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1. Modern supply chains 
Supply chains are networks of firms who pool their capabilities and resources in order 
to deliver value to the end consumer. Firms are no longer able to own or control 
complete supply chains. Information technology and modern logistics capabilities 
have created a global market where companies can take advantage of the opportunity 
to source internationally (IBM Business Consulting Services 2005). Companies have 
thus specialized and to “partnered” globally with other companies. These companies 
have then to increasingly focus on logistics and supply chain co-ordination. Such co-
ordination is now an essential business process. 
 
Modern supply chain management starts with the premise that supply chain members 
are primarily concerned with optimizing their own objectives and this self-serving 
focus often results in poor performance.  Another way of saying this is that a sequence 
of local optimum policies does not bring about a globally optimum solution, Cachon 
(2003). Munson et al. (2003) summarize it as follows “When each member of a group 
tries to maximize his or her own benefit without regard to the impact on other 
members of the group, the overall effectiveness may suffer. Such inefficiencies often 
creep in when rational members of supply chains optimize individually instead of 
coordinating their efforts”.  
 
A well known example of such inefficiency is the bullwhip effect. This effect refers to 
the tendency of replenishment orders to increase in variability as one moves up the 
supply chain from retailer to manufacturer. A disintegrated material flow, combined 
with distorted demand information and a lack of replenishment rule alignment 
inevitably results in a poor supply chain dynamics. This lack of coordination may 
even outweigh the benefits from specialization and economies of scale. 
 
In this monograph we will focus on supply chain co-ordination and we use the 
bullwhip effect as the key example of supply chain inefficiency. We focus both on the 
managerial relevance of the bullwhip effect, but we also emphasize on the 
methodological issues so that both managers and researchers alike can benefit from 
reading this monograph. 
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2.  The bullwhip effect:  The dynamics of supply chains 
 
The “bullwhip effect” is short-hand term for a dynamical phenomenon in supply 
chains.  It refers to the tendency of the variability of order rates to increase as they 
pass through the echelons of a supply chain towards producers and raw material 
suppliers.   
 
2.1 Empirical evidence of bullwhip 
 
There is ample anecdotic evidence that many companies experience significant extra 
costs due to supply chain problems. Konicki (2002) reports on a major retailer’s 
inability to master supply chain logistical problems. The company faced sharp spikes 
and drops in demand for products and sales merchandise was often out of stock when 
customers got to the store. Furthermore, bloated stocks sat alongside these empty 
racks and display shelves, but they were no guarantee of high customer service levels. 
It is a formidable job for logistics managers to design order management systems that 
optimally match pipelines to the marketplace (see Looman, Ruttins and de Boer 
(2002), Childerhouse, Aitken and Towill (2002) and Christopher and Towill (2002)). 
 
What is causing all this trouble? Why is it that the material flow is so hard to predict 
in supply networks? There are for sure many causes of these deficiencies. In this 
monograph we will focus on the bullwhip effect. The bullwhip problem refers to the 
tendency of replenishment orders to increase in variability as one moves up a supply 
chain. As smooth final customer demand patterns are transformed into highly erratic 
demand patterns for suppliers, the information in the chain gets distorted. The 
bullwhip is characterised by oscillations of orders at each level of the supply chain 
and an amplification of these oscillations as one moves farther away from the 
customer (Croson and Donohue (2003)).  Jay Forrester (1961) was among the first 
researchers to describe this phenomenon, who then called the effect “demand 
amplification”.  
 
A number of researchers designed games to illustrate the bullwhip effect. The most 
famous game is the “Beer Distribution Game”. This game has a rich history.   
Growing out of the industrial dynamics work of Forrester and others at MIT, it is later 
on developed by Sterman (1989). The Beer Game is by far the most popular 
simulation and the most widely used game in many business schools, supply chain 
electives and executive seminars. Simchi-Levi et al. (1998) developed a computerized 
version of the beer game, and several versions of the beer game are now available, 
ranging from manual to computerized and even web-based versions, for example see 
http://beergame.mit.edu/default.htm, Machuca and Barajas (1997), Chen and 
Samroengraja (2000) and Jacobs (2000).  Others versions have been adapted to 
represent particular industries Van Horne and Marier (2007) or to investigate 
particular supply chain strategies such as information sharing or VMI, Disney, Naim 
and Potter (2004). 
 
Beyond the games, real cases are used as teaching tools to introduce and to address 
the bullwhip effect (Lee et al. 2004). The Barilla SpA case study (Hammond, 1994), a 
major pasta producer in Italy, provides vivid illustrations of issues concerning the 
bullwhip effect. For a long time Barilla offered special price discounts to customers 
who ordered full truckload quantities. Such marketing deals created customer order 
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patterns that were highly spiky and erratic. The supply chain costs were so high that 
they outstripped the benefits from full truckload transportation. The Barilla case was 
one of the first published cases that empirically supported the bullwhip phenomenon.  
 
Campbell Soup’s chicken noodle soup experience, Cachon and Fisher (1997) is 
another example. Campbell Soup sells products whose customer demand is fairly 
stable. The consumption of their products doesn’t swing wildly from week to week, 
although there is an annual cycle. Yet the manufacturer faced extremely variable 
demand on the factory level. After some investigation, they found that the wide 
swings in demand were caused by the ordering practices of retailers. The swing was 
induced by forward buying. More recent teaching cases that address the bullwhip 
effect include Kuper and Branvold (2000), Hoyt (2001) and Peleg (2003). 
 

 
 

Figure 2.1.   The Campbell Soup promotion 
Source: Cachon and Fisher, (1997) 

 
The classic example of the bullwhip effect is baby nappies or diapers.  Indeed Procter 
and Gamble first coined the phrase “bullwhip effect” to describe the ordering 
behaviour witnessed between customers and suppliers of diapers. Babies are fairly 
regular in their use of nappies - they have a new nappy (almost) every time they feed.  
Sure, there is seasonal variation in the birth rates as more babies are conceived in 
spring (when male sperm count is significantly higher than in any other season; 
however this is not globally consistent and the there is some debate over the role of 
both temperature and the day length, Lam and  Miron (1996)).  Neither-the-less, this 
seasonal variation is small compared to the widely fluctuating and erratic production 
rates experienced by P&G after the orders have passed through the supermarkets and 
distribution centres.  P&G observed a further amplification of the oscillations of 
orders placed to their suppliers of raw material. 
 
Our own data from a large leading consumer packaged goods firm, shows that the 
coefficient of variation (the ratio of the standard deviation over the mean) of retail 
sales typically ranges between 0.15 and 0.50 whereas the coefficient of variation of 
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production orders (even in small batch driven environments) is typically in the range 
of 2 to 3. Moreover, the bullwhip effect is multiplicative in traditional supply chains.  
 
Holweg et al. (2005) examined a grocery retail chain, where the actual demand signal 
from the customers in the supermarket for a soft drink is amplified many times before 
it reaches the soft drink supplier. The largest weekly order placed on the supplier is 
five times the average weekly sales volume in the supermarkets. The coefficient of 
variation also depends on the level of aggregation. The coefficient of variation based 
on daily data is much larger than the coefficient of variation based on weekly or 
monthly date. The same holds for coefficients of variation for individual products 
compared to coefficients of variations for aggregate demands or shipments.  
 
Measuring the bullwhip effect is, in other words, a difficult job. One can start with 
Point of Sales data for individual products for one specific retail outlet. Next the 
demand is aggregated on the retailer distribution centre and further aggregated at the 
manufacturer’s distribution centre. Finally we reach the production facility. This 
complex process of aggregation (through replenishment rules, manufacturing batch 
sizes, full truck load transportation policies, amongst others) makes the bullwhip 
effect analysis very hard. This explains why most research focuses on replenishment 
rules for individual items on the retail outlet level.  
 
