) ... op(awr)
o1(aws) oo(aws) ... op(aws)

o1(lawy) og(awy) ... on(awy)
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the Gram matrix can be computed as MMT = [Tr, /K (Qw;wj)], where
Try, g is the trace of an element of Or. These two steps:

(1) finding an element o with the right norm in Oy,
(2) computing the trace matrix MM,

form the method we will use to obtain the shaping property on the
constellation. The procedure will be illustrated for small numbers of
antennas in the next chapter.



5

Perfect Space-Time Block Codes

This chapter is devoted to the definition and construction of perfect
Space—Time block codes. We will now assemble the three preceding
chapters, using the algebraic techniques presented in Chapter 4, to
build Space-Time block codes (STBC) satisfying the design criteria
explained in Chapters 2 and 3. We illustrate the code constructions for
small numbers of antennas, namely up to six antennas. These construc-
tions have been originally presented in [21, 44].

5.1 Definition of Perfect Space-Time Codes

Let us start by recalling what are the targeted code features. The two
main design parameters for coherent Space-Time codes are:

e Full diversity. The rank criterion tells for square STBCs
that full diversity is obtained if the determinant of the dif-
ference of two distinct codewords is nonzero:

det(X; — Xj) #£0, X;# X; € C.

69
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¢ Minimum determinant. The coding gain is given by the
minimum determinant
min |det(X; — X;)|%.
Xﬁmjecl (Xi — X;)]
In order to further improve the performance of Space—Time codes, we
ask for two more properties, motivated in Chapters 2 and 3.

¢ Non-vanishing determinant. We say that a code has a
non-vanishing determinant if, prior to SNR normalization,
there is a lower bound on the minimum determinant that
does not depend on the constellation size.

e Shaping. In order to optimize the energy efficiency of the
codes, a shaping constraint on the signal constellation is
introduced. The Q-QAM or Q-HEX to be sent are normalized
according to the power at the transmitter. However, since we
use linear STBCs, what is transmitted on each layer (see Def-
inition 4.15) is a linear combination of information symbols,
which may change the energy of the signal. Each layer can be
written as Mv, where v is the vector containing the QAM or
HEX information symbols, while M is a matrix that encodes
the symbols into each layer. In order to get energy efficient
codes, we ask the matrix M to be unitary. We will refer to
this type of constellation shaping as cubic shaping, since a
unitary matrix applied on a vector containing discrete values
can be interpreted as generating points in a lattice. For exam-
ple, if we use QAM symbols, we get the Z™ (cubic) lattice.

There is another property on which we do insist though it has not been
stated yet, since it follows from the shaping constraint. However, let us
make it explicit here.

e Uniform average energy transmitted per antenna.
The ith antenna of the system will transmit a signal z;; at
time j. We ask that on average, the energy of each codeword
entry is constant, in order to have a balanced repartition of
the energy at the transmitter.
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Having motivated the properties that an STBC should have to maxi-
mize its performance, we are now able to give the definition of a perfect
Space—Time block code.

Definition 5.1 A square n; x n; STBC is called a perfect code if and
only if:

e It is a full rate linear code using n? information symbols
either QAM or HEX.

¢ The minimum determinant of the infinite code is nonzero (so
that in particular the rank criterion is satisfied).

® The energy required to send the linear combination of the
information symbols on each layer is similar to the energy
used for sending the symbols themselves (we do not increase
the transmitted energy in encoding the information symbols).

e [t induces uniform average transmitted energy per antenna
in all T" time slots, i.e., all the coded symbols in the code
matrix have the same average energy.

In the rest of this chapter, we will give the construction of perfect codes
for 2,...,6 antennas.

