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Abstract

This monograph presents a unified treatment of single- and multi-user problems in Shannon’s information
theory where we depart from the requirement that the error probability decays asymptotically in the block-
length. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant
and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents
the study of asymptotic estimates with non-vanishing error probabilities.

In Part I, after reviewing the fundamentals of information theory, we discuss Strassen’s seminal result for
binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-
II error probability with growing number of independent observations is characterized. In Part II, we use this
basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions
for point-to-point communication. Finally in Part III, we consider network information theory problems
for which the second-order asymptotics are known. These problems include some classes of channels with
random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special
cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further
research.
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Chapter 1

Introduction

Claude E. Shannon’s epochal “A Mathematical Theory of Communication” [141] marks the dawn of the
digital age. In his seminal paper, Shannon laid the theoretical and mathematical foundations for the basis
of all communication systems today. It is not an exaggeration to say that his work has had a tremendous
impact in communications engineering and beyond, in fields as diverse as statistics, economics, biology and
cryptography, just to name a few.

It has been more than 65 years since Shannon’s landmark work was published. Along with impressive
research advances in the field of information theory, numerous excellent books on various aspects of the
subject have been written. The author’s favorites include Cover and Thomas [33], Gallager [56], Csiszár and
Körner [39], Han [67], Yeung [189] and El Gamal and Kim [49]. Is there sufficient motivation to consolidate
and present another aspect of information theory systematically? It is the author’s hope that the answer is
in the affirmative.

To motivate why this is so, let us recapitulate two of Shannon’s major contributions in his 1948 paper.
First, Shannon showed that to reliably compress a discrete memoryless source (DMS) Xn = (X1, . . . , Xn)
where each Xi has the same distribution as a common random variable X, it is sufficient to use H(X)
bits per source symbol in the limit of large blocklengths n, where H(X) is the Shannon entropy of the
source. By reliable, it is meant that the probability of incorrect decoding of the source sequence tends to
zero as the blocklength n grows. Second, Shannon showed that it is possible to reliably transmit a message
M ∈ {1, . . . , 2nR} over a discrete memoryless channel (DMC) W as long as the message rate R is smaller
than the capacity of the channel C(W ). Similarly to the source compression scenario, by reliable, one means
that the probability of incorrectly decoding M tends to zero as n grows.

There is, however, substantial motivation to revisit the criterion of having error probabilities vanish
asymptotically. To state Shannon’s source compression result more formally, let us define M∗(Pn, ε) to
be the minimum code size for which the length-n DMS Pn is compressible to within an error probability
ε ∈ (0, 1). Then, Theorem 3 of Shannon’s paper [141], together with the strong converse for lossless source
coding [49, Ex. 3.15], states that

lim
n→∞

1

n
logM∗(Pn, ε) = H(X), bits per source symbol. (1.1)

Similarly, denoting M∗ave(Wn, ε) as the maximum code size for which it is possible to communicate over a
DMC Wn such that the average error probability is no larger than ε, Theorem 11 of Shannon’s paper [141],
together with the strong converse for channel coding [180, Thm. 2], states that

lim
n→∞

1

n
logM∗ave(Wn, ε) = C(W ), bits per channel use. (1.2)

In many practical communication settings, one does not have the luxury of being able to design an arbitrarily
long code, so one must settle for a non-vanishing, and hence finite, error probability ε. In this finite blocklength
and non-vanishing error probability setting, how close can one hope to get to the asymptotic limits H(X) and
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C(W )? This is, in general a difficult question because exact evaluations of logM∗(Pn, ε) and logM∗ave(Wn, ε)
are intractable, apart from a few special sources and channels.

In the early years of information theory, Dobrushin [45], Kemperman [91] and, most prominently,
Strassen [152] studied approximations to logM∗(Pn, ε) and logM∗ave(Wn, ε). These beautiful works were
largely forgotten until recently, when interest in so-called Gaussian approximations were revived by Hayashi [75,
76] and Polyanskiy-Poor-Verdú [122, 123].1 Strassen showed that the limiting statement in (1.1) may be
refined to yield the asymptotic expansion

logM∗(Pn, ε) = nH(X)−
√
nV (X)Φ−1(ε)− 1

2
log n+O(1), (1.3)

where V (X) is known as the source dispersion or the varentropy, terms introduced by Kostina-Verdú [97]
and Kontoyiannis-Verdú [95]. In (1.3), Φ−1 is the inverse of the Gaussian cumulative distribution function.
Observe that the first-order term in the asymptotic expansion above, namely H(X), coincides with the (first-
order) fundamental limit shown by Shannon. From this expansion, one sees that if the error probability is
fixed to ε < 1

2 , the extra rate above the entropy we have to pay for operating at finite blocklength n with

admissible error probability ε is approximately
√
V (X)/nΦ−1(1 − ε). Thus, the quantity V (X), which is

a function of P just like the entropy H(X), quantifies how fast the rates of optimal source codes converge
to H(X). Similarly, for well-behaved DMCs, under mild conditions, Strassen showed that the limiting
statement in (1.2) may be refined to

logM∗ave(Wn, ε) = nC(W ) +
√
nVε(W )Φ−1(ε) +O(log n) (1.4)

and Vε(W ) is a channel parameter known as the ε-channel dispersion, a term introduced by Polyanskiy-
Poor-Verdú [123]. Thus the backoff from capacity at finite blocklengths n and average error probability ε is
approximately

√
Vε(W )/nΦ−1(1− ε).

1.1 Motivation for this Monograph

It turns out that Gaussian approximations (first two terms of (1.3) and (1.4)) are good proxies to the true non-
asymptotic fundamental limits (logM∗(Pn, ε) and logM∗ave(Wn, ε)) at moderate blocklengths and moderate
error probabilities for some channels and sources as shown by Polyanskiy-Poor-Verdú [123] and Kostina-
Verdú [97]. For error probabilities that are not too small (e.g., ε ∈ [10−6, 10−3]), the Gaussian approximation
is often better than that provided by traditional error exponent or reliability function analysis [39, 56], where
the code rate is fixed (below the first-order fundamental limit) and the exponential decay of the error
probability is analyzed. Recent refinements to error exponent analysis using exact asymptotics [10, 11,
135] or saddlepoint approximations [137] are alternative proxies to the non-asymptotic fundamental limits.
The accuracy of the Gaussian approximation in practical regimes of errors and finite blocklengths gives us
motivation to study refinements to the first-order fundamental limits of other single- and multi-user problems
in Shannon theory.

The study of asymptotic estimates with non-vanishing error probabilities—or more succinctly, fixed error
asymptotics—also uncovers several interesting phenomena that are not observable from studies of first-order
fundamental limits in single- and multi-user information theory [33, 49]. This analysis may give engineers
deeper insight into the design of practical communication systems. A non-exhaustive list includes:

1. Shannon showed that separating the tasks of source and channel coding is optimal rate-wise [141]. As
we see in Section 4.5.2 (and similarly to the case of error exponents [35]), this is not the case when the
probability of excess distortion of the source is allowed to be non-vanishing.

2. Shannon showed that feedback does not increase the capacity of a DMC [142]. It is known, however,
that variable-length feedback [125] and full output feedback [8] improve on the fixed error asymptotics
of DMCs.

1Some of the results in [122, 123] were already announced by S. Verdú in his Shannon lecture at the 2007 International
Symposium on Information Theory (ISIT) in Nice, France.
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3. It is known that the entropy can be achieved universally for fixed-to-variable length almost lossless
source coding of a DMS [192], i.e., the source statistics do not have to be known. The redundancy has
also been studied for prefix-free codes [27]. In the fixed error setting (a setting complementary to [27]),
it was shown by Kosut and Sankar [100, 101] that universality imposes a penalty in the third-order
term of the asymptotic expansion in (1.3).

4. Han showed that the output from any source encoder at the optimal coding rate with asymptotically
vanishing error appears almost completely random [68]. This is the so-called folklore theorem. Hayashi
[75] showed that the analogue of the folklore theorem does not hold when we consider the second-order
terms in asymptotic expansions (i.e., the second-order asymptotics).

5. Slepian and Wolf showed that separate encoding of two correlated sources incurs no loss rate-wise
compared to the situation where side information is also available at all encoders [151]. As we shall see
in Chapter 6, the fixed error asymptotics in the vicinity of a corner point of the polygonal Slepian-Wolf
region suggests that side-information at the encoders may be beneficial.

None of the aforementioned books [33, 39, 49, 56, 67, 189] focus exclusively on the situation where the
error probabilities of various Shannon-theoretic problems are upper bounded by ε ∈ (0, 1) and asymptotic
expansions or second-order terms are sought. This is what this monograph attempts to do.

1.2 Preview of this Monograph

This monograph is organized as follows: In the remaining parts of this chapter, we recap some quantities in
information theory and results in the method of types [37, 39, 74], a particularly useful tool for the study of
discrete memoryless systems. We also mention some probability bounds that will be used throughout the
monograph. Most of these bounds are based on refinements of the central limit theorem, and are collectively
known as Berry-Esseen theorems [17, 52]. In Chapter 2, our study of asymptotic expansions of the form
(1.3) and (1.4) begins in earnest by revisiting Strassen’s work [152] on binary hypothesis testing where
the probability of false alarm is constrained to not exceed a positive constant. We find it useful to revisit
the fundamentals of hypothesis testing as many information-theoretic problems such as source and channel
coding are intimately related to hypothesis testing.

Part II of this monograph begins our study of information-theoretic problems starting with lossless and
lossy compression in Chapter 3. We emphasize, in the first part of this chapter, that (fixed-to-fixed length)
lossless source coding and binary hypothesis testing are, in fact, the same problem, and so the asymptotic
expansions developed in Chapter 2 may be directly employed for the purpose of lossless source coding. Lossy
source coding, however, is more involved. We review the recent works in [86] and [97], where the authors
independently derived asymptotic expansions for the logarithm of the minimum size of a source code that
reproduces symbols up to a certain distortion, with some admissible probability of excess distortion. Channel
coding is discussed in Chapter 4. In particular, we study the approximation in (1.4) for both discrete
memoryless and Gaussian channels. We make it a point here to be precise about the third-order O(log n)
term. We state conditions on the channel under which the coefficient of the O(log n) term can be determined
exactly. This leads to some new insights concerning optimum codes for the channel coding problem. Finally,
we marry source and channel coding in the study of source-channel transmission where the probability of
excess distortion in reproducing the source is non-vanishing.

Part III of this monograph contains a sparse sampling of fixed error asymptotic results in network
information theory. The problems we discuss here have conclusive second-order asymptotic characterizations
(analogous to the second terms in the asymptotic expansions in (1.3) and (1.4)). They include some channels
with random state (Chapter 5), such as Costa’s writing on dirty paper [30], mixed DMCs [67, Sec. 3.3], and
quasi-static single-input-multiple-output (SIMO) fading channels [18]. Under the fixed error setup, we also
consider the second-order asymptotics of the Slepian-Wolf [151] distributed lossless source coding problem
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1. Introduction

2. Hypothesis Testing

3. Source Coding

4. Channel Coding

5. Channels with State

6. Slepian-Wolf

7. Gaussian IC

8. Gaussian A-MAC

Figure 1.1: Dependence graph of the chapters in this monograph. An arrow from node s to t means that
results and techniques in Chapter s are required to understand the material in Chapter t.

(Chapter 6), the Gaussian interference channel (IC) in the strictly very strong interference regime [22]
(Chapter 7), and the Gaussian multiple access channel (MAC) with degraded message sets (Chapter 8).
The MAC with degraded message sets is also known as the cognitive [44] or asymmetric [72, 167, 128] MAC
(A-MAC). Chapter 9 concludes with a brief summary of other results, together with open problems in this
area of research. A dependence graph of the chapters in the monograph is shown in Fig. 1.1.

This area of information theory—fixed error asymptotics—is vast and, at the same time, rapidly expand-
ing. The results described herein are not meant to be exhaustive and were somewhat dependent on the
author’s understanding of the subject and his preferences at the time of writing. However, the author has
made it a point to ensure that results herein are conclusive in nature. This means that the problem is solved
in the information-theoretic sense in that an operational quantity is equated to an information quantity. In
terms of asymptotic expansions such as (1.3) and (1.4), by solved, we mean that either the second-order term
is known or, better still, both the second- and third-order terms are known. Having articulated this, the
author confesses that there are many relevant information-theoretic problems that can be considered solved
in the fixed error setting, but have not found their way into this monograph either due to space constraints
or because it was difficult to meld them seamlessly with the rest of the story.

1.3 Fundamentals of Information Theory

In this section, we review some basic information-theoretic quantities. As with every article published in the
Foundations and Trends in Communications and Information Theory, the reader is expected to have some
background in information theory. Nevertheless, the only prerequisite required to appreciate this monograph
is information theory at the level of Cover and Thomas [33]. We will also make extensive use of the method
of types, for which excellent expositions can be found in [37, 39, 74]. The measure-theoretic foundations of
probability will not be needed to keep the exposition accessible to as wide an audience as possible.
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1.3.1 Notation

The notation we use is reasonably standard and generally follows the books by Csiszár-Körner [39] and
Han [67]. Random variables (e.g., X) and their realizations (e.g., x) are in upper and lower case respectively.
Random variables that take on finitely many values have alphabets (support) that are denoted by calligraphic
font (e.g., X ). The cardinality of the finite set X is denoted as |X |. Let the random vector Xn be the vector
of random variables (X1, . . . , Xn). We use bold face x = (x1, . . . , xn) to denote a realization of Xn. The set
of all distributions (probability mass functions) supported on alphabet X is denoted as P(X ). The set of all
conditional distributions (i.e., channels) with the input alphabet X and the output alphabet Y is denoted by
P(Y|X ). The joint distribution induced by a marginal distribution P ∈P(X ) and a channel V ∈P(Y|X )
is denoted as P × V , i.e.,

(P × V )(x, y) := P (x)V (y|x). (1.5)

The marginal output distribution induced by P and V is denoted as PV , i.e.,

PV (y) :=
∑
x∈X

P (x)V (y|x). (1.6)

If X has distribution P , we sometimes write this as X ∼ P .
Vectors are indicated in lower case bold face (e.g., a) and matrices in upper case bold face (e.g., A).

If we write a ≥ b for two vectors a and b of the same length, we mean that aj ≥ bj for every coordinate
j. The transpose of A is denoted as A′. The vector of all zeros and the identity matrix are denoted as 0
and I respectively. We sometimes make the lengths and sizes explicit. The `q-norm (for q ≥ 1) of a vector

v = (v1, . . . , vk) is denoted as ‖v‖q := (
∑k
i=1 |vi|q)1/q.

We use standard asymptotic notation [29]: an ∈ O(bn) if and only if (iff) lim supn→∞
∣∣an/bn∣∣ < ∞;

an ∈ Ω(bn) iff bn ∈ O(an); an ∈ Θ(bn) iff an ∈ O(bn) ∩ Ω(bn); an ∈ o(bn) iff lim supn→∞
∣∣an/bn∣∣ = 0; and

an ∈ ω(bn) iff lim infn→∞
∣∣an/bn∣∣ =∞. Finally, an ∼ bn iff limn→∞ an/bn = 1.

1.3.2 Information-Theoretic Quantities

Information-theoretic quantities are denoted in the usual way [39, 49]. All logarithms and exponential
functions are to the base 2. The entropy of a discrete random variable X with probability distribution
P ∈P(X ) is denoted as

H(X) = H(P ) := −
∑
x∈X

P (x) logP (x). (1.7)

For the sake of clarity, we will sometimes make the dependence on the distribution P explicit. Similarly
given a pair of random variables (X,Y ) with joint distribution P × V ∈P(X ×Y), the conditional entropy
of Y given X is written as

H(Y |X) = H(V |P ) := −
∑
x∈X

P (x)
∑
y∈Y

V (y|x) log V (y|x). (1.8)

The joint entropy is denoted as

H(X,Y ) := H(X) +H(Y |X), or (1.9)

H(P × V ) := H(P ) +H(V |P ). (1.10)

The mutual information is a measure of the correlation or dependence between random variables X and Y .
It is interchangeably denoted as

I(X;Y ) := H(Y )−H(Y |X), or (1.11)

I(P, V ) := H(PV )−H(V |P ). (1.12)
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Given three random variables (X,Y, Z) with joint distribution P × V ×W where V ∈ P(Y|X ) and W ∈
P(Z|X × Y), the conditional mutual information is

I(Y ;Z|X) := H(Z|X)−H(Z|XY ), or (1.13)

I(V,W |P ) :=
∑
x∈X

P (x)I
(
V (·|x),W (·|x, ·)

)
. (1.14)

A particularly important quantity is the relative entropy (or Kullback-Leibler divergence [102]) between
P and Q which are distributions on the same finite support set X . It is defined as the expectation with

respect to P of the log-likelihood ratio log P (x)
Q(x) , i.e.,

D(P‖Q) :=
∑
x∈X

P (x) log
P (x)

Q(x)
. (1.15)

Note that if there exists an x ∈ X for whichQ(x) = 0 while P (x) > 0, then the relative entropyD(P‖Q) =∞.
If for every x ∈ X , if Q(x) = 0 then P (x) = 0, we say that P is absolutely continuous with respect to Q
and denote this relation by P � Q. In this case, the relative entropy is finite. It is well known that
D(P‖Q) ≥ 0 and equality holds if and only if P = Q. Additionally, the conditional relative entropy between
V,W ∈P(Y|X ) given P ∈P(X ) is defined as

D(V ‖W |P ) :=
∑
x∈X

P (x)D
(
V (·|x)‖W (·|x)

)
. (1.16)

The mutual information is a special case of the relative entropy. In particular, we have

I(P, V ) = D(P × V ‖P × PV ) = D(V ‖PV |P ). (1.17)

Furthermore, if UX is the uniform distribution on X , i.e., UX (x) = 1/|X | for all x ∈ X , we have

D(P‖UX ) = −H(P ) + log |X |. (1.18)

The definition of relative entropy D(P‖Q) can be extended to the case where Q is not necessarily a
probability measure. In this case non-negativity does not hold in general. An important property we exploit
is the following: If µ denotes the counting measure (i.e., µ(A) = |A| for A ⊂ X ), then similarly to (1.18)

D(P‖µ) = −H(P ). (1.19)

1.4 The Method of Types

For finite alphabets, a particularly convenient tool in information theory is the method of types [37, 39, 74].
For a sequence x = (x1, . . . , xn) ∈ Xn in which |X | is finite, its type or empirical distribution is the probability
mass function

Px(x) =
1

n

n∑
i=1

11{xi = x}, ∀x ∈ X . (1.20)

Throughout, we use the notation 11{clause} to mean the indicator function, i.e., this function equals 1 if
“clause” is true and 0 otherwise. The set of types formed from n-length sequences in X is denoted as
Pn(X ). This is clearly a subset of P(X ). The type class of P , denoted as TP , is the set of all sequences of
length n for which their type is P , i.e.,

TP := {x ∈ Xn : Px = P} . (1.21)
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It is customary to indicate the dependence of TP on the blocklength n but we suppress this dependence for
the sake of conciseness throughout. For a sequence x ∈ TP , the set of all sequences y ∈ Yn such that (x,y)
has joint type P × V is the V -shell, denoted as TV (x). In other words,

TV (x) := {y ∈ Yn : Px,y = P × V } . (1.22)

The conditional distribution V is also known as the conditional type of y given x. Let Vn(Y;P ) be the set
of all V ∈P(Y|X ) for which the V -shell of a sequence of type P is non-empty.

We will often times find it useful to consider information-theoretic quantities of empirical distributions.
All such quantities are denoted using hats. So for example, the empirical entropy of a sequence x ∈ Xn is
denoted as

Ĥ(x) := H(Px). (1.23)

The empirical conditional entropy of y ∈ Yn given x ∈ Xn where y ∈ TV (x) is denoted as

Ĥ(y|x) := H(V |Px). (1.24)

The empirical mutual information of a pair of sequences (x,y) ∈ Xn ×Yn with joint type Px,y = Px × V is
denoted as

Î(x ∧ y) := I(Px, V ). (1.25)

The following lemmas form the basis of the method of types. The proofs can be found in [37, 39].

Lemma 1.1 (Type Counting). The sets Pn(X ) and Vn(Y;P ) for P ∈Pn(X ) satisfy

|Pn(X )| ≤ (n+ 1)|X |, and |Vn(Y;P )| ≤ (n+ 1)|X ||Y|. (1.26)

In fact, it is easy to check that |Pn(X )| =
(
n+|X |−1
|X |−1

)
but (1.26) or its slightly stronger version

|Pn(X )| ≤ (n+ 1)|X |−1 (1.27)

usually suffices for our purposes in this monograph. This key property says that the number of types is
polynomial in the blocklength n.

Lemma 1.2 (Size of Type Class). For a type P ∈Pn(X ), the type class TP ⊂ Xn satisfies

|Pn(X )|−1 exp
(
nH(P )

)
≤ |TP | ≤ exp

(
nH(P )

)
. (1.28)

For a conditional type V ∈ Vn(Y;P ) and a sequence x ∈ TP , the V -shell TV (x) ⊂ Yn satisfies

|Vn(Y;P )|−1 exp
(
nH(V |P )

)
≤ |TV (x)| ≤ exp

(
nH(V |P )

)
. (1.29)

This lemma says that, on the exponential scale,

|TP | ∼= exp
(
nH(P )

)
, and |TV (x)| ∼= exp

(
nH(V |P )

)
, (1.30)

where we used the notation an ∼= bn to mean equality up to a polynomial, i.e., there exists polynomials
pn and qn such that an/pn ≤ bn ≤ qnan. We now consider probabilities of sequences. Throughout, for a
distribution Q ∈P(X ), we let Qn(x) be the product distribution, i.e.,

Qn(x) =

n∏
i=1

Q(xi), ∀x ∈ Xn. (1.31)

Lemma 1.3 (Probability of Sequences). If x ∈ TP and y ∈ TV (x),

Qn(x) = exp
(
− nD(P‖Q)− nH(P )

)
and (1.32)

Wn(y|x) = exp
(
− nD(V ‖W |P )− nH(V |P )

)
. (1.33)
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This, together with Lemma 1.2, leads immediately to the final lemma in this section.

Lemma 1.4 (Probability of Type Classes). For a type P ∈Pn(X ),

|Pn(X )|−1 exp
(
− nD(P‖Q)

)
≤ Qn(TP ) ≤ exp

(
− nD(P‖Q)

)
. (1.34)

For a conditional type V ∈ Vn(Y;P ) and a sequence x ∈ TP , we have

|Vn(Y;P )|−1 exp
(
− nD(V ‖W |P )

)
≤Wn(TV (x)|x)

≤ exp
(
− nD(V ‖W |P )

)
. (1.35)

The interpretation of this lemma is that the probability that a random i.i.d. (independently and identically
distributed) sequenceXn generated fromQn belongs to the type class TP is exponentially small with exponent
D(P‖Q), i.e.,

Qn(TP ) ∼= exp
(
− nD(P‖Q)

)
. (1.36)

The bounds in (1.35) can be interpreted similarly.

1.5 Probability Bounds

In this section, we summarize some bounds on probabilities that we use extensively in the sequel. For a
random variable X, we let E[X] and Var(X) be its expectation and variance respectively. To emphasize that
the expectation is taken with respect to a random variable X with distribution P , we sometimes make this
explicit by using a subscript, i.e., EX or EP .

1.5.1 Basic Bounds

We start with the familiar Markov and Chebyshev inequalities.

Proposition 1.1 (Markov’s inequality). Let X be a real-valued non-negative random variable. Then for
any a > 0, we have

Pr(X ≥ a) ≤ E[X]

a
. (1.37)

If we let X above be the non-negative random variable (X − E[X])2, we obtain Chebyshev’s inequality.

Proposition 1.2 (Chebyshev’s inequality). Let X be a real-valued random variable with mean µ and variance
σ2. Then for any b > 0, we have

Pr
(
|X − µ| ≥ bσ

)
≤ 1

b2
. (1.38)

We now consider a collection of real-valued random variables that are i.i.d. In particular, let Xn =
(X1, . . . , Xn) be a collection of independent random variables where each Xi has distribution P with zero
mean and finite variance σ2.

Proposition 1.3 (Weak Law of Large Numbers). For every ε > 0, we have

lim
n→∞

Pr

(∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣ > ε

)
= 0. (1.39)

Consequently, the average 1
n

∑n
i=1Xi converges to 0 in probability.

This follows by applying Chebyshev’s inequality to the random variable 1
n

∑n
i=1Xi. In fact, under mild

conditions, the convergence to zero in (1.39) occurs exponentially fast. See, for example, Cramer’s theorem
in [43, Thm. 2.2.3].
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Figure 1.2: Plots of Φ(y) and Φ−1(ε)

1.5.2 Central Limit-Type Bounds

In preparation for the next result, we denote the probability density function (pdf) of a univariate Gaussian
as

N (x;µ, σ2) =
1√

2πσ2
e−(x−µ)2/(2σ2). (1.40)

We will also denote this as N (µ, σ2) if the argument x is unnecessary. A standard Gaussian distribution is
one in which the mean µ = 0 and the standard deviation σ = 1. In the multivariate case, the pdf is

N (x;µ,Σ) =
1√

(2π)k|Σ|
e−

1
2 (x−µ)′Σ−1(x−µ) (1.41)

where x ∈ Rk. A standard multivariate Gaussian distribution is one in which the mean is 0k and the
covariance is the identity matrix Ik×k.

For the univariate case, the cumulative distribution function (cdf) of the standard Gaussian is denoted
as

Φ(y) :=

∫ y

−∞
N (x; 0, 1) dx. (1.42)

We also find it convenient to introduce the inverse of Φ as

Φ−1(ε) := sup
{
y ∈ R : Φ(y) ≤ ε

}
(1.43)

which evaluates to the usual inverse for ε ∈ (0, 1) and extends continuously to take values ±∞ for ε outside
(0, 1). These monotonically increasing functions are shown in Fig. 1.2.

If the scaling in front of the sum in the statement of the law of large numbers in (1.39) is 1√
n

instead of
1
n , the resultant random variable 1√

n

∑n
i=1Xi converges in distribution to a Gaussian random variable. As
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in Proposition 1.3, let Xn be a collection of i.i.d. random variables where each Xi has zero mean and finite
variance σ2.

Proposition 1.4 (Central Limit Theorem). For any a ∈ R, we have

lim
n→∞

Pr

(
1

σ
√
n

n∑
i=1

Xi < a

)
= Φ(a). (1.44)

In other words,

1

σ
√
n

n∑
i=1

Xi
d−→ Z (1.45)

where
d−→ means convergence in distribution and Z is the standard Gaussian random variable.

Throughout the monograph, in the evaluation of the non-asymptotic bounds, we will use a more quan-
titative version of the central limit theorem known as the Berry-Esseen theorem [17, 52]. See Feller [54,
Sec. XVI.5] for a proof.

Theorem 1.1 (Berry-Esseen Theorem (i.i.d. Version)). Assume that the third absolute moment is finite,
i.e., T := E

[
|X1|3

]
<∞. For every n ∈ N, we have

sup
a∈R

∣∣∣∣∣Pr

(
1

σ
√
n

n∑
i=1

Xi < a

)
− Φ(a)

∣∣∣∣∣ ≤ T

σ3
√
n
. (1.46)

Remarkably, the Berry-Esseen theorem says that the convergence in the central limit theorem in (1.44) is
uniform in a ∈ R. Furthermore, the convergence of the distribution function of 1√

n

∑n
i=1Xi to the Gaussian

cdf occurs at a rate of O( 1√
n

). The constant of proportionality in the O(·)-notation depends only on the

variance and the third absolute moment and not on any other statistics of the random variables.
There are many generalizations of the Berry-Esseen theorem. One which we will need is the relaxation of

the assumption that the random variables are identically distributed. Let Xn = (X1, . . . , Xn) be a collection
of independent random variables where each random variable has zero mean, variance σ2

i := E[X2
i ] > 0 and

third absolute moment Ti := E
[
|Xi|3

]
< ∞. We respectively define the average variance and average third

absolute moment as

σ2 :=
1

n

n∑
i=1

σ2
i , and T :=

1

n

n∑
i=1

Ti. (1.47)

Theorem 1.2 (Berry-Esseen Theorem (General Version)). For every n ∈ N, we have

sup
a∈R

∣∣∣∣∣Pr

(
1

σ
√
n

n∑
i=1

Xi < a

)
− Φ(a)

∣∣∣∣∣ ≤ 6T

σ3
√
n
. (1.48)

Observe that as with the i.i.d. version of the Berry-Esseen theorem, the remainder term scales as O( 1√
n

).

The proof of the following theorem uses the Berry-Esseen theorem (among other techniques). This
theorem is proved in Polyanskiy-Poor-Verdú [123, Lem. 47]. Together with its variants, this theorem is
useful for obtaining third-order asymptotics for binary hypothesis testing and other coding problems with
non-vanishing error probabilities.

Theorem 1.3. Assume the same setup as in Theorem 1.2. For any γ ≥ 0, we have

E

[
exp

(
−

n∑
i=1

Xi

)
11

{ n∑
i=1

Xi > γ

}]
≤ 2

(
log 2√

2π
+

12T

σ2

)
exp(−γ)

σ
√
n

. (1.49)
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It is trivial to see that the expectation in (1.49) is upper bounded by exp(−γ). The additional factor of
(σ
√
n)−1 is crucial in proving coding theorems with better third-order terms. Readers familiar with strong

large deviation theorems or exact asymptotics (see, e.g., [23, Thms. 3.3 and 3.5] or [43, Thm. 3.7.4]) will
notice that (1.49) is in the same spirit as the theorem by Bahadur and Ranga-Rao [13]. There are two
advantages of (1.49) compared to strong large deviation theorems. First, the bound is purely in terms of σ2

and T , and second, one does not have to differentiate between lattice and non-lattice random variables. The
disadvantage of (1.49) is that the constant is worse but this will not concern us as we focus on asymptotic
results in this monograph, hence constants do not affect the main results.

For multi-terminal problems that we encounter in the latter parts of this monograph, we will require
vector (or multidimensional) versions of the Berry-Esseen theorem. The following is due to Götze [63].

Theorem 1.4 (Vector Berry-Esseen Theorem I). Let Xk
1 , . . . , X

k
n be independent Rk-valued random vectors

with zero mean. Let

Skn =
1√
n

n∑
i=1

Xk
i . (1.50)

Assume that Skn has the following statistics

Cov(Skn) = E
[
Skn(Skn)′

]
= Ik×k, and ξ :=

1

n

n∑
i=1

E
[
‖Xk

i ‖32
]
. (1.51)

Let Zk be a standard Gaussian random vector, i.e., its distribution is N (0k, Ik×k). Then, for all n ∈ N, we
have

sup
C∈Ck

∣∣Pr
(
Skn ∈ C

)
− Pr

(
Zk ∈ C

)∣∣ ≤ ck ξ√
n
, (1.52)

where Ck is the family of all convex subsets of Rk, and where ck is a constant that depends only on the
dimension k.

Theorem 1.4 can be applied for random vectors that are independent but not necessarily identically
distributed. The constant ck can be upper bounded by 400 k1/4 if the random vectors are i.i.d., a result by
Bentkus [15]. However, its precise value will not be of concern to us in this monograph. Observe that the
scalar versions of the Berry-Esseen theorems (in Theorems 1.1 and 1.2) are special cases (apart from the
constant) of the vector version in which the family of convex subsets is restricted to the family of semi-infinite
intervals (−∞, a).

We will frequently encounter random vectors with non-identity covariance matrices. The following mod-
ification of Theorem 1.4 is due to Watanabe-Kuzuoka-Tan [177, Cor. 29].

Corollary 1.1 (Vector Berry-Esseen Theorem II). Assume the same setup as in Theorem 1.4, except that
Cov(Skn) = V, a positive definite matrix. Then, for all n ∈ N, we have

sup
C∈Ck

∣∣Pr
(
Skn ∈ C

)
− Pr

(
Zk ∈ C

)∣∣ ≤ ck ξ

λmin(V)3/2
√
n
, (1.53)

where λmin(V) > 0 is the smallest eigenvalue of V.

The final probability bound is a quantitative version of the so-called multivariate delta method [174,
Thm. 5.15]. Numerous similar statements of varying generalities have appeared in the statistics literature
(e.g., [24, 175]). The simple version we present was shown by MolavianJazi and Laneman [112] who extended
ideas in Hoeffding and Robbins’ paper [81, Thm. 4] to provide rates of convergence to Gaussianity under
appropriate technical conditions. This result essentially says that a differentiable function of a normalized
sum of independent random vectors also satisfies a Berry-Esseen-type result.
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Theorem 1.5 (Berry-Esseen Theorem for Functions of i.i.d. Random Vectors). Assume that Xk
1 , . . . , X

k
n are

Rk-valued, zero-mean, i.i.d. random vectors with positive definite covariance Cov(Xk
1 ) and finite third absolute

moment ξ := E[‖Xk
1 ‖32]. Let f(x) be a vector-valued function from Rk to Rl that is also twice continuously

differentiable in a neighborhood of x = 0. Let J ∈ Rl×k be the Jacobian matrix of f(x) evaluated at x = 0,
i.e., its elements are

Jij =
∂fi(x)

∂xj

∣∣∣∣
x=0

, (1.54)

where i = 1, . . . , l and j = 1, . . . , k. Then, for every n ∈ N, we have

sup
C∈Cl

∣∣∣∣∣Pr

(
f

(
1

n

n∑
i=1

Xk
i

)
∈ C

)
− Pr

(
Zl ∈ C

)∣∣∣∣∣ ≤ c√
n

(1.55)

where c > 0 is a finite constant, and Zl is a Gaussian random vector in Rl with mean vector and covariance
matrix respectively given as

E[Zl] = f(0), and Cov(Zl) =
JCov(Xk

1 )J′

n
. (1.56)

In particular, the inequality in (1.55) implies that

√
n

(
f

(
1

n

n∑
i=1

Xk
i

)
− f(0)

)
d−→ N

(
0,JCov(Xk

1 )J′
)
, (1.57)

which is a canonical statement in the study of the multivariate delta method [174, Thm. 5.15].
Finally, we remark that Ingber-Wang-Kochman [87] used a result similar to that of Theorem 1.5 to

derive second-order asymptotic results for various Shannon-theoretic problems. However, they analyzed the
behavior of functions of distributions instead of functions of random vectors as in Theorem 1.5.
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Chapter 2

Binary Hypothesis Testing

In this chapter, we review asymptotic expansions in simple (non-composite) binary hypothesis testing when
one of the two error probabilities is non-vanishing. We find this useful, as many coding theorems we en-
counter in subsequent chapters can be stated in terms of quantities related to binary hypothesis testing. For
example, as pointed out in Csiszár and Körner [39, Ch. 1], fixed-to-fixed length lossless source coding and
binary hypothesis testing are intimately connected through the relation between relative entropy and entropy
in (1.18). Another example is in point-to-point channel coding, where a powerful non-asymptotic converse
theorem [152, Eq. (4.29)] [123, Sec. III-E] [164, Prop. 6] can be stated in terms of the so-called ε-hypothesis
testing divergence and the ε-information spectrum divergence (cf. Proposition 4.4). The properties of these
two quantities, as well as the relation between them are discussed. Using various probabilistic limit theo-
rems, we also evaluate these quantities in the asymptotic setting for product distributions. A corollary of the
results presented is the familiar Chernoff-Stein lemma [39, Thm. 1.2], which asserts that the exponent with
growing number of observations of the type-II error for a non-vanishing type-I error in a binary hypothesis
test of P against Q is the relative entropy D(P‖Q).

The material in this chapter is based largely on the seminal work by Strassen [152, Thm. 3.1]. The
exposition is based on the more recent works by Polyanskiy-Poor-Verdú [123, App. C], Tomamichel-Tan [164,
Sec. III] and Tomamichel-Hayashi [163, Lem. 12].

2.1 Non-Asymptotic Quantities and Their Properties

Consider the simple (non-composite) binary hypothesis test:

H0 : Z ∼ P
H1 : Z ∼ Q (2.1)

where P and Q are two probability distributions on the same space Z. We assume that the space Z is finite
to keep the subsequent exposition simple. The notation in (2.1) means that under the null hypothesis H0, the
random variable Z is distributed as P ∈ P(Z) while under the alternative hypothesis H1, it is distributed
according to a different distribution Q ∈ P(Z). We would like to study the optimal performance of a
hypothesis test in terms of the distributions P and Q.