Let’s conclude this section on empirical evidence with an example of a large 
manufacturer of indoor and outdoor lighting products. This company is active in 
almost all European countries and they have production facilities mainly in Eastern 
Europe and China. We distinguish two types of sales organizations: large sales 
organizations (mainly Western European countries and large volume sales) and small 
sales organizations (mainly Eastern European countries and smaller volume sales 
items).  
 
There are two distribution centres - Central Services (CS) and Local Services (LS). 
The CS distribution centre receives orders from the large sales organisations and 
delivers the products to the large sales organizations very frequently. LS receives 
orders from the small sales organizations and LS is replenished through CS. 
Deliveries to the small sales organizations and shipments from CS to LS are less 
frequent.  

 

 
 

Figure 2.2. Bullwhip in the light bulb supply chain 
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We analyzed the material flow of products ordered by the small sales organizations. 
We collected sales data on a weekly basis and computed the coefficient of variation 
(CV). The average CV is 0.76. We also have data of weekly shipments from LS to the 
local warehouses of the small sales organizations (there is no aggregation problem 
because the small sales organizations do not have a central distribution centre). The 
average CV equals 1.20. Finally we analyzed the shipments from CS to LS. Here the 
demand for an individual product is aggregated over all (small) markets and still, the 
CV of weekly shipments equals 2.21. There is clearly a bullwhip effect. The bullwhip 
effect however is absent or far less outspoken for the large sales organizations 
because CS is regularly allocating products to the large sales organization on a fair 
share allocation basis and cross docks the production volumes received.  
 
2.2. Causes of the bullwhip effect 
 
We will now review causes of the bullwhip effect as mentioned in the literature, and 
investigate ways to alleviate and to overcome the problem. We distinguish operational 
and behavioural causes. The behavioural causes are rather straightforward. Supply 
chain managers may not always be completely rational. Managers over-react (or 
under-react) to demand changes. People often try to read “too much signal” into a 
series of demand history as it changes over time.  Often people are over optimistic and 
confuse forecasts with targets. Decision makers sometimes over-react to customer 
complaints and anecdotes of negative customer reactions. Moreover, there are 
cognitive limitations as supply chain networks are often very complicated, operating 
in a highly uncertain environment with limited access to data.  
 
Croson and Donohue (2002) and Sterman (1989) found that decision makers 
consistently under-weight the supply chain. This means that they don’t have a clear 
idea of what is available in the pipeline. This induces some form of decision bias. 
Strategies to alleviate this problem include; sharing Point-Of-Sales data, sharing 
inventory and demand information, centralizing ordering decisions and using formal 
forecasting techniques correctly (we will come back on this issue later on in this 
monograph). 
 
Lee et al. (1997a and 1997b) identify five major operational causes of the bullwhip: 
demand signal processing, lead-time, order batching, price fluctuations and rationing 
and shortage gaming. We understand demand signal processing as the practice of 
decision makers adjusting the parameters of the inventory replenishment rule. Target 
stock levels, safety stocks and demand forecasts are updated in face of new 
information or deviations from targets. These “rational” adjustments create erratic 
responses. We will also show that it is possible to design replenishment rules that 
have a stabilizing, smoothing effect on orders. It is important to realize that most 
players in supply chains do not respond directly to the market but respond to 
replenishment demand from downstream echelons. This is why local optimisation 
often results in global disharmony. It is therefore claimed that centralized control (e.g. 
Distribution Requirements Planning, Vendor Managed Inventory, for example) is 
superior to decentralized control. 
 
A second major cause of the bullwhip problem is the lead-time. Lead-times are made 
of two components; the physical delays as well as the information delays. The lead-
time is a key parameter for calculating safety stock, reorder points and order-up-to 
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levels. The increase in variability is magnified with increasing lead-time. A way to 
alleviate this problem is lead-time compression. The information delay can be reduced 
by better communication technologies (web-enabled communication, EDI, e-
procurement etc) and the order fulfilment lead-time (the physical lead-time) can be 
reduced by investment in production technology, strategic supplier partnerships 
(supplier hubs, logistics integrators etc) or by eliminating channel intermediaries 
(direct channels, ‘the Dell model’).   The information delay should never be taken for 
granted.  In a three echelon UK grocery supply chain with all the modern IT 
technology, the information delay is still of the same magnitude as the material 
delays; 16 days for information to flow up four echelons of the supply chain, 19 days 
for material to flow down. In this monograph we will mainly focus on these two 
causes of the bullwhip, demand signal processing and lead-times.  
 
A third well-known bullwhip creator is the practice of order batching. Economies of 
scale in ordering, production set-ups or transportation will quite clearly increase order 
variability. Reduction of set-up, ordering and handling costs is of course a way to 
alleviate this problem. Potter and Disney (2006) have also shown that setting the 
batch size so that multiples of the batch quantity matches the average demand results 
in reduced bullwhip measures. Holland and Sodhi (2004) use simulation to show the 
order variance is proportional to the square of the batch size and the demand 
variation.  John Burbidge was also aware of the batching effects and developed a 
range of practical approaches to the problem as far back as the 1960’s, Towill (1994).  
 
The fourth major cause of bullwhip as highlighted by Lee et al. (1997a and 1997b) 
has to do with price fluctuations. Retailers often offer price discounts, quantity 
discounts, coupons or in-store promotions. This results in forward buying where 
retailers (as well as consumers) buy in advance and in quantities that do not reflect 
their immediate needs. Pricing strategies (ranging from deep promotions to Every Day 
Low Price) should clearly be connected to supply and replenishment policies. 
However, it is not sure from a marketing perspective whether the positive supply 
chain effect (higher efficiencies) outweighs the potential negative marketing effect 
(demand-depressing side effects). We refer to Ortmeyer et al. (1991) and Butman 
(2002) for more details on issues in the operations management and marketing 
interface.  
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Figure 2.3. The causes of the bullwhip effect  
(The focus of this monograph is highlighted in grey) 

 
In general, it is important to transmit the correct demand information into the supply 
chain. An accurate forecast (see Chen, Drezner, Ryan and Simchi-Levi (2000)) will 
assist the upstream suppliers’ capacity and material planning. Furthermore, inventory 
requirements are directly linked to the errors between the forecast of demand over the 
lead-time and review period and the actual realisation of demand, Vassian (1955). We 
may want to stimulate forecast accuracy and to penalise forecast errors. Thus, we may 
want to limit the ability to revise forecasts over time, or we may negotiate flexibility 
contracts with customers (based on risk sharing). These are all ways to manipulate 
demand and to view forecasting as more than just a courtesy.  
 
A further cause of bullwhip is connected with rationing and shortage gaming. Inflated 
orders placed by supply chain members during shortage periods tend to magnify the 
bullwhip effect. Such orders are common when retailers and distributors suspect that a 
product will be in short supply. Exaggerated customers orders make it hard for 
manufacturers to forecast the real demand level. A very simple countermeasure is to 
allocate products proportional to sales in previous periods and rather than allocating 
based on what has been ordered. 
 
This short overview of the causes of the bullwhip effect (and a short summary of 
potential remedies) highlights that the bullwhip effect is a very complex issue. It 
touches on all aspects of supply chain management. 
 
2.3. The link between the bullwhip effect and supply chain costs 
 
Bullwhip creates unstable production schedules.  These unstable production schedules 
are the cause of a range of unnecessary costs in supply chains.  Companies have to 
invest in extra capacity to meet the highly variable demand.  This capacity is then 
under-utilised when demand drops. Unit labour costs rise in periods of low demand, 
over-time, agency and sub-contract costs rise in periods of high demand. The highly 
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variable demand increases the requirements for safety stock in the supply chain. 
Additionally, companies may decide to produce to stock in periods of low demand to 
increase productivity.  If this is not managed properly this will lead to excessive 
obsolescence.   Highly variable demand also increases lead-times.  These inflated 
lead-times lead to increased stocks and bullwhip effects. Thus the bullwhip effect can 
be quite exasperating for companies; they invest in extra capacity, extra inventory, 
work over-time one week and stand idle the next, whilst at the retail store the shelves 
of popular products are empty, and the shelves with products that aren’t selling are 
full.  A cause and effect diagram in Figure 2.4 highlights the interaction between 
demand variance and cost generation. 
 