Remark 5.1 In Chapter 4, we have introduced as many algebraic
techniques needed as possible, starting from no algebra background.
This allows to explain almost all that is required to build the Space—
Time codes, apart the non-norm element -, the element such that none
of its powers are a norm, needed to construct a division cyclic algebra.
The techniques involved are far beyond the scope of this tutorial. For
the sake of completeness, Subsection 5.2.1 gives one example of such
techniques, in the simplest case, when the algebra is of degree 2. For
more general dimensions, the interested reader may refer for example
to [44] if v is a root of unity, or more generally to [20, 36], and it has
been shown in [21] that dividing a non-norm element by its conjugate
still gives a non-norm element.
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5.2 The Golden Code

The Golden code is a 2 x 2 perfect code. It has been found indepen-
dently in [7, 15]. Its name, Golden code, comes from its algebraic con-
struction [7], which involves the Golden number 1‘*'2—\/5

The Golden code is built using the cyclic algebra
with o : v/b — —+/5. We have that
Op={a+0bl|abeQ(i)},
where 6 = 1+—2‘/5 Before shaping, a codeword from this algebra is of the
form:
a+ bo c+db
i(c+do(0)) a+bo(0)]|’

with a,b,c,d € Z[i]. By definition, the codebook obtained is linear and
full rate (since it contains the four information symbols a,b,c,d). It is
also fully diverse since ¢ is not a norm (see next subsection for a proof),
and thus, A is a cyclic division algebra.

5.2.1 The Element v = i is Not a Norm in Q(i,/5)

We show here that the cyclic algebra A defining the Golden code is a
division algebra [7]. The proof is given for sake of completeness, but
uses some tools that are beyond the scope of this work.

Proposition 5.1 Let K = Q(i,/5), then the element v =4 is not a
relative norm of any z € K, i.e., Ng/q)(®) # i, Vo € K.

Proof. Let Qs denote the field of 5-adic numbers, and Zs5=
{r € Qs | vs(x) >0} its valuation ring. The complex rationals Q(i)
can be embedded in Q5 by

t+— 2+ 5Zs.
Let z = a + bv/5 € K with a,b € Q(i), then we must show that

Ngjqe)(x) = a® — 5b* =i



5.2 The Golden Code 73

has no solution for a,b € Q(7). We can lift this equation in the 5-adic
field Qs

a? —5b* =24 52 a,b € Q(i), z€Zs (5.1)

and show that it has no solution there. We take the valuations of both
sides of (5.1)

vs(a® — 5b%) = v5(2 + 5x)

to show that @ and b must be in Zs. In fact, since « € Zs, v5(2 + 5z) >
min{vs(2),v5(z) + 1} = 0, and we have equality as both valuations are
distinct. Now, vs(a? — 5b?) = min{2v5(a),2v5(b) + 1} must be 0, hence
vs(a) = 0 which implies a € Z5 and thus b € Zs.

We conclude by showing that

a®> — 50 =245z a,b,x € Zs

has no solution. Reducing modulo 5Zs5 we find that 2 should be a square
in the finite field GF'(5), which is a contradiction. O

5.2.2 The Lattice Z[i]?

Let us see now how to add the shaping property on the codebook built
on A. Equation (4.5) tells us that

det(A) = ’NL/K(Q)|2’d@(\/5)| = 5|Np k().

We thus look for an element a such that [Ny, x(a)* =5. In order to
find such an element, we look at the factorization of 5 in Op:

5=(1+i—i0)*(1 —i+i0)>

We thus choose a =1+ i — if. Let us now check that we indeed get
the right lattice. Its generator matrix is given by

M= <o<aa> aﬁ))) |

A direct computation shows that M MT = 5I,. Thus %M is a unitary

matrix, yielding the shaping property.
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A codeword X belonging to the Golden code has thus, adding the
shaping property, the form:
X — 1 ala + bf) a(c+ db)

V5 lio(a)(e+ do () o(a)(a+ bo(8))]’

where a,b,c,d are QAM symbols.

Recall that when a,b,c,d can take any value in Z[i], we say that we
have an infinite code Co,. This terminology recalls the case where finite
signal constellations are carved from infinite lattices.