There are several ways to measure the performance of a hypothesis test which, in precise terms, is a
mapping δ from the observation space Z to [0, 1]. If the observation z is such that δ(z) ≈ 0, this means the
test favors the null hypothesis H0. Conversely, δ(z) ≈ 1 means that the test favors the alternative hypothesis
H1 (or alternatively, rejects the null hypothesis H0). If δ(z) ∈ {0, 1}, the test is called deterministic, otherwise
it is called randomized. Traditionally, there are three quantities that are of interest for a given test δ. The
first is the probability of false alarm

PFA :=
∑
z∈Z

δ(z)P (z) = EP
[
δ(Z)

]
. (2.2)

18



The second is the probability of missed detection

PMD :=
∑
z∈Z

(
1− δ(z)

)
Q(z) = EQ

[
1− δ(Z)

]
. (2.3)

The third is the probability of detection, which is one minus the probability of missed detection, i.e.,

PD :=
∑
z∈Z

δ(z)Q(z) = EQ
[
δ(Z)

]
. (2.4)

The probability of false alarm and miss detection are traditionally called the type-I and type-II errors re-
spectively in the statistics literature. The probability of detection and the probability of false alarm are also
called the power and the significance level respectively. The “holy grail” is, of course, to design a test such
that PFA = 0 while PD = 1 but this is clearly impossible unless P and Q are mutually singular measures.

Since misses are usually more costly than false alarms, let us fix a number ε ∈ (0, 1) that represents
a tolerable probability of false alarm (type-I error). Then define the smallest type-II error in the binary
hypothesis test (2.1) with type-I error not exceeding ε, i.e.,

β1−ε(P,Q) := inf
δ:Z→[0,1]

{
EQ
[
1− δ(Z)

]
: EP

[
δ(Z)

]
≤ ε
}
. (2.5)

Observe that EP
[
δ(Z)

]
≤ ε constrains the probability of false alarm to be no greater than ε. Thus, we are

searching over all tests δ satisfying EP
[
δ(Z)

]
≤ ε such that the probability of missed detection is minimized.

Intuitively, β1−ε(P,Q) quantifies, in a non-asymptotic fashion, the performance of an optimal hypothesis
test between P and Q.

A related quantity is the ε-hypothesis testing divergence

Dε
h(P‖Q) := − log

β1−ε(P,Q)

1− ε . (2.6)

This is a measure of the distinguishability of P from Q. As can be seen from (2.6), β1−ε(P,Q) and Dε
h(P‖Q)

are simple functions of each other. We prefer to express the results in this monograph mostly in terms of
Dε

h(P‖Q) because it shares similar properties with the usual relative entropy D(P‖Q), as is evidenced from
the following lemma.

Lemma 2.1 (Properties of Dε
h). The ε-hypothesis testing divergence satisfies the positive definiteness con-

dition [48, Prop. 3.2], i.e.,
Dε

h(P‖Q) ≥ 0. (2.7)

Equality holds if and only if P = Q. In addition, it also satisfies the data processing inequality [173, Lem. 1],
i.e., for any channel W ,

Dε
h(PW‖QW ) ≤ Dε

h(P‖Q). (2.8)

While the ε-hypothesis testing divergence occurs naturally and frequently in coding problems, it is usually
hard to analyze directly. Thus, we now introduce an equally important quantity. Define the ε-information
spectrum divergence Dε

s (P‖Q) as

Dε
s (P‖Q) := sup

{
R ∈ R : P

({
z ∈ Z : log

P (z)

Q(z)
≤ R

})
≤ ε
}
. (2.9)

Just as in information spectrum analysis [67], this quantity places the distribution of the log-likelihood ratio

log P (Z)
Q(Z) (where Z ∼ P ), and not just its expectation, in the most prominent role. See Fig. 2.1 for an

interpretation of the definition in (2.9).
As we will see, the ε-information spectrum divergence is intimately related to the ε-hypothesis testing

divergence (cf. Lemma 2.4). The former is, however, easier to compute. Note that if P and Q are product
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“Density” of log P (Z)
Q(Z) when Z∼P
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ε 1− ε

Figure 2.1: Illustration of the ε-information spectrum divergence Dε
s (P‖Q) which is the largest point R∗ for

which the probability mass to the left is no larger than ε.

measures, then by virtue of the fact that log P (Z)
Q(Z) is a sum of independent random variables, one can estimate

the probability in (2.9) using various probability tail bounds. This we do in the following section.
We now state two useful properties of Dε

s (P‖Q). The proofs of these lemmas are straightforward and
can be found in [164, Sec. III.A].

Lemma 2.2 (Sifting from a convex combination). Let P ∈ P(Z) and Q =
∑
k αkQk be an at most

countable convex combination of distributions Qk ∈ P(Z) with non-negative weights αk summing to one,
i.e.,

∑
k αk = 1. Then,

Dε
s (P‖Q) ≤ inf

k

{
Dε

s (P‖Qk) + log
1

αk

}
. (2.10)

In particular, Lemma 2.2 tells us that if there exists some γ > 0 such that Q̃(z) ≤ γQ(z) for all z ∈ Z
then,

Dε
s (P‖Q̃) ≥ Dε

s (P‖Q)− log γ. (2.11)

Lemma 2.3 (“Symbol-wise” relaxation of Dε
s ). Let W and V be two channels from X to Y and let P ∈

P(X ). Then,
Dε

s (P ×W‖P × V ) ≤ sup
x∈X

Dε
s (W (·|x)‖V (·|x)). (2.12)

One can readily toggle between the ε-hypothesis testing divergence and the ε-information spectrum
divergence because they satisfy the bounds in the following lemma. The proof of this lemma mimics that
of [163, Lem. 12].

Lemma 2.4 (Relation between divergences). For every ε ∈ (0, 1) and every η ∈ (0, 1− ε), we have

Dε
s (P‖Q)− log

1

1− ε ≤ D
ε
h(P‖Q) (2.13)

≤ Dε+η
s (P‖Q) + log

1− ε
η

. (2.14)

Proof. The following proof is based on that for [163, Lem. 12]. For the lower bound in (2.13), consider the
likelihood ratio test

δ(z) := 11
{

log
P (z)

Q(z)
≤ γ

}
, where γ := Dε

s (P‖Q)− ξ (2.15)

for some small ξ > 0. This test clearly satisfies EP
[
δ(Z)

]
≤ ε by the definition of the ε-information spectrum

divergence. On the other hand,

EQ
[
1− δ(Z)

]
=
∑
z∈Z

Q(z)11
{

log
P (z)

Q(z)
> γ

}
(2.16)
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≤
∑
z∈Z

P (z) exp(−γ)11
{

log
P (z)

Q(z)
> γ

}
(2.17)

≤
∑
z∈Z

P (z) exp(−γ) (2.18)

≤ exp(−γ) (2.19)

As a result, by the definition of Dε
h(P‖Q), we have

Dε
h(P‖Q) ≥ γ − log

1

1− ε = Dε
s (P‖Q)− ξ − log

1

1− ε . (2.20)

Finally, take ξ ↓ 0 to complete the proof of (2.13).
For the upper bound in (2.14), we may assume Dε

h(P‖Q) is finite; otherwise there is nothing to prove as
P is not absolutely continuous with respect to Q and so Dε+η

s (P‖Q) is infinite. According to the definition
of Dε

h(P‖Q), for any γ ≥ 0, there exists a test δ satisfying EP [δ(Z)] ≤ ε such that

(1− ε) exp(−Dε
h(P‖Q))

≥ EQ
[
1− δ(Z)

]
(2.21)

≥
∑

z:P (z)≤γQ(z)

Q(z)
(
1− δ(z)

)
(2.22)

≥ 1

γ

∑
z:P (z)≤γQ(z)

P (z)
(
1− δ(z)

)
(2.23)

≥ 1

γ

[∑
z

P (z)
(
1− δ(z)

)
−

∑
z:P (z)>γQ(z)

P (z)

]
(2.24)

≥ 1

γ

[
1− ε− P

({
z :

P (z)

Q(z)
> γ

})]
(2.25)

where (2.25) follows because EP
[
δ(Z)

]
≤ ε. Now fix a small ξ > 0 and choose

γ = exp
(
Dε+η

s (P‖Q) + ξ
)
. (2.26)

Consequently, from (2.25), we have

Dε
h(P‖Q) ≤ Dε+η

s (P‖Q) + ξ

− log

(
1−

P
({
z : log P (z)

Q(z) > Dε+η
s (P‖Q) + ξ

})
1− ε

)
(2.27)

By the definition of Dε+η
s (P‖Q), the probability within the logarithm is upper bounded by 1−ε−η. Taking

ξ ↓ 0 completes the proof of (2.14) and hence, the lemma.

2.2 Asymptotic Expansions

In this section, we consider the asymptotic expansions of Dε
h(P (n)‖Q(n)) and Dε

s (P (n)‖Q(n)) when P (n) and
Q(n) are product distributions, i.e.,

P (n)(z) :=

n∏
i=1

Pi(zi), and Q(n)(z) =

n∏
i=1

Qi(zi), (2.28)
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for all z = (z1, . . . , zn) ∈ Zn. The component distributions {(Pi, Qi)}ni=1 are not necessarily the same for
each i. However, we do assume for the sake of simplicity that for each i, Pi � Qi so D(Pi‖Qi) < ∞. Let
V (P‖Q) be the variance of the log-likelihood ratio between P and Q, i.e.,

V (P‖Q) :=
∑
z∈Z

P (z)

[
log

P (z)

Q(z)
−D(P‖Q)

]2

. (2.29)

This is also known as the relative entropy variance. Let the third absolute moment of the log-likelihood ratio
between P and Q be

T (P‖Q) :=
∑
z∈Z

P (z)

∣∣∣∣ log
P (z)

Q(z)
−D(P‖Q)

∣∣∣∣3. (2.30)

Also define the following quantities:

Dn :=
1

n

n∑
i=1

D(Pi‖Qi), (2.31)

Vn :=
1

n

n∑
i=1

V (Pi‖Qi), and (2.32)

Tn :=
1

n

n∑
i=1

T (Pi‖Qi). (2.33)

The first result in this section is the following:

Proposition 2.1 (Berry-Esseen bounds for Dε
s ). Assume there exists a constant V− > 0 such that Vn ≥ V−.

We have

Φ−1

(
ε− 6Tn√

nV 3
−

)
≤ Dε

s (P (n)‖Q(n))− nDn√
nVn

≤ Φ−1

(
ε+

6Tn√
nV 3
−

)
. (2.34)

Proof. Let Zn be distributed according to P (n). By using the product structure of P (n) and Q(n) in (2.28),

Pr

(
log

P (n)(Zn)

Q(n)(Zn)
≤ R

)
= Pr

( n∑
i=1

log
Pi(Zi)

Qi(Zi)
≤ R

)
. (2.35)

By the Berry-Esseen theorem in Theorem 1.2, we have∣∣∣∣Pr

( n∑
i=1

log
Pi(Zi)

Qi(Zi)
≤ R

)
− Φ

(
R− nDn√

nVn

)∣∣∣∣ ≤ 6Tn√
nV 3

n

. (2.36)

The result immediately follows by using the bound Vn ≥ V−.

A special case of the bound above occurs when Pi = P and Qi = Q for all i = 1, . . . , n. In this case, we
write Pn for P (n) and similarly, Qn for Q(n). One has:

Corollary 2.1 (Asymptotics of Dε
s ). If V (P‖Q) > 0, then

Dε
s (Pn‖Qn) = nD(P‖Q) +

√
nV (P‖Q)Φ−1(ε) +O(1). (2.37)

Proof. Since V (P‖Q) > 0 and T (P‖Q) < ∞ (because P � Q), the term 6Tn/
√
nV 3
− in (2.34) is equal to

c√
n

for some finite c > 0. By Taylor expansions,

Φ−1

(
ε± c√

n

)
= Φ−1(ε) +O

(
1√
n

)
, (2.38)

which completes the proof.
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In some applications, it is not possible to guarantee that Vn is uniformly bounded away from zero (per
Proposition 2.1). In this case, to obtain an upper bound on Dε

s , we employ Chebyshev’s inequality instead
of the Berry-Esseen theorem. In the following proposition, which is usually good enough to establish strong
converses, we do not assume that the component distributions are the same.

Proposition 2.2 (Chebyshev bound for Dε
s ). We have

Dε
s (P (n)‖Q(n)) ≤ nDn +

√
nVn
1− ε . (2.39)

Proof. By the definition of the ε-information spectrum divergence, we have

Dε
s (P (n)‖Q(n)) = max

{
D−, D+

}
(2.40)

where D− and D+ are defined as

D− := sup

{
R ≤ nDn : P

({
z ∈ Z : log

P (z)

Q(z)
≤ R

})
≤ ε
}
, (2.41)

D+ := sup

{
R > nDn : P

({
z ∈ Z : log

P (z)

Q(z)
≤ R

})
≤ ε
}
. (2.42)

Clearly, D− ≤ nDn so it remains to upper bound D+. Let R > nDn be fixed. By Chebyshev’s inequality,

Pr

( n∑
i=1

log
Pi(Zi)

Qi(Zi)
≤ R

)
≥ 1− nVn

(R− nDn)2
. (2.43)

Hence, we have

D+ ≤ sup

{
R > nDn : 1− nVn

(R− nDn)2
≤ ε
}

(2.44)

= nDn +

√
nVn
1− ε . (2.45)

Thus, we see that the bound on D+ dominates. This yields (2.39) as desired.

Now we would like an expansion for Dε
h similar to that for Dε

s in Corollary 2.1. The following was shown
by Strassen [152, Thm. 3.1].

Proposition 2.3 (Asymptotics of Dε
h). Assume the conditions in Corollary 2.1. The following holds:

Dε
h(Pn‖Qn) = nD(P‖Q) +

√
nV (P‖Q)Φ−1(ε) +

1

2
log n+O(1). (2.46)

As a result, in the asymptotic setting for identical product distributions, Dε
h(Pn‖Qn) exceeds Dε

s (Pn‖Qn)
by 1

2 log n ignoring constant terms, i.e.,

Dε
h(Pn‖Qn) = Dε

s (Pn‖Qn) +
1

2
log n+O(1). (2.47)

Proof. Let us first verify the upper bound. Let η in the upper bound of Lemma 2.4 be chosen to be 1√
n

.

Now, for n large enough (so 1√
n
< 1− ε), combine this upper bound with Corollary 2.1 to obtain that

Dε
h(Pn‖Qn) ≤ Dε+ 1√

n
s (Pn‖Qn) +

1

2
log n+ log(1− ε) (2.48)

= nD(P‖Q) +
√
nV (P‖Q)Φ−1

(
ε+

1√
n

)
+

1

2
log n+O(1) (2.49)
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Applying a Taylor expansion to the last step and noting that V (P‖Q) <∞ because P � Q yields the upper
bound in (2.46).

The proof of the lower bound in (2.46) is slightly more involved. Observe that if we näıvely employed
(2.13) to lower bound Dε

h(Pn‖Qn) with Dε
s (Pn‖Qn)− log 1

1−ε , the third-order term would be O(1) instead

of the better 1
2 log n + O(1). The idea is to propose an appropriate test for Dε

h and to use Theorem 1.3.
Consider the likelihood ratio test

δ(z) := 11

{
log

Pn(z)

Qn(z)
≤ γ

}
(2.50)

Define σ2 := V (P‖Q) and T := T (P‖Q). Also define the i.i.d. random variables Ui := logP (Zi)− logQ(Zi),
1 ≤ i ≤ n, each having variance σ2 and third absolute moment T . Consider, the expectation of 1 − δ(Zn)
under the distribution Qn:

EQn

[
1− δ(Zn)

]
=
∑

z

Qn(z)11

{
log

Pn(z)

Qn(z)
> γ

}
(2.51)

=
∑

z

Pn(z) exp

(
− log

Pn(z)

Qn(z)

)
11

{
log

Pn(z)

Qn(z)
> γ

}
(2.52)

= EPn

[
exp

(
−

n∑
i=1

Ui

)
11

{ n∑
i=1

Ui > γ

}]
(2.53)

≤ 2

(
log 2√

2π
+

12T

σ2

)
exp(−γ)

σ
√
n

(2.54)

where (2.54) is an application of Theorem 1.3. Now put

γ := nD(P‖Q) +
√
nV (P‖Q)Φ−1

(
ε− 6T (P‖Q)√

nV (P‖Q)3

)
. (2.55)

An application of the Berry-Esseen theorem yields

EP
[
δ(Zn)

]
= P

({
z :

n∑
i=1

log
P (zi)

Q(zi)
≤ γ

})
≤ ε. (2.56)

From (2.54), (2.56) and the definition of Dε
h, we have

Dε
h(Pn‖Qn) ≥ γ + log

(
σ
√
n
)

+O(1) = γ +
1

2
log n+O(1). (2.57)

The proof is concluded by plugging (2.55) into (2.57) and Taylor expanding Φ−1(·) around ε.

We remark that the lower bound in Proposition 2.3 can be achieved using deterministic tests, i.e., δ can
be chosen to be an indicator function as in (2.50). Randomization is thus unnecessary. Also, one can relax
the assumption that Qn is a product probability measure; it can be an arbitrary product measure. These
realizations are important to make the connection between hypothesis testing and lossless source coding
which we discuss in the next chapter.

A corollary of Proposition 2.3 is the Chernoff-Stein lemma [25] quantifying the error exponent of the
probability of missed detection keeping the probability of false alarm bounded above by ε.

Corollary 2.2 (Chernoff-Stein lemma). Assume the conditions in Corollary 2.1 and recall the definition of
β1−ε in (2.5). For every ε ∈ (0, 1),

lim
n→∞

1

n
log

1

β1−ε(Pn, Qn)
= lim
n→∞

Dε
h(Pn‖Qn)

n
= D(P‖Q). (2.58)
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Point-To-Point Communication
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Chapter 3

Source Coding

In this chapter, we revisit the fundamental problem of fixed-to-fixed length lossless and lossy source com-
pression. Shannon, in his original paper [141] that launched the field of information theory, showed that
the fundamental limit of compression of a discrete memoryless source (DMS) P is the entropy H(P ). For
the case of continuous sources, lossless compression is not possible and some distortion must be allowed.
Shannon showed in [144] that the corresponding fundamental limit of compression of memoryless source P
up to distortion ∆ ≥ 0, assuming a separable distortion measure d, is the rate-distortion function

R(P,∆) := min
W∈P(X̂ |X ):EP×W [d(X,X̂)]≤∆

I(P,W ). (3.1)

These first-order fundamental limits are attained as the number of realizations of the source (i.e., the block-
length of the source) P tends to infinity. The strong converse for rate-distortion is also known and shown,
for example, in [39, Ch. 7]. In the following, we present known non-asymptotic bounds for lossless and lossy
source coding. We then fix the permissible error probability in the lossless case and the excess distortion
probability in the lossy case at some non-vanishing ε ∈ (0, 1). The non-asymptotic bounds are evaluated as
n becomes large so as to obtain asymptotic expansions of the logarithm of the smallest achievable code size.
These refined results provide an approximation of the extra code rate (beyond H(P ) or R(P,∆)) one must
incur when operating in the finite blocklength regime. Finally, for both the lossless and lossy compression
problems, we provide alternative proof techniques based on the method of types that are partially universal.

The material in this chapter concerning lossless source coding is based on the seminal work by Strassen [152,
Thm. 1.1]. The material on lossy source coding is based on more recent work by Ingber-Kochman [86] and
Kostina-Verdú [97].

3.1 Lossless Source Coding: Non-Asymptotic Bounds

We now set up the almost lossless source coding problem formally. As mentioned, we only consider fixed-
to-fixed length source coding in this monograph. A source is simply a probability mass function P on some
finite alphabet X or the associated random variable X with distribution P . See Fig. 3.1 for an illustration
of the setup.

An (M, ε)-code for the source P ∈ P(X ) consists of a pair of maps that includes an encoder f : X →
{1, . . . ,M} and a decoder ϕ : {1, . . . ,M} → X such that the error probability

P
(
{x ∈ X : ϕ(f(x)) 6= x}

)
≤ ε. (3.2)

The number M is called the size of the code (f, ϕ).
Given a source P , we define the almost lossless source coding non-asymptotic fundamental limit as

M∗(P, ε) := min
{
M ∈ N : ∃ an (M, ε)-code for P

}
. (3.3)
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Figure 3.1: Illustration of the fixed-to-fixed length source coding problem.

Obviously for an arbitrary source, the exact evaluation of the minimum code size M∗(P, ε) is challenging.
In the following, we assume that it is a discrete memoryless source (DMS), i.e., the distribution Pn consists
of n copies of an underlying distribution P . With this assumption, we can find an asymptotic expansion of
logM∗(Pn, ε).

The agenda for this and subsequent chapters will largely be standard. We first establish “good” bounds on
non-asymptotic quantities like M∗(P, ε). Subsequently, we replace the source or channel with n independent
copies of it. Finally, we use an appropriate limit theorem (e.g., those in Section 1.5) to evaluate the non-
asymptotic bounds in the large n limit.

3.1.1 An Achievability Bound

One of the take-home messages that we would like to convey in this section is that fixed-to-fixed length
lossless source coding is nothing but binary hypothesis testing where the measures P and Q are chosen
appropriately. In fact, a reasonable coding scheme for the lossless source coding would simply be to encode
a “typical” set of source symbols T ⊂ X , ignore the rest, and declare an error if the realized symbol from
the source is not in T . In this way, one sees that

M∗(P, ε) ≤ min
T ⊂X :P (X\T )≤ε

|T | (3.4)

This bound can be stated in terms of β1−ε(P,Q) or, equivalently, the ε-hypothesis testing divergence
Dε

h(P‖Q) if we restrict the tests that define these quantities to be deterministic, and also allow Q to be
an arbitrary measure (not necessarily a probability measure). Let µ be the counting measure, i.e.,

µ(A) := |A|, ∀A ⊂ X . (3.5)

Proposition 3.1 (Source coding as hypothesis testing: Achievability). Let ε ∈ (0, 1) and P be any source
with countable alphabet X . We have

M∗(P, ε) ≤ β1−ε(P, µ), (3.6)

or in terms of the ε-hypothesis testing divergence (cf. (2.6)),

logM∗(P, ε) ≤ −Dε
h(P‖µ)− log

1

1− ε . (3.7)

3.1.2 A Converse Bound

The converse bound we evaluate is also intimately connected to a divergence we introduced in the previous
chapter, namely the ε-information spectrum divergence where the distribution in the alternate hypothesis Q
is chosen to be the counting measure.

Proposition 3.2 (Source coding as hypothesis testing: Converse). Let ε ∈ (0, 1) and P be any source with
countable alphabet X . For any η ∈ (0, 1− ε), we have

logM∗(P, ε) ≥ −Dε+η
s (P‖µ)− log

1

η
. (3.8)

This statement is exactly Lemma 1.3.2 in Han’s book [67]. Since the proof is short, we provide it for
completeness.
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Proof. By the definition of the ε-information spectrum divergence, it is enough to establish that every
(M, ε)-code for P must satisfy

ε+ η ≥ P
({

x : P (x) ≤ η

M

})
, (3.9)

for any η ∈ (0, 1− ε). Let T := {x : P (x) ≤ η
M } and let S := {x : ϕ(f(x)) = x}. Clearly, |S| ≤M . We have

P (T ) ≤ P (X \ S) + P (T ∩ S) ≤ ε+ P (T ∩ S). (3.10)

Furthermore,

P (T ∩ S) =
∑

x∈T ∩S
P (x) ≤

∑
x∈T ∩S

η

M
≤ |S| η

M
≤ η. (3.11)

Uniting (3.10) and (3.11) gives (3.9) as desired.

Observe the similarity of this proof to proof of the upper bound of Dε
h in terms of Dε

s in Lemma 2.4.

3.2 Lossless Source Coding: Asymptotic Expansions

Now we assume that the source Pn is stationary and memoryless, i.e., a DMS. More precisely,

Pn(x) =

n∏
i=1

P (xi), ∀x ∈ Xn. (3.12)

We assume throughout that P (x) > 0 for all x ∈ X . Shannon [141] showed that the minimum rate to achieve
almost lossless compression of a DMS P is the entropy H(P ). In this section as well as the next one, we
derive finer evaluations of the fundamental compression limit by considering the asymptotic expansion of
logM∗(Pn, ε). To do so, we need to define another important quantity related to the source P .

Let the source dispersion of P be the variance of the self-information random variable − logP (X), i.e.,

V (P ) := Var

[
log

1

P (X)

]
=
∑
x∈X

P (x)

[
log

1

P (x)
−H(P )

]2

. (3.13)

Note that the expectation of the self-information is the entropy H(P ). In Kontoyannis-Verdú [95], V (P ) is
called the varentropy. If V (P ) = 0 this means that the source is either deterministic or uniform.

The two non-asymptotic theorems in the preceding section combine to give the following asymptotic
expansion of the minimum code size M∗(Pn, ε).

Theorem 3.1. If the source P ∈P(X ) satisfies V (P ) > 0, then

logM∗(Pn, ε) = nH(P )−
√
nV (P )Φ−1(ε)− 1

2
log n+O(1). (3.14)

Otherwise, we have
logM∗(Pn, ε) = nH(P ) +O(1). (3.15)

Proof. For the direct part of (3.14) (upper bound), note that the term − log 1
1−ε in Proposition 3.1 is a

constant, so we simply have to evaluate Dε
h(Pn‖µn).1 From Corollary 2.1 and its remark that the lower

bound on Dε
h(Pn‖Qn) can be achieved using deterministic tests, we have

Dε
h(Pn‖µn) = nD(P‖µ) +

√
nV (P‖µ)Φ−1(ε) +

1

2
log n+O(1). (3.16)

1Just to be pedantic, for any A ⊂ Xn, the measure µn(A) is defined as
∑

x∈A µ
n(x) = |A| and µn(x) = 1 for each x ∈ Xn.

Hence, µn has the required product structure for the application of Corollary 2.1, for which the second argument of Dε
h(Pn‖Qn)

is not restricted to product probability measures.
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It can easily be verified (cf. (1.19)) that

D(P‖µ) = −H(P ), and V (P‖µ) = V (P ). (3.17)

This concludes the proof of the direct part in light of Proposition 3.1.
For the converse part of (3.14) (lower bound), choose η = 1√

n
so the term − log 1

η in Proposition 3.2 gives

us the − 1
2 log n term. Furthermore, by Proposition 2.1 and the simplifications in (3.17),

D
ε+ 1√

n
s (Pn‖µn) = −nH(P ) +

√
nV (P )Φ−1

(
ε+

1√
n

)
+O(1). (3.18)

A Taylor expansion of Φ−1(·) completes the proof of (3.14).
For (3.15), note that the self-information − logP (X) takes on the value H(P ) with probability one. In

other words,
Pn
(

logPn(Xn) ≤ R
)

= 11
{
R ≥ −nH(P )

}
. (3.19)

The bounds on logM∗(Pn, ε) in Propositions 3.1 and 3.2 and the relaxation to the ε-information spectrum
divergence (Lemma 2.4) yields (3.15).

The expansion in (3.14) in Theorem 3.1 appeared in early works by Yushkevich [190] (with o(
√
n) in

place of − 1
2 log n but for Markov chains) and Strassen [152, Thm. 1.1] (in the form stated). It has since

appeared in various other forms and levels of generality in Kontoyannis [93], Hayashi [75], Kostina-Verdú [97],
Nomura-Han [117] and Kontoyannis-Verdú [95] among others.

As can be seen from the non-asymptotic bounds and the asymptotic evaluation, fixed-to-fixed length
lossless source coding and binary hypothesis testing are virtually the same problem. Asymptotic expansions
for Dε

h and Dε
s can be used directly to estimate the minimum code size M∗(Pn, ε) for an ε-reliable lossless

source code.

3.3 Second-Order Asymptotics of Lossless Source Coding via the
Method of Types

Clearly, the coding scheme described in (3.4) is non-universal, i.e., the code depends on knowledge of the
source distribution. In many applications, the exact source distribution is unknown, and hence has to be
estimated a priori, or one has to design a source code that works well for any source distribution. It is a
well-known application of the method of types that universal source codes achieve the lossless source coding
error exponent [39, Thm. 2.15]. One then wonders whether there is any degradation in the asymptotic
expansion of logM∗(Pn, ε) if the encoder and decoder know less about the source. It turns out that the
source dispersion term can be achieved only with the knowledge of H(P ) and V (P ). However, one has to
work much harder to determine the third-order term. For conclusive results on the third-order term for fixed-
to-variable length source coding, the reader is referred to the elegant work by Kosut and Sankar [100, 101].
The technique outlined in this section involves the method of types.

Let M∗u (P, ε) be the almost lossless source coding non-asymptotic fundamental limit where the source
code (f, ϕ) is ignorant of the probability distribution of the source P , except for the entropy H(P ) and the
varentropy V (P ).

Theorem 3.2. If the source P ∈P(X ) satisfies V (P ) > 0, then

logM∗u (Pn, ε) ≤ nH(P )−
√
nV (P )Φ−1(ε) + (|X | − 1) log n+O(1). (3.20)

The proof we present here results in a third-order term that is likely to be far from optimal but we present
this proof to demonstrate the similarity to the classical proof of the fixed-to-fixed length source coding error
exponent using the method of types [39, Thm. 2.15].
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Proof of Theorem 3.2. Let X = {a1, . . . , ad} without loss of generality. Set M , the size of the code, to be
the smallest integer exceeding

exp

[
nH(P )−

√
nV (P )Φ−1

(
ε− c√

n

)
+ (d− 1) log(n+ 1)

]
, (3.21)

for some finite constant c > 0 (given in Theorem 1.5). Let K be the set of sequences in Xn whose empirical
entropy is no larger than

γ :=
1

n
logM − (d− 1) log(n+ 1)

n
. (3.22)

In other words,

K :=
⋃

Q∈Pn(X ):H(Q)≤γ
TQ. (3.23)

Encode all sequences in K in a one-to-one way and sequences not in K arbitrarily. By the type counting
lemma in (1.27) and Lemma 1.2 (size of type class), we have

|K|≤
∑

Q∈Pn(X ):H(Q)≤γ
exp

(
nH(Q)

)
≤ (n+ 1)d−1 exp

(
nγ
)
≤M (3.24)

so the number of sequences that can be reconstructed without error is at most M as required. An error
occurs if and only if the source sequence has empirical entropy exceeding γ, i.e., the error probability is

p := Pr(H(PXn) > γ) (3.25)

where PXn ∈Pn(X ) is the random type of Xn ∈ Xn. This probability can be written as

p = Pr
(
f(PXn − P ) > γ

)
, (3.26)

where the function f : Rd → R is defined as

f(v) = H (v + P ) , (3.27)

In (3.26) and (3.27), we regarded the type PXn and the true distribution P as vectors of length d = |X |, and
H(w) = −∑j wj logwj is the entropy. Note that the argument of f(·) in (3.26) can be written as

PXn − P =
1

n

n∑
i=1

11{Xi = a1} − P (a1)
...

11{Xi = ad} − P (ad)

 =:
1

n

n∑
i=1

Udi . (3.28)

Since Udi := [11{Xi = a1} − P (a1), . . . , 11{Xi = ad} − P (ad)]
′ for i = 1, . . . , n are zero-mean, i.i.d. random

vectors, we may appeal to the Berry-Esseen theorem for functions of i.i.d. random vectors in Theorem 1.5.
Indeed, we note that f(0) = H(P ), the Jacobian of f evaluated at v = 0 is

J =

[
log

(
1

eP (a1)

)
. . . log

(
1

eP (ad)

)]
, (3.29)

and the (s, t) ∈ {1, . . . , d}2 element of the covariance matrix of Ud1 is

[
Cov

(
Ud1
)]
st

=

{
P (as)

(
1− P (as)

)
s = t

−P (as)P (at) s 6= t
. (3.30)

As such, by a routine multiplication of matrices,

JCov
(
Ud1 )J′ = V (P ), (3.31)
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the varentropy of the source. We deduce from Theorem 1.5 that

p ≤ Φ

(
H(P )− γ√
V (P )/n

)
+

c√
n

(3.32)

where c is a finite positive constant (depending on P ). By the choice of M and γ in (3.21)–(3.22), we see
that p is no larger than ε.

This coding scheme is partially universal in the sense that H(P ) and V (P ) need to be known to be
used to determine and the threshold γ in (3.22), but otherwise no other characteristic of the source P
is required to be known. This achievability proof strategy is rather general and can be applied to rate-
distortion (cf. Section 3.6), channel coding, joint source-channel coding [87, 170], as well as multi-terminal
problems [157] (cf. Section 6.3).

The point we would like to emphasize in this section is the following: In large deviations (error exponent)
analysis of almost lossless source coding, the probability of error in (3.25) is evaluated using, for example,
Sanov’s theorem [39, Ex. 2.12], or refined versions of it [39, Ex. 2.7(c)]. In the above proof, the probability
of error is instead estimated using the Berry-Esseen theorem (Theorem 1.5) since the deviation of the code
rate from the first-order fundamental limit H(P ) is of the order Θ( 1√

n
) instead of a constant. Essentially,

the proof of Theorem 3.2 hinges on the fact that for a random vector Xn with distribution Pn, the entropy
of the type PXn , namely the empirical entropy Ĥ(Xn), satisfies the following central limit relation:

√
n
(
Ĥ(Xn)−H(P )

) d−→ N
(
0, V (P )

)
. (3.33)

Finally, we note that the technique to bound the probability in (3.26) is similar to that suggested by Kosut
and Sankar [101, Lem. 1].

3.4 Lossy Source Coding: Non-Asymptotic Bounds

In the second half of this chapter, we consider the lossy source coding problem where the source P ∈P(X )
does not have to be discrete. The setup is as in Fig. 3.1 and the reconstruction alphabet (which need not be
the same as X ) is denoted as X̂ . For the lossy case, one considers a distortion measure d(x, x̂) between the
source x ∈ X and its reconstruction x̂ ∈ X̂ . This is simply a mapping from X ×X̂ to the set of non-negative
real numbers.

We make the following simplifying assumptions throughout.

(i) There exists a ∆ such that R(P,∆), defined in (3.1), is finite.

(ii) The distortion measure is such that there exists a finite set E ⊂ X̂ such that E[minx̂∈E d(X, x̂)] is finite.

(iii) For every x ∈ X , there exists an x̂ ∈ X̂ such that d(x, x̂) = 0.

(iv) The source P and the distortion d are such that the minimizing test channel W in the rate-distortion
function in (3.1) is unique and we denote it as W ∗.

These assumptions are not overly restrictive. Indeed, the most common distortion measures and sources,
such as finite alphabet sources with the Hamming distortion d(x, x̂) = 11{x 6= x̂} and Gaussian sources with
quadratic distortion d(x, x̂) = (x− x̂)2, satisfy these assumptions.

An (M,∆, d, ε)-code for the source P ∈P(X ) consists of an encoder f : X → {1, . . . ,M} and a decoder
ϕ : {1, . . . ,M} → X such that the probability of excess distortion

P
(
{x ∈ X : d

(
x, ϕ(f(x))

)
> ∆}

)
≤ ε. (3.34)

The number M is called the size of the code (f, ϕ).
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Given a source P , define the lossy source coding non-asymptotic fundamental limit as

M∗(P,∆, d, ε) := min
{
M ∈ N : ∃ an (M,∆, d, ε)-code for P

}
. (3.35)

In the following subsections, we present a non-asymptotic achievability bound and a corresponding converse
bound, both of which we evaluate asymptotically in the next section.

3.4.1 An Achievability Bound

The non-asymptotic achievability bound is based on Shannon’s random coding argument, and is due to
Kostina-Verdú [97, Thm. 9]. The encoder is similar to the familiar joint typicality encoder [49, Ch. 2] with
typicality defined in terms of the distortion measure. To state the bound compactly, define the ∆-distortion
ball around x as

B∆(x) :=
{
x̂ ∈ X̂ : d(x, x̂) ≤ ∆

}
. (3.36)

Proposition 3.3 (Random Coding Bound). There exists an (M,∆, d, ε)-code satisfying

ε ≤ inf
PX̂

EX
[
e−MPX̂(B∆(X))

]
. (3.37)

Proof. We use a random coding argument. Fix PX̂ ∈ P(X̂ ). Generate M codewords x̂(m),m = 1, . . . ,M
independently according to PX̂ . The encoder finds an arbitrary m̂ satisfying

m̂ ∈ arg min
m

d
(
x, x̂(m)

)
. (3.38)

The excess distortion probability can then be bounded as

Pr
(
d(X, X̂) > ∆

)
= EX

[
Pr
(
d(X, X̂) > ∆

∣∣X)] (3.39)

= EX

[ M∏
m=1

Pr
(
d(X, X̂(m)) > ∆

∣∣X)] (3.40)

= EX

[ M∏
m=1

(
1− PX̂

(
B∆(X(m))

))]
(3.41)

= EX

[(
1− PX̂

(
B∆(X)

))M]
(3.42)

Applying the inequality (1 − x)k ≤ e−kx and minimizing over all possible choices of PX̂ completes the
proof.

3.4.2 A Converse Bound

In order to state the converse bound, we need to introduce a quantity that is fundamental to rate-distortion
theory. For discrete random variables with the Hamming distortion measure (d(x, x̂) = 11{x 6= x̂}), it
coincides with the self-information random variable, which, as we have seen in Section 3.2, plays a key role
in the asymptotic expansion of logM∗(Pn, ε).