 
 

Figure 2.4.    How bullwhip creates costs in a single echelon of a supply chain 
 
Inventory managers must consider two primary factors when making replenishment 
decisions. First, a replenishment rule has an impact on order variability (as measured 
by the bullwhip effect, that is, the ratio of the variance of orders over the variance of 
demand) shown to the supplier. Second, the replenishment rule has an impact on the 
variance of the net stock (as measured by the net stock amplification, the ratio of net 
stock variance over the variance of demand). The bullwhip effect mainly contributes 
to upstream costs, while the variance of net stock determines the stage’s ability to 
meet a service level in a cost-effective manner. This is the key trade-off faced by a 
single-stage member of a supply chain.  
 
It is interesting to note that the problem described above may lead to non-cooperative 
behaviour. Indeed, the bullwhip effect is driving costs at the upstream stage (for 
example the manufacturer or supplier) and consequently, the downstream stage (for 
example the retailer) may not worry about it. Even worse, dampening the bullwhip 
effect may have a negative impact on customer service at the retailer. So why should a 
downstream stage be concerned with upstream costs? The key to this question is that 
the retailer will still have some distribution activities (warehouses, transportation, 
receiving goods at stores, for example) and he will care about the efficiency of these 
processes.  Furthermore the retailer may be able to secure more cost reductions from a 
supplier by placing smoother demands as these smooth demands will allow the 
supplier to reduce his costs.   Thirdly, there maybe a lead-time effect, as smooth 
demand allows manufacturers to respond with a quicker lead-time, Boute et al. 
(2007).  
 
Thus, we need some measures of performance for the bullwhip effect.  A simple 
metric that often results naturally from an analysis of how the bullwhip effect is 
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generated is the also called “variance ratio” we have mentioned, see Equation (2.1).  
Indeed this is by far the most common bullwhip measure in the literature. 
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A bullwhip measure equal to one implies that the order variance is equal to the 
demand variance, or in other words, there is no variance amplification. A bullwhip 
larger than one indicates that the bullwhip effect is present (amplification), whereas a 
bullwhip smaller than one is referred to as a “smoothing” scenario, meaning that the 
orders are smoothed (less variable) compared to the demand pattern (dampening). 
 
Our focus, however is not solely on the bullwhip measure. We also check the variance 
of the net stock since this has a significant impact on customer service (the higher the 
variance of net stock, the more safety stock required).   Thus the following metric is 
also important.  
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The inventory and production (capacity) costs are also related to these variance 
amplification measures (2.1 and 2.2). A high bullwhip measure implies a wildly 
fluctuating order pattern, meaning that the production level is changed frequently, 
resulting in a higher average production (capacity) costs per period. An increased 
inventory variance results in higher holding and backlog costs, inflating the average 
inventory cost per period.  
 
We may also wish to relate the performance to a more traditional cost function.  For 
example, in the inventory literature, piecewise linear and convex inventory holding 
and backlog costs are often assumed to be related to the Net Stock level (NS) as 
shown in Equation 2.3,  
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Here, I$,t is the inventory related costs incurred in time period t, H is the unit cost of 
holding a single unit of inventory for a single period and B is the cost per unit 
backlogged per period.  Figure 2.5 offers a visualisation of how the net stock levels 
generate inventory holding and backlog costs.  Here we can see that the average net 
stock level is equal the TNS the Target Net Stock.  This is a parameter of the 
replenishment decision that we set strategically to minimise the sum of the inventory 
holding and backlog costs.   We can achieve this with the critical fractile given by the 
so-called “newsboy” approach.  We will exploit this approach in section 6.5, where 
we find that inventory costs are linearly related to the standard deviation of the net 
stock levels over time. 
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Figure 2.5.  Visualisation of how inventory costs are generated over time 
 
We can capture costs associated with the bullwhip effect in each periods (C$,t) by 
considering that production above a certain capacity limit in a period results in either 
overtime working or subcontracting (at a premium cost P per unit produced in 
overtime per period) or it results in a “lost capacity” or opportunity cost (at a cost of N 
per unit of capacity unused in each period).   Thus  
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where Ot is the order placed in time period t, D  is the average demand and S is the 
normal Slack production capacity, above the average demand.   These capacity costs 
can be visualised in Figure 2.6.   It can be shown (and we will do so later in Section 
6.5) the capacity costs are linearly related to the standard deviations of the order rates, 
when the capacity limit ( S ) has been set to ensure a critical fractile of orders are 
completed without the use of over-time capacity. Thus, a general total cost function 
will then take the form of NSO ww  )1(   where w is a function of the inventory 

and capacity costs and O  and NS  is the long run standard deviation of the orders 

and net stock levels. 

 
 

Figure 2.6.  Visualisation of how capacity costs are generated over time 
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3. Methodological approaches to studying the bullwhip problem 
In this section we will review some of the methods available to study the bullwhip 
effect.  The biggest methodological issue is to decide how time is represented.   The 
two choices are discrete time or continuous time. In the discrete time domain, system 
states (inventory, WIP, demand, forecasts, orders etc) are observed and adjusted at 
equally spaced moments of time (at the end of every day, week or month).  It is usual 
and convenient to assume that the observations are made at integer moments of time.   
Thus, time is represented in units of the review period. In discrete time, we know 
nothing about the system in the time between the observations.   
 
The case examples we discussed in Section 2 all operate in discrete time. However, 
we can have continuous time systems.  In the continuous time domain, system states 
are observed and adjusted at all moments of time.  Inventory and WIP levels are 
continuously observed (as are demand rates) and forecast and order rates are 
continuously adjusted to reflect the most up-to-date information.   Consequently 
system states are known at all moments of time. 
 
It is our view that neither representation of time is more correct that another, it is just 
that one representation of time may be more suitable for a given situation than the 
other.  For example, discrete time representations may be more suitable for a grocery 
supply chain where a supermarket accumulates demand and places replenishment 
orders onto its distribution centre at the end of every day.  Continuous time 
representations may be more suitable for, say, a petrochemical plant where production 
rates are continuously adjusted to reflect current demand and production yield rates. 
 
3.1. Continuous time methods 
The Laplace transform was originally developed by Laplace and Euler in the 17th 
century for studying the orbits of planets.  However, electronic engineers have 
developed a whole range of tools, loosely termed control theory, for studying 
continuous time systems based on Laplace transformed transfer functions.  These 
transfer function techniques work very well if the system is linear, time invariant (LTI 
- a common assumption) and the system has no initial conditions (IC).  Simon (1952) 
seems to have been the first to apply the Laplace transform to a production and 
inventory control problem.   Transform approaches work well in Single Input and 
Single Output (SISO) scenarios as then only a single transfer function is required. 
Transforms also contain complete information about frequency response of the 
system.  Interestingly, the transforms that describe cash flows are directly related to 
the Net Present Value of that cash flow, Grubbström (1967), Buck and Hill (1971).  
The main benefit of transforms is that convolution in the time domain is simply 
multiplication in the frequency domain.   Thus, given a table of transforms of 
common functions, complex systems can be simply “built-up” using algebraic 
techniques and studied via a number of methods developed by control engineers. A 
summary of transforms and their properties related to the study of bullwhip is given in 
Table 3.1. 
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Table 3.1.  Transforms and their properties useful in the study of bullwhip 
 
If the two assumptions of LTI and zero IC do not hold, then the analytical approaches 
have to resort back to the (non-linear) differential equation forms.  Unfortunately 
there is no “standard approach” for analysis of such systems. Indeed, many systems 
have no known solution, and even when we can obtain a solution there is often an 
infinite number of them, one for each set of IC and non-linearity.  Thus, considerable 
mathematical dexterity is required to study these types of systems.  Indeed, if non-
linearity such as non-negative net stock or capacity restrictions is required to be 
analysed then it appears that only Markov Chains or Dynamic Programming can offer 
a solution. 
 