5.2.3 The Minimum Determinant

Let us now compute the minimum determinant of the infinite code.
Since ao(a) =2 + i, we have

det(X) = 2 ‘; "l + b0)(a + bo(0)) — il + dO)(c + do())]

1
= r[(a2 + ab — b* —i(? 4 cd — d?)].
—1
By definition of a,b,c,d, we have that the non-trivial minimum of
la? + ab — b —i(c? + ed — d?)|* is 1, thus
Smin(Coc) = min_|det(X)|2 =
min \“oco _O;éXEC —5
Thus the minimum determinant of the infinite code is bounded away
from zero, as required.
Since an explicit computation of the determinant will not be pos-
sible in higher dimension, we show now another way of computing the
minimum determinant. Since

1 [a OHi(aere c—i—d@]’

V510 o) c+do()) a—+bo(h)

we have that

1
mindet(X) = gNL/K(Oé) min det [

a + bl c+do
X£0 X£0 '

i(c+do(0) a+ bo(d)
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Using Theorem 4.7, the determinant on the right-hand side is lower

bounded by 1. Thus
. 1 1
g%\det(X)lz = %’NL/K(O‘)‘Z =3

since o has been chosen such that [Ny x (a)]* = 5.
Note in the second row of the codeword X the factor ¢, which guar-
antees uniform average transmitted energy since |i|> = 1.

5.3 A Perfect STBC for 3 Antennas

For 3 antennas, we use HEX symbols. Thus, the base field is K = Q(j).
Let 0=Cr+ ¢l = 2cos(%) and L =Q(j,0), the compositum of K
and Q(#). We have [Q(#):Q] =3, and thus [Q(j,0): K] =3. The
discriminant of Q(6) is dgg) = 49, the minimal polynomial py(X) =
X3+ X? —2X — 1. The extension L/K is cyclic with generator
oG+ G -GG

We consider the cyclic algebra A = (L/K,0,j) of degree 3, that is

A=L del ® 2L

with e € A such that e3> = j and Ae = eo()\) for all A € L. The choice of
v = j yields a perfect code. Since j and j2? are not norms in L/K [44],
the code is fully diverse.

5.3.1 The Lattice Z[j]3

Since we use HEX symbols, we look for a Z[j]-lattice which is a rotated
Z[j]3(= A3) lattice. Equation (4.5) tells us that

det(A) = [Ny c(0) Pldg )| = 71N rc (@)

A necessary condition to obtain a rotated Z[j]? lattice is thus the exis-
tence of an element o such that [Ny x(a)[* =7. Let us look at the
factorization of 7 in Op:

T=(1+5)+ 0T +5)+0).

Let us take a=(1+4+j)+60. A Z[j]-basis of (a)Or is given
by {ad*}2_,={(1+j)+0,(1+j)0+6%1+20+ j6°}. Using the
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change of basis given by the following matrix

1 0 0
0 -1 1],
2 1 0

one gets a reduced Z[j]-basis

{vetizr = {1 +J) + 0, (=1 = 2j) + j6*, (-1 — 2j)
+(1+45)0+ (14 5)6°}.

Then by straightforward computation we find
1
- Terjo (ven) = 0w k,1=1,2,3

using T‘IQ(Q)/Q(l) = 3, Tﬂ@(@)/@(@) = —1, TI'Q(@)/Q(@Q) =5.
We compute, for example, the diagonal coefficients

Trp ol +0+6%) =7 ifk=1
Trr o) (k) = § Trojgp) (2 —0) =7 if k=2
Trp ()4 —0%) =7 if k=3

The generator matrix of the lattice in its numerical form is thus
given by

M = %(Ul(Vk))Z,lzl

0.66030 + 0.32733: 0.02077 + 0.327337  —0.49209 + 0.327331
—0.29386 — 0.14567: —0.03743 — 0.589827 —0.61362 + 0.40817%
0.52952 + 0.262507  —0.04667 — 0.735507  0.27309 — 0.181657