The ∆-tilted information of x [94, 97] for a given distortion measure d (whose dependence is suppressed)
is defined as

(x;P,∆) := − log EX̂∗
[

exp
(
λ∗∆− λ∗d(x, X̂∗)

)]
(3.43)

where X̂∗ is distributed as PW ∗ and

λ∗ := −∂R(P,∆′)
∂∆′

∣∣∣∣
∆′=∆

. (3.44)

The differentiability of the rate-distortion function with respect to ∆ is guaranteed by the assumptions in
Section 3.4. The term ∆-tilted information was introduced by Kostina and Verdú [97].
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Example 3.1. Consider the Gaussian source X ∼ P (x) = N (x; 0, σ2) with squared-error distortion measure
d(x, x̂) = (x− x̂)2. For this problem, simple calculations reveal that

(x;P,∆) =
1

2
log

σ2

∆
−
(
x2

σ2
− 1

)
log e

2
(3.45)

if ∆ ≤ σ2, and 0 otherwise.

One important property of the ∆-tilted information of x is that the expectation is exactly equal to the
rate-distortion function, i.e.,

R(P,∆) = EX
[
(X;P,∆)

]
. (3.46)

For the Gaussian source with quadratic distortion, the equality above is easy to verify from Example 3.1.
In view of the asymptotic expansion of lossless source coding in Theorem 3.1, we may expect that the

variance of (X;P,∆) characterizes the second-order asymptotics of rate-distortion. This is indeed so, as we
will see in the following. Other properties of the ∆-tilted information are summarized in [34, Lem. 1.4] and
[97, Properties 1 & 2].

Equipped with the definition of the ∆-tilted information, we are now ready to state the non-asymptotic
converse bound that will turn out to be amenable to asymptotic analyses. This elegant bound was proved
by Kostina-Verdú [97, Thm. 7].

Proposition 3.4 (Converse Bound for Lossy Compression). Fix γ > 0. Every (M,∆, d, ε)-code must satisfy

ε ≥ Pr
(
(X;P,∆) ≥ logM + γ

)
− exp(−γ). (3.47)

Observe that this is a generalization of Proposition 3.2 for the lossless case. In particular, it generalizes
the bound in (3.9). It is also remarkably similar to the Verdú-Han information spectrum converse bound [169,
Lem. 4] for channel coding (reviewed in (4.10) in Section 4.1.2). This is unsurprising, as channel coding and
rate-distortion are duals in many ways. We refer the reader to [97, Thm. 7] for the proof of Proposition 3.4.

3.5 Lossy Source Coding: Asymptotic Expansions

As mentioned in the introduction of this chapter, the first-order fundamental limit for lossy source coding
of stationary and memoryless sources Pn is the rate distortion function R(P,∆). We are interested in finer
approximations of the non-asymptotic fundamental limit M∗(Pn,∆, d(n), ε) where Pn is the distribution of
a stationary, memoryless source X and the distortion measure d(n) : Xn → X̂n is separable, i.e.,

d(n)(x, x̂) =
1

n

n∑
i=1

d(xi, x̂i). (3.48)

for any (x, x̂) ∈ Xn × X̂n.
Let the variance of the ∆-tilted information of X be termed the rate-dispersion function

V (P,∆) := Var
(
(X;P,∆)

)
. (3.49)

Example 3.2. Let us revisit the Gaussian source with quadratic distortion in Example 3.1. It is easy to
verify that the variance of (X;P,∆) is

V (P,∆) =
log2 e

2
(3.50)

if ∆ ≤ σ2, and 0 otherwise. Hence, interestingly, the rate-dispersion function for the Gaussian source with
quadratic distortion depends neither on the source variance σ2 nor the distortion ∆ if ∆ ≤ σ2. This is
peculiar to the Gaussian source with quadratic distortion.
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Theorem 3.3. If P and d satisfy the assumptions in Section 3.4 and, in addition, V (P,∆) > 0 and
EP×PW∗ [d(X, X̂∗)9] <∞,

logM∗(Pn,∆, d(n), ε) = nR(P,∆)−
√
nV (P,∆)Φ−1(ε) +O(log n). (3.51)

For the case of zero rate-dispersion function V (P,∆) = 0, the reader is referred to [97, Thm. 12]. The
condition EP×PW∗ [d(X, X̂∗)9] < ∞ is a technical one, made to ensure that the third absolute moment of
(X;P,∆) is finite for the applicability of the Berry-Esseen theorem.

Proof sketch. For an i.i.d. source Xn, the ∆-tilted information single-letterizes because the optimum test
channel in the rate-distortion formula also has the required product structure. Hence,

(Xn;Pn,∆) =

n∑
i=1

(Xi;P,∆). (3.52)

Using the Berry-Esseen theorem, the probability in (3.47) can be lower bounded as

Pr
(
(Xn;Pn,∆) ≥ logM + γ

)
≥ Φ

(
nR(P,∆)− logM − γ√

nV (P,∆)

)
− κ√

n
(3.53)

where κ is a function of the third absolute moment of (X;P,∆) which is finite by the assumption that
EP×PW∗ [d(X, X̂∗)9] <∞. Now set γ = 1

2 log n and M to the smallest integer larger than

exp

(
nR(P,∆)−

√
nV (P,∆)Φ−1

(
ε′ − κ+ 1/2√

n

)
− γ
)
. (3.54)

By the non-asymptotic converse bound in Proposition 3.4, we find that ε ≥ ε′. This implies that the number
of codewords must not be smaller than that stated in (3.54), concluding the converse proof.

For the direct part, we need a technical lemma [97, Lem. 2] relating the Pn
X̂∗

-probability of a ∆-distortion
ball to the ∆-tilted information.

Lemma 3.1. There exist constants c, b, k > 0 such that for all sufficiently large n,

Pr

(
log

1

Pn
X̂∗

(B∆(Xn))
>

n∑
i=1

(Xi;P,∆) + b log n+ c

)
≤ k√

n
. (3.55)

This lemma says that we can control the Pn
X̂∗

-probability of ∆-distortion balls centered at a random
source sequence Xn in terms of the ∆-tilted information. Now define the random variable

Gn := logM −
n∑
i=1

(Xi;P,∆)− b log n− c. (3.56)

Choose the distribution PX̂ in the non-asymptotic achievability bound in Proposition 3.3 to be the product
distribution Pn

X̂∗
. Applying Lemma 3.1, we find that

ε′ ≤ E
[
e−MPn

X̂∗ (B∆(Xn))
]

(3.57)

≤ E
[
e− exp(Gn)

]
+

k√
n

(3.58)

≤ Pr

(
Gn ≤ log

lnn

2

)
+

1√
n

Pr

(
Gn > log

lnn

2

)
+

k√
n
. (3.59)

where in the final step, we split the expectation into two parts depending on whether Gn > log lnn
2 or

otherwise. Since Gn is a sum of i.i.d. random variables, the first probability can be evaluated using the
Berry-Esseen theorem similarly to (3.53), and the second bounded above by 1.
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3.6 Second-Order Asymptotics of Lossy Source Coding via the
Method of Types

In this final section of the chapter, we briefly comment on how Theorem 3.3 can be obtained by means of
a technique that is based on the method of types. Of course, this technique only applies to discrete (finite
alphabet) sources so it is more restrictive than the Kostina-Verdú [97] method we presented. However, as
with all results proved using the method of types, the analysis technique and the form of the result may be
more insightful to some readers. The exposition in this section is due to Ingber and Kochman [86].

We make the simplifying assumption that the rate-distortion function R(P,∆) is differentiable with
respect to ∆ (guaranteed by the assumption (iv) in Section 3.4) and twice differentiable with respect to the
probability mass function P . Ingber and Kochman [86] considered the fundamental quantity

R′(x;P,∆) :=
∂R(Q,∆)

∂Q(x)

∣∣∣∣
Q=P

. (3.60)

It can be shown [96, Thm. 2.2] that R′(x;P,∆) and the ∆-tilted information are related as follows:

R′(x;P,∆) = (x;P,∆)− log e. (3.61)

Hence the expectation of R′(X;P,∆) is the rate-distortion function R(P,∆) up to a constant and its variance
is exactly the rate-dispersion function V (P,∆) in (3.49).

A codeword x̂(m) ∈ X̂n is simply an output of the decoder ϕ(m). The collection of all M codewords
forms the codebook. Given a codebook C = {x̂(1), . . . , x̂(M)}, we say that x ∈ Xn is ∆-covered by C if there
exists a codeword x̂(m) ∈ C such that d(n)(x, x̂(m)) ≤ ∆.

The analysis technique in [86] is based on the following lemma.

Lemma 3.2 (Type Covering). For every type Q ∈Pn(X ), there exists a codebook C := {x̂(1), . . . , x̂(M)} ⊂
X̂n of size M and a function g1(|X |, |X̂ |) such that every x ∈ TP is ∆-covered by C, and

1

n
logM ≤ R(Q,∆) + g1(|X |, |X̂ |) log n

n
(3.62)

Furthermore, let the code size M and a type Q ∈ Pn(X ) be such that logM < nR(Q,∆). Then for every
codebook C ⊂ X̂n of size M the fraction of TP that is ∆-covered by C is at most

exp
(
−nR(Q,∆) + logM − g2(|X |, |X̂ |) log n

)
(3.63)

for some function g2(|X |, |X̂ |).

The achievability part of the lemma in (3.62) is a refined version of the type covering lemma by Berger [16,
Sec. 6.2.1, Lem. 1]. A slightly weaker version of the lemma is also presented in Csiszár-Körner [39, Ch. 9] and
was used by Marton [106] to find the error exponent for lossy source coding. The refinement comes about
in the O( logn

n ) remainder term which is required for analyzing the setting in which the excess distortion
probability is non-vanishing. The converse part in (3.63) is a corollary of Zhang-Yang-Wei [191, Lem. 3].

We now provide an alternative proof of Theorem 3.3 using the type covering lemma. The crux of the
achievability argument is to use the type covering lemma to identify a set of sequences of size M such that
the sequences in Xn that it manages to ∆-cover has probability approximately 1− ε so the excess distortion
probability is roughly ε. The types of sequences in this set is denoted as K in the proof below. The Pn-
probability of K can be estimated using the central limit relation similar to the analysis in the proof of
Theorem 3.2. The converse argument hinges on the fact that the codebook given the achievability part of
the type covering lemma is essentially optimal in terms of its size.
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Proof sketch of Theorem 3.3. Roughly speaking, the idea in the achievability proof is to “encode” all se-
quences in Xn whose empirical rate distortion function is no larger than some threshold. More specifically,
encode (use codes prescribed by Lemma 3.2) sequences belonging to

K :=
⋃

Q∈Pn(X ):R(Q,∆)≤γ
TQ, (3.64)

where

γ := R(P,∆)−
√
V (P,∆)

n
Φ−1(ε). (3.65)

By (3.62) and the type counting lemma, the size of K satisfies the requirement in Theorem 3.3. The resultant
probability of excess distortion is Pr (R(PXn ,∆) > γ) where PXn ∈Pn(X ) is the (random) type of Xn ∈ Xn.
Similarly to (3.33) for the lossless case, the following central limit relation holds:

√
n
(
R(PXn ,∆)−R(P,∆)

) d−→ N
(
0, V (P,∆)

)
. (3.66)

The above convergence can be verified by using the Berry-Esseen theorem for functions of i.i.d. random
vectors (Theorem 1.5) per the proof of Theorem 3.2. Hence, probability of excess distortion is roughly ε and
the achievability proof is complete.

The converse part follows from the fact that that we can lower bound the probability of the excess
distortion event E∆ := {d(n)(Xn, X̂n) > ∆} as

Pr
(
E∆
)
≥ Pr

(
E∆
∣∣R(PXn ,∆) > R+ ψn

)
Pr
(
R(PXn ,∆) > R+ ψn

)
, (3.67)

where R = 1
n logM is the code rate and ψn is arbitrary. Now, by (3.63), if the realized type of the source is

Q ∈Pn(X ) where R(Q,∆) > R+ ψn, then the fraction of the type class TQ that is ∆-covered is at most

exp (−nR(Q,∆) + nR− g2 log n) ≤ exp (−nψn − g2 log n) . (3.68)

Since all sequences in a type class are equally likely (Lemma 1.3), the probability of no excess distortion
conditioned on the event {R(PXn ,∆) > R+ ψn} is at most 1

n if ψn := (−g2 + 1) logn
n . Thus

Pr
(
E∆
)
≥
(

1− 1

n

)
Pr
(
R(PXn ,∆) > R+ ψn

)
. (3.69)

For logM = nR chosen to be as in (3.51) in Theorem 3.3, the probability on the right is at least ε−O( 1√
n

)

by a quantitative version of the convergence in distribution in (3.66).
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Chapter 4

Channel Coding

This chapter presents fixed error asymptotic results for point-to-point channel coding, which is perhaps
the most fundamental problem in information theory. Shannon [141] showed that the maximum rate of
transmission over a memoryless channel is the information capacity

C(W ) = max
P∈P(X )

I(P,W ). (4.1)

This first-order fundamental limit is attained as the number of channel uses (or blocklength) tends to infinity.
Wolfowitz [180] showed the strong converse for a large class of memoryless channels, which intuitively means
that for codes with rates above C(W ), the error probability necessarily tends to one. The contrapositive of
this statement is that, even if we allow the error probability to be close to one (a strange requirement in
practice), one cannot send more bits per channel use than what is prescribed by the information capacity in
(4.1).

In the rest of this chapter, we revisit the problem of channel coding from the viewpoint of the error
probability being non-vanishing. First, we define the channel coding problem as well as some important non-
asymptotic fundamental limits. Next we derive bounds on these limits. Some of these bounds are intimately
linked to ideas in and quantities related to binary hypothesis testing. We then evaluate these bounds for
large blocklengths while keeping the error probability (either maximum or average) bounded above by some
constant ε ∈ (0, 1). We only concern ourselves with two classes of channels, namely the discrete memoryless
channel (DMC) and the additive white Gaussian noise (AWGN) channel. We present second- and even
third-order asymptotic expansions for the logarithm of the non-asymptotic fundamental limits. The chapter
is concluded with a discussion of source-channel transmission and the cost of separation.

The material in this chapter on point-to-point channel coding is based primarily on the works by
Strassen [152], Hayashi [76], Polyanskiy-Poor-Verdú [123], Altuğ-Wagner [12], Tomamichel-Tan [164] and
Tan-Tomamichel [159]. The material on joint source-channel coding is based on the works by Kostina-
Verdú [99] and Wang-Ingber-Kochman [170].

4.1 Definitions and Non-Asymptotic Bounds

We now set up the channel coding problem formally. A channel is simply a stochastic map W from an input
alphabet X to an output alphabet Y. For the majority of the chapter, we assume that there are no cost
constraints on the codewords—the necessary changes required for channels with cost constraints (such as
the AWGN channel) will be pointed out. See Fig. 4.1 for an illustration of the setup.

An (M, ε)ave-code for the channel W ∈ P(Y|X ) consists of a message set M = {1, . . . ,M} and pair of
maps including an encoder f : {1, . . . ,M} → X and a decoder ϕ : Y → {1, . . . ,M} such that the average
error probability

1

M

∑
m∈M

W (Y \ ϕ−1(m)|f(m)) ≤ ε. (4.2)
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Figure 4.1: Illustration of the channel coding problem.

An (M, ε)max-code is the same as an (M, ε)ave-code except that instead of the condition in (4.2), the maximum
error probability

max
m∈M

W (Y \ ϕ−1(m)|f(m)) ≤ ε. (4.3)

The number M is called the size of the code.
We also define the following non-asymptotic fundamental limits

M∗ave(W, ε) := max
{
M ∈ N : ∃ an (M, ε)ave-code for W

}
, and (4.4)

M∗max(W, ε) := max
{
M ∈ N : ∃ an (M, ε)max-code for W

}
. (4.5)

In the following, we will evaluate these limits when W assumes some structure, for example memoryless-
ness and stationarity. Note that blocklength plays no role in the above definitions. In the sequel, we study
the dependence of the fundamental limits on the blocklength n by inserting a “super-channel” Wn indexed
by n in place of W in (4.4) and (4.5). Before we perform the evaluations, we state some bounds on M and
ε for arbitrary channels W .

4.1.1 Achievability Bounds

In this section, we state three achievability bounds. We evaluate these bounds for memoryless channels
in the following sections. The first is Feinstein’s bound [53] stated in terms of the ε-information spectrum
divergence.

Proposition 4.1 (Feinstein’s theorem). Let ε ∈ (0, 1) and let W be any channel from X to Y. Then for
any η ∈ (0, ε), we have

logM∗max(W, ε) ≥ sup
P∈P(X )

Dε−η
s (P ×W‖P × PW )− log

1

η
. (4.6)

The proof of this bound can be found in Han’s book [67, Lem. 3.4.1] and uses a greedy approach
for selecting codewords. The average error probability version of this bound can be proved in a more
straightforward manner using threshold decoding; cf. [66, Thm. 1]. The following is a slight strengthening
of Feinstein’s theorem.

Proposition 4.2. There exists an (M, ε)max-code for W such that for any γ > 0 and any input distribution
P ∈P(X ),

ε ≤ Pr

(
log

W (Y |X)

PW (Y )
≤ γ

)
+M sup

x∈X
Pr

(
log

W (Y |x)

PW (Y )
> γ

)
, (4.7)

where the distribution of (X,Y ) is P ×W in the first probability and the distribution of Y is PW in the
second.

The proof of this bound can be found in [123, Thm. 21]. It uses a sequential random coding technique
where each codeword is chosen at random based on previous choices. Feinstein’s bound can be derived as
a corollary to Proposition 4.2 by upper bounding the final probability in (4.7) by exp(−γ) and using the
identification γ ≡ log 1

η .
The previous two bounds are essentially threshold decoding bounds, i.e., we compare the likelihood ratio

between the channel and the output distribution to a threshold γ. For the average probability of error
setting, one can compare the likelihood ratios of codewords directly and use maximum likelihood decoding
to obtain the following bound.

38



Proposition 4.3 (Random Coding Union (RCU) Bound). There exists an (M, ε)ave-code for W such that
for any input distribution P ∈P(X ),

ε ≤ E

[
min

{
1,M Pr

(
log

W (Y |X̄)

PW (Y )
≥ log

W (Y |X)

PW (Y )

∣∣∣∣X,Y )}
]

(4.8)

where (X, X̄, Y ) is distributed as P (x)P (x̄)W (y|x).

The proof of this bound can be found in [123, Thm. 16]. Note that the outer expectation is over X,Y
while the inner probability is over X̄. Under certain conditions on a DMC and any AWGN channel, one can
use the RCU bound to prove the achievability of 1

2 log n + O(1) for the third-order term in the asymptotic
expansion of logM∗(Wn, ε). This is what we do in the subsequent sections.

4.1.2 A Converse Bound

The only converse bound we will evaluate asymptotically appeared in different forms in the works by Verdú-
Han [169, Lem. 4], Hayashi-Nagaoka [77, Lem. 4], Polyanskiy-Poor-Verdú [123, Sec. III-E] and Tomamichel-
Tan [164, Prop. 6]. This converse bound relates channel coding to binary hypothesis testing. This relation,
and its application to asymptotic converse theorems, can be traced back to early works by Shannon-Gallager-
Berlekamp [146] and Wolfowitz [181]. The reader is referred to Dalai’s work [42, App. B] for an excellent
modern exposition on this topic.

Proposition 4.4 (Symbol-Wise Converse Bound). Let ε ∈ (0, 1) and let W be any channel from X to Y.
Then, for any η ∈ (0, 1− ε), we have

logM∗ave(W, ε) ≤ inf
Q∈P(Y)

sup
x∈X

Dε+η
s (W (·|x)‖Q) + log

1

η
. (4.9)

If the codewords are constrained to belong to some set A ⊂ X (due to cost contraints, say), the supremum
above is to be replaced by supx∈A.

The first part of the proof is analogous to the meta-converse in [123, Thm. 27]. See also Wang-Colbeck-
Renner [172] and Wang-Renner [173], which inspired the conceptually simpler proof technique presented
below. The bound in (4.9) is a “symbol-wise” relaxation of the meta-converse [123, Thms. 28 and 31] and
Hayashi-Nagaoka’s converse [77, Lem. 4]. The maximization over symbols allows us to apply our converse
bound on non-constant-composition codes for DMCs directly. With an appropriate choice of Q, it allows
us to prove a 1

2 log n + O(1) upper bound for the third-order asymptotics for positive ε-dispersion DMCs
(cf. Theorem 4.3).

We remark that, in our notation, the information spectrum converse bound in Verdú-Han [169, Lem. 4]
takes the form

logM∗ave(W, ε) ≤ sup
P∈P(X )

Dε+η
s (P ×W‖P × PW ) + log

1

η
(4.10)

so it does not allow one to choose the output distribution Q. Observe the beautiful duality of the Verdú-
Han converse with Feinstein’s direct theorem. The bound in Hayashi-Nagaoka [77, Lem. 4] (stated for
classical-quantum channels in their context) affords this freedom and is stated as

logM∗ave(W, ε) ≤ inf
Q∈P(Y)

sup
P∈P(X )

Dε+η
s (P ×W‖P ×Q) + log

1

η
. (4.11)

Hence, we see that the bound in Proposition 4.4 is essentially a “symbol-wise” relaxation of the Hayashi-
Nagaoka converse bound [77, Lem. 4] (applying Lemma 2.3) as well as the meta-converse theorems in [123,
Thms. 28 and 31].

Since the proof of Proposition 4.4 is short, we provide the details.
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Proof of Proposition 4.4. Fix an (|M|, ε)ave-code for W with message setM and an arbitrary output distri-
bution Q ∈P(Y). Let M and M̂ be the sent message and estimated message respectively. Starting from a

uniform distribution PM overM, the Markov chain M
f−−→ X

W−−−→ Y
ϕ−−→ M̂ induces the joint distribution

PMXY M̂ . Due to the data-processing inequality for Dε
h (Lemma 2.1),

Dε
h(P ×W‖P ×Q) = Dε

h(PXY ‖PX ×QY ) ≥ Dε
h(PMM̂‖PM ×QM̂ ) (4.12)

where PX = P and QM̂ is the distribution induced by ϕ applied to QY = Q. Moreover, using the test
δ(m, m̂) := 11{m 6= m̂}, we see that

EPMM̂

[
δ(M, M̂)

]
= Pr(M 6= M̂) ≤ ε (4.13)

where (M,M̂) ∼ PMM̂ above, and

EPM×QM̂

[
δ(M, M̂)

]
=

∑
(m,m̂)∈M×M

PM (m)QM̂ (m̂)11{m 6= m̂} (4.14)

= 1−
∑
m̂∈M

QM̂ (m̂)
∑
m∈M

PM (m)11{m = m̂} (4.15)

= 1−
∑
m̂∈M

QM̂ (m̂)
1

|M| (4.16)

= 1− 1

|M| . (4.17)

Hence, Dε
h(PMM̂‖PM ×QM̂ ) ≥ log |M|+ log(1− ε) per the definition of the ε-hypothesis testing divergence.

Finally, applying Lemmas 2.2 and 2.3 yields

sup
x∈X

Dε+η
s

(
W (·|x)

∥∥Q) ≥ Dε+η
s

(
P ×W

∥∥P ×Q) (4.18)

≥ Dε
h

(
P ×W

∥∥P ×Q)− log
1− ε
η

(4.19)

≥ log |M| − log
1

η
. (4.20)

This yields the converse bound upon minimizing over Q ∈P(Y).

4.2 Asymptotic Expansions for Discrete Memoryless Channels

In this section, we consider asymptotic expansions for DMCs. Recall that a DMC (without feedback) for
blocklength n is a channel Wn ∈P(Yn|Xn) where the input and output alphabets are finite and the channel
law satisfies

Wn(y|x) =

n∏
i=1

W (yi|xi), ∀ (x,y) ∈ Xn × Yn. (4.21)

Thus, the channel behaves in a stationary and memoryless manner. Shannon [141] found the maximum
rate of reliable communication over a DMC and termed this rate the capacity C(W ) given in (4.1). In this
section, we derive refinements of this fundamental limit of communication by characterizing the first three
terms in the asymptotic expansions of logM∗ave(Wn, ε) and logM∗max(Wn, ε). Before we do so, we recall
some fundamental quantities and define a few new ones.
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4.2.1 Definitions for Discrete Memoryless Channels

Recall that the conditional relative entropy for a fixed input and output distribution pair (P,Q) ∈P(X )×
P(Y) is D(W‖Q|P ) :=

∑
x P (x)D(W (·|x)‖Q). The mutual information is I(P,W ) := D(P×W‖P×PW ) =

D(W‖PW |P ). Moreover, C(W ) is the information capacity defined in (4.1) and

Π(W ) := {P ∈P(X ) : I(P,W ) = C(W )} (4.22)

is the set of capacity-achieving input distributions (CAIDs), respectively.1 The set of CAIDs is convex and
compact in P(X ). The unique [56, Cor. 2 to Thm. 4.5.2] capacity-achieving output distribution (CAOD) is
denoted as Q∗ and Q∗ = PW for all P ∈ Π. Furthermore, it satisfies Q∗(y) > 0 for all y ∈ Y [56, Cor. 1 to
Thm. 4.5.2], where we assume that all outputs are accessible.

Channel Dispersions

Recall from (2.29) that the variance of the log-likelihood ratio log P
Q under P is known as the divergence

variance, i.e.,

V (P‖Q) :=
∑
x∈X

P (x)

[
log

P (x)

Q(x)
−D(P‖Q)

]2

. (4.23)

We also define the conditional divergence variance V (W‖Q|P ) :=
∑
x P (x)V (W (·|x)‖Q) and the conditional

information variance V (P,W ) := V (W‖PW |P ). Define the unconditional information variance U(P,W ) :=
V (P ×W‖P × PW ). Note that

V (P,W ) = U(P,W ) (4.24)

for all P ∈ Π [123, Lem. 62]. This is easy to verify because from [56, Thm. 4.5.1], we know that all P ∈ Π
(i.e., CAIDs) satisfy

∀x : P (x) > 0 D
(
W (·|x)‖PW

)
= C (4.25)

∀x : P (x) = 0 D
(
W (·|x)‖PW

)
≤ C. (4.26)

The ε-channel dispersion [123, Def. 2] for ε ∈ (0, 1) \ { 1
2} is the following operational quantity.

Vε(W ) := lim inf
n→∞

1

n

(
logM∗ave(Wn, ε)− nC(W )

Φ−1(ε)

)2

. (4.27)

This operational quantity was shown [123, Eq. (223)] to be equal to2

Vε(W ) :=

{
Vmin(W ) if ε < 1

2

Vmax(W ) if ε ≥ 1
2

, (4.28)

where Vmin(W ) :=minP∈Π V (P,W ) and Vmax(W ) :=maxP∈Π V (P,W ).

Singularity

The asymptotic expansions stated in Theorems 4.1 and 4.3 depend on the singularity of the channel. We
say a DMC W ∈ P(Y|X ) is singular if for all (x, y, z) ∈ X × Y × X with W (y|x)W (y|z) > 0, one has
W (y|x) = W (y|z). A DMC that is not singular is called non-singular.

1We often drop the dependence on W if it is clear from context.
2Notice that for ε = 1

2
, we set Vε = Vmax. This is somewhat unconventional; cf. [123, Thm. 48]. However, doing so

ensures that subsequent theorems can be stated compactly. Nonetheless, from the viewpoint of the normal approximation, it is
immaterial how we choose V 1

2
since Φ−1( 1

2
) = 0 (cf. [123, after Eq. (280)]).
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Note that if the DMC is singular, then

log
W (y|x′)
W (y|x)

∈ {−∞, 0,∞} (4.29)

for all (x, x′, y) ∈ X × X × Y. Intuitively, if a DMC is singular, checking feasibility is, in fact, optimum
decoding. That is, given a codebook C := {x(1), . . . ,x(M)}, we decide that m ∈ {1, . . . ,M} is sent if, given
the channel output y, it uniquely satisfies

Wn
(
y|x(m)

)
=

n∏
i=1

W
(
yi|xi(m)

)
> 0. (4.30)

It is known [161] that if W is singular, the capacity of W equals its zero-undetected error capacity.

Example 4.1. Consider the binary erasure channel W with input alphabet X = {0, 1} and output alphabet
Y = {0, e, 1} where e is the erasure symbol. The channel transition probabilities of W are given by

W (y|0) =

 1− δ0 y = 0
δ0 y = e
0 y = 1

and W (y|1) =

 0 y = 0
δ1 y = e

1− δ1 y = 1
(4.31)

If δ0 = δ1 = δ > 0, then W (e|0)W (e|1) > 0 and W (e|0) = W (e|1) = δ, and so the channel is singular. If
δ0 6= δ1, the channel is non-singular.

Symmetry

We say a DMC is symmetric [56, pp. 94] if the channel outputs can be partitioned into subsets such that
within each subset, the matrix of transition probabilities satisfies the following: every row (resp. column) is
a permutation of every other row (resp. column).

4.2.2 Achievability Bounds: Asymptotic Expansions

In this section, we provide lower bounds to logM∗ave(Wn, ε) and logM∗max(Wn, ε). We focus on the positive
ε-dispersion case. For other cases, the reader is referred to [119, Thm. 47].

Independent and Identically Distributed (i.i.d.) Codes

The following bounds are achieved using i.i.d. random codes.

Theorem 4.1. If the DMC satisfies Vε(W ) > 0,

logM∗max(Wn, ε) ≥ nC +
√
nVεΦ

−1(ε) +O(1). (4.32)

If in addition, the DMC is non-singular,

logM∗ave(Wn, ε) ≥ nC +
√
nVεΦ

−1(ε) +
1

2
log n+O(1). (4.33)

Theorem 4.1 says that asymptotically, logM∗max(Wn, ε) is lower bounded by the Gaussian approximation
nC+

√
nVεΦ

−1(ε) plus a constant term. In addition, under the non-singularity condition, one can say more,
namely that logM∗ave(Wn, ε) is lower bounded by the Gaussian approximation plus 1

2 log n+O(1), known as
the third-order term. The proof of the former statement in (4.32) uses the strengthened version of Feinstein’s
theorem in Proposition 4.2, while the proof of the latter statement in (4.33) requires the use of the RCU
bound in Proposition 4.3. For a comparison of the third-order terms achievable by various achievabilty
bounds, the reader is referred to Table 4.1.

We will only provide the proof of the former statement, as the proof of latter is similar to the achievability
proof for AWGN channels for which we show key steps in Section 4.3. For the proof of the latter statement
in (4.33), the reader is referred to [119, Sec. 3.4.5].
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Bound Third-Order Term
Feinstein + Const. Compo. (Thm. 4.2) −(|X |− 1

2 ) log n+O(1)
Feinstein + i.i.d. (Rmk. 4.1) − 1

2 log n+O(1)
Strengthened Feinstein + i.i.d. (Thm. 4.1) O(1)

RCU + i.i.d. (Thm. 4.1) 1
2 log n+O(1)

Table 4.1: Comparison of the third-order terms achievable by using various achievability bounds (in Section
4.1.1) or requirements on the code (such as constant composition). The 1

2 log n + O(1) that is achieved by
evaluating the RCU bound holds only for the class of non-singular DMCs.

Proof of (4.32). We specialize the strengthened version of Feinstein’s result in Proposition 4.2. Choose PXn

to be the n-fold product of a CAID P ∗X that achieves Vε. The first probability in (4.7) can be bounded using
the Berry-Esseen theorem as

Pr

(
log

Wn(Y n|Xn)

(P ∗XW )n(Y n)
≤ γ

)
= Pr

( n∑
i=1

log
W (Yi|Xi)

P ∗XW (Yi)
≤ γ

)
(4.34)

≤ Φ

(
γ − nC√
nVε

)
+

6 T̃√
nV 3

ε

(4.35)

where T̃ is the third absolute moment of logW (Y |X)− logP ∗XW (Y ) and the variance is U(P ∗X ,W ) which is
equal to Vε by (4.24). To bound the second probability in (4.7), we define

Vx := V
(
W (·|x)‖P ∗XW

)
, and (4.36)

Tx := E

[∣∣∣∣ log
W (Y |x)

P ∗XW (Y )
−D

(
W (·|x)‖P ∗XW

)∣∣∣∣3
]
, (4.37)

Since the CAOD P ∗XW is positive on Y [56, Cor. 1 to Thm. 4.5.2], V− := minx∈X Vx > 0. It can also be
shown similarly to [123, Lem. 46] that T+ := maxx∈X Tx <∞. Now, for all x ∈ Xn, the second probability
in (4.7) can be bounded as

Pr

(
log

Wn(Y n|x)

(P ∗XW )n(Y n)
> γ

)
=E(P∗XW )n

[
11

{
log

Wn(Y n|x)

(P ∗XW )n(Y n)
> γ

}]
(4.38)

=EWn(·|x)

[
exp

(
− log

Wn(Y n|x)

(P ∗XW )n(Y n)

)
11

{
log

Wn(Y n|x)

(P ∗XW )n(Y n)
>γ

}]
(4.39)

≤2

(
log 2√

2π
+

12T+

V−

)
exp(−γ)√

nV−
, (4.40)

where the final inequality is an application of Theorem 1.3. Now choose

γ := nC +
√
nVεΦ

−1(ε′), with (4.41)

ε′ := ε− 1√
n

2
(

log 2√
2π

+ 12T+

V−

)√
V−

+
6 T̃√
V 3
ε

 . (4.42)

Also choose M = bexp(γ)c. Substituting these choices into the above bounds completes the proof of (4.32).
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Remark 4.1. We remark that if we use Feinstein’s theorem in Proposition 4.1 (instead of its strengthened
version in Proposition 4.2), and the codebook is generated in an i.i.d. manner according to (P ∗X)n, the third-
order term would be − 1

2 log n+O(1). Indeed, let η in Feinstein’s theorem be 1√
n

. Then, the (ε−η)-information

spectrum divergence can be expanded as

Dε−η
s

(
(P ∗X)n ×Wn

∥∥ (P ∗X)n × (P ∗XW )n
)

= nC +
√
nVεΦ

−1(ε) +O(1). (4.43)

This follows the asymptotic expansion of Dε−η
s (Corollary 2.1) and the fact that U(P ∗X ,W ) = V (P ∗X ,W ) =

Vε(W ) similarly to (4.35). Coupled with the fact that − log 1
η = − 1

2 log n, we see that the third-order term is

(at least) − 1
2 log n+O(1).

Constant Composition Codes and Cost Constraints

In many applications, it may not be desirable to use i.i.d. codes as we did in the above proof. For example
for channels with additive costs, each codeword x(m),m = 1, . . . ,M , must satisfy

1

n

n∑
i=1

b
(
xi(m)

)
≤ Γ (4.44)

for some cost function b : X → [0,∞) and some cost constraint Γ > 0. In this case, if the type P ∈Pn(X )
of each codeword x(m) is the same for all m and it satisfies

EP [b(X)] ≤ Γ, (4.45)

then the cost constraint in (4.44) is satisfied. This class of codes is called constant composition codes of type
P . The Gaussian approximation can be achieved using constant composition codes. Constant composition
coding was used by Hayashi for the DMC with additive cost constraints [76, Thm. 3]. He then used this
result to prove the second-order asymptotics for the AWGN channel [76, Thm. 5] by discretizing the real line
increasingly finely as the blocklength grows. It is more difficult to prove conclusive results on the third-order
terms using a constant composition ensemble [98], nonetheless it is instructive to understand the technique
to demonstrate the achievability of the Gaussian approximation. Let M∗max,cc(Wn, ε) denote the maximum
number of codewords transmissible over Wn with maximum error probability ε using constant composition
codes.