Linear differential equations are also readily handled by state-space techniques.  
These are essentially matrix representations of systems of equations.   State-space 
methods are especially good at handling Multiple Input, Multiple Output (MIMO) 
systems and can be easily extended to include non-zero IC’s.   
 
Another important type of system is known as the differential-delay equation.  These 
are systems that contain a pure time delay in them (as supposed to a lag, which can be 
readily handled by differential equations and Laplace transforms).  Pure time delays 
occur in supply chain settings when there is a transport delay, whereas lags have been 
shown to be a good representation of factory output when there are multiple stages of 
production.  The principle problem with differential-delay equations is that they 
generate an infinite number of complex solutions to the characteristic equation and 
thus have a transcendental nature (Asl and Ulsoy 2003).  However, the Lambert W 
function has been successfully applied to obtain solutions to delay differential 
equations Corless et al. (1996) and Corless (2004).   The Lambert W function is the 
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inverse function of   wwewf  . The general strategy is to re-arrange the differential 

equation to make it look like XXeY   and then use the W function to provide the 
solution, )(YWX  .  
 
Historically, a variety of approximations were used to circumvent these difficulties 
with differential delay equations.   For example, Padé approximation or recasting the 
system as a Smith Predictor (Smith 1959; Fliess, Marquez and Mounier 2002).  
However, Warburton and Disney (2007) have used the Lambert W function to find 
bullwhip expressions for continuous time replenishment policies represented by delay 
differential equations.  Although the Lambert W function produces an exact analytical 
solution in order to enumerate it an infinite number of calculations are required.  
Thus, numerical analysis results in approximate solutions.  Luckily, the 
approximations seem to approach the actual numerical solutions rather quickly.  
Warburton and Disney (2007) suggest that 3% accuracy can be achieved when only 
the first three modes of Lambert W Function are considered. 
 
3.2. Discrete time methods 
 
The discrete time analogue of the Laplace transform is the z-transform.  It was 
developed independently by scholars from the UK (Tustin, 1947a, 1947b, 1947c, 
1947d) and Russia (Tsypkin, 1958 and 1964) during the Second World War for 
controlling such things as radar and gun targeting systems and other applications that 
involved the newly available digital computers. The first book that brought together 
all of the developments of the z-transform was by Jury (1964), but the first person to 
apply the z-transform to a production and inventory control problem appears to have 
been Vassian (1955).  The advantages of using the z-transform over the time domain 
difference equations are the same as for the continuous case; convolution in the time 
domain is multiplication in the frequency domain.   However, the disadvantages are 
that it has to be LTI and possess zero IC.  However, problems with the pure-time 
delay are completely avoided in discrete time as it forms the kernel of the z-transform. 
Transform approaches are now predominately a European approach, but some early 
adaptors can be found from the US Navy.   
 
State space methods (with the same advantages) are also available in discrete time.  
Indeed, there are several standard approaches to exploit.  These include, Kalman 
Filtering, Kalman (1960), Modern Control Theory, Aviv (2003) and Optimal Control 
Theory, Gaalman and Disney (2006, 2007a and 2007b).   Optimal Control Theory is 
noteworthy in that it is possible to derive and analyse optimal policies given a cost (or 
objective) function.   This is particularly interesting in multi-echelon scenarios. 
 
In discrete time a lot can be done with stochastic techniques using the expectation 
operator.  However, the calculation of the co-variances can become very tedious when 
complex systems are studied.  Interestingly this difficultly is completely avoided with 
transform approaches.   Martingales, and the Martingale Model of Forecast Evolution, 
have also been used to study inventory problems, for example, see Graves (1999). 
Martingales are useful tools as they can yield insights into magnitude of infinite 
variances that occur in non-stationary time series. This is predominately a US 
approach after the founding work of Joseph Doob. 
 



Disney, S.M. and Lambrecht, M.R., (2008), “On replenishment rules, forecasting and the bullwhip effect in supply chains”,  
Foundations and Trends in Technology, Information and Operations Management, Vol. 2, No. 1, pp1–80. 

A particularly useful difference equation approach was developed by Box and Jenkins 
(1970).  Known as ARIMA modelling, Box and Jenkins developed a generalised time 
series model that consisted of an arbitrary number of three types of terms.  That is, 
Auto-Regressive, Integrated and Moving Average terms.   The general ARIMA(p,d,q) 
model is given by Equation 3.1.  The Box and Jenkins approach copes with non-
stationary processes by differencing the time series.    
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    (3.1) 

 
ARIMA(p,d,q) model have been found to represent a wide range of discrete time 
series, from stock market prices, to production outputs, airline demand, geological 
information and sales to name a few. Box and Jenkins (1970) were originally 
concerned with forecasting, identifying and estimating such series.  However, recently 
the ARIMA models have been applied to production and inventory control problems.  
For example, Disney, Farasyn, Lambrecht, Towill and Van de Velde (2006a) found 
that the ARMA(1,1) process was a good match for 15 products in Procter and 
Gamble’s home care and family care range, see Figure 3.1. 
 

 
 

Figure 3.1.  ARMA(1,1) demand processes in P&G home-care and family-care 
ranges 

 
3.3. Other approaches 
Any time series, continuous or discrete, can be analysed using variations of the 
Fourier transform.   This is a frequency response method, where a time series is 
broken up into a series of harmonics.  Harmonics are sine waves of different 
frequencies, amplitudes and phase lags.  Understanding how replenishment rules 
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respond to the complete spectrum of individual harmonic frequencies allow us to 
understand how they react any demand signal, thus the tool is particularly powerful, 
Dejonckheere et al. (2003 and 2004).  
 
This type of frequency analysis is very closely related to H-infinity control and the so-
called “Ideal Filter” approach.   In H-infinity control an attempt is made to ensure that 
the system responds to all frequencies with an amplitude ratio of less than unity.   
Thus a system designed with H-infinity approach will never produce bullwhip, 
regardless of the demand signal, Ouyang and Daganzo (2006).  However systems 
designed in this manner are very highly damped.    In an attempt to compensate for 
this over damping, the “Ideal Filter” approach has been developed, Towill et al. 
(2003).  Here the frequency response is shaped so that it tracks low frequencies 
(genuine changes in demand), but filters or attenuates high frequencies (noise).   
          
Systems dynamics is an intuitively based computer simulation technique that 
essentially relies on animating influence / causal loop diagrams. It was originally 
advocated by Jay Forrester (1961) as a means of investigating large non-linear 
systems without resorting to complex mathematical models.  Another form of 
simulation is discrete event simulation.  It actually has the power to investigate, at 
least numerically, very realistic models of supply chains.  It is possible to explicitly 
model such things as capacity constraints, non-negative inventory and WIP levels, 
actual real-life demand patterns, process uncertainties (machine breakdowns), quality 
losses, process time variation, rework and even quality control procedures, Disney 
and Naim (1999). The real value from system dynamics (and simulation approaches 
in general) is from the act of building the model itself as the process formalises a lot 
of tacit knowledge. However, simulation based approaches suffer from the drawback 
of being cumbersome, time consuming and only providing limited insight, Disney 
(2001). 
 