A codeword X € C encodes nine HEX symbols zg,...,x9 as

2
X = Zdiag (M(xgk,x3k+1,$3k+2)T) Eka
k=0

where

&

Il
=2 O o
o O =
o~ O
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5.3.2 The Minimum Determinant

Using the argument described in Subsection 5.2.3, we have

1 7
Smin(C) = ﬁUVL/@(j)(OZN2 =3

by choice of .. Thus the minimum determinant is given by

1

(Smin(c) == E

5.4 A Perfect STBC for 4 Antennas

As for the Golden code, we consider the transmission of QAM sym-
bols, thus, the base field is K = Q(4). Let 6 = (15 + Cf51 = QCOS(%) and
L = Q(i,0), the compositum of Q(i) and Q(#). We have [Q(0) : Q] =4,
and thus [Q(7,0) : Q(i)] = 4. The discriminant of Q(0) is dg(g) = 1125
and the minimal polynomial pg(X) = X* — X3 —4X? +4X + 1. The
extension L/Q(i) is cyclic with generator o : (15 + (15 = (% + (5

The corresponding cyclic algebra of degree 4 is given by A=
(L/K,o0,i), that is

A=Ldel ® L @ 3L

with e € L such that e* =i and e = ec(\) for all A € L. The choice
of v =i yields a perfect code. Since +i and —1 are not norms in L/K
[44], the code is fully diverse.

5.4.1 The Lattice Z[i]*

We search for a complex rotated lattice Z[i]*. Using Equation (4.5), we
have

det(A) = |NL/K(a)|2|dQ(\/§)| = 3253|NL/K(04)|2-

A necessary condition to obtain a rotated version of Z[i]* is that there
exists an element o such that [Ny (e)|* = 3%5. Let us look at the
factorization of 3 and 5 in Oy,

3 = (a3)*(as3)
5 = (065)4@4-



78  Perfect Space-Time Block Codes

Let us consider o = azas = (1 — 3i) + 6.
A Z[i]-basis of («) is given by {af'}?_,. Using the change of basis
given by the following matrix

1 0 0 0
0 1 0 0
0 -3 0 1)’
-1 -3 1 1

one gets a new Z[i]-basis
(e dd_) = {(1 — 34) + 62, (1 — 30)0 + 63,
—i+ (=3 4 40)0 + (1 — )03, (=1 + i) — 30 + 6% + 6°}.

Then by straightforward computation we can check that

1
BTrL/Q(i)(VkﬁZ) =0 kJtl=1,...,4
using

Trq(e)/0(0) = 1, Trge),0(0%) =9, Trge)0(0?) =1, Troe) o(0") = 29.
For example, we compute the diagonal coefficients,

Trpq@) (10 — 66% + 6%) =15 it k=1
Trrjom(L+30+62 - 03) =15 ifk=2

Trp w5+ 60 — 0% —20%) =15 if k=3
Trp qu) (=50 + 20> +20%) =15 if k=4

Trr,00) (Ivel?) =

The unitary generator matrix of the lattice is given by

1 n
= \/T—5(02(Vk))k,e=1

0.258 — 0.312¢ 0.346 — 0.418: —0.418 + 0.5057 —0.214 + 0.258¢
0.258 + 0.087:  0.472 + 0.1607 0.160 + 0.0544 0.763 + 0.258¢
0.258 + 0.2147 —0.505 — 0.4187 —0.418 — 0.3467 0.312 + 0.2582
0.258 — 0.7637 —0.054 4+ 0.160¢ 0.160 — 0.472¢ —0.087 + 0.258%

A codeword X € C encodes 16 QAM symbols xg,...,x15 so that X € C

is given by

3
X = diag (M (24, Tar41, Tars2, Tarss) ") BF,
k=0
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where

=2 O O O
S O O
S O = O
O = O O

5.4.2 The Minimum Determinant

Using the argument of Subsection 5.2.3, the minimum determinant of
the infinite code is equal to

45

154

by choice of . Thus the minimum determinant is given by

1
5min(c) — TQS .