Theorem 4.2. If the DMC satisfies Vε(W ) > 0,

logM∗max,cc(Wn, ε) ≥ nC +
√
nVεΦ

−1(ε)−
(
|X | − 1

2

)
log n+O(1). (4.46)

Proof sketch of Theorem 4.2. We use Feinstein’s theorem (Proposition 4.1. Choose a type P ∈Pn(X ) that
is the closest in the variational distance sense to P ∗X achieving Vε. By [43, Lem. 2.1.2], we know that

∥∥P − P ∗X∥∥1
≤ |X |

n
. (4.47)

Then consider the input distribution in Feinstein’s theorem to be PXn(x), the uniform distribution over TP ,
i.e.,

PXn(x) =
11{x ∈ TP }
|TP |

. (4.48)

Clearly such a code is constant composition. Now we claim that

PXnWn(y) ≤ |Pn(X )|(PW )n(y) (4.49)
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for all y ∈ Yn. To see this note that for x ∈ TP ,

PXn(x) =
1

|TP |
≤ |Pn(X )| exp

(
− nH(P )

)
= |Pn(X )|Pn(x) (4.50)

where the inequality follows from Lemma 1.2 and the final equality from Lemma 1.3. For x /∈ TP , (4.50)
also holds as PXn(x) = 0. Multiplying (4.50) by Wn(y|x) and summing over all x yields (4.49). Let x̃ be
an arbitrary sequence in TP , i.e., x̃ is a sequence with type P . The (ε− η)-information spectrum divergence
in Feinstein’s theorem can be bounded as

Dε−η
s

(
PXn ×Wn

∥∥PXn × PXnWn
)

= Dε−η
s

(
Wn(·|x̃)

∥∥PXnWn
)

(4.51)

≥ Dε−η
s

(
Wn(·|x̃)

∥∥ (PW )n
)
− log |Pn(X )| (4.52)

≥ nI(P,W ) +
√
nV (P,W )Φ−1

(
ε− η − 6T (P,W )√

nV (P,W )3

)
− log |Pn(X )| (4.53)

where (4.51) follows from permutation invariance within a type class, and the change of output measure
step in (4.52) uses the bound in (4.49) as well as the consequence of the sifting property of Dε−η

s in (2.11).
Inequality (4.53) uses the lower bound in the Berry-Esseen bound onDε−η

s in Proposition 2.1 with T (P,W ) :=∑
x P (x)T (W (·|x)‖PW ). Choose η in Feinstein’s theorem to be 1√

n
. In view of (4.47), the following

continuity properties hold for c1, c2 > 0:∣∣I(P,W )− I(P ∗X ,W )
∣∣ ≤ c1n−2, and (4.54)∣∣∣√V (P,W )−

√
V (P ∗X ,W )

∣∣∣ ≤ c2n−1. (4.55)

The bound in (4.54) follows because P 7→ I(P,W ) behaves as a quadratic function near P ∗X while (4.55)

follows from the Lipschitz-ness of P 7→
√
V (P,W ) near P ∗X because Vε(W ) > 0. Combining these bounds

with the type counting lemma in (1.27) and Taylor expansion of Φ−1(·) in (4.53) concludes the proof.

We remark that if there are additive cost constraints on the codewords, the above proof goes through
almost unchanged. The leading term in the asymptotic expansion in (4.46) would, of course, be the capacity-
cost function [49, Sec. 3.3]. The analogues of Vmin(W ) and Vmax(W ) that define the ε-dispersion (cf. (4.28))
would involve the maximum and minimum over the set of input distributions P satisfying EP [b(X)] ≤ Γ.
The third-order term remains unchanged. For more details, the reader is referred to [98].

In fact, the Gaussian approximation can be achieved with constant composition codes that are also
partially universal. The only statistics of the DMC we need to know are the capacity and the ε-dispersion.
The idea is to compare the empirical mutual information of a codeword and the channel output Î(x(m)∧y) to
a threshold (that depends on capacity and dispersion), similar to maximum mutual information decoding [38,
62]. This technique was delineated in the proof of Theorem 3.2 for lossless source coding. Essentially, in
channel coding, it uses the fact that if Xn is uniform over the type class TP and Y n is the corresponding
channel output, the empirical mutual information Î(Xn ∧ Y n) satisfies the central limit relation

√
n
(
Î(Xn ∧ Y n)− I(P,W )

) d−→ N
(
0, V (P,W )

)
. (4.56)

4.2.3 Converse Bounds: Asymptotic Expansions

The following are the strongest known asymptotic converse bounds.

Theorem 4.3. If the DMC W satisfies Vε(W ) > 0,

logM∗ave(Wn, ε) ≤ nC +
√
nVεΦ

−1(ε) +
1

2
log n+O(1). (4.57)
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If, in addition, the DMC is symmetric and singular,

logM∗ave(Wn, ε) ≤ nC +
√
nVεΦ

−1(ε) +O(1). (4.58)

The claim in (4.57) is due to Tomamichel-Tan [164], and proved concurrently by Moulin [113], while (4.58)
is due to Altuğ-Wagner [12]. The case Vε(W ) = 0 was also treated in Tomamichel-Tan [164] but we focus on
channels with Vε(W ) > 0. See [164, Fig. 1] for a summary of the best known upper bounds on logM∗ave(Wn, ε)
for all classes of DMCs (regardless of the positivity of Vε(W )).

Theorem 4.3 implies that logM∗ave(Wn, ε) is upper bounded by the Gaussian approximation nC +√
nVεΦ

−1(ε) plus at most 1
2 log n + O(1). In general, this cannot be improved without further assump-

tions on the channel because it can be shown that third-order term is 1
2 log n + O(1) for binary symmetric

channels [123, Thm. 52]. In fact, for non-singular channels, Theorem 4.1 shows that 1
2 log n + O(1) is

achievable in the third-order. The inequality in (4.57) improves on the results by Strassen [152, Thm. 1.2]
and Polyanskiy-Poor-Verdú [123, Eq. (279)] who showed that the third-order term is upper bounded by
(|X | − 1

2 ) log n+O(1). The upper bound presented in (4.57) is independent of the input alphabet |X |.
Furthermore, under the stronger condition of symmetry and singularity, the third-order term can be

tightened to O(1). In view of the first part of Theorem 4.1, the third-order term of these channels is O(1).
As the entire proof of Theorem 4.3 is rather lengthy, we will only provide a proof sketch of (4.57) for

Vmin(W ) > 0, highlighting the key features, including a novel construction of a net to approximate all output
distributions. The following proof sketch is still fairly long, and the reader can skip it without any essential
loss of any continuity.

Proof sketch of (4.57). We assume that Vmin(W ) > 0. For DMC, the bound in Proposition 4.4 evaluates to

logM∗ave(Wn, ε) ≤ min
Q(n)

max
x∈Xn

Dε+η
s

(
Wn(·|x)

∥∥Q(n)
)

+ log
1

η
. (4.59)

In the following, we choose η = 1√
n

so the log term above gives our 1
2 log n. It is thus important to find

a suitable choice of Q(n) ∈ P(Yn) to further upper bound the above. Symmetry considerations (see, e.g.,
[121, Sec. V]) allow us to restrict the search to distributions that are invariant under permutations of the n
channel uses.

Let ζ := |Y|(|Y| − 1) and let γ > 0. Consider the following convex combination of product distributions:

Q(n)(y) :=
1

2

∑
k∈K

exp
(
− γ‖k‖22

)
F

n∏
i=1

Qk(yi)

+
1

2

∑
Px∈Pn(X )

1

|Pn(X )|
n∏
i=1

PxW (yi), (4.60)

where F is a normalization constant that ensures
∑

y Q
(n)(y) = 1,

Qk(y) := Q∗(y) +
ky√
nζ
, (4.61)

and the index set K is defined as

K :=

{
k = {ky}y∈Y ∈ Z|Y| :

∑
y∈Y

ky = 0, ky ≥ −Q∗(y)
√
nζ

}
. (4.62)

See Fig. 4.2. The convex combination of output distributions induced by input types (PxW )n and the optimal
output distribution (Q∗)n (corresponding to k = 0) in Q(n) is inspired partly by Hayashi [76, Thm. 2]. What
we have done in our choice of Qk is to uniformly quantize the simplex P(Y) along axis-parallel directions
to form a net. The constraint that each k belongs to K ensures that each Qk is a valid probability mass
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Figure 4.2: Illustration of the choice of {Qk}k∈K for Y = {0, 1}. Note that all probability distributions lie
on the line Q(0) +Q(1) = 1 and each element of the net is denoted by Qk where k denotes some vector with
integer elements.

function. It can be shown that F < ∞. Furthermore one can verify that for any Q ∈ P(Y), there exists a
k ∈ K such that

‖Q−Qk‖2 ≤
1√
n

(4.63)

so the net we have constructed is 1√
n

-dense in the `2-norm metric.

Let us provide some intuition for the choice of Q(n). The first part of the convex combination is used to
approximate output distributions induced by input types that are close to the set of CAIDs Π. We choose
a weight for each element of the net that drops exponentially with the distance from the unique CAOD.
This ensures that the normalization F does not depend on n even though the number of elements in the
net increases with n. The smaller weights for types far from the CAIDs will later be compensated by the
larger deviation of the corresponding mutual information from the capacity. This is achieved by the second
part of the convex combination which we use to match the input types far from the CAIDs. This partition
of input types into those that are close and far from Π was also used by Strassen [152] in his proof of the
second-order asymptotics for DMCs,

Now we just have to evaluate Dε+η
s

(
Wn(·|x)

∥∥Q(n)
)

for all x ∈ Xn. The idea is to partition input
sequences depending on their distance from the set of CAIDs. For this define

Πµ :=
{
P ∈P(X ) : min

P∗∈Π
‖P − P ∗‖2 ≤ µ

}
(4.64)

for some small µ > 0. The choice of µ will be made later.
For sequences not in Πµ, we pick (PxW )n from the convex combination (per Lemma 2.2) giving

Dε+η
s

(
Wn(·|x)

∥∥Q(n)
)
≤ Dε+η

s

(
Wn(·|x)

∥∥(PxW )n
)

+ log
(
2|Pn(X )|

)
. (4.65)

Next the Chebyshev type bound in Proposition 2.2 yields

Dε+η
s

(
Wn(·|x)

∥∥Q(n)
)
≤ nI(Px,W ) +

√
nV (Px,W )

1− ε− η + log
(
2|Pn(X )|

)
. (4.66)

Since I(Px,W ) ≤ C ′ < C (i.e., the first-order mutual information term is strictly bounded away from
capacity), V (Px,W ) is uniformly bounded [67, Rmk. 3.1.1] and the number of types is polynomial, the right-
hand-side of the preceding inequality is upper bounded by nC ′ +O(

√
n). This is smaller than the Gaussian

approximation for all sufficiently large n as C ′ < C.
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Now for sequences in Πµ, we pick Qk(x) from the net that is closest to PxW . Per Lemma 2.2, this gives

Dε+η
s

(
Wn(·|x)

∥∥Q(n)
)
≤ Dε+η

s

(
Wn(·|x)

∥∥Qnk(x)

)
+ γ‖k(x)‖22 + log

(
2F
)
. (4.67)

By the Berry-Esseen-type bound in Proposition 2.1, we have

Dε+η
s

(
Wn(·|x)

∥∥Q(n)
)
≤ nD(W‖Qk(x)|Px)

+
√
nV (W‖Qk(x)|Px)Φ−1

(
ε+

κ√
n

)
+ γ‖k(x)‖22 + log

(
2F
)

(4.68)

for some finite κ > 0. By the 1√
n

-denseness of the net, the positivity of the CAOD, and the bound D(Q̃‖Q) ≤
‖Q̃−Q‖22/minz Q(z) [40, Lem. 6.3] we can show that there exists a constant q > 0 such that

D(W‖Qk(x)|Px) ≤ I(Px,W ) +
‖PxW −Qk(x)‖22

q
≤ I(Px,W ) +

1

nq
. (4.69)

Furthermore by the Lipschitz-ness of Q 7→
√
V (W‖Q|P ) which follows from the fact that Q(y) > 0 for all

y ∈ Y, we have ∣∣∣√nV (W‖Qk(x)|Px)−
√
V (Px,W )

∣∣∣ ≤ β‖PxW −Qk(x)‖2 ≤
β√
n
. (4.70)

It is known from Strassen’s work [152, Eq. (4.41)] and continuity considerations that for all Px ∈ Πµ,

I(Px,W ) ≤ C − αξ2 and
∣∣∣√V (Px,W )−

√
V (P ∗,W )

∣∣∣ ≤ βξ, (4.71)

where P ∗ is the closest element in Π to Px and ξ is the corresponding Euclidean distance. Let ‖W‖2 be the
spectral norm of W . By the construction of the net,

‖k(x)‖2 ≤
√
nζ‖Qk(x) −Q∗‖2 (4.72)

≤
√
nζ
(
‖Qk(x) − PxW‖2 + ‖PxW −Q∗‖2

)
(4.73)

≤
√
nζ

(
1√
n

+ ‖W‖2ξ
)

(4.74)

Uniting (4.68), (4.69), (4.70) and (4.74) and using some simple algebra completes the proof.

As can be seen from the above proof, the net serves to approximate all possible output distributions so
that, together with standard continuity arguments concerning information quantities, the remainder terms
resulting from (4.69), (4.70) and (4.74) are all O(1).

If we had chosen the more “natural” output distribution

Q̃(n)(y) =
∑

Px∈Pn(X )

1

|Pn(X )|
n∏
i=1

PxW (yi) (4.75)

in place of Q(n) in (4.60), an application of Lemma 2.2, the type counting lemma in (1.27), and continuity
arguments shows that the third-order term would be (|X |− 1

2 ) log n+O(1). This upper bound on the third-
order term was shown in the works by Strassen [152, Thm. 1.2] and Polyanskiy-Poor-Verdú [123, Eq. (279)].
The choice of output distribution in (4.75) is essentially due to Hayashi [76].
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4.3 Asymptotic Expansions for Gaussian Channels

In this section, we consider discrete-time additive white Gaussian noise (AWGN) channels in which

Yi = Xi + Zi, (4.76)

for each time i = 1, . . . , n. The noise {Zi}ni=1 is a memoryless, stationary Gaussian process with zero mean
and unit variance so the channel can be expressed as

W (y|x) = N (y;x, 1) =
1√
2π

e−(y−x)2/2. (4.77)

This is perhaps the most important and well-studied channel in communication systems. In the case of
Gaussian channels, we must impose a cost constraint on the codewords, namely for every m,

‖f(m)‖22 =

n∑
i=1

fi(m)2 ≤ n snr (4.78)

where n is the blocklength, snr is the admissible power and fi(m) is the i-th coordinate of the m-th codeword.
The signal-to-noise ratio is thus snr. We use the notation M∗ave(Wn, snr, ε) to mean the maximum number
of codewords transmissible over Wn with average error probability and signal-to-noise ratio not exceeding
ε ∈ (0, 1) and snr respectively. We define M∗max(Wn, snr, ε) in an analogous fashion.

Define the Gaussian capacity and Gaussian dispersion functions as

C(snr) :=
1

2
log(1 + snr), and V(snr) := log2 e · snr(snr + 2)

2(snr + 1)2
(4.79)

respectively. The direct part of the following theorem was proved in Tan-Tomamichel [159] and the converse
in Polyanskiy-Poor-Verdú [123, Thm. 54]. The second-order asymptotics (ignoring the third-order term) was
proved concurrently with [123] by Hayashi [76, Thm. 5]. Hayashi showed the direct part using the second-
order asymptotics for DMCs with cost constraints (similar to Theorem 4.2) and a quantization argument
(also see [153]). The converse part was shown using the Hayashi-Nagaoka converse bound in (4.11) with the
output distribution chosen to be the product CAOD.

Theorem 4.4. For every snr ∈ (0,∞),

logM∗ave(Wn, snr, ε) = nC(snr) +
√
nV(snr)Φ−1(ε) +

1

2
log n+O(1). (4.80)

For the AWGN channel, we see that the asymptotic expansion is known exactly up to the third order
under the average error setting. The converse proof (upper bound of (4.80)) is simple and uses a specialization
of Proposition 4.4 with the product CAOD.

The achievability proof is, however, more involved and uses the RCU bound and Laplace’s technique for
approximating high-dimensional integrals [150, 162]. The main step establishes that if Xn is uniform on the
power sphere {x : ‖x‖22 = n snr}, one has

Pr
(
〈Xn, Y n〉 ∈ [b, b+ µ]

∣∣Y n = y
)
≤ κ · µ√

n
. (4.81)

where κ does not depend on b ∈ R and typical y, i.e., y such that ‖y‖22 ≈ n(snr + 1). The estimate in
(4.81) is not obvious as the inner product 〈Xn, Y n〉 is not a sum of independent random variables and so
standard limit theorems (like those in Section 1.5) cannot be employed directly. The division by

√
n gives

us the 1
2 log n beyond the Gaussian approximation.

If one is content with just the Gaussian approximation with an O(1) third-order term, one can evaluate
the so-called κβ-bound [123, Thm. 25]. See [123, Thm. 54] for the justification. The reader is also referred
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to MolavianJazi-Laneman [112] for an elegant proof strategy using the central limit theorem for functions
(Theorem 1.5) to prove the achievability part of Theorem 4.4 under the average error setting with an O(1)
third-order term.

It remains an open question with regard to whether 1
2 log n + O(1) is achievable under the maximum

error setting, i.e., whether logM∗max(Wn, snr, ε) is lower bounded by the expansion in (4.80).

Proof. We start with the converse. By appending to a length-n codeword (possibly power strictly less than
snr) an extra (n+ 1)st coordinate to equalize powers [123, Lem. 39] [145, Sec. X] (known as the n → n+ 1
argument or the Yaglom map trick [28, Ch. 9, Thm. 6]), we have that

M∗ave(Wn, snr, ε) ≤M∗ave,eq(Wn+1, snr, ε) (4.82)

where M∗ave,eq(Wn, snr, ε) is similar to M∗ave(Wn, snr, ε), except that the codewords must satisfy the cost
constraints with equality, i.e., ‖f(m)‖22 = ‖x(m)‖22 = n snr. Since increasing the blocklength by 1 does not
affect the asymptotics of logM∗ave(Wn, snr, ε), we may as well assume that all codewords satisfy the cost
constraints with equality. By Proposition 4.4 applied to n uses of the AWGN channel, we have

logM∗ave(Wn, snr, ε)≤ inf
Q(n)

sup
‖x‖22=n snr

Dε+η
s

(
Wn(·|x)‖Q(n)

)
+ log

1

η
. (4.83)

Take η = 1√
n

so the final log term gives 1
2 log n. It remains to show that the (ε + η)-information spectrum

divergence term is upper bounded by the Gaussian approximation plus at most a constant term.
For this purpose, we have to choose the output distribution Q(n) ∈P(Rn). This choice is easy compared

to the DMC case. We choose

Q(n)(y) =

n∏
i=1

Q∗Y (yi), where Q∗Y (y) = N (y; 0, 1 + snr). (4.84)

One can then check that for every x ∈ Rn such that ‖x‖22 = n snr,

E

[
1

n

n∑
i=1

log
W (Yi|xi)
Q∗Y (Yi)

]
= C(snr), and (4.85)

Var

[
1

n

n∑
i=1

log
W (Yi|xi)
Q∗Y (Yi)

]
=

V(snr)

n
. (4.86)

Then, by the Berry-Esseen-type bound in Proposition 2.1, we have

Dε+η
s

(
Wn(·|x)‖Q(n)

)
≤ nC(snr) +

√
nV(snr)Φ−1

(
ε+ η +

6T√
nV(snr)3

)
(4.87)

where T <∞ is related to the third absolute moments of log W (Y |xi)
QY ∗ (Y ) . A Taylor expansion of Φ−1(·) concludes

the proof of the converse.
Since the proof of the direct part is long, we only highlight some key ideas in the following steps. Details

can be found in [159].
Step 1: (Random coding distribution) Consider the following input distribution to be applied to the RCU

bound:

PXn(x) =
δ{‖x‖22 − n snr}
An(
√
n snr)

(4.88)

where δ{·} is the Dirac delta and An(r) = 2πn/2

Γ(n/2)r
n−1 is the surface area of a sphere of radius-r in Rn. The

power constraints are automatically satisfied with probability one. Let

q(x,y) := log
Wn(y|x)

PXnWn(y)
(4.89)
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be the log-likelihood ratio. We will take advantage of the fact that

q(x,y) =
n

2
log

1

2π
+ 〈x,y〉 − n snr − ‖y‖22 − logPXnWn(y) (4.90)

only depends on the codeword through the inner product 〈x,y〉 =
∑n
i=1 xiyi. In fact, q(x,y) is equal to

〈x,y〉 up to a shift that only depends on ‖y‖22.
Step 2: (RCU bound) The RCU bound (Proposition 4.3) states that there exists a blocklength-n code

with M codewords and average error probability ε′ such that

ε′ ≤ E
[

min
{

1,M Pr
(
q(X̄n, Y n) ≥ q(Xn, Y n)

∣∣Xn, Y n
)}]

, (4.91)

where (X̄n, Xn, Y n) ∼ PXn(x̄)PXn(x)Wn(y|x). Let

g(t,y) := Pr
(
q(X̄n, Y n) ≥ t

∣∣Y n = y
)

(4.92)

so the probability in (4.91) can be written as

Pr
(
q(X̄n, Y n) ≥ q(Xn, Y n)

∣∣Xn, Y n
)

= g(q(Xn, Y n), Y n). (4.93)

By using Bayes rule, we see that

g(t,y) = E
[

exp(−q(Xn, Y n))11{q(Xn, Y n) > t}
∣∣Y n = y

]
. (4.94)

Step 3: (A high-probability set) Now, we define a set of channel outputs with high probability

T :=
{

y :
1

n
‖y‖22 ∈ [snr + 1− δn, snr + 1 + δn]

}
(4.95)

With δn = n−1/3, it is easy to show that PXnWn(T ) ≥ 1− ξn where ξn = exp(−Θ(n1/3)).
Step 4: (Probability of the log-likelihood ratio belonging to an interval) We would like to upper bound

g(t,y) in (4.92) to evaluate the RCU bound. As an intermediate step, we consider estimating

p(a, µ |y) := Pr
(
q(Xn, Y n) ∈ [a, a+ µ]

∣∣Y n = y
)
, (4.96)

where a ∈ R and µ > 0 are some constants. Because Y n is fixed to some constant vector y and ‖Xn‖22 is
also constant, p(a, µ |y) can be rewritten using (4.90) as

p(a, µ |y) := Pr
(
〈Xn, Y n〉 ∈ [b, b+ µ]

∣∣Y n = y
)
, (4.97)

for some other constant b that depends on a. So the crux of the proof boils down to understanding the
behavior of the inner product 〈Xn, Y n〉 =

∑n
i=1XiYi per the input distribution in (4.88). The following

important estimate is shown in [159] using Laplace approximation for integrals [150, 162].

Lemma 4.1. For all large enough n (depending only on snr), all y ∈ T and all a ∈ R,

p(a, µ |y) ≤ κ · µ√
n
, (4.98)

where κ > 0 also only depends only on the power snr.

Step 5: (Probability that the decoding metric exceeds t for an incorrect codeword) We now return to
bounding g(t,y) in (4.92). Again, we assume y ∈ T . The idea here is to consider the second form of g(t,y)
in (4.94) and to slice the interval [t,∞) into non-overlapping segments {[t + lµ, t + (l + 1)µ) : l ∈ N ∪ {0}}
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where µ > 0 is a constant. Then we apply Lemma 4.1 to each segment. This is modeled on the proof of
Theorem 1.3. Carrying out the calculations, we have

g(t,y) ≤
∞∑
l=0

exp(−t− lµ)p(t+ lµ, µ |y) (4.99)

≤
∞∑
l=0

exp(−t− lµ) · κ · µ√
n

(4.100)

=
exp(−t)

1− exp(−µ)
· κ · µ√

n
. (4.101)

Since µ > 0 is a free parameter, we may choose it to be log 2 yielding

g(t,y) ≤ (2 log 2)κ · exp(−t)√
n

=: γ · exp(−t)√
n

. (4.102)

Step 6: (Evaluation of RCU) We now have all the necessary ingredients to evaluate the RCU bound in
(4.91). Consider,

ε′ ≤ E
[
min

{
1,Mg

(
q(Xn, Y n), Y n

)}]
(4.103)

≤ Pr(Y n ∈ T c)
+ E

[
min

{
1,Mg(q(Xn, Y n), Y n)

} ∣∣∣Y n ∈ T ] · Pr(Y n ∈ T ). (4.104)

The first term is bounded above by ξn and the second can be bounded above by

E

[
min

{
1,
Mγ exp(−q(Xn, Y n))√

n

} ∣∣∣∣Y n ∈ T ] · Pr(Y n ∈ T ) (4.105)

due to (4.102) with t = q(Xn, Y n). We split the expectation into two parts depending on whether q(x,y) >
log(Mγ/

√
n) or otherwise, i.e.,

E

[
min

{
1,
Mγ exp(−q(Xn, Y n))√

n

} ∣∣∣∣Y n ∈ T ] (4.106)

≤ Pr

(
q(Xn, Y n) ≤ log

Mγ√
n

∣∣∣∣Y n ∈ T )
+
Mγ√
n
E

[
11

{
q(Xn, Y n)> log

Mγ√
n

}
exp(−q(Xn, Y n))

∣∣∣∣Y n∈T ] . (4.107)

By applying (4.102) with t = log(Mγ/
√
n), we know that the second term can be bounded above by γ/

√
n.

Now let Q∗Y (y) = N (y; 0, snr + 1) be the CAOD and Q∗Y n(y) =
∏n
i=1Q

∗
Y (yi) its n-fold memoryless

extension. In Step 1 of the proof of Lem. 61 in [123], Polyanskiy-Poor-Verdú showed that there exists a finite
constant ζ > 0 such that

sup
y∈F

PXnWn(y)

Q∗Y n(y)
≤ ζ. (4.108)

Thus, the first probability in (4.107) multiplied by Pr(Y n ∈ T ) can be upper bounded using the Berry-Esseen
theorem and the statistics in (4.85)–(4.86) by

Pr

(
log

Wn(Y n|Xn)

Q∗Y n(Y n)
≤ log

Mγζ√
n

)
≤ Φ

(
log Mγζ√

n
− nC(snr)√

nV(snr)

)
+

β√
n
, (4.109)

where β is a finite positive constant that depends only on snr.
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Channel Third-Order Term Prefactor %n

Non-singular, Symm. DMC 1
2 log n+O(1) Θ

(
1

n(1+|E′(R)|)/2

)
Singular, Symm. DMC O(1) Θ

(
1

n1/2

)
AWGN 1

2 log n+O(1) Θ

(
1

n(1+|E′(R)|)/2

)
Table 4.2: Comparison between the third-order term in the normal approximation and prefactors in the
error exponents regime %n for various classes of channels. The reliability function [39, 56, 74] is denoted as
E(R) and its derivative (if it exists) is E′(R). For the first row of the table, symmetry is not required for
the third-order term to be equal to 1

2 log n+O(1) (cf. (4.33) and (4.57)).

Putting all the bounds together, we obtain

ε′ ≤ Φ

(
log Mγζ√

n
− nC(snr)√

nV(snr)

)
+

β√
n

+
γ√
n

+ ξn. (4.110)

Now choose M to be the largest integer satisfying

logM ≤ nC(snr) +
√
nV(snr)Φ−1

(
ε− β + γ√

n
− ξn

)
+

1

2
log n− log(γζ). (4.111)

This choice ensures that ε′ ≤ ε. By a Taylor expansion of Φ−1(·), this completes the proof of the lower
bound in (4.80).

4.4 A Digression: Third-Order Asymptotics vs Error Exponent
Prefactors

We conclude our discussion on fixed error asymptotics for channel coding with a final remark. We have
seen from Theorems 4.1 and 4.3 that the third-order term in the normal approximation for DMCs is given
by 1

2 log n+O(1) (resp. O(1)) for non-singular channels (resp. singular, symmetric channels). We have also
seen from Theorem 4.4 that the third-order term for AWGN channels is 1

2 log n + O(1). These results are
summarized in Table 4.2.

In another line of study, Altuğ-Wagner [10, 11] and Scarlett-Martinez-Guillén i Fàbregas [135] derived
prefactors in the error exponents regime for DMCs. In a nutshell, the authors were concerned with finding
a sequence %n such that, for high rates (i.e., rates above the critical rate),3

ε∗ (Wn, bexp(nR)c) ∼ %n · exp
(
− nE(R)

)
, (4.112)

where ε∗(Wn,M) is the smallest average error probability of a code for the channel Wn with M codewords,
and E(R) is the reliability function (or error exponent) of the channel [39, 56, 74]. The results are also
summarized in Table 4.2. For the AWGN channel, it can be verified from Shannon’s work on the error
exponents for the AWGN channel [145] that the prefactor is the same as that for non-singular, symmetric
DMCs. Also see the work by Wiechman and Sason [178]. Table 4.2 suggests that there is a correspondence
between third-order terms and prefactors. A precise relation between these two fundamental quantities is
an interesting avenue for future research.

3We recall from Section 1.3.1 that an ∼ bn iff an/bn → 1 as n→∞.
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Figure 4.3: Illustration of the joint source-channel coding problem.

4.5 Joint Source-Channel Coding

We conclude our discussion on channel coding by putting together the results and techniques presented in
this and the previous chapter on (lossy and lossless) source coding. We consider the fundamental problem of
transmitting a memoryless source over a memoryless channel as shown in Fig. 4.3. Shannon showed [141, 144]
that as long as

lim sup
n→∞

kn
n
<

C(W )

R(P,∆)
, (4.113)

where kn is the number of independent source symbols from P and n is the number of channel uses, the
probability of excess distortion can be arbitrarily small in the limit of large blocklengths. The ratio kn/n is
also known as the bandwidth expansion ratio. We summarize known fixed error probability-type results on
source-channel transmission in this section.

The source-channel transmission problem is formally defined as follows: A (d,∆, ε)-code for source S with
distribution P ∈ P(S) over the channel W ∈ P(Y|X ) is a pair of maps including an encoder f : S → X
and a decoder ϕ : Y → S such that the probability of excess distortion∑

s∈S
P (s)W

(
{y : d(s, ϕ(y)) > ∆}

∣∣ f(s)
)
≤ ε. (4.114)

Again we assume there are no cost constraints on the channel inputs to simplify the exposition. If there are
cost constraints, a natural coding strategy would involve constant compostion codes as discussed in Theorem
4.2.

In the conventional fixed-to-fixed length setting in which X and Y are n-fold Cartesian products of
the input and output alphabets respectively and S is the k-fold Cartesian product of the source alphabet
respectively, we may define the following: A (k, n, d(k),∆, ε)-code is simply a (d(k),∆, ε)-code for the source
Sk with distribution P k ∈P(Sk) and over the channel Wn ∈P(Yn|Xn) such that the probability of excess
distortion measure according to d(k) is no greater than ε.

The source-channel non-asymptotic fundamental limit we are interested in is defined as follows:

k∗(n, d(k),∆, ε) :=max
{
k ∈ N : ∃ a (k, n, d(k),∆, ε)-code for (P k,Wn)

}
. (4.115)

This represents the maximum number of source symbols transmissible over the channel Wn such that the
probability of excess distortion (at distortion level ∆) does not exceed ε. One is also interested in the
maximum joint source-channel coding rate which is ratio between the number of source symbols and the
number of channel uses, i.e.,

R∗(n, d(k),∆, ε) :=
k∗(n, d(k),∆, ε)

n
. (4.116)

4.5.1 Asymptotic Expansion

The main result of this section was proved independently by Kostina-Verdú [99] and Wang-Ingber-Kochman [170]
(for the special case of transmitting DMSes over DMCs).

Theorem 4.5. Assume the regularity conditions on the source and distortion as in Theorem 3.3. Assume
that W is a DMC with dispersion V (W ) = Vmin(W ) = Vmax(W ) > 0. Then, there exists a sequence of
(k, n, d(k),∆, ε)-codes for P k and Wn if and only if

kR(P,∆)−nC(W )=
√
kV (P,∆)+nV (W )Φ−1(ε)+O(log n). (4.117)
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Figure 4.4: Illustration of the separation scheme for source-channel transmission

Accordingly, by a simple rearrangement, one easily sees that

R∗(n, d(k),∆, ε)=
C(W )

R(P,∆)
+

√
V (W,P,∆)

n
Φ−1(ε)+O

(
log n

n

)
(4.118)

where the rate-dispersion function is

V (W,P,∆) :=
R(P,∆)V (W ) + C(W )V (P,∆)

R(P,∆)3
. (4.119)

We will not prove this theorem here, as the main ideas, based on new non-asymptotic bounds, have been
detailed in previous asymptotic expansions.

The intuition behind the result in Theorem 4.5 is perhaps more important. The non-asymptotic bounds
that are evaluated very roughly say that a joint source-channel coding scheme with probability of excess
distortion no larger than ε exists if and only if

Pr
(
In < Jk,n

)
≤ ε (4.120)

where the random variables In and Jk,n are defined as

In :=
1

n
log

Wn(Y n|x)

(P ∗XW )n(Y n)
, and Jk,n :=

1

n
(Sk;P k,∆) (4.121)

and x has type P ∈ Pn(X ) close to Π ⊂ P(X ), the set of CAIDs. The bound in (4.120) provides the
intuition that erroneous transmission of the source occurs if and only if the information density random
variable In of the channel is not large enough to support the information content of the source, represented
by the ∆-tilted information Jk,n. We can now estimate the probability in (4.120) by using the central limit
theorem for k + n independent random variables, and the fact that In − Jk,n has first- and second-order
statistics

E[In − Jk,n] = C(W )− k

n
R(P,∆), and (4.122)

Var[In − Jk,n] =
1

n
V (W ) +

k

n2
V (P,∆). (4.123)

This essentially explains the asymptotic expansions in Theorem 4.5.

4.5.2 What is the Cost of Separation?

In showing the seminal result in (4.113), Shannon used a separation scheme. That is, he first considers source
compression to distortion level ∆ using a source encoder fs and subsequently, information transmission over
channel Wn using a channel encoder fc. To decode, simply reverse the process by using a channel decoder
ϕd and a source decoder ϕs. See Fig. 4.4 where m denotes the digital interface. While this idea of separation
has guided the design of communication systems for decades and is first-order optimal in the limit of large
blocklengths, it turns out that such is scheme is neither optimal from the error exponents4 perspective [35]

4To be more precise, the suboptimality of separation in the error exponents regime occurs only when kR(P,∆) < nC(W ). In
the other case, by analyzing the probability of no excess distortion, Wang-Ingber-Kochman [171] showed, somewhat surprisingly,
that separation is optimal.
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nor the fixed error setting. What is the cost of separation in when the error probability is allowed to be
non-vanishing? By combining Theorem 3.3 (for rate distorion), Theorems 4.1—4.3 (for channel coding), one
sees that there exists a sequence of (k, n, d(k),∆, ε)-codes for P k and Wn satisfying

kR(P,∆)− nC(W ) +O(log n)

≥ max
εs+εc≤ε

{√
kV (P,∆)Φ−1(εs) +

√
nV (W )Φ−1(εc)

}
. (4.124)

Inequality (4.124) suggests that we first compress the source up to distortion level ∆ with excess distortion
probability εs, then we transmit the resultant bit string over the channel Wn with average error probability
εc. In order to have the end-to-end excess distortion probability be no larger than ε, one has to design the
source and channel codes so that εs + εc ≤ ε.

Because the maximum in (4.124) is no larger than the square root term in (4.117), separation is strictly
sub-optimal in the second-order asymptotic sense (unless either V (W ) or V (P,∆) vanishes). This is un-
surprising because for the separation scheme, the source and channel error events are treated separately,
while the (approximate) non-asymptotic bound in (4.120) suggests that treating the system jointly results
in better performances in terms of both error and rate.
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Chapter 5

Channels with Random State

This chapter departs from a key assumption in usual channel coding (Chapter 4) in which the channel
statistics do not change with time. In many practical communication settings, one may encounter situations
where there is uncertain knowledge of the medium of transmission, or where the medium is changing over
time, such as a wireless channel with fading or memory with stuck-at faults. This situation may be mod-
eled using a channel whose conditional output probability distribution depends on a state process. Other
prominent applications include digital watermarking and information hiding [114]. A thorough review of the
(first-order) results in channels with state (or side information) is available in the excellent books by Keshet,
Steinberg and Merhav [92] and El Gamal and Kim [49, Ch. 7].

The state may be known at the encoder only, the decoder only, or at both the encoder and decoder. The
capacity is known in these cases when the state follows an i.i.d. process and the channel is stationary and
memoryless given the state. In this chapter, we review known fixed error probability results for channels
with random state known only at the decoder, channels with random state known at both the encoder and
decoder, Costa’s dirty-paper coding (DPC) problem [30], mixed channels [67, Sec. 3.3] and quasi-static single-
input-multiple-output (SIMO) fading channels. Asymptotic expansions of the logarithm of the maximum
code size are derived for each problem.

We briefly mention some problems we do not treat in this chapter. The second-order asymptotics for
the discrete memoryless Gel’fand-Pinsker [59] problem (where the state is known noncausally at the encoder
only) has not been completely solved [177, 188] so we do not discuss this beyond the Gaussian case (the
DPC problem). We also do not discuss the case where the state is known causally at the encoder. Second-
order asymptotic analysis has also not been performed for this problem first considered by Shannon [143]
(i.e., Shannon strategies). We leave out channels with non-memoryless state, for example, the Gilbert-Elliott
channel [50, 60, 116] for which the second-order asymptotics (dispersion) are known [124] under various
scenarios. Finally, our focus here is on channels with a random state. We do not explore channels that
depend on a non-random (but unknown) state. This is also known as the compound channel, and the
asymptotic expansion was derived by Polyanskiy [120].