 
4. Replenishment rules, forecasting and the demand process. 
 
In this section we discuss a number of bullwhip dampening replenishment rules for 
different demand processes. Sections 4.1 and 4.2 introduce the basic model for 
identically and independently distributed demand processes. In Sections 4.3 and 4.4 
we discuss ARMA(1,1) demand processes with exponential smoothing forecasts and 
in Section 4.5 we discuss AR(1) demand with minimum mean squared error 
forecasting.  
 
4.1. A smoothing replenishment rule for a stationary i.i.d. demand process 
 
There are many different types of replenishment policies (for example, see Zipkin 
(2000) and Silver, Pyke and Peterson (1998)), of which two are commonly used: the 
periodic review, replenishment interval, Order-Up-To (OUT) policy and the 
continuous review, reorder point, order quantity model. Given the common practice in 
retailing to replenish inventories frequently (daily, weekly, monthly) and the tendency 
of manufacturers to produce to demand, we will focus our analysis on a class of  
replenishment strategies known as Order-Up-To (OUT) policies. In such a system we 
track the inventory position (= amount on-hand + inventory on-order – backlog). The 
inventory position is reviewed every period (e.g. daily, weekly) and an order is placed 
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to raise the inventory position up to an order-up-to or base stock level that determines 
order quantities. This policy is sometimes preferred due to qualitative benefits of 
following a regular repeating schedule of inventory replenishment. Both the review 
period and the order-up-to level are decision variables but in order to simplify the 
analysis we set the review period equal to one base period (day, week or month). This 
section is based on Disney, Farasyn, Lambrecht, Towill and Van de Velde (2007). 
 
The OUT level equals the expected demand during the risk period and a safety stock 
to cover higher than expected demands during the same risk period. The risk period 
equals the physical lead-time (Tp periods) and the review period (one period). 
Consequently, 
 

11 .ˆ   pp TT
t kDS  .                                                                  (4.1) 

 
St is the OUT level used in period t and 1ˆ pTD  is an estimate of mean demand over 

Tp+1 periods (we could assume tp
T DTD p ˆ)1(ˆ 1  , where tD̂  is an estimate of 

demand in the next period, see Kim et al. (2006) for more insights into the 

implications of this assumption). 1ˆ pT  is an estimate of the standard deviation of the 
forecast error over Tp+1 periods.  k is a constant chosen to meet a desired service 
level. In this section we opt for the Fill Rate as a measure of customer service. To 

simplify the analysis we replace the safety stock term by tDa ˆ. ; this can always be 

done and it makes the analysis somewhat easier. After this substitution we obtain, 
 

tpt DaTS ˆ)1(  .                                           (4.2) 

 
This more general form of the OUT policy defines the risk period as (Tp+1+a) and 
consequently includes the safety stock and WIP. It has been demonstrated 
(Dejonckheere et al. (2003)) that this classical OUT policy with exponential 
smoothing or moving average will always produce bullwhip for any demand process. 
 
Let us now reformulate Equation (4.2) for a more restrictive stationary i.i.d. demand 
process defined by: 
 

tDt

D

D

D





0          (4.3) 

 
Where Dt = demand in time, μD = the mean or level of demand, εt = a standard normal 
variant at time t, i.e. N(0,1). As the process is i.i.d., the best possible forecast to use 
every period an order is placed is simply the average of all previous demands. This we 

know, from the demand process assumption, is equal to μD. Hence, .ˆ
Dt DD   

Consequently, mean and variance of demand are assumed to be known and D is 
constant. In this way we eliminate the forecasting issue and focus solely on the 
smoothing replenishment rule.  Formula (4.2)then becomes, 
 

DaTS p )1(  .                                    (4.4) 
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The remainder of Section 4.1 will focus on the replenishment as described by 
Equation (4.4). 
  
What happens now if we apply the above replenishment rule? The answer to that 
question is simple and known to most inventory managers (see for example 
Dejonckheere et al. (2003)). The OUT policy will generate replenishment orders that 
are the same as the last period’s observed demand. We simply order what the demand 
was in the current period (similar to a Just-In-Time strategy).  That is why this policy 
is also called; “passing-on-orders” or “lot-for-lot” or even sometimes “continuous 
replenishment” when the length of the planning period has been shortened.  Either 
way, the variability of the replenishment orders is exactly the same as the variability 
of the original demand.  
 
We will now turn the Order-Up-To policy into a smoothing rule. Recall it is defined 
as follows, 
 

 tt SO inventory position        (4.5) 

 
where tO is the ordering decision made at the end of period t.  The inventory position 

equals the net stock (NS) plus the “inventory on order but not yet arrived” (Work In 
Progress or WIP). The net stock equals inventory at hand minus backlog. 
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                     (4.6) 

 
where Da.  can be viewed as a target net stock (safety stock) and DTp .  is a target 

pipeline stock (on order inventory).  We also need the inventory balance equation.  It 
is 
 

tTttt DONSNS
p
  11 .       (4.7) 

 
Expression (4.6) is the same as expression (4.5), but we decomposed the original 
formula into three components; a demand forecast, a net stock discrepancy term and a 
WIP or pipeline discrepancy term (see Dejonckheere et al. 2003). Moreover, if we 
now want to generate smooth replenishment patterns we can give an appropriate 
weight to the discrepancies as follows, 
 

).().( tptt WIPDTNSDaDO   .                    (4.8) 

 
We now have two parameters,   and  , that will enable us to alter the dynamic 
behaviour of the supply chain.   and   are known to control engineers as 
proportional controllers or feedback gains.  Proportional controllers are the simplest 
and most common controller in control systems.   Indeed the very first control system, 
the Maxwell Governor, exploits a proportional controller in its velocity feedback loop 
(Åström, 2005).  Proportional controllers can be thought of as simple amplifiers or 
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attenuators.  In physical control systems they often take the form of electronic circuits 
or mechanical/pneumatic devices.  In our application here they will most probably 
take the form of computer logic;   and  are constant multipliers of their respective 
feedback error. When 1   bullwhip is created (variance amplification) and for 

1   a smoothed replenishment pattern is created (dampening).  The optimal 
values of the two controllers are obviously sensitive to the economics of the supply 
chain in question.  

 
This last issue concerning the economics of the supply chain brings us to the 
motivation of the policy proposed in (4.8). Expression (4.8) is able to generate a 
whole set of ordering patterns ranging from dampening (smoothing) to order variance 
amplification (bullwhip). The literature shows that production smoothing is efficient 
when firms face increasing marginal costs of production or the presence of production 
smoothing costs. A smoothing policy is efficient as long as the savings from not 
adjusting production exceeds the cost of holding extra inventory. We therefore 
propose in the next section two key performance measures; one to measure order 
variance amplification/dampening and the other to measure inventory variance 
amplification/dampening. In this way we hope to offer the reader a general 
framework. We are aware that this approach deviates from the standard approach in 
inventory theory where an optimal or near optimal policy will be derived given a set 
of inventory related costs.  
 
4.2. Analysis of the smoothing rule under stationary demand 
 
The smoothing rule under stationary demand and matched controllers     is 
equivalent to the well known exponential smoothing formula as it is given by 
 

)( 11   tttt ODOO   or  ttt DOO .)1( 1    .                  (4.9)  

 
If 1  expression (4.9) reduces to tt DO  .  This is equivalent to the traditional 

OUT policy.  Expanding Equation (4.9) results in: 
 

nt
n

tttt ODDDO   )1(....)1()1(. 2
2

1         (4.10) 

 
(4.9) and (4.10) tell us that the Order-Up-To policy reduces to exponential smoothing 
on replenishment orders.  It also shows that the order quantity equals a convex 
combination of previous demand realizations. Balakrishnan et al. (2004) propose a 
general linear order smoothing policy of the following form, 
 







0k
ktkt DO  .        (4.11) 

 
Our smoothing policy is clearly a special case of the above general smoothing rule.  
More specifically, we propose an exponential smoothing scheme for the smoothing 
coefficients, k . It is easy to see that (4.9) will automatically yield less upstream 

variance than the traditional Order-Up-To policy. 
 