1
Omin(C) = @\NL/@@)(QNQ =

5.5 A Perfect STBC for 5 Antennas

For the 5 antennas case, we present the construction of [21], which
transmits QAM symbols. Thus, the base field is K = Q(i). Let 0 =
Gin + (7' =2cos(2) and L = Q(4,0), the compositum of K and Q(6).
We have [Q(0) : Q] =5, and thus [Q(j,6) : K] = 5. The extension L/K
is cyclic with generator o : (11 + (7' = ¢} + (2

The corresponding cyclic algebra of degree 5 is A= (L/K,0,7),
that is

A=Ldel ® 2L @ L @ 'L

with e € A such that e® =+ € K, v # 0 and \e = ec()) for all X € L.
In order to obtain a division algebra, 7 is chosen in [21] to be

3+ 2

7T o
Note here that v is not a root of unity, but is of the form an element of
K divided by its complex conjugate, which makes it of norm 1. That
this 7 yields a division algebra has been shown in [21]. This way of
finding a suitable non-norm element v of norm 1 has been used more

generally in [21] to find codes in arbitary dimensions.
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5.5.1 The Lattice Z[i]®

Finding the Z[i]® lattice now uses a different, more elaborated tech-
nique, which has been presented in [4, 21], to which we let the interested
reader refer. The generator matrix M is numerically given by

—0.3260 0.5485 —0.4557 —0.5969 —0.1699
0.5485  —0.4557 —0.5969 —0.1699 —0.3260
M =] —-0.4557 —0.5969 —0.1699 —0.3260 0.5485
—-0.5969 —0.1699 —0.3260 0.5485 —0.4557
—-0.1699 —0.3260 0.5485 —0.4557 —0.5969

A codeword X € C encodes 25 QAM symbols xg,...,x24 so that
X € C is given by

4

. TV pk

X = E diag (M (25k, T5k41, Tsk+2, T5kt3, Tokaa) ) BT,
k=0

where
01 0 0 O
0 01 00
E=|10 0 0 1 0
0 0 0 0 1
v~ 0 0 0 O

5.5.2 The Minimum Determinant

The code construction being here a bit different than the previous
examples yields a different computation for the minimum determinant.
First, the argument of Subsection 5.2.3 has to be slightly modified. We
have that

X0 X1 T2 x3 Ty
yo(zs)  o(xo)  o(x1)  o(z2) o(xs)
det(X) = det [ 702 (x3) yo?(za) o2(x0) o*(x1) oP(x2)
vot(x2) ~0®(x3) o (xs)  o(zo) oP(x1)

vol(zr) yol(2) yo'(zs) yo'(za)
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Zo 1 Z2 €3 Ty
. Yo (zs)  o(xo) o(ry) o(r2)  o(z3)
= pdet | m0*(x3) mo(za) o zo)  oP(w1)  o*(z2) |,
Yd

Yo (x2) o (z3) mo®(za)  0P(zo) 0P (21)
’7n0'4(x1) ’Yn0'4(.’I}2) ’VnOA((ES) ’Yn04(9€4) o

X

where v, = 3 + 2¢ and 4 = 2 + 3i are, respectively, the numerator and
the denominator of «. Thus, we have that

1 .
min |det(X)|> = Wmirﬂdet(X)]Z.
d

Since X is now a matrix with coefficients in Z[i], the explanation of
Subsection 5.2.3 holds for X, namely

1

IV

where a has been found as explained in [4, 21|, so that finally

11
114134 1434

' . 1
min | det(X)|* = F|NL/@(i) ()

6min(c)
since |4 = (|2 + 3i[*)%.