5.1 Random State at the Decoder

We warm up with the simple model shown in Fig. 5.1. Here there is a state distribution PS ∈ P(S) on a
finite alphabet S which generates an i.i.d. random state S, i.e., a discrete memoryless source (DMS). The
channel W is a conditional probability distribution from X × S to Y. If the state process is i.i.d. and the
channel is discrete, stationary and memoryless given the state, it is easy to see that the capacity is

CSI−D(W,PS) = max
P∈P(X )

I(X;Y |S) = max
P∈P(X )

I(X;Y S). (5.1)

The idea is to regard (Y, S) as the output of a new channel W̃ (y, s|x) = PS(s)W (y|x, s), and then to use
Shannon’s result for the capacity of a DMC in (4.1). Analogously to the problems we treated previously, we
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Figure 5.1: Illustration of the state at decoder problem

define M∗SI−D(Wn, PSn , ε) to be the maximum number of messages transmissible over the DMC Wn with
i.i.d. state Sn ∼ PSn known at the decoder and with average error probability not exceeding ε ∈ (0, 1). We
also let Ws(y|x) := W (y|x, s) denote the channel indexed by s ∈ S.

The following is due to Ingber and Feder [85].

Theorem 5.1. Assume that Vε(Ws) > 0 for all s ∈ S and Vε(Ws) does not depend1 on ε ∈ (0, 1). Then,

logM∗SI−D(Wn, PSn , ε)

= nCSI−D(W,PS) +
√
nVSI−D(W,PS)Φ−1(ε) +O(log n), (5.2)

where the dispersion VSI−D(W,PS) is

VSI−D(W,PS) = ES [V (WS)] + VarS [C(WS)] (5.3)

and where C(Ws) is the capacity of channel Ws ∈P(Y|X ).

The proof is based on the fact that we can define a new channel W̃ from X to Y × S and so letting X
be a random variable whose distribution P ∈P(X ) is a CAID, we have

VSI−D(W,PS)

= Var

[
log

W̃ (Y, S|X)

PXW̃ (Y, S)

]
= Var

[
log

W (Y |X,S)

PXW (Y |S)

]
(5.4)

= E

[
Var

[
log

W (Y |X,S)

PXW (Y |S)

∣∣∣S]]+ Var

[
E
[

log
W (Y |X,S)

PXW (Y |S)

∣∣∣S]] (5.5)

= ES [V (WS)] + Var[C(WS)] (5.6)

where (5.5) follows from the law of total variance with the conditional distribution PXW (y|s) :=
∑
x PX(x)W (y|x, s),

and (5.6) follows from the definition of the capacity and dispersion of Ws.
The dispersion in (5.3) is intuitively pleasing: The term ES [V (WS)] represents the randomness of the

channels {Ws : s ∈ S} given the state; the term VarS [C(WS)] represents the randomness of the state.

5.2 Random State at the Encoder and Decoder

The next model we will study is similar to that in the previous section. However, here the i.i.d. state is
known noncausally at both the encoder and the decoder. See Fig. 5.2. Again, let W ∈ P(Y|X × S) be a
state-dependent discrete memoryless channel, stationary and memoryless given the state and let PS ∈P(S)
be a DMS. It is known [49, Sec. 7.4.1] that the capacity of this channel is

CSI−ED(W,PS) = max
PX|S∈P(X|S)

I(X;Y |S). (5.7)

1If the CAIDs of each Ws is unique, Vε(Ws) does not depend on ε ∈ (0, 1).
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Figure 5.2: Illustration of the state at encoder and decoder problem

Goldsmith and Varaiya [61] used time sharing of the state sequence to prove the achievability part of (5.7).
Essentially, their idea is to divide the message into |S| sub-messages (rate-splitting). Each of these sub-
messages can be sent reliably if and only if its rate is smaller than I(X;Y |S = s) for some PX|S(·|s)
assuming that the state sequence Sn is strongly typical. Averaging I(X;Y |S = s) over PS(s) proves the
direct part of (5.7). Clearly, if there exists an optimizing distribution P ∗X|S in (5.7) such that P ∗X|S(·|s) does

not depend on s, then CSI−ED(W,PS) = CSI−D(W,PS). For example, if the set of channels {Ws : s ∈ S}
consists of binary symmetric channels with different crossover probabilities, P ∗X|S(·|s) is uniform for all s ∈ S.

In the spirit of this monograph, let M∗SI−ED(Wn, PSn , ε) be the maximum number of messages transmis-
sible over the channel Wn with i.i.d. random state Sn ∼ PSn known at both encoder and decoder and with
average error probability not exceeding ε ∈ (0, 1).

The following is due to Tomamichel and Tan [165].

Theorem 5.2. Let W satisfy the assumptions in Theorem 5.1. Then,

logM∗SI−ED(Wn, PSn , ε)

= nCSI−ED(W,PS) +
√
nVSI−ED(W,PS)Φ−1(ε) +O(log n), (5.8)

where the dispersion VSI−ED(W,PS) is the expression given in (5.3).

While the appearance of Theorem 5.2 is remarkably similar to that of Theorem 5.1, its justification is
significantly more involved. We will not provide the whole proof here as it is long but only highlight the key
steps in the sketch below. Before we do so, for a sequence s ∈ Sn, denote Ps ∈Pn(S) as its type and define

χ(s) :=
∑
s∈S

Ps(s)C(Ws) =
1

n

n∑
i=1

C(Wsi), and (5.9)

ν(s) :=
∑
s∈S

Ps(s)V (Ws) =
1

n

n∑
i=1

V (Wsi) (5.10)

to be the empirical capacity and the empirical dispersion respectively.

Proof sketch of Theorem 5.2. Suppose first that the state is known to be some deterministic sequence s ∈
Sn of type Ps. Denote the optimum error probability for a length-n block code with M codewords as
ε∗(Wn,M, s). We know by a slight extension of the channel coding result (Theorems 4.1 and 4.3) to
memoryless but non-stationary channels that

ε∗(Wn,M, s) = Φ

(
logM − nχ(s)√

nν(s)

)
+O

(
1√
n

)
, (5.11)

where the implied constant in the O(·)-notation above is uniform over all strongly typical state types Ps.
The optimum error probability when the state is random and i.i.d. is denoted as ε∗(Wn,M) and it can be
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written as the following expectation:

ε∗(Wn,M) = ESn

[
ε∗(Wn,M, Sn)

]
. (5.12)

Therefore, the analysis of the following expectation is crucial:

ESn

[
Φ

(
logM − nχ(Sn)√

nν(Sn)

)]
. (5.13)

The analysis of (5.13) is facilitated by following lemmas whose proofs can be found in [165].

Lemma 5.1. The following holds uniformly in α ∈ R:

E

[
Φ

(
√
n · α− χ(Sn)√

ν(Sn)

)]
− E

[
Φ

(
√
n · α− χ(Sn)√

ES [V (WS)]

)]
= O

(
log n

n

)
. (5.14)

This lemma says that we can essentially replace the random quantity ν(Sn) in (5.13) with the deter-
ministic quantity ES [V (WS)]. The next step involves approximating χ(Sn) in (5.13) with the true capacity
CSI−ED(W,PS).

Lemma 5.2. The following holds uniformly in α ∈ R:

E

[
Φ

(
√
n · α− χ(Sn)√

ES [V (WS)]

)]

= Φ

(
√
n · α− CSI−ED(W,PS)√

ES [V (WS)] + VarS [C(WS)]

)
+O

(
1√
n

)
. (5.15)

The idea behind the proof of this lemma is as follows: From (5.9), one can write χ(Sn) as an average of
i.i.d. random variables C(WSi

). The expectation in (5.15) can then be written as

E

[
Φ

(
√
n · α− CSI−ED(W,PS)√

ES [V (WS)]
+

√
VarS [C(WS)]

ES [V (WS)]
· Jn

)]
(5.16)

where

Jn :=
1√
n

n∑
i=1

Ei, and Ei :=
C(WSi

)− CSI−ED(W,PS)√
VarS [C(WS)]

(5.17)

Clearly, Ei are zero-mean, unit-variance, i.i.d. random variables and thus Jn converges in distribution to a
standard Gaussian. Now, (5.15) can be established by using the fact that the convolution of two independent
Gaussians is a Gaussian, where the mean and variance are the sums of the constituent means and variances.
Combining Lemmas 5.1 and 5.2 with (5.11)–(5.13) completes the proof.

Finally, we remark that by appropriate modifications to Lemmas 5.1 and 5.2, Theorem 5.2 can be
generalized to the case where the distribution of the state sequence follows a time-homogeneous and ergodic
Markov chain [165, Thm. 8].

5.3 Writing on Dirty Paper

Costa’s “writing on dirty paper” result is probably one of the most surprising in network information theory.
It is a special instance of the Gel’fand-Pinsker problem [59] whose setup is shown in Fig. 5.3. In contrast to
the previous two sections, here the state (usually assumed to be i.i.d.) is known noncausally at the encoder.
The capacity of the Gel’fand-Pinsker channel is

CSI−E(W,PS) = max
PU|S ,f :U×S→X

I(U ;Y )− I(U ;S) (5.18)
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Figure 5.3: Illustration of the Gel’fand-Pinsker problem

where the auxiliary random variable U can be constrained to have cardinality |U| ≤ min{|X ||S|, |Y|+|S|+1}.
A strong converse was proved by Tyagi and Narayan [166].

The Gaussian version of the problem, studied by Costa [30], and called writing on dirty paper, is as
follows. The output of the channel Y is the sum of the channel input X, a Gaussian state S ∼ N (0, inr) and
independent noise Z ∼ N (0, 1), i.e.,

Yi = Xi + Si + Zi, ∀ i = 1, . . . , n. (5.19)

As usual, we assume that the codeword power is constrained to not exceed snr, i.e.,

1

n

n∑
i=1

X2
i ≤ snr (5.20)

with probability one. If the state is not known at either terminal, then the capacity of the channel is

Cno−SI(W,PS) = C

(
snr

1 + inr

)
. (5.21)

If the state is known at both terminals, the decoder can simply subtract it off and the channel behaves like
an AWGN channel with signal-to-noise ratio snr. Thus, the capacity is

CSI−ED(W,PS) = C(snr). (5.22)

Costa’s showed the surprising result [30] that knowledge of the state is not required at the decoder for the
capacity to be C(snr)! In other words,

CSI−E(W,PS) = C(snr). (5.23)

The natural question, in the spirit of this monograph, is whether there is a degradation to higher-
order terms in the asymptotic expansion of logarithm of the maximum code size of the channel for a fixed
average error probability (cf. the AWGN case in Theorem 4.4). Scarlett [134] and Jiang-Liu [89] showed the
surprising result that there is no degradation up to the second-order dispersion term! Furthermore, Scarlett
[134] showed that the state sequence only has to satisfy a very mild condition. In particular, it neither has to
be Gaussian nor ergodic. The approach by Jiang-Liu [89] is via lattice coding [51]. The proof sketch below
follows Scarlett’s approach in [134].

Theorem 5.3. Assume that there exists some finite Γ > 0 such that

Pr

(
1

n
‖Sn‖22 > Γ

)
= O

(
log n√
n

)
. (5.24)

For any snr ∈ (0,∞), the maximum code size for average error probability no larger than ε satisfies

logM∗SI−E(Wn, PSn , ε) = nC(snr) +
√
nV(snr)Φ−1(ε) +O(log n). (5.25)
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The condition in (5.24) is mild. For example if Sn is a zero-mean, i.i.d. process and Γ is chosen to be
larger than E[S2

1 ], under the condition that E[S4
1 ] < ∞, the probability decays at least as fast as O( 1

n ) by
Chebyshev’s inequality, thus satisfying (5.24).

Before we sketch the proof of Theorem 5.3, let us recap Costa’s proof of the DPC capacity in (5.23). He
assumes S is Gaussian with some variance inr and chooses U = X + αS, where X ∼ N (0, snr) and S are
independent. He then performs calculations which yield

I(U ;Y ) =
1

2
log

(
(snr + inr + 1)(snr + α2inr)

snr · inr(1− α)2 + (snr + α2inr)

)
, (5.26)

I(U ;S) =
1

2
log

(
snr + α2inr

snr

)
, and (5.27)

I(U ;Y )− I(U ;S) =
1

2
log

(
snr(snr + inr + 1)

snr · inr(1− α)2 + (snr + α2inr)

)
. (5.28)

Differentiating the final expression (5.28) with respect to α and setting it to zero shows that α∗ = snr
snr+1

independent of inr. Furthermore the expression (5.28) evaluated at α∗ yields C(snr) which is, of course, also
independent of inr. So the important thing to note here is that I(U ;Y ) − I(U ;S) is independent of inr at
the optimum α, which is the weight of the minimum mean squared error estimate of X given X + Z.

Proof sketch of Theorem 5.3. The main ideas of the proof are sketched here. The converse follows from
Theorem 4.4 so we only have to prove achievability. We start with some preliminary definitions.

The analogue of types of states which take values in Euclidean space and which we find helpful here is
the notion of power types [109]. Fix ξ > 0 and consider the power type class

Tn(τ) :=

{
s ∈ Rn : τ ≤ 1

n
‖s‖22 < τ +

ξ

n

}
(5.29)

where τ = kξ
n . Intuitively, what we are doing is partitioning [0,∞) into small intervals, each of length ξ

n .
For any sequence s ∈ Tn(τ), we say that its power type is τ , i.e., nτ ≤ ‖s‖22 ≤ nτ + ξ. Thus, the normalized
square of the `2-norm, quantized to the left endpoint of the interval [τ, τ + ξ

n ), is the power type of s. The
set of all power types is denoted as Pn ⊂ [0,∞).

Consider the following typical set of power types (also called typical types)

P̃n := Pn ∩ [0,Γ]. (5.30)

Thus, we are simply truncating those power types τ that are larger than Γ, the threshold in the statement of
the theorem. Clearly, the size of the typical set of power types |P̃n| = bΓn/ξc = Θ(n), which is polynomial
in n. This is similar to the discrete case [39, Ch. 2]. Furthermore, by the assumption in (5.24),

Pr
(
PSn /∈ P̃n

)
= O

(
log n√
n

)
. (5.31)

We use the first Θ(log n) symbols to transmit PSn , the state type. The rest of the n−Θ(log n) symbols are
used to transmit the message. By using the theory of error exponents for the Gel’fand-Pinsker problem [115]
and the fact that the number of state types is polynomial, one can show that PSn can be decoded with error
probability O( 1√

n
). The Θ(log n) symbols used to transmit the state type does not affect the dispersion

term. In the following, with a slight abuse of notation, n refers to the remaining channel uses.
The decoder uses information density thresholding with respect to the joint distribution

P
(τ)
SUY (s, u, y) := P

(τ)
S (s)PU |S(y|s)PY |SU (y|s, u) (5.32)

where τ indexes a power type, the state distribution is P
(τ)
S = N (0, τ), the conditional distributions

PU |S(·|s) = N (−αs, snr) and PY |SU (·|s, u) = N (u + (1 − α)s, 1). The corresponding mutual informations
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induced by the joint distribution in (5.32) are denoted as I(τ)(U ;S) and I(τ)(U ;Y ). The constant α > 0 is
arbitrary for now.

With these preparations, we are ready to prove Theorem 5.3 and we divide the proof into several steps.
Step 1 (Codebook Generation): The number of auxiliary codewords for each type τ ∈ P̃n is denoted as

L(τ). For each state type τ ∈ P̃n and each message m ∈ {1, . . . ,M}, generate a type-dependent codebook
C(τ) consisting of codewords {Un(m, l) : m ∈ {1, . . . ,M}, l ∈ {1, . . . , L(τ)}} where each codeword is drawn
independently from

P
(τ)
Un (u) :=

δ{‖u‖22 − n(snr + α2τ)}
An
(√

n(snr + α2τ)
) . (5.33)

That is, similar to the proof of Theorem 4.4, we uniformly generate codewords Un(m, l) from a sphere in Rn
with radius depending on the type, namely

√
n(snr + α2τ).

Step 2 (Encoding): Given the state sequence Sn and message m, the encoder first calculates the type of
Sn, denoted as τ . If τ is not typical in the sense of (5.31) declare an error. The contribution to the overall
error probability is given in (5.31) which is easily seen to not affect the second-order term in (5.25). If τ

is typical, the encoder then proceeds to find an index l̂ ∈ {1, . . . , L(τ)} such that Un(m, l̂) is typical in the
sense that ∥∥Un(m, l̂)− αSn

∥∥2

2
∈
[
n snr − η, n snr

]
, (5.34)

where η > 0 is chosen to be a small constant. If there are multiple such l̂, choose one with the smallest
index. If there is none, declare an encoding error. The encoder transmits Xn := Un(m, l̂) − αSn. Clearly
the power constraint on Xn in (5.20) is satisfied with probability one.

Step 3 (Decoding): Given the channel output y and the state type τ , the decoder looks for a codeword
u(m̃, l̃) ∈ C(τ) such that

q(τ)(u(m̃, l̃),y) :=

n∑
i=1

log
P

(τ)
Y |U (yi|ui(m̃, l̃))
P

(τ)
Y (yi)

≥ γ(τ) (5.35)

where γ(τ) is a power type-dependent threshold to be chosen in the following. The distribution P
(τ)
UY is

defined according to (5.32) and q(τ) is simply an information density indexed by the power type τ .

Step 4 (Analysis of Error Probability): Assume m = 1. Let τ be the power type of the state Sn. Let l̂
be the chosen index in the encoder step. Clearly, the error event is the union of the following two events:

Ec :=
{
∀Un(1, l) ∈ C(τ) :

∥∥Un(1, l)− αSn
∥∥2

2
/∈ [n snr−η, n snr]

}
(5.36)

Ep :=
{

Decoder estimates an m̃ 6= 1
}

(5.37)

If we set the number of auxiliary codewords for type class indexed by τ to be

logL(τ) := nI(τ)(U ;S) + κ1 log n, (5.38)

for some κ1 > 0, then by techniques similar to the covering lemma [49], we can show that

Pr
(
Ec
∣∣PSn = τ

)
≤ exp(−ψn) (5.39)

for some ψ > 0 and all typical types τ ∈ P̃n. The event Ep can be analyzed per Feinstein-style [53] threshold
decoding as follows:

Pr
(
Ep
∣∣ Ec1 , PSn = τ

)
≤ Pr

(
q(τ)(Un, Y n) ≤ γ(τ)

∣∣ Ec1 , PSn = τ
)

+ML(τ) Pr
(
q(τ)(Ūn, Y n) > γ(τ)

∣∣ Ec1 , PSn = τ
)

(5.40)

where Ūn ∼ P (τ)
Un is independent of Y n. By a change-of-measure argument similar to (4.108)–(4.109) for the

AWGN case, one can show that if γ(τ) is chosen to be

γ(τ) = logM + nI(τ)(U ;S) + κ2 log n (5.41)
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where κ2 := κ1 + 1, then the second term in (5.40) decays as O( 1
n ). So it remains to analyze the first-term.

We do so using the Berry-Esseen theorem and the fact that with α∗ = snr
snr+1 , for any τ ∈ P̃n and any s and

u in the support of PSn,Un,Y n conditioned on Ec1 and PSn = τ ,

E
[
q(τ)(Un, Y n)

∣∣Sn=s, Un = u
]

= nI(τ)(U ;Y ) +O(1), and (5.42)

Var
[
q(τ)(Un, Y n)

∣∣Sn=s, Un = u
]

= nV(snr) +O(1). (5.43)

The proof is completed by noting that for α∗ = snr
snr+1 , the difference of mutual informations I(τ)(U ;Y ) −

I(τ)(U ;S) equals C(snr) for every power type τ (in fact every variance) as we discussed prior to the start of
this proof.

5.4 Mixed Channels

In this section, we consider state-dependent DMCs W ∈ P(Y|X × S) where the state sequence is random
but fixed throughout the entire transmission block once it is determined at the start. This class of channels
is known as mixed channels [67, Sec. 3.3]. The precise setup is as follows. Let S be a state random variable
with a binary alphabet S = {0, 1} and let PS be its distribution. We consider two DMCs, each indexed by
a state s ∈ S. These DMCs are denoted as W0 := W (·|·, 0) and W1 := W (·|·, 1) and have capacities C(W0)
and C(W1) respectively. Without loss of generality, we assume that C(W0) ≤ C(W1). We also assume that
each of these channels has a unique CAID and the CAIDs coincide.2 Their ε-channel dispersions (cf. (4.27)–
(4.28)) are denoted by V (W0) and V (W1) respectively. The ε-dispersions are assumed to be positive and
are independent of ε because the CAIDs are unique.

Before transmission begins, the entire state sequence Sn = (S, . . . , S) ∈ {0, 1}n is determined. Note that
the probability that the DMC is Ws is πs := PS(s). The realization of the state is known to neither the
encoder nor the decoder. The probability of observing the sequence y ∈ Yn given an input sequence x ∈ Xn
is

Pr(Y n = y|Xn = x) =
∑
s∈S

πs

n∏
i=1

Ws(yi|xi) =: W
(n)
mix(y|x), (5.44)

explaining the term mixed channels. We let M∗mix(Wn, PS , ε) denote the maximum number of messages that
can be transmitted through the channel Wn when the state distribution is PS and if the tolerable average
error probability is ε ∈ (0, 1).

The class of mixed channels is the prototypical one in which the strong converse property [67, Sec. 3.5]
does not hold in general. This means that the ε-capacity

Cε(W,PS) := lim inf
n→∞

1

n
logM∗mixed(Wn, PS , ε) (5.45)

depends on ε in general. To state Cε(W,PS) for binary state distributions, we consider three different cases:
Case (i): C(W0) = C(W1) and relative magnitudes of ε and π0 are arbitrary
Case (ii): C(W0) < C(W1) and ε < π0

Case (iii): C(W0) < C(W1) and ε ≥ π0

It is known that [67, Sec. 3.3] that

Cε(W,PS) =

 C(W0) = C(W1) Case (i)
C(W0) Case (ii)
C(W1) Case (iii)

(5.46)

A plot of the ε-capacity is provided in Fig. 5.4.

2An example of this would be two binary symmetric channels. Both the CAIDs are uniform distributions on {0, 1} and they
are clearly unique.
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Figure 5.4: Plot of the ε-capacity against ε for the case C(W0) < C(W1). The strong converse property [67,
Sec. 3.5] holds iff C(W0) = C(W1) in which case Cε(W,PS) does not depend on ε.

The following theorem was proved for the special case of Gilbert-Elliott channels [50, 60, 116] by
Polyanskiy-Poor-Verdú [124, Thm. 7] where W0 and W1 are binary symmetric channels so their CAIDs
are uniform on X . The coefficient L(ε;W,PS) ∈ R in the asymptotic expansion

logM∗mix(Wn, PS , ε) = nCε(W,PS) +
√
nL(ε;W,PS) + o(

√
n), (5.47)

was sought. This coefficient is termed the second-order coding rate. In the following theorem, we state and
prove a more general version of the result by Polyanskiy-Poor-Verdú [124, Thm. 7]. For a result imposing
even less restrictive assumptions, we refer the reader to the work by Yagi and Nomura [185].

Theorem 5.4. Assume that each channel Ws, s ∈ S has a unique CAID and the CAIDs coincide. In the
various cases above, the second-order coding rate is given as follows:
Case (i): L(ε;W,PS) is the solution l to the following equation:

π0 Φ

(
l√

V (W0)

)
+ π1 Φ

(
l√

V (W1)

)
= ε. (5.48)

Case (ii):

L(ε;W,PS) =
√
V (W0) Φ−1

(
ε

π0

)
. (5.49)

Case (iii):

L(ε;W,PS) =
√
V (W1) Φ−1

(
ε− π0

π1

)
. (5.50)

If ε = π0, then L(ε;W,PS) = −∞.

We observe that in Case (i) where the capacities C(W0) and C(W1) coincide (but not necessarily the
dispersions), the second-order coding rate is a function of both the dispersions V (W0) and V (W1), together
with π0 and ε. This function also involves two Gaussian cdfs, suggesting, in the proof, that we apply the
central limit theorem twice. In the case where one capacity is strictly smaller than another (Cases (ii) and
(iii)), there is only one Gaussian cdf, which means that one of the two channels dominates the overall system
behavior. Intuitively for Case (ii), the first order term is C(W0) < C(W1) and ε < π0, so the channel with
the smaller capacity dominates the asymptotic behavior of the channel, resulting in the second-order term
being solely dependent on V (W0). In Case (iii), since ε ≥ π0, we can tolerate a higher error probability so
the channel with the larger capacity dominates the asymptotic behavior. Hence, L(ε;W,PS) depends only
on V (W1).

The corresponding result for source coding, random number generation and Slepian-Wolf coding were
derived by Nomura-Han [117, 118]. We only provide a proof sketch of Case (i) in Theorem 5.4 here.
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Proof sketch of Case (i) in Theorem 5.4. For the direct part of Case (i), we specialize Feinstein’s theorem
(Proposition 4.1) with the input distribution chosen to be the n-fold product of the common CAID of W0

and W1, denoted as P ∈P(X ). Recall the definition of W
(n)
mix(y|x) in (5.44). By the law of total probability,

the probability defining the (ε− η)-information spectrum divergence simplifies as follows:

p := Pr

(
log

W
(n)
mix(Y n|Xn)

PnW
(n)
mix(Y n)

≤ R
)

(5.51)

=
∑
s∈S

πs Pr

(
log

Wn
s (Y ns |Xn)

PnW
(n)
mix(Y ns )

≤ R
)
, (5.52)

where Y ns , s ∈ S denotes the output of Wn
s when the input is Xn. Fix γ > 0. Consider the probability

indexed by s = 0 in (5.52):

p0 := Pr

(
log

Wn
0 (Y n0 |Xn)

(PW0)n(Y n0 )
+ log

(PW0)n(Y n0 )

PnW
(n)
mix(Y n0 )

≤ R
)

(5.53)

≤ Pr

(
log

Wn
0 (Y n0 |Xn)

(PW0)n(Y n0 )
+ log

(PW0)n(Y n0 )

PnW
(n)
mix(Y n0 )

≤ R
∣∣∣∣Y n0 ∈ Aγ

)
+ Pr

(
Y n0 ∈ Acγ

)
(5.54)

where the set

Aγ :=

{
y ∈ Yn : log

(PW0)n(y)

PnW
(n)
mix(y)

≥ −γ
}
. (5.55)

Because Y n0 ∼ (PW0)n, we have Pr(Acγ) ≤ exp(−γ). This, together with the definition of Aγ , implies that

p0 ≤ Pr

(
log

Wn
0 (Y n0 |Xn)

(PW0)n(Y n0 )
≤ R+ γ

)
+ exp(−γ) (5.56)

≤ Φ

(
R+ γ − nC(W0)√

nV (W0)

)
+O

(
1√
n

)
+ exp(−γ), (5.57)

where the final step follows from the i.i.d. version of the Berry-Esseen theorem (Theorem 1.1). The same
technique can be used to upper bound the second probability in (5.52). Choosing η = 1√

n
and γ = 1

2 log n

results in

p ≤
∑
s∈S

πsΦ

(
R+ 1

2 log n− nCs√
nVs

)
+O

(
1√
n

)
. (5.58)

Now we substitute this bound on p into the definition of (ε−η)-information spectrum divergence in Feinstein’s
theorem. We note that C(W0) = C(W1) and thus may solve for a lower bound of R. This then completes
the direct part of Case (i) in (5.48). Notice that for Case (ii), all the derivations up to (5.58) hold verbatim.
However, note that since Cε(W,PS) = C(W0), we have that R = nC(W0) + l

√
n + o(

√
n) for some l ∈ R.

By virtue of the fact that C(W0) < C(W1), the second term in (5.58) vanishes asymptotically and we
recover (5.49) which involves only one Gaussian cdf.

For the converse part of Case (i), we appeal to the symbol-wise converse bound (Proposition 4.4). For
a fixed x ∈ Xn and arbitrary output distribution Q(n) ∈ P(Yn), the probability that defines the (ε + η)-
information spectrum divergence can be written as

q := Pr

(
log

W
(n)
mix(Y n|x)

Q(n)(Y n)
≤ R

)
(5.59)

=
∑
s∈S

πs Pr

(
log

Wn
s (Y ns |x)

Q(n)(Y ns )
≤ R

)
(5.60)
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where Y ns , s ∈ S is the output of Wn
s given input x. Now choose the output distribution to be

Q(n)(y) :=
1

2

(
Q

(n)
0 (y) +Q

(n)
1 (y)

)
(5.61)

where for each s ∈ S,

Q(n)
s (y) :=

∑
Px∈Pn(X )

1

|Pn(X )|
n∏
i=1

PxWs(yi) (5.62)

Now note that

Q(n)(y) ≥ 1

2|Pn(X )|
n∏
i=1

PxWs(yi) (5.63)

for any s ∈ S and type Px ∈ P(X ). By sifting out the type corresponding to x for channel W0, the
probability in (5.60) corresponding to s = 0 can be lower bounded as

q0 ≥ Pr

(
log

Wn
0 (Y n0 |x)

(PxW0)n(Y n0 )
≤ R− log(2|Pn(X )|)

)
. (5.64)

By separately considering types close to (Berry-Esseen) and far away (Chebyshev) from the CAID similarly
to the proof of Theorem 4.3 (or [76, Thm. 3]), we can show that (5.64) simplifies to

q0 ≥ Φ

(
R− |X | log(2(n+ 1))− nC(W0)√

nV (W0)

)
−O

(
1√
n

)
(5.65)

uniformly for all x ∈ Xn. The same calculation holds for the second probability in (5.60). By choosing
η = 1√

n
, we can upper bound R using Proposition 4.4 and the converse proof of Case (i) can be completed.

We observe that the crux of the above proof is to use the law of total probability to write the probabilities
in the information spectrum divergences as convex combination of constituent probabilities involving non-
mixed channels. For the direct part, a change-of-output-measure by conditioning on the event Y n0 ∈ Aγ in
(5.54) is required. For the converse part, the proof proceeds in a manner similar to the converse proof for
the second-order asymptotics for DMCs, upon choosing the auxiliary output measure Q(n) appropriately.

5.5 Quasi-Static Fading Channels

The final channel with state we consider in this chapter is the quasi-static single-input-multiple-output
(SIMO) channel with r receive antennas. The term quasi-static means that the channel statistics (fad-
ing coefficients) remain constant during the transmission of each codeword, similarly to mixed channels.
Yang-Durisi-Koch-Polyanskiy [186] derived asymptotic expansions for this channel model which is described
precisely as follows: For time i = 1, . . . , n, the channel law is given asYi1...

Yir

 =

H1

...
Hr

Xi +

Zi1...
Zir

 (5.66)

where Hr := (H1, . . . ,Hr)
′ is the vector of (real-valued) i.i.d. fading coefficients, which are random but

remain constant for all channel uses, and {Zij} are i.i.d. noises distributed as N (0, 1). In the theory of
fading channels [18], the channel inputs and outputs are usually complex-valued, but to illustrate the key
ideas, it is sufficient to consider real-valued channels and fading coefficients. In this section, we restrict our
attention to the real-valued SIMO model in (5.66). The channel input Xn must satisfy

‖Xn‖22 =

n∑
i=1

X2
i ≤ n snr (5.67)
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with probability one for some permissible power snr > 0.
Two different setups are considered. First, both the encoder and decoder do not have information about

the realization of Hr. Second, both the encoder and decoder have this information.
For a given distribution on the fading coefficients PHr (this plays the role of the state or side informa-

tion), define M∗no−SI(W
n, PHr , snr, ε) and M∗SI−ED(Wn, PHr , snr, ε) to be the maximum number of codewords

transmissible over n independent uses of the channel under constraint (5.67), with fading distribution PHr ,
and with average error probability not exceeding ε under the no side information and complete knowledge
of side information settings respectively. It is known using the theory of general channels [169, Thm. 6] that
for every ε ∈ (0, 1), the following limits exist and are equal

lim
n→∞

1

n
logM∗no−SI(W

n, PHr , snr, ε)

= lim
n→∞

1

n
logM∗SI−ED(Wn, PHr , snr, ε). (5.68)

Their common value is the ε-capacity [18], defined as

Cε(W,PHr ) := sup
{
ξ ∈ R : F (ξ; snr, PHr ) ≤ ε

}
, (5.69)

where the outage function is defined as

F (ξ; snr, PHr ) := Pr
(
C
(
snr‖Hr‖22

)
≤ ξ
)

(5.70)

Observe that for a fixed value of Hr = h (i.e., the channel state is not random), the expression C
(
snr‖h‖22

)
is simply the Shannon capacity of the channel. Beyond the first-order characterization, what are the refined
asymptotics of logM∗no−SI(W

n, PHr , snr, ε) and logM∗SI−ED(Wn, PHr , snr, ε)? The following surprising result
was proved by Yang-Durisi-Koch-Polyanskiy [186].

Theorem 5.5. Assume that the random variable G = ‖Hr‖22 has a pdf that is twice continuously differ-
entiable and that Cε(W,PHr ) in (5.69) is a point of growth of the outage function defined in (5.70), i.e.,
F ′(Cε(W,PHr ); snr, PHr ) > 0. Then

logM∗no−SI(W
n, PHr , snr, ε) = nCε(W,PHr ) +O(log n), and (5.71)

logM∗SI−ED(Wn, PHr , snr, ε) = nCε(W,PHr ) +O(log n). (5.72)

The condition on the channel gain G is satisfied by many fading models of interest, including Rayleigh,
Rician and Nakagami.

Theorem 5.5 says interestingly that, in the quasi-static setting, the Θ(
√
n) dispersion terms that we

usually see in asymptotic expansions are absent. This means that the ε-capacity is good benchmark for the
finite blocklength fundamental limits logM∗no−SI(W

n, PHr , snr, ε) and logM∗SI−ED(Wn, PHr , snr, ε) since the

backoff from the ε-capacity is of the order Θ( logn
n ) and not the larger Θ( 1√

n
).

We will not detail the proof of Theorem 5.5 here, as it is rather involved. See [186] for the details.
However, we will provide a plausibility argument as to why the Θ(

√
n) term is absent in the expansions in

(5.71)–(5.72). Since the quasi-static fading channel is conditionally ergodic (meaning that given Hr = h, it
is ergodic), one has that

ε∗(Wn,h, snr,M) ≈ Pr
(
nC
(
snr‖h‖22

)
+
√
nV
(
snr‖h‖22

)
Z ≤ logM

)
(5.73)

where ε∗(Wn,h, snr,M) the smallest error probability with M codewords and channel gains Hr = h, and Z
is the standard normal random variable. Note that C

(
snr‖h‖22

)
and V

(
snr‖h‖22

)
are respectively the capacity

and dispersion of the channels conditioned on Hr = h. If Z is independent of Hr, the above probability is
close to one in the “outage case”, i.e., when nC

(
snr‖h‖22

)
< logM . Hence, taking the expectation over Hr,

ε∗(Wn, PHr , snr,M) ≈ Pr
(
nC
(
snr‖Hr‖22

)
≤ logM

)
, (5.74)
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where ε∗(Wn, PHr , snr,M) the smallest error probability with M codewords and random channel gains. In
fact, the above argument can be formalized using the following lemma whose proof can be found in [186].

Lemma 5.3. Let A be a random variable with zero mean, unit variance and finite third moment. Let B be
independent of A with twice continuously differentiable pdf. Then,

Pr
(
A ≤ √nB

)
= Pr

(
B ≥ 0

)
+O

(
1

n

)
. (5.75)

The approximation in (5.74) is then justified by taking

A =
√
V
(
snr‖Hr‖22

)
Z, and B = logM − nC

(
snr‖Hr‖22

)
. (5.76)

Finally, we remark that this quasi-static SIMO model is different from that in Section 5.2 in two significant
ways: First, the state here is a continuous random variable and second, according to (5.66), the quasi-static
scenario here implies that the state Hr is constant throughout transmission and does not vary across time
i = 1, . . . , n. This explains the difference in second-order behavior vis-à-vis the result in Theorem 5.2. The
distinction between this model and that in Section 5.4 on mixed channels with finitely many states is that
the fading coefficients contained in Hr are continuous random variables.
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Chapter 6

Distributed Lossless Source Coding

It is not an exaggeration to say that one of the most surprising results in network information theory is
the theorem by Slepian and Wolf [151] concerning distributed lossless source coding. For the lossless source
coding problem as discussed extensively in Chapter 3, it can be easily seen that if we would like to losslessly
and reliably reconstruct Xn from its compressed version and correlated side-information Y n that is available
to both encoder and decoder, then the minimum rate of compression is H(X|Y ). What happens if the
side information is only available to the decoder but not the encoder? Surprisingly, the minimum rate of
compression is still H(X|Y )! It hints at the encoder being able to perform some form of universal encoding
regardless of the nature of whatever side-information is available to the decoder.

A more general version of this problem is shown in Fig. 6.1. Here, two correlated sources are to be
losslessly reconstructed in a distributed fashion. That is, encoder 1 sees X1 and not X2, and vice versa.
Slepian and Wolf showed in [151] that if Xn

1 and Xn
2 are generated from a discrete memoryless multiple

source (DMMS) PXn
1 X

n
2

, then the set of achievable rate pairs (R1, R2) belongs to the set

R1 ≥ H(X1|X2), R2 ≥ H(X2|X1), R1 +R2 ≥ H(X1, X2). (6.1)

In this chapter, we analyze refinements to Slepian and Wolf’s seminal result. Essentially, we fix a point
(R∗1, R

∗
2) on the boundary of the region in (6.1). We then find all possible second-order coding rate pairs

(L1, L2) ∈ R2 such that there exists length-n block codes of sizes Mjn, j = 1, 2 and error probabilities εn
such that

logMjn ≤ nR∗j +
√
nLj + o

(√
n
)
, and εn ≤ ε+ o(1). (6.2)

The latter condition means that the sequence of codes is ε-reliable. We will see that if (R∗1, R
∗
2) is a corner

point, the set of all such (L1, L2) is characterized in terms of a multivariate Gaussian cdf. This is the
distinguishing feature compared to results in the previous chapters.