Disney, S.M. and Lambrecht, M.R., (2008), “On replenishment rules, forecasting and the bullwhip effect in supply chains”,  
Foundations and Trends in Technology, Information and Operations Management, Vol. 2, No. 1, pp1–80. 

From (4.9) we can deduce that the autocorrelation between Ot  and Ot-x equals 

 x1 .  This implies that smoothing (β<1) generates a positively correlated order 
stream. We now have to find expressions for the two important metrics, the bullwhip 
and the net stock variance amplification. As we discussed earlier, both measures are 
of critical importance. The situation is graphically represented in Figure 4.1. 
 
 

 
 

Figure 4.1. The two key metrics related to replenishment policies 
 
 
For the matched controller case, bullwhip is given by 
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OBullwhip .       (4.12) 

 
We observe in (4.12) that for the case of stationary demand and matched controllers 
(   ), bullwhip is independent of the replenishment lead-time.  Equation (4.12) is 
enumerated in Figure 4.2. 
 
So far we have been concentrating on the variance of orders placed. However this is 
only one side of the coin. We should also study the variance of the inventory levels. In 
a production smoothing world, inventory acts as a buffer stock, absorbing increases or 
decreases in demand while production remains relatively steady. This “inventory 
bullwhip effect” may have a negative impact on customer service. In other words, 
there is a key trade-off between production smoothing and customer service. 
 
Recall that ‘net stock’ refers to tNS  in (4.6). Remember also that   = 1 results in 

unit bullwhip as we have a pure chase policy. In such a case the inventory fluctuations 
will be minimal. Intuitively, we expect smooth ordering patterns ( 1  ) to result 
in higher inventory fluctuations and consequently in a poorer fill rate, and this is 
indeed the case.   For the matched controller case the net stock variance amplification 
is given by 
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NSAmp in (4.13) clearly has a ‘review and physical lead-time’ component and a 
‘smoothing’ component.  Figure 4.2 shows NSAmp as a function of   for all Tp. 
For a pure OUT ( 1 ) strategy, the smoothing component, equals zero. Note that 
even then, inventory variance exceeds demand variance by a factor of 1+Tp. 
Otherwise, for 0< 1  , the smoothing component is always positive. As 
expected, smooth replenishments increase the variance of the inventory levels. 

 

4.2.1. The order and inventory variance trade-off 

 

Figure 4.2 and Equation (4.13) shows that NSAmp is minimal at 1  and increases 
with decreasing and increasing  .  This means, that from an inventory point of view, 
smoothing ( 1 ) and bullwhip ( 1 ) are equally as ‘bad’. Equation (4.13) shows 

that the longer the lead-time pT , the smaller the relative impact of smoothing.    These 

observations lead to an interesting trade-off between bullwhip, inventory variance and 
customer service, see Figure 4.2. 

 

 

Figure 4.2. The variability trade-off  

 

The sum of NSAmp and bullwhip is minimised at  = 0.618034, irrespective of the 
lead-time. 0.618034, and its inverse, 1.618034, has long been known since ancient 
history as the Golden Ratio, often found in many forms of the arts and nature. For 
example it describes the optimal placement of seeds and leaves in growing plants, the 
optimal ratio of female and male bees and geometric patterns in architecture. 

 

Note that by adding bullwhip and net stock amplification together we assume that 
inventory holding and shortage costs are linearly related to the net stock variance and 
that flexibility costs resulting from unstable schedules are linearly related to the order 
variance (bullwhip). Furthermore we have assumed that the inventory variance is 
equally as costly as the order variance. In a business application, it is perfectly 
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possible that the bullwhip effect and net stock amplification are not equally important 
and that costs are not related to the variance. Indeed, as we have mentioned before 
this is not the case when we have piecewise linear and convex inventory holding and 
backlog and piecewise linear and convex overtime and lost capacity costs (see section  
2.3 and 6.5). Another interesting reference is Bertrand (1986) where a cost model was 
used to select appropriate values for the smoothing parameter. The production system 
he analysed is different from our model, but the paper offers an excellent example of 
how our metrics can be linked to a cost model.  

 

4.2.2. The impact of bullwhip avoidance on customer service: The fill rate 

Net Stock Variance is not a common supply chain measure. However, we can link it 
to the fill rate, a popular customer service measure (Zipkin, 2000 and Silver et al. 
1998). The fill rate is defined as the fraction of volume delivered from inventory, 
 

ESPRC
Fill Rate 1

expected demand per replenishment cycle
  .   (4.14)  

 
with ESPRC the Expected Shortages Per Replenishment Cycle. If we assume demand 
is normally distributed and since NSt is then a linear combination of normal random 
variables, NSt will also be normally distributed.  It will have an average equal to the 
target net stock (TNS) and a standard deviation of  
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We may write 

 

NSzTNS  .                              (4.16)  

 

Thus for any given Target Net Stock level, the safety factor z can be easily calculated 
using the standard normal loss function (Zipkin, 2000). With that we can calculate the 
fill rate associated with the given TNS level. We note that in the case of β=1 (no 
smoothing) Equation (4.16) simplifies to 

 

pD TzTNS  1        (4.17) 

 

the well known formula used in many inventory models. Thus, the fraction in 
expression (4.15) can then be interpreted as the extra time a unit spends in inventory 
due to the smoothing or bullwhip creation. 

 

The TNS of Equation (4.17) can also be expressed as a number of periods coverage, a, 
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DaTNS  .          (4.18) 
 

While the safety factor z is related to NS , a represents how many periods of average 

demand D  are covered by the TNS. The resulting ‘smoothing’ replenishment rule, 
guaranteeing a specified fill rate then equals 
 
Ot = D  +   ((Tp+a) D – NSt– WIPt).     (4.19) 

 
In order to quantify the trade-off between the degree of ‘smoothing’ and the 
associated investment in safety stock we have to know the costs involved. However, 
our experience is that a lot of ‘smoothing’ can be obtained with a small investment in 
extra safety stock. This is highlighted via our numerical example ( ,500D  

,100D  2pT ) by calculating the TNS for different values of  , see Table 4.1.  

 
 

  Bullwhip NSAmp 
Bullwhip + 

NSAmp 

a, number of periods 
coverage required to 

achieve a 99.5% fill rate 

Fill rate at 
constant 

TNS 
1.667 5.000 3.800 8.800 0.717 99.1% 
1.000 1.000 3.000 4.000 0.622 99.5% 

0.618 0.447 3.171 3.618 0.643 99.4% 

0.500 0.333 3.333 3.666 0.662 99.3% 

0.333 0.200 3.800 4.000 0.717 99.1% 

0.250 0.143 4.286 4.429 0.773 98.8% 

0.167 0.091 5.273 5.364 0.875 98.1% 

0.100 0.053 7.263 7.316 1.060 96.7% 

0.050 0.026 12.256 12.282 1.446 92.8% 

 
Table 4.1.  Sample results highlighting the link between bullwhip, inventory and 

service levels 
 
From Table 4.1, it is clear that we can remove 90% of the order rate variance (by 
setting   = 0.167 rather than   = 1) with only a quarter of a period’s extra inventory 
(0.875 - 0.622 = 0.253), whilst still maintaining a 99.5% fill rate.    
 
The last column of Table 4.1 shows the fill rate that would result from adopting the 
smoothing replenishment rule, whilst maintaining the Target Net Stock at the level 
required for   = 1. Depending on the profitability of the product (and/or the 
customer) and the cost of holding inventory, one may elect to ‘pay’ for smooth 
replenishments with a slightly lower customer service rather than by increasing 
inventory.  Note also that the safety stock required for 99.5% fill-rate at  = 0.333 is 
the same as for  =1.667, whereas the bullwhip differs by a factor of 25.  The 
“Golden  ”, 0.618034, minimizes the sum of bullwhip and NSAmp. 
 