5.6 A Perfect STBC for 6 Antennas

As in the 3 antennas case, we transmit HEX symbols. Thus, the base
field is K = Q(j). Let 0 = Cog + (o5 = 2cos(%) and L = Q(j,0), the
compositum of K and Q(#). We have [Q(€) : Q] = 6, and thus [Q(j,6) :
K] =6. The extension L/K is cyclic with generator o : (ag + (o5
s + Cas”

The corresponding cyclic algebra of degree 6 is A= (L/K,0,7),
that is

A=L@® el ®e’L & 3L ® 'L @ L

with e € A such that e =+ € K, 7 # 0 and \e = ec()) for all X € L.
In order to obtain a perfect code, we choose v = —j. Since v and its
powers are not norms in L/K [44], the code is fully diverse.
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5.6.1 The Lattice Z[5]®

In order to find the Z[j]® lattice, we use Equation (4.5):
det(A) = ’NL/K(Q)‘2’dQ(\/§)| =27°|Np ke ()2

A necessary condition to obtain a rotated version of Z[;]% is that there
exists an element « such that [Ny /i (@)[* = 7. Similarly as before, we
start by looking at the factorization of 7 in Or. However, unlike pre-
viously, we cannot write 7 = (a7)6@6. Such factorization does not
exist. We thus consider the principal ideal (7)Op, and look at its fac-

torization [44, 48]
(1O, = T8T7".

The factorization of (7)Qp, is given as a product of non-principal ideals.
This makes harder the explicit computation of an ideal basis, and in
particular of the ideal basis (if any) for which the Gram matrix becomes
the identity.

We thus compute numerically a basis of Z7, from which we compute
a Gram matrix of the lattice. We then perform a basis reduction on
the Gram matrix, using an LLL reduction algorithm [44]. We get the
following change of basis

0 1 0o o0 0 0
1+ 0 1 0O 0 O
-1-25 0 =5 0 10
1+ 0 4 0 -1 0
0 -3 0 1 0 0
0 5 0 -5 0 1
and the lattice generator matrix in numerical form: M = —— M where

N V14
M is given by

1.9498 1.3019 — 0.877  —0.0549 — 0.877 —1.7469 — 0.87¢  1.5636 0.8677
0.8677 —1.7469 — 0.87¢ 1.3019 — 0.87¢  —0.0549 — 0.87¢ —1.9498 1.5636
1.5636  —0.0549 — 0.87¢ —1.7469 — 0.87¢ 1.3019 — 0.877  —0.8677 —1.9498
—1.9498 1.3019 — 0.872  —0.0549 — 0.87¢ —1.7469 — 0.87¢ —1.5636 —0.8677
—0.8677 —1.7469 — 0.87:  1.3019 — 0.87¢ —0.0549 — 0.87¢ 1.9498 —1.5636
—1.5636 —0.0549 — 0.877 —1.7469 — 0.87¢ 1.3019 — 0.87: 0.8677 1.9498
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This matrix M M is the identity matrix, so that we indeed get a rotated
version of the Ag lattice.

A codeword X € C encodes 36 HEX symbols zg,...,z35 so that
X € C is given by

5

: T ok

X = E diag (M (Zek, T6k-+1, T6k+25 Tok+3: Tok-+4, Tekts) ) B,
k=0

where

2 O O O o o
O O O O O =
=lalalell =
O O O = O O
SO O = O O O
o= O O O O

5.6.2 The Minimum Determinant

Since the ideal Z7 is not principal, we do not know how to compute the
minimum determinant. We thus use the bounds given in [44]:

1 1

5.7 Optimality of Perfect STBCs

Let us first consider the case of 2 x 2 perfect STBCs. In [44], an infinite
family of 2 x 2 perfect STBCs is given. Since all those codes are perfect,
they are only distinguishable by their minimum determinant, which in
this case is given by 1/p, where p is a prime number such that p =5
(mod 8). Since the Golden code uses p =5, it is the best. Let us now
address the question of the optimality of the Golden code more gener-
ally, that is, without restricting ourselves to this family parameterized
by p =5 (mod 8). Using Equation (4.5) and the fact that we encode a
perfect STB code using a lattice A = Z[i]? such that det(A) = 1, we have

1= |NL/Q(i)(O‘)|2|dQ(\/3)‘7
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Table 5.1 Summarizing the known discriminants of perfect STBCs.

n disc
2 5
3 49
4 1125
5 1434
6 2675

so that the minimum determinant of a 2 x 2 perfect code is
1

5min o) = )
(€ do(va)

where dg ) denote the discriminant of a quadratic field Q(v/d). That
no quadratic number field can yield both a smaller discriminant and a
cyclic division algebra has been proven in [41].