The material in this chapter is based on the work by Nomura and Han [118] and Tan and Kosut [157].

6.1 Definitions and Non-Asymptotic Bounds

In this section, we set up the distributed lossless source coding problem formally and mention some known
non-asymptotic bounds. Let PX1X2 ∈P(X1 ×X2) be a correlated source. See Fig. 6.1.

An (M1,M2, ε)-code for the correlated source PX1X2
∈ P(X1 × X2) consists of a triplet of maps that

includes two encoders fj : Xj → {1, . . . ,Mj} for j = 1, 2 and a decoder ϕ : {1, . . . ,M1} × {1, . . . ,M2} →
X1 ×X2 such that the error probability

PX1X2

(
{(x1, x2) ∈ X1 ×X2 : ϕ

(
f1(x1), f2(x2)

)
6= (x1, x2)}

)
≤ ε. (6.3)

The numbers M1 and M2 are called the sizes of the code.
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Figure 6.1: Illustration of the Slepian-Wolf [151] problem.

We now state known achievability and converse bounds due to Miyake and Kanaya [110]. See Theorems
7.2.1 and 7.2.2 in Han’s book [67] for the proofs of these results. The achievability bound is based on Cover’s
random binning [32] idea.

Proposition 6.1 (Achievability Bound for Slepian-Wolf problem). For every γ > 0, there exists an (M1,M2, ε)-
code satisfying

ε ≤ Pr

(
log

1

PX1|X2
(X1|X2)

≥ logM1 − γ or

log
1

PX2|X1
(X2|X1)

≥ logM2 − γ or

log
1

PX1X2(X1, X2)
≥ log(M1M2)− γ

)
+ 3 exp(−γ). (6.4)

The converse bound is based on standard techniques in information spectrum [67, Ch. 7] analysis.

Proposition 6.2 (Converse Bound for Slepian-Wolf problem). For any γ > 0, every (M1,M2, ε)-code must
satisfy

ε ≥ Pr

(
log

1

PX1|X2
(X1|X2)

≥ logM1 + γ or

log
1

PX2|X1
(X2|X1)

≥ logM2 + γ or

log
1

PX1X2
(X1, X2)

≥ log(M1M2) + γ

)
− 3 exp(−γ). (6.5)

Notice that the entropy density vector

hX1X2
(x1, x2) :=

[
log 1

PX1|X2
(x1|x2) log 1

PX2|X1
(x2|x1) log 1

PX1X2
(x1,x2)

]′
(6.6)

plays a prominent role in both the direct and converse bounds.

6.2 Second-Order Asymptotics

We would like to make concrete statements about performance of optimal codes with asymptotic error
probabilities not exceeding ε and blocklength n tending to infinity. For this purpose, we assume that the
source PX1X2

is a DMMS, i.e.,

PXn
1 X

n
2

(x1,x2) =

n∏
i=1

PX1X2(x1i, x2i), ∀ (x1,x2) ∈ Xn1 ×Xn2 . (6.7)
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As such, the alphabets Xj , j = 1, 2 in the definition of an (M1,M2, ε)-code are replaced by their n-fold
Cartesian products.

6.2.1 Definition of the Second-Order Rate Region and Remarks

Unlike the point-to-point problems where the first-order fundamental limit is a single number (e.g., capacity
for channel coding, rate-distortion function for lossy compression), for multi-terminal problems like the
Slepian-Wolf problem there is a continuum of first-order fundamental limits. Hence, to define second-order
quantities, we must “center” the analysis at a point (R∗1, R

∗
2) on the boundary of the optimal rate region

(in source coding scenarios) or capacity region (in channel coding settings). Subsequently, we can ask what
is the local second-order behavior of the system in the vicinity of (R∗1, R

∗
2). This is the essence of second-

order asymptotics for multi-terminal problems. Note that for multi-terminal problems, we exclusively study
second-order asymptotics, and we do not go beyond this to study third-order asymptotics.

Fix a rate pair (R∗1, R
∗
2) on the boundary of the optimal rate region given by (6.1). Let (L1, L2) ∈ R2

be called an achievable (ε,R∗1, R
∗
2)-second-order coding rate pair if there exists a sequence of (M1n,M2n, εn)-

codes for the correlated source PXn
1 X

n
2

such that the sequence of error probabilities does not exceed ε
asymptotically, i.e.,

lim sup
n→∞

εn ≤ ε (6.8)

and furthermore, the size of the codes satisfy

lim sup
n→∞

1√
n

(
logMjn − nR∗j

)
≤ Lj , j = 1, 2. (6.9)

The set of all achievable (ε,R∗1, R
∗
2)-second-order coding rate pairs is denoted as L(ε;R∗1, R

∗
2) ⊂ R2, the

second-order coding rate region. Note that even though we term the elements of L(ε;R∗1, R
∗
2) as “rates”, they

could be negative. This convention follows that in Hayashi’s works [75, 76]. The number Lj has units is bits
per square-root source symbols.

Let us pause for a moment to understand the above definition as it is a recurring theme in subsequent
chapters on second-order asymptotics in network information theory. Slepian-Wolf [151] showed that there
exists a sequence of codes for the (stationary, memoryless) correlated source (X1, X2) whose error probabil-
ities vanish asymptotically (i.e., εn = o(1)) and whose sizes Mjn satisfy

lim sup
n→∞

1

n
logMjn ≤ Rj , j = 1, 2 (6.10)

where the rates R1 and R2 satisfy the bounds in (6.1). Hence, the definition of a second-order coding rate
pair in (6.9) is a refinement of the scaling of the code sizes in Slepian-Wolf’s setting, centering the rate
analysis at (R∗1, R

∗
2), and analyzing deviations of order Θ( 1√

n
) from this first-order fundamental limit. In

doing so, we allow the error probability to be non-vanishing per (6.8). This requirement is subtly different
from that in the chapters on source and channel coding where we are interested in approximating non-
asymptotic fundamental limits like logM∗(P, ε) or logM∗ave(W, ε) and therein, the error probabilities are
constrained to be no larger than a non-vanishing ε ∈ (0, 1) for all blocklengths. Here we allow some slack
(i.e., εn ≤ ε + o(1)). This turns out to be immaterial from the perspective of second-order asymptotics,
as we are seeking to characterize a region of second-order rates L(ε;R∗1, R

∗
2) and we are not attempting

to characterize higher-order (i.e., third-order) terms in an asymptotic expansion. The o(1) slack affects
the third-order asymptotics but since we are not interested in this study for network information theory
problems, we find it convenient to define L(ε;R∗1, R

∗
2) using (6.8)–(6.9), analogous to information spectrum

analysis [67].
Before we state the main result of this chapter, let us consider the following bivariate generalization of

the cdf of a Gaussian:

Ψ(t1, t2;µ,Σ) :=

∫ t1

−∞

∫ t2

−∞
N (x;µ; Σ) dx, (6.11)
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Figure 6.2: Illustration of the different cases in Theorem 6.1 where H1 = H(X1) and H2|1 = H(X2|X1) etc.
The curve is a schematic of the boundary of the set of rate pairs (R1, R2) achievable at blocklength n with
error probability no more than ε < 1

2 . The set is denoted by R∗SW(n, ε).

where N (x;µ; Σ) is the pdf of a bivariate Gaussian, defined in (1.41). Also define the source dispersion
matrix

V = V(PX1X2
) := Cov

[
h(X1, X2)

]
(6.12)

=

 V1|2 ρ1,2

√
V1|2V2|1 ρ1,12

√
V1|2V1,2

ρ1,2

√
V1|2V2|1 V2|1 ρ2,12

√
V2|1V1,2

ρ1,12

√
V1|2V1,2 ρ2,12

√
V2|1V1,2 V1,2

 . (6.13)

We also denote the diagonal entries as V (X1|X2) = V1|2, V (X2|X1) = V2|1 and V (X1, X2) = V1,2. Define

V1,12 (resp. V2,12) as the 2× 2 submatrix indexed by the 1st (resp. 2nd) and 3rd entries of V, i.e.,

V1,12 :=

[
V1|2 ρ1,12

√
V1|2V1,2

ρ1,12

√
V1|2V1,2 V1,2

]
, (6.14)

and V2,12 is defined similarly.

6.2.2 Main Result: Second-Order Coding Rate Region

The set L(ε;R∗1, R
∗
2) is characterized in the following result. This result was proved by Nomura and Han [118].

A slightly different form of this result was proved earlier by Tan and Kosut [157].

Theorem 6.1. Assume V is positive definite. Depending on (R∗1, R
∗
2) (see Fig. 6.2), there are 5 cases of

which we state 3 explicitly:
Case (i): R∗1 = H(X1|X2) and R∗2 > H(X2) (vertical boundary)

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : L1 ≥

√
V (X1|X2)Φ−1(1− ε)

}
. (6.15)

Case (ii): R∗1 +R∗2 = H(X1, X2) and H(X1|X2) < R∗1 < H(X1) (diagonal face)

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : L1 + L2 ≥

√
V (X1, X2)Φ−1(1− ε)

}
. (6.16)

Case (iii): R∗1 = H(X1|X2) and R∗2 = H(X2) (top-left corner point)

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : Ψ(L1, L1 + L2; 0,V1,12) ≥ 1− ε

}
. (6.17)
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The region L(ε;R∗1, R
∗
2) for Case (iii) is illustrated in Fig. 6.3 for a binary source (X1, X2) with distribution

PX1X2(x1, x2) =

[
0.7 0.1
0.1 0.1

]
. (6.18)

Note that L(ε;R∗1, R
∗
2) for other points on the boundary can be found by symmetry. For example for the

horizontal boundary, simply interchange the indices 1 and 2 in (6.15). The case in which V is not positive
definite was dealt with in detail in [157].

6.2.3 Proof of Main Result and Remarks

Proof. The proof of the direct part specializes the non-asymptotic bound in Proposition 6.1 with the choice
γ = n1/4. Choose code sizes M1n and M2n to be the smallest integers satisfying

logMjn ≥ nR∗j +
√
nLj + 2n1/4, j = 1, 2, (6.19)

for some (L1, L2) ∈ R2. Substitute these choices into the probability in (6.4), denoted as p. The comple-
mentary probability 1− p is

1−p=Pr

hXn
1 X

n
2

(Xn
1 , X

n
2 )<

 nR∗1 +
√
nL1 + n1/4

nR∗2 +
√
nL2 + n1/4

n(R∗1+R∗2)+
√
n(L1+L2)+3n1/4

 . (6.20)

Recall that hXn
1 X

n
2

(x1,x2) is the entropy density in (6.6) and that inequalities (like <) are applied element-
wise. The three events in the probability above are

A1 :=

{
1

n
log

1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )
<R∗1+

L1√
n

+ n−3/4

}
, (6.21)

A2 :=

{
1

n
log

1

PXn
2 |Xn

1
(Xn

2 |Xn
1 )
<R∗2+

L2√
n

+ n−3/4

}
, and (6.22)

A12 :=

{
1

n
log

1

PXn
1 X

n
2

(Xn
1 , X

n
2 )
<R∗1+R∗2+

L1+L2√
n

+ 3n−3/4

}
. (6.23)

As such, the probability in (6.20) is Pr(A1 ∩ A2 ∩ A12).
Let us consider Case (i) in Theorem 6.1. In this case, R∗2 > H(X2) and R∗1 + R∗2 > H(X1, X2). By the

weak law of large numbers, Pr(A2) → 1 and Pr(A12) → 1 as n grows. In fact, these probabilities converge
to one exponentially fast. Thus,

1− p ≥ Pr(A1) + exp(−nξ) (6.24)

for some ξ > 0. Furthermore, because R∗1 = H(X1|X2), Pr(A1) can be estimated using the Berry-Esseen
theorem as

Pr(A1) ≥ Φ

(
L1√

V (X1|X2)

)
+O(n−1/4). (6.25)

Hence, one has

p ≤ 1− Φ

(
L1√

V (X1|X2)

)
+O(n−1/4). (6.26)

Coupled with the fact that exp(−γ) = exp(−n1/4), the proof of the direct part of (6.15) is complete. The
converse employs essentially the same technique. Case (ii) is also similar with the exception that now
Pr(A1)→ 1 and Pr(A2)→ 1, while Pr(A12) is estimated using the Berry-Esseen theorem.

We are left with Case (iii). In this case, only Pr(A2)→ 1. Thus, just as in (6.24), (6.20) can be estimated
as

1− p ≥ Pr(A1 ∩ A12) + exp(−nξ′) (6.27)
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for some ξ′ > 0. The probability can now be estimated using the multivariate Berry-Esseen theorem
(Corollary 1.1) as

Pr(A1 ∩ A12) ≥ Ψ
(
L1, L1 + L2; 0,V1,12

)
+O(n−1/4). (6.28)

We complete the proof of (6.17) similarly to Case (i). The converse is completely analogous.

A couple of take-home messages are in order:
First, consider Case (i). In this case, we are operating “far away” from the constraint concerning the

second rate and the sum rate constraint. This corresponds to the events Ac2 and Ac12. Thus, by the theory
of large deviations, Pr(Ac2) and Pr(Ac12) both tend to zero exponentially fast. Essentially for these two error
events, we are in the error exponents regime.1 The same holds true for Case (ii).

Second, consider Case (iii). This is the most interesting case for the second-order asymptotics for the
Slepian-Wolf problem. We are operating at a corner point and are far away from the second rate constraint,
i.e., in the error exponents regime for Ac2. The remaining two events A1 and A12 are, however, still in the
central limit regime and hence their joint probability must be estimated using the multivariate Berry-Esseen
theorem. Instead of the result being expressible in terms of a univariate Gaussian cdf Φ (which is the case
for single-terminal problems in Part II of this monograph), the multivariate version of the Gaussian cdf Ψ,
parameterized by the (in general, full) covariance matrix V1,12 in (6.14), must be employed. Compared to
the cooperative case where Xn

2 (resp. Xn
1 ) is available to encoder 1 (resp. encoder 2), we see from the result

in Case (iii) that Slepian-Wolf coding, in general, incurs a rate-loss over the case where side-information is
available to all terminals. Indeed, when side-information is available at all terminals, the matrix V1,12 that
characterizes L(ε;R∗1, R

∗
2) in Case (iii) would be diagonal [157], since the source coding problems involving

X1 and X2 are now independent of each other. In other words, in this case, there exists a sequence of codes
with error probabilities εn satisfying (6.8) and sizes (M1n,M2n) satisfying

logM1n ≤ nH(X1|X2)−
√
nV (X1|X2)Φ−1(ε) + o(

√
n), (6.29)

logM2n ≤ nH(X2|X1)−
√
nV (X2|X1)Φ−1(ε) + o(

√
n), (6.30)

log(M1nM2n) ≤ nH(X1, X2)−
√
nV (X1, X2)Φ−1(ε) + o(

√
n). (6.31)

Inequality (6.29) corresponds to the problem of source coding X1 with X2 available as full (non-coded)
side information at the decoder. Inequality (6.30) swaps the role of X1 and X2. Finally, inequality (6.31)
corresponds to lossless source coding of the vector source (X1, X2), similarly to the result on lossless source
coding without side information in Section 3.2.

6.3 Second-Order Asymptotics of Slepian-Wolf Coding via the
Method of Types

Just as in Section 3.3 (second-order asymptotics of lossless data compression via the method of types), we
can show that codes that do not necessarily have to have full knowledge of the source statistics (i.e., partially
universal source codes) can achieve the second-order coding rate region L(ε;R∗1, R

∗
2). However, the coding

scheme does require the knowledge of the entropies together with the pair of second-order rates (L1, L2) we
would like to achieve. We illustrate the achievability proof technique for Case (iii) of Theorem 6.1, in which
R∗1 = H(X1|X2) and R∗2 = H(X2).

The code construction is based on Cover’s random binning idea [32] and the decoding strategy is similar
to minimum empirical entropy decoding [38, 39]. Fix (L1, L2) ∈ L(ε;R∗1, R

∗
2) where L(ε;R∗1, R

∗
2) is given

in (6.17). Also fix code sizes M1n and M2n satisfying (6.19). For each j = 1, 2, uniformly and indepen-
dently assign each sequence xj ∈ Xnj into one of Mjn bins labeled as Bj(mj),mj ∈ {1, . . . ,Mjn}. The bin
assignments are revealed to all parties. To send xj ∈ Xnj , encoder j transmits its bin index mj .

1Of course, the error exponents for the Slepian-Wolf problem are known [36, 58] but any exponential bound suffices for our
purposes here.
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The decoder, upon receipt of the bin indices (m1,m2) ∈ {1, . . . ,M1n} × {1, . . . ,M2n}, finds a pair of
sequences (x̂1, x̂2) ∈ B1(m1)× B2(m2) satisfying

Ĥ(x1,x2) :=

Ĥ(x1|x2)

Ĥ(x2|x1)

Ĥ(x1,x2)

 ≤
 γ1

γ2

γ12

 =: γ (6.32)

for some thresholds γ1, γ2, γ12 defined as

γ1 := H(X1|X2) +
L1√
n

+ n−1/4 (6.33)

γ2 := H(X2) +
L2√
n

+ n−1/4 (6.34)

γ12 := H(X1, X2) +
L1 + L2√

n
+ n−1/4 (6.35)

If there is no sequence pair (x̂1, x̂2) ∈ B1(m1)×B2(m2) satisfying (6.32) or if there is more than one, declare
an error. Note that the thresholds depend on the entropies and (L1, L2), hence these values need to be
known to the decoder.

Let the generated source sequences be Xn
1 and Xn

2 and their associated bin indices be M1 = M1(Xn
1 )

and M2 = M2(Xn
2 ) respectively. By symmetry, we may assume that M1 = M2 = 1. The error events are as

follows:

E0 :=
{
Ĥ(Xn

1 , X
n
2 ) 6≤ γ

}
, (6.36)

E1 :=
{
∃ x̃1 ∈ B1(1) : x̃1 6= Xn

1 , Ĥ(x̃1, X
n
2 ) ≤ γ

}
, (6.37)

E2 :=
{
∃ x̃2 ∈ B2(1) : x̃2 6= Xn

2 , Ĥ(Xn
1 , x̃2) ≤ γ

}
, and (6.38)

E12 :=
{
∃ (x̃1, x̃2) ∈ B1(1)× B2(1) : x̃1 6= Xn

1 , x̃2 6= Xn
2 ,

Ĥ(x̃1, x̃2) ≤ γ
}
. (6.39)

Let H(X1, X2) = [H(X1|X2), H(X2|X1), H(X1, X2)]′. It can be verified that the following central limit
relation holds [157]: √

n
(
Ĥ(Xn

1 , X
n
2 )−H(X1, X2)

) d−→ N
(
0,V

)
. (6.40)

This is the multi-dimensional analogue of (3.33) for almost lossless source coding. Thus, by the same argu-

ment as that in (6.27)–(6.28) (ignoring the second entry in Ĥ(Xn
1 , X

n
2 ) because R∗2 = H(X2) > H(X2|X1)),

one has
Pr(E0) ≤ ε+O(n−1/4). (6.41)

Furthermore, by using the method of types, we may verify that

Pr(E1)≤
∑

x1,x2

PXn
1 X

n
2

(x1,x2)
∑

x̃1 6=x1:Ĥ(x̃1,x2)≤γ

Pr
(
x̃1 ∈ B1(1)

)
(6.42)

≤
∑

x1,x2

PXn
1 X

n
2

(x1,x2)
∑

x̃1 6=x1:Ĥ(x̃1|x2)≤γ1

Pr
(
x̃1 ∈ B1(1)

)
(6.43)

=
∑

x1,x2

PXn
1 X

n
2

(x1,x2)
∑

x̃1 6=x1:Ĥ(x̃1|x2)≤γ1

1

M1n
(6.44)

≤
∑

x1,x2

PXn
1 X

n
2

(x1,x2)
∑

V ∈Vn(X2;Px2 ):

H(V |Px2
)≤γ1

∑
x̃1∈TV (x2)

1

M1n
(6.45)
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≤
∑

x1,x2

PXn
1 X

n
2

(x1,x2)
∑

V ∈Vn(X2;Px2
):

H(V |Px2
)≤γ1

exp
(
nH(V |Px2

)
)

M1n
(6.46)

≤
∑

x1,x2

PXn
1 X

n
2

(x1,x2)
∑

V ∈Vn(X2;Px2
):

H(V |Px2
)≤γ1

exp
(
nγ1

)
M1n

(6.47)

≤(n+ 1)|X1||X2| exp(−n1/4), (6.48)

where in (6.44) we used the uniformity of the binning, in (6.45) we partitioned the set of sequences x̃1 into
conditional types given x2 and in (6.46), we used the fact that |TV (x2)| ≤ exp

(
nH(V |Px2

)
)

(cf. Lemma 1.2).
Finally, the type counting lemma and the choices of γ1 and M1n were used in (6.48). The same calculation
can be performed for Pr(E2) and Pr(E12). Thus, asymptotically, the error probability is no larger than ε, as
desired.

6.4 Other Fixed Error Asymptotic Notions

In the preceding sections, we were solely concerned with the deviations of order Θ( 1√
n

) away from the

first-order fundamental limit (R∗1, R
∗
2). However, one may also be interested in other metrics that quantify

backoffs from particular first-order fundamental limits. Here we mention three other quantities that have
appeared in the literature.

6.4.1 Weighted Sum-Rate Dispersion

For constants α, β ≥ 0, the minimum value of αR1 + βR2 for asymptotically achievable (R1, R2) is called
the optimal weighted sum-rate. Of particular interest is the case α = β = 1, corresponding to the standard
sum-rate R1 + R2, but other cases may be important as well, e.g., if transmitting from encoder 1 is more
costly than transmitting from encoder 2. Because of the polygonal shape of the optimal region described in
the Slepian-Wolf region in (6.1), the optimal weighted sum-rate is always achieved at (at least) one of the
two corner points, and the optimal rate is given by

R∗sum(α, β) :=

{
αH(X1|X2) + βH(X2) α ≥ β
αH(X1) + βH(X2|X1) α < β

. (6.49)

One can then define J ∈ R to be an achievable (ε, α, β)-weighted second-order coding rate if there exists a
sequence of (M1n,M2n, εn)-codes for the correlated source PXn

1 X
n
2

such that the error probability condition
in (6.8) holds and

lim sup
n→∞

1√
n

(
α logM1n + β logM2n − nR∗sum(α, β)

)
≤ J. (6.50)

In [157], the smallest such J , denoted as J∗(ε;α, β), was found using a proof technique similar to that for
Theorem 6.1.

6.4.2 Dispersion-Angle Pairs

One can also imagine approaching a point on the boundary (R∗1, R
∗
2) fixing an angle of approach θ ∈ [0, 2π).

Let (F, θ) be called an achievable (ε,R∗1, R
∗
2)-dispersion-angle pair if there exists a sequence of (M1n,M2n, εn)-

codes for the correlated source PXn
1 X

n
2

such that the error probability condition in (6.8) holds and

lim sup
n→∞

1√
n

(
logM1n − nR∗1

)
≤
√
F cos θ, and (6.51)

lim sup
n→∞

1√
n

(
logM2n − nR∗2

)
≤
√
F sin θ. (6.52)
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Clearly, dispersion-angle pairs (F, θ) are in one-to-one correspondence with second-order coding rate pairs
(L1, L2). The minimum such F for a given θ, denoted as F ∗(θ, ε;R∗1, R

∗
2), measures the speed of approach

to (R∗1, R
∗
2) at an angle θ. This fundamental quantity F ∗(θ, ε;R∗1, R

∗
2) was also characterized in [157].

6.4.3 Global Approaches

Authors of early works on second-order asymptotics in multi-terminal systems [84, 111, 156] considered global
rate regions, meaning that they were concerned with quantifying the sizes (M1n,M2n) of length-n block codes
with error probability not exceeding ε. These sizes are called (n, ε)-achievable. In the Slepian-Wolf context,
a result by Tan-Kosut [156] states that (M1n,M2n) are (n, ε)-achievable iff logM1n

logM2n

log(M1nM2n)

∈
nH(X1|X2)
nH(X2|X1)
nH(X1, X2)

−√nΨ−1(V, ε)+O (log n) 1 (6.53)

where Ψ−1(V, ε) is an appropriate generalization of the Φ−1 function and 1 is the vector of all ones. The
precise definition of Ψ−1(V, ε), given in (8.24) and illustrated Fig. 8.3, will not be of concern here.

While statements such as (6.53) are mathematically correct and are reminiscent of asymptotic expansions
in the point-to-point case (cf. that for lossless source coding in (3.14)), they do not provide the complete
picture with regard to the convergence of rate pairs to a fundamental limit, e.g., a corner point of the
Slepian-Wolf region. Indeed, an achievability statement similar to (6.53) holds for the DM-MAC for each
input distribution [84, 111, 136, 156] and hence the union over all input distributions. However, one of the
major deficiencies of such a statement is that the O(log n) third-order term is not uniform in the input
distributions; this poses serious challenges in the interpretation of the result if we consider random coding
using a sequence of input distributions that varies with the blocklength (cf. Chapter 8). Thus, as pointed out
by Haim-Erez-Kochman [65], for multi-user problems, the value of global expansions such as that in (6.53) is
limited, and can only be regarded as stepping stones to obtain local results (if possible). Indeed, we do this
for the Gaussian MAC with degraded message sets in Chapter 8.

The main takeaway of this section is that one should adopt the local, weighted sum-rate, or dispersion-
angle problem setups to analyze the second-order asymptotics for multi-terminal problems. These setups
are information-theoretic in nature. In particular, operational quantities (such as the set L(ε;R∗1, R

∗
2) or the

number F ∗(θ, ε;R∗1, R
∗
2)) are defined then equated to information quantities.
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Chapter 7

A Special Class of Gaussian
Interference Channels

This chapter presents results on second-order asymptotics for a channel-type network information theory
problem. The problem we consider here is a special case of the two-sender, two-receiver interference channel
(IC) shown in Fig. 7.1. This model is a basic building block in many modern wireless systems, so theoretical
results and insights are of tremendous practical relevance. The IC was first studied by Ahlswede [2] who
established basic bounds on the capacity region. However, the capacity region for the discrete memoryless
and Gaussian memoryless cases have remained as open problems for over 40 years except for some very
special cases. The best known inner bound is due to Han and Kobayashi [70]. A simplified form of the
Han-Kobayashi inner bound was presented by Chong-Motani-Garg-El Gamal [26].

Since the determination of the capacity region is formidable, the derivation of conclusive results for the
second-order asymptotics of general memoryless ICs is also beyond us at this point in time. One very special
case in which the capacity region is known is the IC with very strong interference (VSI). In this case, the
intuition is that each receiver can reliably decode the non-intended message which then aids in decoding the
intended message. The capacity region for the discrete memoryless IC with VSI consists of the set of rate
pairs (R1, R2) satisfying

R1 ≤ I(X1;Y1|X2, Q), and R2 ≤ I(X2;Y2|X1, Q) (7.1)

for some PQ, PX1|Q and PX2|Q, where Q is known as the time-sharing random variable. In the Gaussian case
in which Carleial [22] studied, the above region can be written more explicitly as

R1 ≤ C(snr1) and R2 ≤ C(snr2), (7.2)

where snrj is the signal-to-noise ratio of the direct channel from sender j to receiver j and the Gaussian
capacity function is defined as C(snr) := 1

2 log(1 + snr). See Fig. 7.2 for an illustration of the capacity region
and the monograph by Shang and Chen [140] for further discussions on Gaussian interference channels. Car-
leial’s result is surprising because it appears that interference does not reduce the capacity of the constituent
channels since C(snrj) is the capacity of the jth channel. In Carleial’s own words [22],

“Very strong interference is as innocuous as no interference at all.”

Similarly to the discrete case in (7.1), the (first-order optimal) achievability proof strategy for the Gaussian
case involves first decoding the interference, subtracting it off from the received channel output, and finally,
reliably decoding the intended message. The VSI condition ensures that the rate constraints in (7.2),
representing requirement for the second decoding steps to succeed, dominate.

In this chapter, we make a slightly stronger assumption compared to that made by Carleial [22]. We
assume that the inequalities that define the VSI condition are strict; we call this the strictly VSI (SVSI)
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Figure 7.1: Illustration of the interference channel problem.

assumption/regime. With this assumption, we are able to derive the second-order asymptotics of this class
of Gaussian ICs.

Although the main result in this chapter appears to be similar to the Slepian-Wolf case (in Chapter 6),
there are several take-home messages that differ from the simpler Slepian-Wolf problem.

1. First, similar to Carleial’s observation that for Gaussian ICs with VSI the capacity is not reduced, we
show that the dispersions are not affected under the SVSI assumption. More precisely, the second-order
coding rate region (a set similar to that for the Slepian-Wolf problem in Chapter 6), is characterized
entirely in terms of the dispersions V(snrj) of the two direct AWGN channels from encoder j to decoder
j;

2. Second, the main result in this chapter suggests that under the SVSI assumption, and in the second-
order asymptotic setting, the two error events (of incorrectly decoding messages 1 and 2) are almost
independent;

3. Third, for the direct part, we demonstrate the utility of an achievability proof technique by MolavianJazi-
Laneman [112] that is also applicable to our problem of Gaussian ICs with SVSI. This technique is, in
general, applicable to multi-terminal Gaussian channels. In the asymptotic evaluation of the informa-
tion spectrum bound (Feinstein bound [53]), the problem is “lifted” to higher dimensions to facilitate
the application of limit theorems for independent random vectors;

This chapter is based on work by Le, Tan and Motani [103].

7.1 Definitions and Non-Asymptotic Bounds

Let us now state the Gaussian IC problem. The Gaussian IC is defined by the following input-output relation:

Y1i = g11X1i + g12X2i + Z1i, (7.3)

Y2i = g21X1i + g22X2i + Z2i, (7.4)

where i = 1, . . . , n and gjk are the channel gains from sender k to receiver j and Z1i ∼ N (0, 1) and
Z2i ∼ N (0, 1) are independent noise components.1 Thus, the channel from (x1, x2) to (y1, y2) is

W (y1, y2|x1, x2) =
1

2π
exp

(
− 1

2

∥∥∥∥ [y1

y2

]
−
[
g11 g12

g21 g22

] [
x1

x2

] ∥∥∥∥2

2

)
. (7.5)

1The independence assumption between Z1i and Z2i was not made in Carleial’s work [22] (i.e., Z1i and Z2i may be correlated)
but we need this assumption for the analyses here. It is well known that the capacity region of any general IC depends only
on the marginals [49, Ch. 6] but it is, in general, not true that the set of achievable second-order rates L(ε;R∗1 , R

∗
2), defined in

(7.17), has the same property. This will become clear in the proof of Theorem 7.1 in the text following (7.32).
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Let W1 and W2 denote the marginals of W . The channel also acts in a stationary, memoryless way so

Wn(y1,y2|x1,x2) =

n∏
i=1

W (y1i, y2i|x1i, x2i). (7.6)

It will be convenient to make the dependence of the code on the blocklength explicit right away.
We define an (n,M1,M2, S1, S2, ε)-code for the Gaussian IC as four maps that consists of two encoders
fj : {1, . . . ,Mj} → Rn, j = 1, 2 and two decoders ϕj : Rn → {1, . . . ,Mj} such that the following power
constraints2 are satisfied ∥∥fj(mj)

∥∥2

2
=

n∑
i=1

fji(mj)
2 ≤ nSj (7.7)

and, denoting Dm1,m2 := {(y1,y2) : ϕ1(y1) = m1 and ϕ2(y2) = m2} as the decoding region for (m1,m2),
the average error probability

1

M1M2

M1∑
m1=1

M2∑
m2=1

Wn
(
Rn × Rn \ Dm1,m2

∣∣f1(m1), f2(m2)
)
≤ ε. (7.8)

In (7.7), S1 and S2 are the admissible powers on the codewords f1(m1) and f2(m2). The signal-to-noise
ratios of the direct channels are

snr1 := g2
11S1, and snr2 := g2

22S2. (7.9)

The interference-to-noise ratios are

inr1 := g2
12S2, and inr2 := g2

21S1. (7.10)

We say that the Gaussian IC W , together with the transmit powers (S1, S2), is in the VSI regime if the
signal- and interference-to-noise ratios satisfy

snr1 ≤
inr2

1 + snr2
, and snr2 ≤

inr1
1 + snr1

, (7.11)

or equivalently, in terms of capacities,

C(snr1) + C(snr2) ≤ min{C(snr1 + inr1),C(snr2 + inr2)}. (7.12)

The Gaussian IC is in the SVSI regime if the inequalities in (7.11)–(7.12) are strict. Intuitively, the VSI (or
SVSI) assumption means that the cross channel gains g12 and g21 are much stronger (larger) than the direct
gains g11 and g22 for given transmit powers S1 and S2.

We now state non-asymptotic bounds that are evaluated asymptotically later. The proofs of these bounds
are standard. See [66] or [103].

Proposition 7.1 (Achievability bound for IC). Fix any input distributions PXn
1

and PXn
2

whose support
satisfies the power constraints in (7.7), i.e., ‖Xn

j ‖2 ≤ nSj with probability one. For every n ∈ N, every
γ > 0 and for any choice of (conditional) output distributions QY n

1 |Xn
2

, QY n
2 |Xn

1
, QY n

1
and QnY2

there exists
an (n,M1,M2, S1, S2, ε)-code for the IC such that

ε ≤ Pr

(
log

Wn
1 (Y n1 |Xn

1 , X
n
2 )

QY n
1 |Xn

2
(Y n1 |Xn

2 )
≤ logM1 + nγ or

log
Wn

2 (Y n2 |Xn
1 , X

n
2 )

QY n
2 |Xn

1
(Y n2 |Xn

1 )
≤ logM2 + nγ or

2The notation fji(mj) denotes the ith coordinate of the codeword fj(mj) ∈ Rn.
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log
Wn

1 (Y n1 |Xn
1 , X

n
2 )

QY n
1

(Y n1 )
≤ log(M1M2)+nγ or

log
Wn

2 (Y n2 |Xn
1 , X

n
2 )

QY n
2

(Y n2 )
≤ log(M1M2)+nγ

)
+ ζ exp(−nγ), (7.13)

where ζ :=
∑2
k=1

∑2
j=1 ζjk and

ζ11 := sup
x2,y1

PXn
1
Wn

1 (y1|x2)

QY n
1 |Xn

2
(y1|x2)

, ζ12 := sup
y1

PXn
1
PXn

2
Wn

1 (y1)

QY n
1

(y1)
(7.14)

ζ21 := sup
x1,y2

PXn
2
Wn

2 (y2|x1)

QY n
2 |Xn

1
(y2|x1)

, ζ22 := sup
y2

PXn
1
PXn

2
Wn

2 (y2)

QY n
2

(y2)
(7.15)

This is a generalization of the average error version of Feinstein’s lemma [53] (Proposition 4.1). Notice
that we have the freedom to choose the output distributions at the cost of having to control the ratios ζjk
of the induced output distributions and our choice of output distributions.

Proposition 7.2 (Converse bound for IC). For every n ∈ N, every γ > 0 and for any choice of (conditional)
output distributions QY n

1 |Xn
2

and QY n
2 |Xn

1
, every (n,M1,M2, S1, S2, ε)-code for the IC must satisfy

ε ≥ Pr

(
log

Wn
1 (Y n1 |Xn

1 , X
n
2 )

QY n
1 |Xn

2
(Y n1 |Xn

2 )
≤ logM1 − nγ or

log
Wn

2 (Y n2 |Xn
1 , X

n
2 )

QY n
2 |Xn

1
(Y n2 |Xn

1 )
≤ logM2 − nγ

)
− 2 exp(−nγ) (7.16)

for some input distributions PXn
1

and PXn
2

whose support satisfies the power constraints in (7.7).

Observe the following features of the non-asymptotic converse, which is a generalization of the ideas of
Verdú-Han [169, Lem. 4] and Hayashi-Nagaoka [77, Lem. 4]: First, there are only two error events compared
to the four in the achievability bound. The SVSI assumption allows us to eliminate two error events in
the direct bound so the two bounds match in the second-order sense. Second, we are free to choose output
distributions without any penalty (cf. the achievability bound in Proposition 7.1). Third, the intuition
behind this bound is in line with the SVSI assumption–namely that decoder 1 knows the codeword Xn

2 and
vice versa. Indeed, the proof of Proposition 7.2 uses this genie-aided idea.