In the discussion above, we have presented the bullwhip and customer service as a 
trade-off situation. In other words as a win-lose situation where one can win on 
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bullwhip and lose on inventory investment (as more inventory is needed to guarantee 
the same fill rate). Fortunately, this is not a general conclusion. For certain stochastic 
demand patterns with Auto Regressive and Moving Average components (ARMA, 
see Box and Jenkins, 1970) it can be shown that win-win situations do exist. That is, 
we may win on bullwhip and simultaneously win on inventory levels. Thus both 
bullwhip and inventory variability can be reduced simultaneously. This will be 
considered in the next section.  
 
 
4.3. A smoothing replenishment rule under ARMA(1,1) demand with 

exponential smoothing 
 
This section is based Disney et al. (2006a), however certain theorems and proofs are 
omitted. Consider now the case of ARMA(1,1) stochastic demand (we will now omit 
“(1,1)” for simplicity).  This demand is characterised by (4.20). We have elected to 
use the ARMA demand pattern in order to create a situation where the use of a 
forecasting mechanism in the OUT policy is justified to investigate its impact on 
dynamic performance.  ARMA is weakly stationary and for particular settings it does 
exhibit some non-stationary properties that can be forecasted. We note that truly non-
stationary demand patterns have no natural mean and infinite variance; as will the 
order rates.  Thus, an analysis of bullwhip is not possible in the same way as we 
advocate here.  However, studies of the inventory variance in a constant target 
inventory system are possible for a non-stationary demand, for example see Graves 
(1999).  
 
The mean centred ARMA demand pattern can be generated from stationary white 
noise as follows; 
 

  









 DttD

D

t
ARMA

t
ARMA

ARMA

DD

D





1

0

1

0

     (4.20) 

 
where; t  = white noise,   = mean of the ARMA demand pattern,   = auto 

regressive coefficient,  -1< <1,  = moving average coefficient, -1 1 and 

t
ARMA

D = ARMA demand at time t.  A positive autoregressive coefficient will result in 

meandering demand patterns, whereas a negatively correlated demand patterns will be 
more erratic over time, alternating about the mean.    
 
Recall that the “classical” OUT policy can be defined by (see expression (4.6) in 
Section 4.1) 
 

  ˆ1t p t t tO a T D NS WIP           (4.21) 

 
and that the policy requires an estimate or forecast of demand over the lead-time.  For 
stationary uncorrelated demands, the best forecast of demand in the future is well 
known to be the average of all previous demands, D .   However, for correlated 
demands such as AR and ARMA demands, a forecast ( D̂ ) can be produced with less 
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forecast error than D  by using a forecasting mechanism such as exponential 
smoothing, Muth (1960). This is defined in (4.22) where Ta is the average age of the 
demand data in the forecast. Ta>-0.5 ensures a stable response, as the range 

( 0.5, ]aT     corresponds to (0,2]   as 
1

1 aT
 


 so, 

 

 1 1

1ˆ ˆ ˆ
1t t t t

a

D D D D
T   


=  11

ˆˆ
  ttt DDD  .          (4.22) 

 
We have selected exponential smoothing as it is well understood and popular with 
practitioners. For example, empirical research by Makridakis et al. (1982) has shown 
simple exponential smoothing to be a good choice for one-period-ahead forecasting. It 
was the preferred option from among 24 other commonly used time series methods 
compared under a variety of accuracy measures and theoretical models for the process 
underlying the observed time series.  
 
We may investigate the performance of exponential smoothing in response to the 
ARMA demand and determine the optimum smoothing parameter, Ta that will 
minimise the one period ahead mean squared forecast error for particular values of   
and  .   The resulting closed form for the optimal Ta is given by (4.23) which we 
have plotted in Figure 4.3 for various   and  .   
 
 

        
     22

222
*

41323

1126121







aT    (4.23) 

 
(4.23) results in negative or complex values recommendations if  
 

   





8

91491323 2 
 .  In this case Ta

* = should be used, as 

exponential smoothing will not produce a forecast with less mean squared error than 
the unconditional mean of the demand process, D .  It should be remembered that our 
recommended Ta

* is optimal for minimising the one period ahead forecast error and 

we have defined the Order-Up-To level as   tp DTaS ˆ1   in this analysis.  We 

do not claim Ta
* to be optimal at minimising inventory / shortage or bullwhip (or their 

sum) costs or that this is the optimal way of calculating S or that Ta
* minimises the 

forecast error of the demand over the lead-time. 
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Figure 4.3.  The optimal exponential smoothing forecasting parameter (Ta
*) that 

minimises the ARMA one period ahead forecasting error 
 

 

 
 

Figure 4.4.  Enumeration with Tp=2, a =1 and an optimal Ta
* 

 
Recall that the classical OUT system simply passes on orders for i.i.d. demands. 
Furthermore, an exponential smoothing forecasting mechanism will always produce a 
forecast with less variance than the ARMA demand. We ask ourselves… “So why is 
there a bullwhip problem?”   If our forecast has less variance than demand, why can’t 
our orders have less variance than demand?   The answer is that it is the combination 
of the forecasting mechanism, order delay and inventory feedback loops in the OUT 
system that causes bullwhip. Remember that in the “classical” OUT policy, the order 
quantity is the summation of the demand forecast and two inventory feedbacks, the 
net stock discrepancy term and the WIP discrepancy term. The weights attached to 
these discrepancies are, each time, one (the so-called full adjustment strategy). This 
full adjustment strategy causes bullwhip. The key difference with the generalised 
OUT policy is that the errors in the feedback loops are only included fractionally (see 
Section 4.2). This smoothing principle is also discussed in Balakrishnan, Geunes and 
Pangburn (2004). 
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We have plotted the bullwhip produced in response to some ARMA demands in 
Figure 4.5. For each case, Ta was set as defined by (4.23). We can see that the 
“classical” OUT policy produces bullwhip when exponential smoothing forecasting is 
used.   In fact, it is known that the “classical” OUT policy with exponential smoothing 
forecasting produces bullwhip for all demands from a frequency domain analysis 
(Dejonckheere, et. al. 2003), but we can now also confirm this for ARMA demands. 
Note that in Figure 4.4 there is a zone where the bullwhip effect equals 1. This 
happens for negatively correlated demands, and *

aT    in this case; consequently the 

exponential forecasting is replaced by the long term average demand. This is the case 
of the “classical” OUT policy, using D as a forecaster, where it is well known that the 
bullwhip effect equals one. 
 
To summarise this section we have shown how to tune the exponential smoothing to 
minimise the one period ahead forecast error in response to ARMA demand.  We note 
that the unity gain in the two feedback loops induces bullwhip in the classical OUT 
policy with exponential smoothing forecasting.    
 
 
4.4. The generalized OUT policy under ARMA demand with exponential 
smoothing forecasts 
 
Now we consider the case of the generalised OUT with an exponential smoothing 
forecasting mechanism in response to ARMA demand.   Recall, our generalised OUT 
policy, 
 

   tttttt WIPDWIPNSTNSDO  ˆ .    (4.24) 

 
The bullwhip and net stock amplification ratios for this generalised OUT policy 
reacting to ARMA demand and forecasted with exponential smoothing forecasts are 
tractable but they are very lengthy and omitted in this monograph.  Interested readers 
can find them in Disney et al. (2006).  They actually have a number of very nice 
properties.  Firstly, as all the ARMA demands when    are i.i.d., the variance 
ratios are the same as those presented in Section 4.2.   
 