A different approach to improve on the Golden code has started in
[31], where the authors investigate maximal orders of algebras.

In higher dimensions, the only available code constructions are those
from [21, 44]. Though it is clear that taking for v a root of unity yields
a better coding gain, the question of finding perfect STB codes with
better coding gain stays open. Using again (4.5), the minimum determi-
nant of a perfect STB code in general is related to discriminant of L/K.
A formulation of the optimality of perfect codes in higher dimensions
could be addressed in finding number fields L/K with smaller discrim-
inant than those known which furthermore yield the other properties
of division algebra and shaping. Table 5.1 summarizes the best known
discriminants so far.



6

New Applications and Conclusion

In this last chapter, we briefly outline further research directions involv-
ing perfect STBCs, namely generalization to wireless networks and
applications to coded modulations.

6.1 Coding for Wireless Networks

A lot of attention has been paid recently to wireless networks. Coding
strategies for wireless networks proposed so far (for example see [34])
have been looking for methods to exploit spatial diversity using the
antennas of different users in the network. The idea is to have the
nodes forming a virtual antenna array, to obtain the diversity known
to be achieved by point-to-point MIMO systems. Such coding strategies
have been called cooperative diversity schemes.

Different families of coding strategies have been proposed. They
are mainly classified between Amplify-and-Forward protocols, and
Decode-and-Forward protocols. Both protocols comprise a two-step
transmission: first a broadcast phase, where the transmitter broadcasts
his message to the neighbor relay nodes. In the amplify-and-forward
protocol, relay nodes receive the signal, just amplify it, and in a second

85
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phase, forward the amplified version to the receiver. In the decode-and-
forward protocol, relay nodes try to decode the received signal, and
those which manage then forward the decoded signal to the receiver.
The second phase of those protocols is usually a phase of coopera-
tion, since both these two protocols can be improved by having the
nodes cooperating in doing some encoding before sending the signal to
the receiver. In the decode-and-forward case, relays which decoded can
cooperate in re-encoding a Space—Time code [16, 34]. In the amplify-
and-forward case, a way of getting cooperation is to use distributed
Space—Time coding [35], as we detail below.

6.1.1 Distributed Space—Time coding

The following two-step protocol, which can be seen as an improved
amplify-and-forward protocol, has been introduced in [35]. We report
here the basic idea of the protocol, ignoring on purpose normalization
factors. All random variables for noise and fading are assumed to be
complex Gaussian with zero mean and unit variance. The transmitter
sends its signal s to each relay which can sense it, so that the ith relay
gets

r; = fis + vi,

where v; is the noise vector and f; is the fading at the ith relay. Now
each relay transmits

t; = Air,

where A; is a unitary matrix, so that the receiver gets

R
X:Zgiti—l—w:S’H—&—VV,
i=1
with
fin
S=1[Ais---Ags|, H= : (6.1)

JfRIR
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and

R

W = ZgiAiVi + w.

i=1
The matrix S is called a distributed Space—Time code since it has been
generated in a distributed way by the relay nodes. It has been shown
in [35] by analyzing the behavior of the pairwise error probability that
the rank criterion holds similarly to the point-to-point case.

Thus knowledge acquired for building Space—Time codes is useful
for coding for wireless networks. Adaptation of perfect Space—Time
codes have been used for wireless networks for example in [19, 37, 42].
Furthermore, since in wireless networks, the number of relay nodes
correspond to the number of antennas, it is useful to have general code
constructions, as given in [21].