7.2 Second-Order Asymptotics

Similar to the study of the second-order asymptotics for the Slepian-Wolf problem, we are interested in
deviations from the boundary of the capacity region of order O( 1√

n
) for the Gaussian IC under the SVSI

assumption. This motivates the following definition.
Let (R∗1, R

∗
2) be a point on the boundary of the capacity region in (7.2). Let (L1, L2) ∈ R2 be called

an achievable (ε,R∗1, R
∗
2)-second-order coding rate pair if there exists a sequence of (n,M1n,M2n, S1, S2, εn)-

codes for the Gaussian IC such that

lim sup
n→∞

εn ≤ ε, and lim inf
n→∞

1√
n

(
logMjn − nR∗j

)
≥ Lj , (7.17)

for j = 1, 2. The set of all achievable (ε,R∗1, R
∗
2)-second-order coding rate pairs is denoted as L(ε;R∗1, R

∗
2) ⊂

R2. The intuition behind this definition is exactly analogous to the Slepian-Wolf case.
Define Vj := V(snrj) where, recall from (4.79) that,

V(snr) = log2 e · snr(snr + 2)

2(snr + 1)2
(7.18)

is the Gaussian dispersion function.
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Figure 7.2: Illustration of the different cases in Theorem 7.1. For brevity, we write Cj = C(snrj) for j = 1, 2.

Theorem 7.1. Let the Gaussian IC W , together with the transmit powers (S1, S2), be in the SVSI regime.
Depending on (R∗1, R

∗
2) (see Fig. 7.2), there are 3 different cases:

Case (i): R∗1 = C(snr1) and R∗2 < C(snr2) (vertical boundary)

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : L1 ≤

√
V1Φ−1(ε)

}
. (7.19)

Case (ii): R∗1 < C(snr1) and R∗2 = C(snr2) (horizontal boundary)

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : L2 ≤

√
V2Φ−1(ε)

}
. (7.20)

Case (iii): R∗1 = C(snr1) and R∗2 = C(snr2) (corner point)

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : Φ

(
− L1√

V1

)
Φ
(
− L2√

V2

)
≥ 1− ε

}
. (7.21)

A proof sketch of this result is provided in Section 7.3. The region L(ε;R∗1, R
∗
2) for Case (iii) is sketched

in Fig. 7.3 for the symmetric case in which V1 = V2.
A few remarks are in order: First, for Case (i), L(ε;R∗1, R

∗
2) depends only on ε and V1. Note that√

V1Φ−1(ε) is the optimum (maximum) second-order coding rate of the AWGN channel (Theorem 4.4) from
X1 to Y1 when there is no interference, i.e., g12 = 0 in (7.3). The fact that user 2’s parameters do not
feature in (7.19) is because R∗2 < C(snr2). This implies that the channel 2 operates in large deviations (error
exponents) regime so the second constraint in (7.2) does not feature in the second-order analysis, since the
error probability of decoding message 2 is exponentially small. An analogous observation was also made for
the Slepian-Wolf problem in Chapter 6.

Second, notice that for Case (iii), L(ε;R∗1, R
∗
2) is a function of ε and both V1 and V2 as we are operating

at rates near the corner point of the capacity region. Both constraints in the capacity region in (7.2) are
active. We provide an intuitive reasoning for the result in (7.21). Let Gj denote the event that message
j = 1, 2 is decoded correctly. The error probability criterion in (7.8) can be rewritten as

Pr
(
G1 ∩ G2

)
≥ 1− ε. (7.22)

Assuming independence of the events G1 and G2, which is generally not true in an IC because of interfering
signals,

Pr
(
G1

)
Pr
(
G2

)
≥ 1− ε. (7.23)

Given that the number of messages for codebook j satisfies

Mjn =
⌊

exp
(
nR∗j +

√
nLj + o(

√
n)
)⌋
, (7.24)
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Figure 7.3: Illustration of the region L(ε;R∗1, R
∗
2) in Case (iii) with ε = 10−3. The regions are to the bottom

left of the boundaries indicated.

the optimum probability of correct detection satisfies (cf. Theorem 4.4)

Pr
(
Gj
)

= Φ

(
− Lj√

Vj

)
+ o(1) (7.25)

which then (heuristically) justifies (7.21). The proof makes the steps from (7.22)–(7.25) rigorous. Since V1

and V2 are the dispersions of the Gaussian channels without interference, this is the second-order analogue
of Carleial’s result for Gaussian ICs in the VSI regime [22] because the dispersions are not affected. Note
that no cross dispersion terms are present in (7.21) unlike the Slepian-Wolf problem, where the correlation
of two different entropy densities appears in the characterization of L(ε;R∗1, R

∗
2) for corner points (R∗1, R

∗
2).

Finally, it is somewhat surprising that in the converse, even though we must ensure that the codewords
Xn

1 and Xn
2 are independent, we do not need to leverage the wringing technique invented by Ahlswede [3],

which was used to prove that the discrete memoryless MAC admits a strong converse. This is thanks to
Gaussianity which allows us to show that the first- and second-order statistics of a certain set of information
densities in (7.29)–(7.30) are independent of x1 and x2 belonging to their respective power spheres.

7.3 Proof Sketch of the Main Result

The proof of Theorem 7.1 is somewhat long and tedious so we only sketch the key steps and refer the reader
to [103] for the detailed calculations.

Proof. We begin with the converse. We may assume, using the same argument as that for the point-to-
point AWGN channel (cf. the Yaglom map trick [28, Ch. 9, Thm. 6] in the proof of Theorem 4.4) that
all the codewords xj(mj) satisfy ‖xj(mj)‖22 = nSj , j = 1, 2. Choose the auxiliary output distributions in
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Proposition 7.2 to be the n-fold products of

QY1|X2
(y1|x2) := N (y1; g12x2, g

2
11S1 + 1), and (7.26)

QY2|X1
(y2|x1) := N (y2; g21x1, g

2
22S2 + 1). (7.27)

These are the output distributions induced if the input distributions P̃Xn
1

and P̃Xn
2

are n-fold products of
N (0, S1) and N (0, S2) respectively. Fix any achievable (ε,R∗1, R

∗
2)-second-order coding rate pair (L1, L2),

i.e., (L1, L2) ∈ L(ε;R∗1, R
∗
2). Then, for every ξ > 0, every sequence of (n,M1n,M2n, S1, S2, εn)-codes satisfies

logMjn ≥ nR∗j +
√
n(Lj − ξ), j = 1, 2, (7.28)

for n large enough. To keep our notation succinct, define the information densities

j1(x1,x2, Y
n
1 ) :=log

Wn
1 (Y n1 |x1,x2)

QY n
1 |Xn

2
(Y n1 |x2)

=

n∑
i=1

log
W1(Y1i|x1i, x2i)

QY1|X2
(Y1i|x2i)

, and (7.29)

j2(x1,x2, Y
n
2 ) :=log

Wn
2 (Y n2 |x1,x2)

QY n
2 |Xn

1
(Y n2 |x1)

=

n∑
i=1

log
W2(Y2i|x1i, x2i)

QY2|X1
(Y2i|x1i)

. (7.30)

Let Cj := C(snrj) for j = 1, 2. For any pair of vectors (x1,x2) satisfying ‖xj‖22 = nSj ,

E

[
j1(x1,x2, Y

n
1 )

j2(x1,x2, Y
n
2 )

]
= n

[
C1

C2

]
, and (7.31)

Cov

[
j1(x1,x2, Y

n
1 )

j2(x1,x2, Y
n
2 )

]
= n

[
V1 0
0 V2

]
. (7.32)

Importantly, notice that the covariance matrix in (7.32) is diagonal. This is due to the independence of the
noises Z1i and Z2i and is the crux of the converse proof for the corner point case in (7.21).

Now let γ := n−3/4 in the probability in the non-asymptotic converse bound in (7.16). We denote this
probability as p. By the law of total probability, the complementary probability 1− p can be written as

1−p=

∫
Pr

([
j1(x1,x2, Y

n
1 )

j2(x1,x2, Y
n
2 )

]
>

[
logM1n−n1/4

logM2n−n1/4

])
dPXn

1
(x1) dPXn

2
(x2). (7.33)

By (7.28), for large enough n, the inner probability evaluates to

Pr

([
j1(x1,x2, Y

n
1 )

j2(x1,x2, Y
n
2 )

]
>

[
logM1n − n1/4

logM2n − n1/4

])

≤ Pr

([
j1(x1,x2, Y

n
1 )

j2(x1,x2, Y
n
2 )

]
>

[
nR∗1 −

√
n(L1 − 2ξ)

nR∗2 −
√
n(L2 − 2ξ)

])
(7.34)

≤ Ψ

([√
n(C1 −R∗1)− L1 + 2ξ√
n(C2 −R∗2)− L2 + 2ξ

]
; 0,

[
V1 0
0 V2

])
+

κ√
n

(7.35)

=

2∏
j=1

Φ

(√
n(Cj −R∗j )− Lj + 2ξ√

Vj

)
+

κ√
n
, (7.36)

where (7.35) is an application of the multivariate Berry-Esseen theorem (Corollary 1.1) and κ is a finite
constant. Note that Ψ denotes the bivariate generalization of the Gaussian cdf, defined in (6.11). Equal-
ity (7.36) holds because the covariance matrix in (7.35) is diagonal by the calculation in (7.32). Since the
bound in (7.36) does not depend on x1,x2 as long as ‖xj‖22 = nSj , we have

1− p ≤
2∏
j=1

Φ

(√
n(Cj −R∗j )− Lj + 2ξ√

Vj

)
+

κ√
n
, (7.37)
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In Case (i), R∗1 = C1 and R∗2 < C2 so the term corresponding to j = 2 in the above product converges to
one and we have

1− p ≤ Φ

(−L1 + 2ξ√
Vj

)
+ δn, (7.38)

where δn → 0 as n→∞. Thus Proposition 7.2 yields

εn ≥ Φ

(
L1 − 2ξ√

Vj

)
+ δn. (7.39)

Taking lim sup on both sides yields

lim sup
n→∞

εn ≥ Φ

(
L1 − 2ξ√

Vj

)
. (7.40)

Since lim supn→∞ εn ≤ ε, we can write

L1 ≤
√
V1Φ−1(ε) + 2ξ. (7.41)

Since ξ > 0 is arbitrarily small, we may take ξ ↓ 0 to complete the proof of the converse part for Case (i). For
Case (ii), swap the indices 1 and 2 in the above calculation. For Case (iii), the analysis until (7.36) applies.
However, now R∗j = Cj for both j = 1, 2 so both Φ(·) functions in (7.36) are numbers strictly between 0 and
1. Consequently, we have

1− p ≤ Φ

(−L1 + 2ξ√
Vj

)
Φ

(−L2 + 2ξ√
V2

)
+

κ√
n
. (7.42)

The rest of the arguments are similar to those for Case (i).
For the direct part, similarly to the single-user case in (4.88), we choose the input distributions

PXn
j

(xj) =
δ{‖xj‖22 − nSj}
An(

√
nSj)

, j = 1, 2, (7.43)

where δ{·} is the Dirac δ-function and An(r) is the area of a sphere in Rn with radius r. Clearly, the power
constraints are satisfied with probability one. We choose the conditional output distributions QY n

1 |Xn
2

and
QY n

2 |Xn
1

as in (7.26) and (7.27) and the output distributions QY n
1

and QY n
2

to be the n-fold products of

QY1
(y1) := N (y1; 0, g2

11S1 + g2
12S2 + 1), and (7.44)

QY2(y2) := N (y2; 0, g2
21S1 + g2

22S2 + 1). (7.45)

With these choices of auxiliary output distributions, one can show the following technical lemma concerning
the ratios of the induced (conditional) output distributions and the chosen (conditional) output distributions
in Proposition 7.1. This is the multi-terminal analogue of (4.108) for the point-to-point AWGN channel and
it allows us to replace the inconvenient induced output distributions PXn

1
Wn

1 and PXn
1
PXn

2
Wn

1 (which is
present in standard Feinstein-type achievability bounds, for example [66]) with the convenient QY n

1 |Xn
2

and
QY n

1
without too much degradation in error probability.

Lemma 7.1. Let QY n
1
, QY n

2
, QY n

1 |Xn
2

and QY n
2 |Xn

1
be defined as the n-fold products of those in (7.44), (7.45),

(7.26) and (7.27) respectively. Then, there exists a finite constant ζ̄ such that the ratios ζjk in (7.14)–(7.15)

are uniformly bounded by ζ̄ as n grows. Hence, their sum ζ =
∑2
j,k=1 ζjk is also uniformly bounded.

The proof of this lemma can be found in [103] and [112].
Because Xn

1 and Xn
2 are uniform on their respective power spheres, it is not straightforward to analyze

the behavior of random vector

B =


B11

B21

B12

B22

 :=


log

Wn
1 (Y n

1 |Xn
1 ,X

n
2 )

QY n
1 |X

n
2

(Y n
1 |Xn

2 )

log
Wn

2 (Y n
2 |Xn

1 ,X
n
2 )

QY n
2 |X

n
1

(Y n
2 |Xn

1 )

log
Wn

1 (Y n
1 |Xn

1 ,X
n
2 )

QY n
1

(Y n
1 )

log
Wn

2 (Y n
2 |Xn

1 ,X
n
2 )

QY n
2

(Y n
2 )

 , (7.46)
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which is present in (7.13). Note that B can be written as a sum of dependent random variables due to
the product structure of the chosen output distributions. To analyze the probabilistic behavior of B for
large n, we leverage a technique by MolavianJazi and Laneman [112]. The basic ideas are as follows: Let
Tnj ∼ N (0n, In×n) for j = 1, 2 be standard Gaussian random vectors that are independent of each other and
of the noises Znj . Note that the input distributions in (7.43) allow us to write Xji as

Xji =
√
nSj

Tji
‖Tnj ‖2

, i = 1, . . . , n. (7.47)

Indeed, ‖Xn
j ‖22 = nSj with probability one from the random code construction and (7.47). Now consider

the length-10 random vector Ui := ({Uj1i}4j=1, {Uj2i}4j=1, U9i, U10i), where

U11i := 1− Z2
1i, U21i := g11

√
S1T1iZ1i, (7.48)

U31i := g12

√
S2T2iZ1i, U41i := g11g12

√
S1S2T1iT2i, (7.49)

U12i := 1− Z2
2i, U22i := g22

√
S2T2iZ2i, (7.50)

U32i := g21

√
S1T1iZ2i, U42i := g21g22

√
S1S2T1iT2i, (7.51)

U9i := T 2
1i − 1, U10i := T 2

2i − 1. (7.52)

Clearly, Ui is i.i.d. across channel uses. Furthermore, E[U1] = 0 and E[‖U1‖32] is finite. The covariance
matrix of U1 can also be computed. Define the functions τ11, τ12 : R10 → R

τ11(u) := snr1 u11 +
2u21√
1 + u9

, and (7.53)

τ12(u) := (snr1 + inr1)u11 +
2u21√
1 + u9

+
2u31√
1 + u10

+
2u41√

1 + u9

√
1 + u10

, (7.54)

for user 1, and analogously for user 2. Then, through some algebra, one sees that B11 and B12 can be written
as

B11 = nC(snr1) +
n

2(1 + snr1)
τ11

(
1

n

n∑
i=1

Ui

)
, and (7.55)

B12 = nC(snr1 + inr1) +
n

2(1 + snr1 + inr1)
τ12

(
1

n

n∑
i=1

Ui

)
. (7.56)

The other random variables in the B vector can be expressed similarly.
From (7.55)–(7.56), we are able to see the essence of the MolavianJazi-Laneman [112] technique. The

information densities Bjk, j, k = 1, 2 were initially difficult to analyze because the input random vectors Xn
j

in (7.43) are uniform on power spheres. This choice of input distributions results in codewords Xn
j whose

coordinates are dependent so standard limit theorems do not readily apply. By defining higher-dimensional
random vectors Ui and appropriate functions τjk, one then sees that B can be expressed as a function of a
sum of i.i.d. random vectors. Now, one may consider a Taylor expansion of the differentiable functions τjk
around the mean 0 to approximate B with a sum of i.i.d. random vectors. Through this analysis, one can
rigorously show that

1√
n

B− n


C(snr1)
C(snr2)

C(snr1 + inr1)
C(snr2 + inr2)


 d−→ N

0,


V1 0 ∗ ∗
0 V2 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 , (7.57)
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where the entries marked as ∗ are finite and inconsequential for the subsequent analyses. Recall also that
Vj = V(snrj) for j = 1, 2. In fact, the rate of convergence to Gaussianity in (7.57) can be quantified by
means of Theorem 1.5.

With these preparations, we are ready to evaluate the probability in the direct bound in (7.13), which
we denote as p. We consider all three cases in tandem. Fix (L1, L2) ∈ L(ε;R∗1, R

∗
2). Let the number of

codewords in the jth codebook be

Mjn = bexp
(
nR∗j +

√
nLj − 2n1/4

)
c (7.58)

for j = 1, 2. It is clear that

lim inf
n→∞

1√
n

(
logMjn − nR∗j

)
≥ Lj . (7.59)

Also let γ := n−3/4. With these choices, the complementary probability 1− p can be expressed as

1− p = Pr

B >


nR∗1 +

√
nL1 − n1/4

nR∗2 +
√
nL2 − n1/4

n(R∗1 +R∗2) +
√
n(L1 + L2)− 3n1/4

n(R∗1 +R∗2) +
√
n(L1 + L2)− 3n1/4


 . (7.60)

Now by the SVSI assumption in (7.11)–(7.12),

R∗1 +R∗2 ≤ C(snr1) + C(snr2) < min{C(snr1 + inr1),C(snr2 + inr2)}. (7.61)

The convergence in (7.57) implies that

E[B12] = nC(snr1 + inr1), and E[B22] = nC(snr2 + inr2). (7.62)

Since the expectations of B12 and B22 are strictly larger than R∗1 + R∗2 (cf. (7.61)), by standard Chernoff
bounding techniques,

Pr
(
B12≤n(R∗1+R∗2)+

√
n(L1+L2)−3n1/4

)
≤exp(−nξ), and (7.63)

Pr
(
B22≤n(R∗1+R∗2)+

√
n(L1+L2)−3n1/4

)
≤exp(−nξ), (7.64)

for some ξ > 0. Consequently, by the union bound, (7.60) reduces to

1− p ≥ Pr

([
B11

B21

]
>

[
nR∗1 +

√
nL1 − n1/4

nR∗2 +
√
nL2 − n1/4

])
− 2 exp(−nξ). (7.65)

Just as in the converse, one can then analyze this probability for the various cases using the convergence to
Gaussianity in (7.57). This completes the proof of the direct part.
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Chapter 8

A Special Class of Gaussian Multiple
Access Channels

The multiple access channel (MAC) is a communication model in which many parties would like to simul-
taneously send independent messages over a common medium to a sole destination. Together with the
broadcast, interference and relay channels, the MAC is a fundamental building block of more complicated
communication networks. For example, the MAC is an appropriate model for the uplink of cellular sys-
tems where multiple mobile phone users would like to communicate to a distant base station over a wireless
medium. The capacity region of the MAC is, by now, well known and goes back to the work by Ahlswede [1]
and Liao [105] in the early 1970s. The strong converse was established by Dueck [47] and Ahlswede [3].

A yet simpler model, which we consider in this chapter, is the asymmetric MAC (A-MAC) as shown in
Fig. 8.1. This channel model, also known as the MAC with degraded message sets [49, Ex. 5.18(b)] or the
cognitive [44] MAC, was first studied by Haroutunian [72], Prelov [128] and van der Meulen [167]. Here,
encoder 1 has knowledge of both messages m1 and m2, while encoder 2 only has its own message m2. For
the Gaussian case, the channel law is Y = X1 +X2 + Z, where Z is standard Gaussian noise. The capacity
region [49, Ex. 5.18(b)] is the set of all (R1, R2) satisfying

R1 ≤ C
(
(1− ρ2)S1

)
, and R1 +R2 ≤ C

(
S1 + S2 + 2ρ

√
S1S2

)
(8.1)

for some ρ ∈ [0, 1] where S1 and S2 are the admissible transmit powers. Rate pairs in (8.1) are achieved
using superposition coding [31]. This region for S1 = S2 = 1 is shown in Fig. 8.2. Observe that ρ ∈ [0, 1]
parametrizes points on the boundary. Each point on the curved part of the boundary is achieved by a unique
bivariate Gaussian distribution.

In this chapter, we show that the assumptions concerning Gaussianity and asymmetry of the messages
sets (i.e., partial cooperation) allow us to determine the second-order asymptotics of this model. The main
result here is of a somewhat different flavor compared to results in previous chapters on multi-terminal
information theory problems because the second-order rate region L(ε;R∗1, R

∗
2) is characterized not only in

terms of covariances of vectors of information densities or dispersions. Indeed, we will see that there is a
subtle interaction between the derivatives of the first-order capacity terms in (8.1) with respect to ρ, and
the dispersions in the description of L(ε;R∗1, R

∗
2). The fact that the derivatives appear in the answer to an

information-theoretic question appears to be novel.1 The difference in the characterization of L(ε;R∗1, R
∗
2)

compared to second-order regions in previous chapters is because, with the union over ρ ∈ [0, 1], the boundary
of the capacity region in (8.1) is curved in contrast to the polygonal capacity regions in previous chapters. We
will see that the curvature of the boundary results in the second-order region L(ε;R∗1, R

∗
2) being a half-space

in R2. This half-space is characterized by a slope and intercept, both of which are expressible in terms of
the dispersions, together with the derivatives of the capacities.

1In fact, the dispersion of the compound channel [120] is a function of the dispersions of the constitudent channels and the
derivatives of the capacity terms.
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Figure 8.1: Illustration of the asymmetric MAC or A-MAC

Intuitively, the extra derivative term arises because we need to account for all possible angles of approach
to a boundary point (R∗1, R

∗
2). Using a sequence of input distributions parametrized by a single correlation

parameter ρ not depending on the blocklength turns out to be suboptimal in the second-order sense, as we
can only achieve the angles of approach within the specific trapezoid parametrized by ρ (see Fig. 8.2 and its
caption). Thus, our coding strategy is to let the sequence of input distributions vary with the blocklength.
In particular, they are parametrized by a sequence {ρn}n∈N that converges to ρ with speed Θ( 1√

n
). A Taylor

expansion of the first-order capacity vector then yields the derivative term.
Similarly to the Gaussian IC with SVSI, the achievability proof uses the coding on spheres strategy in

which pairs of codewords are drawn uniformly at random from high-dimensional spheres. However, because
the underlying coding strategy involves superposition coding, the analysis is more subtle. In particular, we
are required to bound the ratios of certain induced output densities and product output densities. The proof
of the converse part involves several new ideas including (i) reduction to almost constant correlation type
subcodes; (ii) evaluation of a global outer bound and (iii) specialization of the global outer bound to obtain
local second-order asymptotic results.

The material in this chapter is based on work by Scarlett and Tan [138].

8.1 Definitions and Non-Asymptotic Bounds

The model we consider is as follows:

Yi = X1i +X2i + Zi (8.2)

where i = 1, . . . , n and Zi ∼ N (0, 1) is white Gaussian noise. The channel gains are set to unity without loss
of generality. Thus, the channel transition law is

W (y|x1, x2) =
1√
2π

exp

(
−1

2
(y − x1 − x2)2

)
. (8.3)

The channel operates in a stationary and memoryless manner.
We define an (n,M1,M2, S1, S2, ε)-code for the Gaussian A-MAC which includes two encoders f1 :

{1, . . . ,M1}× {1, . . . ,M2} → Rn, f2 : {1, . . . ,M2} → Rn and a decoder ϕ : Rn → {1, . . . ,M1}× {1, . . . ,M2}
such that the following power constraints are satisfied

∥∥f1(m1,m2)
∥∥2

2
=

n∑
i=1

f1i(m1)2 ≤ nS1, and (8.4)

∥∥f2(m2)
∥∥2

2
=

n∑
i=1

f2i(m2)2 ≤ nS2, (8.5)
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Figure 8.2: Capacity region of a Gaussian A-MAC where S1 = S2 = 1. The three cases of Theorem 8.1 are
illustrated. Each ρ ∈ (0, 1] corresponds to a trapezoid of rate pairs achievable by a unique input distribution
N (0,Σ(ρ)). However, coding with a fixed input distribution is insufficient to achieve all angles of approach
to a boundary point as there are regions within C not in the trapezoid parametrized by ρ. Suppose ρ = 2

3 , one
can approach the corner point in the direction indicated by the vector v using the fixed input distribution
N (0,Σ( 2

3 )), but the same is not true of the direction indicated by v′, since the approach is from outside the
trapezoid.
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and the average error probability

1

M1M2

M1∑
m1=1

M2∑
m2=1

Wn
(
Rn×Rn \ Dm1,m2

∣∣f1(m1,m2), f2(m2)
)
≤ε. (8.6)

As with the Gaussian IC discussed in the previous chapter, Dm1,m2 denotes the decoding region for messages
(m1,m2) and Sj represents the admissible power for the jth user.

The following non-asymptotic bounds are easily derived. They are analogues of the bounds by Fein-
stein [53] and Verdú-Han [169] (or Hayashi-Nagaoka [77]). See Boucheron-Salamatian [20] for the proofs of
similar results.

Proposition 8.1 (Achievability bound for the A-MAC). Fix any input joint distribution PXn
1 X

n
2

whose
support satisfies the power constraints in (8.4)–(8.5), i.e., ‖Xn

j ‖2 ≤ nSj with probability one. For every
n ∈ N, every γ > 0, any choice of output distributions QY n|Xn

2
and QY n , and any two sets A1 ⊂ Xn2 × Yn

and A12 ⊂ Yn, there exists an (n,M1,M2, S1, S2, ε)-code for the A-MAC such that

ε ≤ Pr

(
log

Wn(Y n|Xn
1 , X

n
2 )

QY n|Xn
2

(Y n|Xn
2 )
≤ logM1+nγ or

log
Wn(Y n|Xn

1 , X
n
2 )

QY n(Y n)
≤ log(M1M2)+nγ

)
+ Pr

(
(Xn

2 , Y
n) /∈ A1

)
+ Pr

(
Y n /∈ A12

)
+ ζ exp(−nγ), (8.7)

where ζ = ζ1 + ζ12 and

ζ1 := sup
(x2,y)∈A1

PXn
1 |Xn

2
Wn(y|x2)

QY n|Xn
2

(y|x2)
, ζ12 := sup

y∈A12

PXn
1 X

n
2
Wn(y)

QY n(y)
. (8.8)

Again notice that our freedom to choose QY n|Xn
2

and QY n results in the need to control ζ1 and ζ12,
which are the maximum values of the ratios of the densities induced by the code with respect to the chosen
output densities. The maximum values are restricted to those typical values of (x2,y) and y indicated by
the chosen sets A1 and A12.

Proposition 8.2 (Converse bound for the A-MAC). For every n ∈ N, every γ > 0 and for any choice of
output distributions QY n|Xn

2
and QY n , every (n,M1,M2, S1, S2, ε)-code for the A-MAC must satisfy

ε ≥ Pr

(
log

Wn(Y n|Xn
1 , X

n
2 )

QY n|Xn
2

(Y n|Xn
2 )
≤ logM1−nγ or

log
Wn(Y n|Xn

1 , X
n
2 )

QY n(Y n)
≤ log(M1M2)−nγ

)
−2 exp(−nγ), (8.9)

for some input joint distribution PXn
1 X

n
2

whose support satisfies the power constraints in (8.4)–(8.5).

8.2 Second-Order Asymptotics

As in the previous chapters on multi-terminal problems, given a point on the boundary of the capacity region
(R∗1, R

∗
2), we are interested in characterizing the set of all (L1, L2) pairs for which there exists a sequence of

(n,M1n,M2n, S1, S2, εn)-codes such that

lim inf
n→∞

1√
n

(
logMjn − nR∗j

)
≥ Lj , and lim sup

n→∞
εn ≤ ε. (8.10)

We denote this set as L(ε;R∗1, R
∗
2) ⊂ R2.
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8.2.1 Preliminary Definitions

Before we can state the main results, we need to define a few more fundamental quantities. For a pair of
rates (R1, R2), the rate vector is

R :=

[
R1

R1 +R2

]
. (8.11)

The input distribution to achieve a point on the boundary characterized by some ρ ∈ [0, 1] is a 2-dimensional
Gaussian distribution with zero mean and covariance matrix

Σ(ρ) :=

[
S1 ρ

√
S1S2

ρ
√
S1S2 S2

]
. (8.12)

The corresponding mutual information vector is given by

I(ρ) =

[
I1(ρ)
I12(ρ)

]
:=

[
C
(
S1(1− ρ2)

)
C
(
S1 + S2 + 2ρ

√
S1S2

)] . (8.13)

Let

V(x, y) := log2 e · x(y + 2)

2(x+ 1)(y + 1)
(8.14)

be the Gaussian cross-dispersion function and note that V(x) := V(x, x) is the Gaussian dispersion function
defined previously in (4.79). For fixed 0 ≤ ρ ≤ 1, define the information-dispersion matrix

V(ρ) :=

[
V1(ρ) V1,12(ρ)
V1,12(ρ) V12(ρ)

]
, (8.15)

where the elements of the matrix are

V1(ρ) := V
(
S1(1− ρ2)

)
, (8.16)

V1,12(ρ) := V
(
S1(1− ρ2), S1 + S2 + 2ρ

√
S1S2

)
, (8.17)

V12(ρ) := V
(
S1 + S2 + 2ρ

√
S1S2

)
. (8.18)

Let (X1, X2) ∼ PX1X2
= N (0,Σ(ρ)) and define QY |X2

and QY to be Gaussian distributions induced by
PX1X2 and W , namely

QY |X2
(y|x2) := N

(
y;x2(1 + ρ

√
S1/S2), 1 + S1(1− ρ2)

)
, and (8.19)

QY (y) := N
(
y; 0, 1 + S1 + S2 + 2ρ

√
S1S2

)
. (8.20)

It should be noted that the random variables (X1, X2) and the densities QY |X2
and QY all depend on ρ;

this dependence is suppressed throughout the chapter. The mutual information vector I(ρ) and information-
dispersion matrix V(ρ) are the mean vector and conditional covariance matrix of the information density
vector

j(x1, x2, y) :=

[
j1(x1, x2, y)
j12(x1, x2, y)

]
=

[
log W (y|x1,x2)

QY |X2
(y|x2)

log W (y|x1,x2)
QY (y)

]
. (8.21)

That is, we can write I(ρ) and V(ρ) as

I(ρ) = E
[
j(X1, X2, Y )

]
, and (8.22)

V(ρ) = E
[
Cov

(
j(X1, X2, Y )

∣∣X1, X2

)]
, (8.23)

with (X1, X2, Y ) ∼ PX1X2 ×W . We also need a generalization of the Φ−1(·) function. Define the “inverse
image” of Ψ(z1, z2; 0,Σ) as

Ψ−1(Σ, ε) :=
{

(t1, t2) ∈ R2 : Ψ(−z1,−z2; 0,Σ) ≥ 1− ε
}
. (8.24)

An illustration of this set is provided in Fig. 8.3. Observe that for ε < 1
2 , the set lies entirely within the

third quadrant of the R2 plane. This represents “backoffs” from the first-order fundamental limits.
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Figure 8.3: Illustration of the set Ψ−1(V(ρ), ε) where V(ρ) is defined in (8.15). The regions are to the
bottom left of the boundaries indicated.

8.2.2 Global Second-Order Asymptotics

Here we provide inner and outer bounds on C(n, ε), defined to be the set of (R1, R2) pairs such that there
exist codebooks of length n and rates at least R1 and R2 yielding an average error probability not exceeding
ε. Let g(ρ, ε, n) and g(ρ, ε, n) be arbitrary functions of ρ, ε and n for now, and define the inner and outer
regions

R(n, ε; ρ) :=

{
(R1, R2) : R ∈ I(ρ) +

Ψ−1(V(ρ), ε)√
n

+ g(ρ, ε, n)1

}
, (8.25)

R(n, ε; ρ) :=

{
(R1, R2) : R ∈ I(ρ) +

Ψ−1(V(ρ), ε)√
n

+ g(ρ, ε, n)1

}
. (8.26)

Lemma 8.1 (Global Bounds on the (n, ε)-Capacity Region). There exist functions g(ρ, ε, n) and g(ρ, ε, n)
such that ⋃

0≤ρ≤1

R(n, ε; ρ) ⊂ C(n, ε) ⊂
⋃

−1≤ρ≤1

R(n, ε; ρ), (8.27)

and g and g satisfy the following properties:
(i) For any sequence {ρn}n∈N with ρn → ρ ∈ (−1, 1), we have

g(ρn, ε, n) = O

(
log n

n

)
, and g(ρn, ε, n) = O

(
log n

n

)
. (8.28)

(ii) Else, for any sequence {ρn}n∈N with ρn → ±1, we have

g(ρn, ε, n) = o

(
1√
n

)
, and g(ρn, ε, n) = o

(
1√
n

)
. (8.29)

Lemma 8.1 serves as a stepping stone to establish the local behavior of first-order optimal codes near a
boundary point. A proof sketch of the lemma is provided in Section 8.3.1.
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We remark that even though the union for the outer bound in (8.27) is taken over ρ ∈ [−1, 1], only the
values ρ ∈ [0, 1] will play a role in establishing the local asymptotics in Section 8.2.3, since negative values
of ρ are not even first-order optimal, i.e., they fail to achieve a point on the boundary of the capacity region.

We do not claim that the remainder terms in (8.28)–(8.29) are uniform in the limiting value ρ of {ρn}n∈N;
such uniformity will not be required in establishing our main local result below. On the other hand, it is
crucial that values of ρ varying with n are handled.

8.2.3 Local Second-Order Asymptotics

To characterize L(ε;R∗1, R
∗
2), we need yet another definition, which is a feature we have not encountered thus

far in this monograph. Define

D(ρ) =

[
D1(ρ)
D12(ρ)

]
:=

∂

∂ρ

[
I1(ρ)
I12(ρ)

]
, (8.30)

to be the derivative of the mutual information vector with respect to ρ where the individual derivatives are
given by

∂I1(ρ)

∂ρ
=

−S1ρ

1 + S1(1− ρ2)
, and (8.31)

∂I12(ρ)

∂ρ
=

√
S1S2

1 + S1 + S2 + 2ρ
√
S1S2

. (8.32)

Note that ρ ∈ (0, 1] represents the strictly concave part of the boundary (the part of the boundary where
R2 > 0.2 in Fig. 8.2), and in this interval we have D1(ρ) < 0 and D12(ρ) > 0.

Furthermore, for a vector v = (v1, v2) ∈ R2, we define the down-set of v as

v− := {(w1, w2) ∈ R2 : w1 ≤ v1, w2 ≤ v2}. (8.33)

We are now in a position to state our main result whose proof is sketched in Section 8.3.2.

Theorem 8.1 (Local Second-Order Rates). Depending on (R∗1, R
∗
2) (see Fig. 8.2), we have the following

three cases:
Case (i): R∗1 = I1(0) and R∗1 +R∗2 ≤ I12(0) (vertical segment of the boundary corresponding to ρ = 0),

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : L1 ≤

√
V1(0)Φ−1(ε)

}
. (8.34)

Case (ii): R∗1 = I1(ρ) and R∗1 +R∗2 = I12(ρ) (curved segment of the boundary corresponding to 0 < ρ < 1),

L(ε;R∗1, R
∗
2)=

{
(L1, L2) :

[
L1

L1+L2

]
∈
⋃
β∈R

{
βD(ρ)+Ψ−1(V(ρ), ε)

}}
. (8.35)

Case (iii): R∗1 = 0 and R∗1 +R∗2 = I12(1) (point on the vertical axis corresponding to ρ = 1),

L(ε;R∗1, R
∗
2)

=

{
(L1, L2) :

[
L1

L1 + L2

]
∈
⋃
β≤0

{
βD(1) +

[
0√

V12(1)Φ−1(ε)

]−}}
. (8.36)

See Fig. 8.4 for an illustration of L(ε;R∗1, R
∗
2) in (8.35) and the set of (L1, L2) such that (L1, L1 + L2)

belongs to Ψ−1(V(ρ), ε), i.e., GΨ−1(V(ρ), ε), where G = [1, 0;−1, 1] is the invertible matrix that transforms
the coordinate system from [L1, L1 + L2]′ to [L1, L2]′. In other words, GΨ−1(V(ρ), ε) is the same set as
that in (8.35) neglecting the union and setting β = 0. It can be seen that GΨ−1(V(ρ), ε) is a strict subset
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98



of L(ε;R∗1, R
∗
2). In fact, L(ε;R∗1, R

∗
2) is a half-space in R2 for any (R∗1, R

∗
2) on the boundary of the capacity

region corresponding to ρ < 1. So L(ε;R∗1, R
∗
2) in (8.35) can be alternatively written as

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : L2 ≤ aρL1 + bρ,ε

}
(8.37)

where the slope and intercept are respectively defined as

aρ :=
D12(ρ)−D1(ρ)

D1(ρ)
, and (8.38)

bρ,ε := inf
{
b ∈ R : ∃L1 ∈ R s.t.

(L1, (aρ + 1)L1 + b) ∈ GΨ−1(V(ρ), ε)
}
. (8.39)

8.2.4 Discussion of the Main Result

Observe that in Case (i), the second-order region is simply characterized by a scalar dispersion term V1(0)
and the inverse of the Gaussian cdf Φ−1. In this part of the boundary, there is effectively only a single rate
constraint in terms of R1, since we are operating “far away” from the sum rate constraint. This results in a
large deviations-type event for the sum rate constraint which has no bearing on second-order asymptotics.
This is similar to observations made in Chapters 6 and 7.

Cases (ii)–(iii) are more interesting, and their proofs do not follow from standard techniques. As in Case
(iii) for Theorem 6.1, the second-order asymptotics for Case (ii) depend on the dispersion matrix V(ρ) and
the bivariate Gaussian cdf, since both rate constraints are active at a point on the boundary parametrized
by ρ ∈ (0, 1). However, the expression containing Ψ−1 alone (i.e., the expression obtained by setting β = 0
in (8.35)) corresponds to only considering the unique input distribution N (0,Σ(ρ)) achieving the point
(R∗1, R

∗
2) = (I1(ρ), I12(ρ) − I1(ρ)). From Fig. 8.2, this is not sufficient to achieve all second-order coding

rates, since there are non-empty regions within the capacity region that are not contained in the trapezoid
of rate pairs achievable using a single Gaussian N (0,Σ(ρ)).

Thus, to achieve all (L1, L2) pairs in L(ε;R∗1, R
∗
2), we must allow the sequence of input distributions to

vary with the blocklength n. This is manifested in the βD(ρ) term. Roughly speaking, our proof strategy
of the direct part involves random coding with a sequence of input distributions that are uniform on two
spheres with correlation coefficient ρn = ρ + O

(
1√
n

)
between them. By a Taylor expansion, the resulting

mutual information vector
I(ρn) ≈ I(ρ) + (ρn − ρ)D(ρ). (8.40)

Since ρn−ρ = O
(

1√
n

)
, the gradient term (ρn−ρ)D(ρ) also contributes to the second-order behavior, together

with the traditional Gaussian approximation term Ψ−1(V(ρ), ε).
For the converse, we consider an arbitrary sequence of codes with rate pairs {(R1n, R2n)}n∈N converging

to (R∗1, R
∗
2) = (I1(ρ), I12(ρ)− I1(ρ)) with second-order behavior given by (8.10). From the global result, we

know [R1n, R1n +R2n]T ∈ R(n, ε; ρn) for some sequence {ρn}n∈N. We then establish, using the definition of
the second-order coding rates in (8.10), that ρn = ρ+O

(
1√
n

)
. Finally, by the Bolzano-Weierstrass theorem,

we may pass to a subsequence of ρn (if necessary), thus establishing the converse.
A similar discussion holds true for Case (iii); the main differences are that the covariance matrix is

singular, and that the union in (8.36) is taken over β ≤ 0 only, since ρn can only approach one from below.

8.3 Proof Sketches of the Main Results

8.3.1 Proof Sketch of the Global Bound (Lemma 8.1)

Proof. Because the proof is rather lengthy, we only focus on the case where ρn → ρ ∈ (−1, 1). The main
ideas are already present here. The case where ρn → ±1 is omitted, and the reader is referred to [138] for
the details.

99



The converse proof is split into several steps for clarity. In the first three steps, we perform a series
of reductions to simplify the problem. We do so to simplify the evaluation of the probability in the non-
asymptotic converse bound in Proposition 8.2.

Step 1: (Reduction from Maximal to Equal Power Constraints) As usual, by the Yaglom map trick [28,
Ch. 9, Thm. 6], it suffices to consider codes such that the inequalities in (8.10) hold with equality. See the
argument for the proof of the converse for the asymptotic expansion of the AWGN channel (Theorem 4.4).

Step 2: (Reduction from Average to Maximal Error Probability) Using similar arguments to [119,
Sec. 3.4.4], it suffices to prove the converse for maximal (rather than average) error probability.2 This
is shown by starting with an average-error code, and then constructing a maximal-error code as follows: (i)
Keep only the fraction 1√

n
of user 2’s messages with the smallest error probabilities (averaged over user 1’s

message); (ii) For each of user 2’s messages, keep only the fraction 1√
n

of user 1’s messages with the smallest

error probabilities.
Step 3: (Correlation Type Classes) Define I0 := {0} and Ik := (k−1

n , kn ], k = 1, . . . , n, and let I−k := −Ik.
Consider the correlation type classes (or simply type classes)

Tn(k) :=

{
(x1,x2) :

〈x1,x2〉
‖x1‖2‖x2‖2

∈ Ik
}

(8.41)

where k = −n, . . . , n. The total number of type classes is 2n + 1, which is polynomial in n analogously to
the finite alphabet case (cf. the type counting lemma). Using a similar argument to that for the asymmetric
broadcast channel in [39, Lem. 16.2], and the fact that we are considering the maximal error probability so
all message pairs (m1,m2) have error probabilities not exceeding ε (cf. Step 2), it suffices to consider codes
for which all pairs (x1,x2) that are in a single type class, say indexed by k. This results in a rate loss of R1

and R2 of only O( logn
n ). We define ρ̂ := k

n according to the type class indexed by k in (8.41).
Step 4: (Approximation of Empirical Moments with True Moments) The value of ρ used in the single-

letter information densities in (8.21) is arbitrary, and is chosen to be ρ̂.
Using the definition of Tn(k) and the information densities in (8.21), we can show that the first and

second moments of
∑n
i=1 j(x1i, x2i, Yi) are approximately given by I(ρ̂) and V(ρ̂) respectively, i.e.,∥∥∥∥∥E

[
1

n

n∑
i=1

j(x1i, x2i, Yi)

]
− I(ρ̂)

∥∥∥∥∥
∞
≤ ξ1

n
, and (8.42)∥∥∥∥∥Cov

[
1√
n

n∑
i=1

j(x1i, x2i, Yi)

]
−V(ρ̂)

∥∥∥∥∥
∞
≤ ξ2

n
(8.43)

for some ξ1 > 0 and ξ2 > 0 not depending on ρ̂. The expectation and covariance above are taken with
respect to Wn(·|x1,x2). Roughly speaking, the reason for (8.42) and (8.43) is because all pairs of vectors
in Tn(k) have approximately the same empirical correlation coefficient so the expectation and covariance of
appropriately normalized information density vectors are also close to a representative mutual information
vector and dispersion matrix respectively.

Step 5: (Evaluation of the Non-Asymptotic Converse Bound in Proposition 8.2) Let Rn := [R1n, R1n +
R2n]′ (where Rjn = 1

n logMjn) be the rate vector consisting of the non-asymptotic rates (R1n, R2n). Addi-
tionally, let

F :=

{
log

Wn(Y n|Xn
1 , X

n
2 )

QY n|Xn
2

(Y n|Xn
2 )
≤ logM1n − nγ

}
(8.44)

G :=

{
log

Wn(Y n|Xn
1 , X

n
2 )

QY n(Y n)
≤ log(M1nM2n)− nγ

}
(8.45)

2This argument is not valid for the standard MAC, but is possible here due to the partial cooperation (i.e., user 1 knowing
both messages). It is well known that the capacity regions for the MAC under the average and maximum error probability
criteria are different, an observation first made by Dueck [46].
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be the two “error” events within the probability in (8.9). We then have

Pr(F ∪ G) = 1− Pr(Fc ∩ Gc) (8.46)

= 1− EXn
1 ,X

n
2

[
Pr(Fc ∩ Gc|Xn

1 , X
n
2 )
]
. (8.47)

In particular, using the definition of j(x1, x2, y) in (8.21) and the fact that QY n|Xn
2

and QY n are product
distributions, the conditional probability in (8.47) can be bounded as

Pr(Fc ∩ Gc|Xn
1 = x1, X

n
2 = x2)

= Pr

(
1

n

n∑
i=1

j(x1i, x2i, Yi) > Rn − γ1

)
(8.48)

≤ Pr

(
1

n

n∑
i=1

(
j(x1i, x2i, Yi)− E[j(x1i, x2i, Yi)]

)
> Rn − I(ρ̂)− γ1− ξ1

n
1

)
, (8.49)

where (8.49) follows from the approximation of the empirical expectation in (8.42). In the rest of this global
converse proof, γ is set to logn

2n so exp(−nγ) = 1√
n

in the non-asymptotic converse bound in (8.9).

Applying the multivariate Berry-Esseen theorem (Corollary 1.1) to (8.49) yields

Pr(Fc ∩ Gc|Xn
1 = x1, X

n
2 = x2)

≤ Ψ

([ √
n
(
I1(ρ̂) + γ + ξ1/n−R1n

)
√
n
(
I12(ρ̂) + γ + ξ1/n− (R1n +R2n)

)] ;

0,Cov

[
1√
n

n∑
i=1

j(x1i, x2i, Yi)

])
+
ψ(ρ̂)√
n
, (8.50)

where ψ(ρ̂) is a constant. By Taylor expanding the continuously differentiable function (z1, z2,V) 7→
Ψ(z1, z2; 0,V), and using the approximation of the empirical covariance in (8.43) together with the fact
that det(V(ρ̂)) > 0 for ρ̂ ∈ (−1, 1), we obtain

Pr(Fc ∩ Gc|Xn
1 = x1, X

n
2 = x2)

≤ Ψ

([ √
n
(
I1(ρ̂) + γ + ξ1/n−R1n

)
√
n
(
I12(ρ̂) + γ + ξ1/n− (R1n +R2n)

)] ; 0,V(ρ̂)

)
+
η(ρ̂) log n√

n
(8.51)

where η(ρ̂) is a constant. It should be noted that ψ(ρ̂), η(ρ̂) → ∞ as ρ̂ → ±1, since V(ρ̂) becomes singular
as ρ̂→ ±1. Despite this non-uniformity, we conclude from (8.9), (8.47) and (8.51) that any (n, ε)-code with
codewords (x1,x2) all belonging to Tn(k) must have rates (R1n, R2n) that satisfy

[
R1n

R1n +R2n

]
∈ I(ρ̂) +

Ψ−1
(
V(ρ̂), ε+ 2√

n
+ η(ρ̂) logn√

n

)
√
n

. (8.52)

We immediately obtain the global converse bound on the (n, ε)-capacity region (outer bound in (8.27) of
Lemma 8.1) by employing the approximation

Ψ−1

(
V(ρ̂), ε+

c log n√
n

)
⊂ Ψ−1

(
V(ρ̂), ε) +

h(V(ρ̂), ε, c) log n√
n

1, (8.53)

where c > 0 is an arbitrary finite constant and h(V(ρ̂), ε, c) is finite for ρ̂ 6= ±1. The details of the approxi-
mation in (8.53) are omitted, and can be found in [138].
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We now provide a proof sketch of the achievability part of Lemma 8.1 (inner bound in (8.27)). At a high
level, we will adopt the strategy of drawing random codewords on appropriate power spheres, similar to the
coding strategy for AWGN channels (Section 4.3) and the Gaussian IC with SVSI (Chapter 7). We then
analyze the ensemble behavior of this random code.

Step 1: (Random-Coding Ensemble) Let ρ ∈ [0, 1] be a fixed correlation coefficient. The ensemble will
be defined in such a way that, with probability one, each codeword pair falls into the set

Dn(ρ) :=
{(

x1,x2

)
: ‖x1‖22 = nS1, ‖x2‖22 = nS2, 〈x1,x2〉 = nρ

√
S1S2

}
. (8.54)

This means that the power constraints in (8.4)–(8.5) are satisfied with equality and the empirical correlation
between each codeword pair is also exactly ρ. We use superposition coding, in which the codewords are
generated according to {(

Xn
2 (m2), {Xn

1 (m1,m2)}M1
m1=1

)}M2

m2=1

∼
M2∏
m2=1

(
PXn

2
(x2(m2))

M1∏
m1=1

PXn
1 |Xn

2
(x1(m1,m2)|x2(m2))

)
(8.55)

for codeword distributions PXn
2

and PXn
1 |Xn

2
. We choose the codeword distributions to be

PXn
2

(x2) ∝ δ
{
‖x2‖22 = nS2

}
, and (8.56)

PXn
1 |Xn

2
(x1|x2) ∝ δ

{
‖x1‖22 = nS1, 〈x1,x2〉 = nρ

√
S1S2

}
, (8.57)

where δ{·} is the Dirac δ-function, and PXn(x) ∝ δ{x ∈ A} means that PXn(x) = δ{x∈A}
c , with the

normalization constant c > 0 chosen such that
∫
A PXn(x) dx = 1. In other words, each x2(m2) is drawn

uniformly from an (n−1)-sphere with radius
√
nS2 and for each m2, each x1(m1,m2) is drawn uniformly from

the set of all x1 satisfying the power and correlation coefficient constraints with equality. These distributions
clearly ensure that the codeword pairs belong to Dn(ρ) with probability one.

Step 2: (Evaluation of the Non-Asymptotic Achievability Bound in Proposition 8.1) We now need to
identify typical sets of (x2,y) and y such that the maximum values of the ratios of the densities ζ1 and ζ12,
defined in (8.8), are uniformly bounded on these sets. For this purpose, we leverage the following lemma.

Lemma 8.2. Consider the setup of Proposition 8.1, where the output distributions are chosen to be QY n|Xn
2

:=
(PX1|X2

W )n and QY n := (PX1X2W )n with PX1X2 := N (0,Σ(ρ)), and the input joint distribution PXn
1 X

n
2

is
described by (8.56)–(8.57). There exist sets A1 ⊂ Xn2 ×Yn and A12 ⊂ Yn (depending on n and ρ) such that
the following

max
ρ∈[0,1]

max{ζ1, ζ12} ≤ Λ (8.58)

max
ρ∈[0,1]

max
{

Pr
(
(Xn

2 , Y
n) /∈ A1

)
,Pr

(
Y n /∈ A12

)}
≤ exp(−nξ), (8.59)

hold for all n > n0, where where Λ <∞, ξ > 0 and n0 ∈ N are constants not depending on ρ.

The proof of this technical lemma is omitted and can be found in [138]. It extends and refines ideas in
Polyanskiy-Poor-Verdú’s proof of the dispersion of AWGN channels [123, Thm. 54 & Lem. 61].

Note that the uniformity of the bounds Λ and exp(−nξ) in (8.58)–(8.59) in ρ is crucial for handling ρ
varying with n, as is required in Lemma 8.1.

Equipped with Lemma 8.2, we now apply the multivariate Berry-Esseen theorem (Corollary 1.1) to
estimate the probability in the non-asymptotic achievability bound in Proposition 8.1. This computation is
similar to that sketched in the converse proof with ξ1 = ξ2 = 0. This concludes the achievability proof of
Lemma 8.1.
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8.3.2 Proof Sketch of the Local Result (Theorem 8.1)

Proof. We begin with the converse proof. We only prove the result in Case (ii), because Case (i) is standard
(follows from the single-user case in Theorem 4.4) and Case (iii) similar to Case (ii).

Step 1: (Passage to a Convergent Subsequence) Fix a correlation coefficient ρ ∈ (0, 1], and consider any se-
quence of (n,M1n,M2n, S1, S2, εn)-codes satisfying (8.10). Let us consider the associated rates {(R1n, R2n)}n∈N.
As required by the definition of second-order rate pairs (L1, L2) ∈ L(ε;R∗1, R

∗
2), these codes must satisfy

lim inf
n→∞

Rjn ≥ R∗j , (8.60)

lim inf
n→∞

√
n
(
Rjn −R∗j

)
≥ Lj , j = 1, 2, (8.61)

lim sup
n→∞

εn ≤ ε (8.62)

for some (R∗1, R
∗
2) on the boundary parametrized by ρ, i.e., R∗1 = I1(ρ) and R∗1 + R∗2 = I12(ρ). The first-

order optimality condition in (8.60) is not explicitly required by (8.10), but it is implied by (8.61). Letting
Rn := [R1n, R1n+R2n]′ be the non-asymptotic rate vector, we have, from the global converse bound in (8.27),
that there exists a (possibly non-unique) sequence {ρn}n∈N ⊂ [−1, 1] such that

Rn ∈ I(ρn) +
Ψ−1(V(ρn), ε)√

n
+ g(ρn, ε, n)1. (8.63)

Since we used the lim inf for the rates and lim sup for the error probability in the conditions in (8.60)–(8.62),
we may pass to a convergent (but otherwise arbitrary) subsequence of {ρn}n∈N, say indexed by {nl}l∈N.
Recalling that the lim inf (resp. lim sup) is the infimum (resp. supremum) of all subsequential limits, any
converse result associated with this subsequence also applies to the original sequence. Note that at least one
convergent subsequence is guaranteed to exist, since [−1, 1] is compact.

For the sake of clarity, we avoid explicitly writing the subscript l. However, it should be understood that
asymptotic notations such as O(·) and (·)n → (·) are taken with respect to the convergent subsequence.

Step 2: (Establishing The Convergence of ρn to ρ) Although g(ρn, ε, n) in (8.63) depends on ρn, we know
from the global bounds on the (n, ε)-capacity region (Lemma 8.1) that it is o

(
1√
n

)
for both ρn → ±1 and

ρn → ρ ∈ (−1, 1). Hence,

Rn ∈ I(ρn) +
Ψ−1(V(ρn), ε)√

n
+ o

(
1√
n

)
1. (8.64)

We claim that the result in (8.64) allows us to conclude that every sequence {ρn}n∈N that serves to
parametrize an outer bound of the non-asymptotic rates in (8.63) converges to ρ. Indeed, since the bound-
ary of the capacity region is curved and uniquely parametrized by ρ for ρ ∈ (0, 1], ρn 6→ ρ implies for some
η > 0 and for all sufficiently large n that either I1(ρn) ≤ I1(ρ)− η or I12(ρn) ≤ I12(ρ)− η. Combining this
with (8.64), we deduce that

R1n ≤ I1(ρ)− η

2
, or R1n +R2n ≤ I12(ρ)− η

2
(8.65)

for sufficiently large n. This, in turn, contradicts the convergence of (R1n, R2n) to (R∗1, R
∗
2) implied by (8.10).

Step 3: (Establishing The Convergence Rate of ρn to ρ) Because each entry of I(ρ) is twice continuously
differentiable, a Taylor expansion yields

I(ρn) = I(ρ) + D(ρ)(ρn − ρ) +O
(
(ρn − ρ)2

)
1. (8.66)

In the case that ρn − ρ = ω
(

1√
n

)
, it is not difficult to show that (8.64) and (8.66) imply

Rn ≤ I(ρ) + D(ρ)(ρn − ρ) + o(ρn − ρ)1. (8.67)

Since the first entry of D(ρ) is negative and the second entry is positive, (8.67) states that L1 = +∞ (i.e.,
a large addition to R∗1) only if L1 + L2 = −∞ (i.e., a large backoff from R∗1 + R∗2), and L1 + L2 = +∞
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only if L1 = −∞. This is due the fact that we only consider second-order deviations from the boundary of
the capacity region of the order Θ

(
1√
n

)
. Neglecting these degenerate cases as they are already captured by

Theorem 8.1 (cf. Fig. 8.4), in the remainder, we focus on case where ρn − ρ = O
(

1√
n

)
.

Step 4: (Completion of the Proof) Assuming now that ρn − ρ = O
(

1√
n

)
, we can use the Bolzano-

Weierstrass theorem to conclude that there exists a (further) subsequence indexed by {nk}k∈N (say) such
that

√
nk(ρnk

− ρ)→ β for some β ∈ R. Then, for the blocklengths indexed by nk, by combining (8.64) and
(8.66), we have

√
nk
(
Rnk

− I(ρ)
)
∈ βD(ρ) + Ψ−1(V(ρ), ε) + o(1) 1. (8.68)

Here we have also used the fact that the set-valued function ρ 7→ Ψ−1(V(ρ), ε) is “continuous” to approximate
Ψ−1(V(ρn), ε) with Ψ−1(V(ρ), ε). The details of this technical step are omitted, and can be found in [138].

By referring to the second-order optimality condition in (8.61), and applying the definition of the limit
inferior, we know that every convergent subsequence of {Rjn}n∈N has a subsequential limit that satisfies
limk→∞

√
nk
(
Rjnk

− R∗j ) ≥ Lj for j = 1, 2. In other words, for all γ > 0, there exists an integer Kj such

that
√
nk
(
Rjnk

− R∗j ) ≥ Lj − γ for all k ≥ Kj . Thus, for all k ≥ max{K1,K2}, we may lower bound
each component in the vector on the left of (8.68) with L1 − γ and L1 + L2 − 2γ. There also exists an
integer K3 such that the o(1) terms are upper bounded by γ for all k ≥ K3. We conclude that any pair of
(ε,R∗1, R

∗
2)-achievable second-order coding rates (L1, L2) must satisfy[

L1 − 2γ
L1 + L2 − 3γ

]
∈
⋃
β∈R

{
βD(ρ) + Ψ−1(V(ρ), ε)

}
. (8.69)

Finally, since γ > 0 is arbitrary, we can take γ → 0, thus completing the converse proof for Case (ii).

The achievability part is similar to the converse part, yet simpler. Specifically, we can simply choose

ρn := ρ+
β√
n
, (8.70)

and apply the above arguments based on Taylor expansions.

8.4 Difficulties in the Fixed Error Analysis for the MAC

We conclude our discussion by discussing the difficulties in performing fixed error probability analysis for
the discrete memoryless or Gaussian MACs (with non-degraded message sets).

First, it is known that the capacity region of the MAC depends on whether one is adopting the average
or maximal error probability criterion. The capacity regions are, in general, different [46]. In Step 2 of the
converse proof, we performed an important reduction from the average to the maximal error probability
criterion. This is one obstacle for any (global or local) converse proof for fixed error analysis of the MAC.

Second, in the characterization of the capacity region of the discrete memoryless MAC, one needs to
involve an auxiliary time-sharing random variable Q [49, Sec. 4.5]. At the time of writing, there does not
appear to be a principled and unified way to introduce such a variable in strong converse proofs (unlike weak
converse proofs [49]).

Finally, for the discrete memoryless MAC, one needs to take the convex closure of the union over input
distributions PX1|Q, PX2|Q for a given time-sharing distribution PQ [49, Sec. 4.5]. In the absence of the de-
graded message sets (or asymmetry) assumption, one needs to develop a converse technique, possibly related
to the wringing technique of Ahlswede [3], to assert that the given codewords pairs are almost independent
(or almost orthogonal for the Gaussian case). By leveraging the degraded message sets assumption, we cir-
cumvented this requirement in this chapter but for the MAC, it is not clear whether the wringing technique
yields a redundancy term that matches the best known inner bound to the second-order region [112, 136].
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Chapter 9

Summary, Other Results, Open
Problems

9.1 Summary and Other Results

In this monograph, we compiled a list of conclusive fixed error results in information theory. We began our
discussion with a review of binary hypothesis testing and used the asymptotic expansions of the ε-information
spectrum divergence and ε-hypothesis testing divergence for product measures to derive similar asymptotic
expansions for the minimum code size in lossless data compression. Lossy data compression and channel
coding were discussed in detail next. These subjects culminated in our derivation of an asymptotic expansion
for the source-channel coding rate. We then analyzed various channel models whose behaviors are governed
by random states.

In this monograph, we also discussed a small collection of problems in multi-user information theory [49],
where we were interested in quantifying the optimum speed of rate pairs converging towards a fixed point
on the boundary of the (first-order) capacity region in the channel coding case, or optimal rate region in
the source coding case. We saw three examples of problems in network information theory where conclusive
results can be obtained in the second-order sense. These included the distributed lossless source coding
(Slepian-Wolf) problem, as well as some special classes of Gaussian multiple-access and interference channels.

We conclude our treatment of fixed error asymptotics in information theory by mentioning related works
in the literature.

9.1.1 Channel Coding

Early works on fixed error asymptotics in channel coding by Dobrushin [45], Kemperman [91] and Strassen [152]
were discussed in Chapter 4. The interest in asymptotic expansions was revived in recent years by the works
of Hayashi [76] and Polyanskiy-Poor-Verdú [123]. Before these prominent works came to the fore, Baron-
Khojastepour-Baraniuk [14] considered the rate of convergence to channel capacity for simple channel models
such as the binary symmetric channel.

In this monograph, we did not discuss channels with feedback or variable-length terminations, both
of which are important in practical communication systems. Polyanskiy-Poor-Verdú [125] studied various
incremental redundancy schemes and derived several asymptotic expansions. Generally, the Θ(

√
n) dis-

persion term is not present, showing that channels with feedback perform much better than without the
feedback, an observation that is also corroborated by a more traditional error exponent analysis [21, 73].
Williamson-Chen-Wesel [179] showed that their proposed reliability-based decoding schemes for variable-
length coding with feedback can achieve higher rates than [125]. Altuğ-Wagner [8] showed that full output
feedback improves the second-order term in the asymptotic expansion for channel coding if Vmin < Vmax.
Tan-Moulin [158] considered the second-order asymptotics of erasure and list decoding. This analysis is the
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fixed error probability analogue of Forney’s analysis of erasure and list decoding from the error exponents
perspective [55]. Erasure decoding is intimately connected to decision feedback or automatic retransmission
request (ARQ) schemes as the declaration of an erasure event at the decoder can inform the encoder to
resend the erased information bits.

Shkel-Tan-Draper [147, 148] considered the unequal error protection of message classes and related the
asymptotic expansions for this problem to lossless joint source-channel coding [149]. Moulin [113] studied
the asymptotics for the channel coding problem up to the fourth-order term using strong large deviation
techniques [43, Thm. 3.7.4]. Matthews [108] made an interesting observation concerning the relation of
the non-asymptotic channel coding converse (Proposition 4.4) to so-called non-signaling codes in quantum
information. He demonstrated efficient linear programming-based algorithms to evaluate the converse for
DMCs.

Other (rather more unconventional) works on fixed error asymptotics for point-to-point communication
include Riedl-Coleman-Singer’s analysis of queuing channels [130], Polyanskiy-Poor-Verdú’s analysis of the
minimum energy for sending k bits for Gaussian channels with and without feedback [126], and Ingber-
Zamir-Feder’s analysis of the infinite constellations problem [88].

9.1.2 Random Number Generation, Intrinsic Randomness and Channel Resolv-
ability

The problem of intrinsic randomness is to approximate an arbitrary source with uniform bits while random
number generation is the dual, i.e., that of generating uniform bits from a given source [67, Ch. 2] [71]. These
problems were treated from the fixed approximation error (in terms of the variational distance) perspective
by Hayashi [75] and Nomura-Han [117]. An interesting observation made by Hayashi in [75] is that the
folklore theorem1 posed by Han [68] does not hold for the variational distance criterion. This is interesting,
because the first-order fundamental limit for source coding and intrinsic randomness is the same, i.e., the
entropy rate [67, Ch. 2] (at least for sources that satisfy the Shannon-McMillan-Breiman theorem). Thus,
the violation of the folklore theorem for variational distance appears to be distillable only from the study
of second- and not first-order asymptotics, demonstrating additional insight one can glean from studying
higher-order terms in asymptotic expansions.

The channel resolvability problem consists in approximating the output statistics of an arbitrary channel
given uniform bits at the input [67, Ch. 6] [71]. It is particularly useful for the strong converse of the
identification problem [5]. Watanabe and Hayashi [176] considered the channel resolvability problem, proving
a second-order coding theorem under an “information radius” condition not dissimilar to what is known for
channel coding [56, Thm. 4.5.1].

9.1.3 Channels with State

For channels with random state, Watanabe-Kuzuoka-Tan [177] and Yassaee-Aref-Gohari [188] derived the
best non-asymptotic bounds for the Gel’fand-Pinsker problem, improving on those by Verdú [168]. With
these bounds, one can easily derive achievable second-order coding rates by appealing to various Berry-
Esseen theorems. The technique in [177] is based on channel resolvability [71] and channel simulation [41]
while that in [188] is based on an elegant coding scheme known as the stochastic likelihood decoder (also
known as the “pretty good measurement” in quantum information), which is also applicable to other multi-
terminal problems such as multiple-description coding and the Berger-Tung problem [49]. Scarlett [134] also
considered the second-order asymptotics for the discrete memoryless Gel’fand-Pinsker problem and used
ideas in Section 5.2 to evaluate the best known achievable second-order coding rates based on constant
composition codes.

Polyanskiy [120] derived the second-order asymptotics for the compound channel where the channel
state is non-random in contrast to the models studied in Chapter 5. Similar to the Gaussian MAC with

1The folklore theorem [68] of Han states that “the output from any source encoder working at the optimal coding rate with
asymptotically vanishing probability of error looks almost completely random.”
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degraded message sets, the second-order term depends on the variance of the channel information density
and the derivatives of the mutual informations. Finally, Hoydis et al. [82, 83] considered block-fading MIMO
channels. In contrast to Section 5.5, here the channel matrix is not quasi-static and so the analysis is
somewhat more involved and requires the use of random matrix theory.

9.1.4 Multi-Terminal Information Theory

The advances in the second-order asymptotics for multi-terminal problems have been modest. Early works
include those by Sarvotham-Baron-Baranuik [131, 132] and He et al. [80] for the single-encoder Slepian-Wolf
problem. However, unlike our treatment in Chapter 6, there is only one source to be compressed, and full
side-information is available at the decoder.

Other authors [84, 111, 112, 136] also considered inner bounds to the (n, ε)-rate regions (also called global
achievability regions) for the discrete memoryless and Gaussian MACs, but it appears that conclusive results
are much harder to derive without any further assumptions on the channel model. These are multi-terminal
channel coding analogues of the corresponding discussion for Slepian-Wolf coding in Section 6.4.3. See further
discussions in Section 9.2.3.

9.1.5 Moderate Deviations, Exact Asymptotics and Saddlepoint Approxima-
tions

The study of second-order coding rates is intimately related to moderate deviations analysis. In the former,
the error probability is bounded above by a non-zero constant and optimal rates converge to the first-order
fundamental limit with speed Θ( 1√

n
). In the latter, the error probability decays to zero sub-exponentially

and the optimal rates converge to the first-order fundamental limit slower than Θ( 1√
n

). The dispersion

also appears in the solution of the moderate deviations analysis because the second derivative of the error
exponent (reliability function) is inversely proportional to the dispersion. The study of moderate deviations
in information theory started with the work by Altuğ-Wagner [9] and Polyanskiy-Verdú [127] on channel
coding. Sason [133], Tan [154] and Tan-Watanabe-Hayashi [160] considered the binary hypothesis testing,
rate-distortion and lossless joint source-channel coding counterparts respectively.

In Section 4.4, we mentioned efforts from Altuğ-Wagner [10, 11] and Scarlett-Martinez-Guillén i Fàbregas
[135] in deriving the exact asymptotics for channel coding. The authors were motivated to find the prefactors
in the error exponents regime for various classes of DMCs. Scarlett-Martinez-Guillén i Fàbregas [137] recently
demonstrated that results concerning second-order coding rates, moderate deviations, large deviations, and
even exact asymptotics may be unified through the use of so-called saddlepoint approximations.

9.2 Open Problems and Challenges Ahead

Clearly, there are many avenues of further research, some of which we mention here. We also highlight some
challenges we foresee.

9.2.1 Universal Codes

In Section 3.3, we analyzed a partially universal source code that achieves the source dispersion (varentropy).
The source code only requires the knowledge of the entropy and the varentropy. The channel dispersion can
also be achieved using partially universal channel codes as discussed in the paragraph above (4.56). However,
the third-order terms are much more difficult to quantify. It would be interesting to pursue research in the
third-order asymptotics of source and channel coding for fully universal codes to understand the loss of
performance due to universality. Work along these lines for fixed-to-variable length lossless source coding
has been carried out by Kosut and Sankar [100, 101].
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9.2.2 Side-Information Problems

Watanabe-Kuzuoka-Tan [177] and Yassaee-Aref-Gohari [188] derived the best known achievability bounds for
side-information problems including the Wyner-Ahlswede-Körner (WAK) problem [7, 182] and the Wyner-
Ziv [184] problem. However, non-asymptotic converses are difficult to derive for such problems which involve
auxiliary random variables. Even when they can be derived, the evaluation of such converses asymptotically
appears to be formidable.

Because a second-order converse implies the strong converse, it is useful to first understand the tech-
niques involved in obtaining a strong converse. To the best of the author’s knowledge, there are only three
approaches that may be used to obtain strong converses for network problems whose first-order (capacity)
characterization involves auxiliary random variables. The first is the information spectrum method [67]. For
example, Boucheron and Salamatian [20, Lem. 2] provide a non-asymptotic converse bound for the asym-
metric broadcast channel. However, the bound is neither computable nor amenable to good approximations
for large or even moderate blocklengths n as one has to perform an exhaustive search over the space of all
n-letter auxiliary random variables. The second is the entropy and image size characterization technique
[6] based on the blowing-up lemma [6, 107]. (Also see the monograph [129] for a thorough description of
this technique.) This has been used to prove the strong converse for the WAK problem [6], the asymmetric
broadcast channel [6], the Gel’fand-Pinsker problem [166] and the Gray-Wyner problem [64]. However, the
use of the blowing-up approach to obtain second-order converse bounds is not straightforward. The third
method involves a change-of-measure argument, and was used in the work of Kelly and Wagner [90, Thm. 2]
to prove an upper bound on the error exponent for WAK coding. Again, it does not appear, at first glance,
that this argument is amenable to second-order analysis.

A problem similar to side-information problems such as Gel’fand-Pinsker, Wyner-Ziv and WAK is the
multi-terminal statistical inference problem studied by Han and Amari [69] among others. Asymptotic
expansions with non-vanishing type-II error probability may be derivable under some settings (using es-
tablished techniques), if the first-order characterization is conclusively known, and there are no auxiliary
random variables, e.g., the problem of multiterminal detection with zero-rate compression [139].

9.2.3 Multi-Terminal Information Theory

The study of second-order asymptotics for multi-terminal problems is at its infancy and the problems de-
scribed in this monograph form only the tip of a large iceberg. The primary difficulty is our inability to deal,
in a systematic and principled way, with auxiliary random variables for the (strong) converse part. Thus,
genuinely new non-asymptotic converses need to be developed, and these converses have to be amenable
to asymptotic evaluations in the presence of auxiliary random variables. As an example, for the degraded
broadcast channel, the usual non-intuitive identification of the auxiliary random variable by Gallager [57]
(see [49, Thm. 5.2]) for proving the weak converse does not suffice as the strong converse is implied by a
second-order converse. Other possible techniques, such as information spectrum analysis [20] or the blowing-
up lemma [6], were highlighted in the previous section. Their limitations were also discussed. For the discrete
memoryless MAC, a strong converse was proved by Ahlswede [3] but his wringing technique does not seem
to be amenable to second-order refinements as discusseed in Section 8.4.

In contrast to the single-user setting, constant composition codes may be beneficial even in the absence
of cost constraints for discrete memoryless multi-user problems. This is because there does not exist an
analogue of the relation in (4.24), where the unconditional information is equal to the conditional information
variance for all CAIDs. Scarlett-Martinez-Guillén i Fàbregas [136] provided the best known inner bounds
to the (n, ε)-rate region for the discrete memoryless MAC. Tan-Kosut [157] also showed that conditionally
constant composition codes also outperforms i.i.d. codes for the asymmetric broadcast channel when the error
probability is non-vanishing. It would be fruitful to continue pursuing research in the direction of constant
composition codes for multi-user problems (e.g., the interference channel) to exploit their full potential.
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9.2.4 Information-Theoretic Security

Finally, we mention that within the realm of information-theoretic security [19, 104], there are several
partial results in the fixed error and leakage setting. Yassaee-Aref-Gohari [187, Thm. 4] used a general
random binning procedure, called output statistics of random binning, to derive a second-order achievability
bound for the wiretap channel [183], improving on earlier work by Tan [153]. The constraints pertain to the
error probability of the legitimate receiver in decoding the message and the leakage rate to the eavesdropper
measured in terms of the variational distance. However, in [187], there were no converse results even for the
less noisy (or even degraded) case where there are no auxiliary random variables.

The most conclusive work in thus far in information-theoretic security pertains to the secret key agreement
model [4], where the second-order asymptotics were derived by Hayashi-Tyagi-Watanabe [78]. Interestingly,
the non-asymptotic converse bound relates the size of the key to the ε-hypothesis testing divergence, similar
to some point-to-point problems as discussed in this monograph. The non-asymptotic direct bound is derived
based on the information spectrum slicing technique (e.g., [67, Thm. 1.9.1]). The author believes that the
fixed error and fixed leakage analysis for the wiretap channel, leveraging the secret key result, may lead to
new insights into the design of secure communication systems at the physical layer. For converse theorems,
the development of novel strong converse techniques for the wiretap channel appears to be necessary; there
are recent results on this for degraded wiretap channels using the information spectrum method [155] and
active hypothesis testing [79].
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