6.1.2 MIMO Amplify-and-Forward Protocol

While the work discussed in the previous subsection focused on the
analysis of the pairwise probability of error as design criterion, a lot of
work has been done using as criterion the diversity-multiplexing gain
trade-off (DMT) described in Chapter 3. In [2], the amplify-and-forward
protocol has been analyzed with respect to the DMT. Note that the
network model considered assume a direct link from the transmitter link
to the receiver link, unlike the distributed Space—Time code model. It
was shown that in order to reach the trade-off, the protocol has to be such
that the transmitter node always transmits, which yields to so-called
non-orthogonal amplify-and-forward protocol. In [2], the DMT has been
shown to be achieved using random Gaussian codebooks. Since perfect
Space—Time codes achieve the DMT in the point-to-point case, they seem
natural candidates to generalize in order to reach the trade-off in the
relay case. This has been proposed in [62], where the protocol has further
been extended to the case of relays equipped with multiple antennas.

6.2 Trellis/Block Coded Modulations

Wireless networks for multimedia traffic demand high spectral effi-
ciency coding schemes with low packet delay. Perfect Space-Time codes
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provide some very good tools to solve this challenging design problem.
Wireless channels are commonly modeled as slow block fading, i.e., the
channel coefficients are fixed over the duration of a frame. The careful
concatenation of a Space—Time block code with an outer trellis code
provides a robust solution for high rate transmission over a slow block
fading channel.

In [32], a concatenated scheme is considered, where the inner code is
the Golden code and the outer code is a trellis code. We can view this as
a multidimensional trellis coded modulation (TCM), where the Golden
code acts as a signal set to be partitioned. This Golden Space—Time
Trellis Coded Modulation (GST-TCM) scheme is appropriate for high
data rate systems thanks to the great flexibility in the choice of the
modulation spectral efficiency. Moreover, the ML decoder complexity
remains independent of the frame length.

A first attempt to design such a scheme was made in [10]. However,
the resulting ad hoc scheme suffered from a high trellis complexity. In
[32], a systematic design approach for GST-TCM over slow block fading
channels was based on lattice set partitioning combined with a trellis
code is used to increase the minimum determinant between codewords.
The Viterbi algorithm is used for trellis decoding, where the branch
metrics are computed using a sphere decoder for the inner code.

The different GST-TCM codes designed in [32] were searched using
the standard Ungerboeck’s design rules for TCM. For example, it is
shown that a 16 state TCM, with the spectral efficiency of 6 bits per
channel use (bpcu), achieves a significant performance gain of 4.2dB
over the uncoded Golden code in slow and fast block fading channels,
at an frame error rate (FER) of 1073.

A natural research direction is to extend those techniques to other
perfect Space—Time codes.

6.3 Other Issues

There are other recent extensions and developments of the applica-
tions of cyclic division algebras to the area of wireless communications.
One of the most promising extensions is by using maximal orders of
the algebra in order to have a larger set of codewords with at least
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the same minimum determinant [30]. There are also other applications
for division algebras based codes than the MIMO or the Relay channel
such as, for instance, the MIMO-ARQ channel [47].

6.4 Conclusion

Designing efficient Space-Time codes for coherent MIMO systems
involve more than fulfilling the known rank and determinant criteria.
In this paper, we detailed several other parameters to take into account
to optimize the efficiency of Space-Time codes, such as constellation
shaping, diversity-multiplexing gain trade-off and the information loss-
less property. In order to actually construct codes satisfying those con-
straints, we heavily rely on the algebraic structure of cyclic division
algebras based on number fields. In order to make those division alge-
bra based codes accessible, we provide a self-contained introduction to
the algebraic techniques involved. In some sense, those are a generaliza-
tion of previous methods used for single antenna coding, and we believe
that these algebraic approaches are now very promising for facing new
coding problems coming from wireless networks.
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