For ARMA demands when   is only slightly greater than  , the characteristic U-
shaped inventory variance curves flexes to the right.  See Figure 4.5 and Figure 4.6 
where the average inventory holding (a) is one period of demand.  It is better in terms 
of inventory holding and backlog costs to use a  >1, i.e. lower inventory variability 
is achieved by over-reacting to the ARMA demand signal. This is intuitive as we are 
effectively gambling on trends in demand having a lasting impact, and over-reacting 
to changes in demand will reduce the error between demand and supply after the lead-
time, thus reducing inventory requirements.  Hence in these situations if we want to 
remove bullwhip, we will be forced to hold extra inventory (when compared to case 
when   is set to minimise inventory costs and when compared to the case of the 
“classical” OUT policy).  
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Figure 4.5.  Bullwhip and net stock amplification when  =0.25  
and  =0.5, Ta = Ta

* = 25.22.   
 

 
 

 
 

Figure 4.6. Bullwhip and net stock amplification when  =0.75  
and  =0.5, Ta = Ta

* =   
 

However, if    and when   is much greater than  , the U shaped net stock curve 
flexes to the left (see Figure 4.6, where Ta has been set to minimise the one-period 
ahead forecast error).  Inventory variability is reduced by smoothing the demand 
signal ( <1). In this case, bullwhip can be removed whilst reducing net stock 
variance (when compared to the “classical” OUT policy at  =1).  We can also see in 
Figures 4.5 and 4.6 the role of the lead-time, Tp and the feedback gain,   on bullwhip 
and inventory variance.   The lead-time (Tp) increases the net stock variance for all 
cases but its effect is greatly reduced when   .   For ARMA demands when 

  , Tp also increases bullwhip, something that did not happen for i.i.d demands or 
for the ARMA demands when   .  This effect has been introduced by the 
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forecasting mechanism.    ’s symmetrical impact on net stock variance and bullwhip 
curves has been influenced by the ARMA constants.   
 
The precise manner in which this curve bends to the right or to the left is described in 
Figure 4.7. We can see that sometimes the inventory variance curve bends to the right 
(region B in Figure 4.7), in which case, if we want to avoid bullwhip then the 
customer service level achieved with the one period inventory holding decreases 
when compared to the “classical” OUT policy.  When the inventory variance curve 
flexes to the left (regions A and C in Figure 4.7), bullwhip reductions may be 
achieved whilst simultaneously improving the customer service levels offered by the 
one period’s inventory holding, when compared to the “classical” OUT policy. We 
notice that most of the ARMA demands result in this win-win scenario.  
 

 
 

Figure 4.7. Net stock variance behaviour of the generalised OUT policy with 
optimal one period ahead forecasting in the ARMA plane for various lead-times 

when a=1  
 

 
For situations where the optimal aT , the complex bullwhip and inventory 

variance expressions simplify a little, see Table 4.2.  They are shown in Table 4.2 for 
different classes of the ARMA demand pattern. We can see clearly here that when we 
use the unconditional mean as the forecast in the OUT policy that bullwhip is 
independent of lead-time and reducing the lead-time reduces NSAmp.  Furthermore   
has a smaller relative impact on NSAmp for longer lead-times. We can also confirm 
the results of Chen et al. (2000) for AR demands, that is; positively correlated 
demands decrease bullwhip and negatively correlated demands increase bullwhip in 
the OUT policy with exponential smoothing forecasting. 
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   
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Table 4.2. Simplified closed form expressions for Bullwhip  

and NSAmp when Ta=    
 
We now investigate the generalised OUT policy more explicitly in terms of the 
Customer Service metric, the “fill-rate”. Figure 4.8 details the relationship 
between and a needed to achieve the fill-rate objective. Here Tp=2 and Ta was set to 
minimise the one period ahead forecast error. The contour in each plot indicates the 
minimum a required the meet the fill-rate objective.  The area below the contour 
results in a service level below the target; with 0 , it becomes increasingly 
difficult to achieve the CSL target as   increases. We can see that it is possible to end 
up in four different scenarios when compared to the classical OUT policy ( =1) 
whilst maintaining the fill-rate objective; Win-Win, we can remove bullwhip (by 
using a small enough  ) and reduce inventory levels, Win-Lose, sometimes bullwhip 
can only be removed at the expense of holding extra inventory, Lose-Win, sometimes 
bullwhip can be endured because it results in a policy that requires less inventory to 
be held, Lose-Lose, sometimes excessive bullwhip and inventory may exist. 
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Figure 4.8.  Average number of periods inventory holding (a) required to the 
99.5% fill-rate objective as a function of   in the ARMA plane with one period 

ahead forecasting 
 
It is clear that it is worth monitoring the demand statistics to determine the ARMA 
parameters and thereby find “better” policy settings that lead to competitive 
advantage.   We have shown how the OUT policy can be “tuned” to suit a variety of 
objectives.   The one that will be the best in a given situation will depend on a number 
of factors. For example in an industry with high inventory related costs, it may be 
advantageous to flex capacity.  A retailer may want to reduce inventory in order to be 
able to offer a broad product range through its facilities. Whereas for a manufacturer, 
buy-backs and obsolescence may be the more significant inventory related costs.   In 
contrast, in an industry with long production runs and high capacity related costs, 
exploiting inventory holding to avoid bullwhip related costs may be more 
economically desirable.  Bullwhip related costs in a retailer may be concerned with 
distribution activities, whereas for a manufacturer they may result from production 
matters.   

 

Clearly, a properly defined OUT policy can help industry to exploit properties of the 
demand signal to balance bullwhip and inventory issues or reduce them both 
concurrently.  However, in general, there will only be a win-win scenario for certain 
demand patterns.  We do not think one can identify upfront the likelihood of being in 
a win-lose or win-win scenario in a particular business without some investigation 
into the business’s demand streams.  However, if demand can be characterised by the 
ARMA model we may use Figures 4.7 and 4.8 to gain some insight into this question. 
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4.5.  Minimum mean squared error forecasting 

We continue to study the role of forecasting in relation to the bullwhip effect and net 
stock amplification. In the previous section we studied ARMA demand patterns with 
the exponential forecasting method. In this section we study a forecasting procedure 
that minimizes the mean squared error for an AR(1) underlying demand process. 
 
We assume that the demand can be described by an AR(1) model, 
 

  tDtDt DD   1 ,        (4.25) 

 
where Dt is the demand during period t, μD is a constant mean of the demand, εt is an 
i.i.d. normally distributed random error and   is the first-order autocorrelation 

coefficient with 1 . 

 
For the above demand process, the Minimum Mean Squared Error (MMSE) 
forecasting is applied to predict the lead time demand. Recall, Tp is the lead-time.  
With this forecasting technique, the demand forecast is derived in such a way that the 
forecast error is minimized. The MMSE forecast for the demand in period t + τ equals 
the conditional expectation of Dt+τ, given current and previous demand observations 
Dt, Dt-1, Dt-2,… Box and Jenkins (1970). Doing so, we exploit the underlying nature of 
the demand pattern to predict future demand. As a consequence it seems logical to 
explicitly forecast the τ-period-ahead demand to predict lead time demand, instead of 
simply multiplying the one-period-ahead forecast with the lead time (as in the MA 

and ES forecasting technique). Let ,...,, τD τt 21ˆ  , be the τ-period-ahead forecast of 

demand Dt+τ made in period t. Then,  
 

 DtDt DD  1
ˆ        (4.26) 

 
and        

 

 Dt
τ

Dτt DD  
ˆ .       (4.27) 

 
The lead time demand forecast is obtained by plugging the τ-period-ahead forecast 

into the definition of lead time demand,  

 
 

1

1

1 ˆˆ pp T

i it
T
t DD . Hence, in contrast to the 

moving average and exponential smoothing forecast methods, we do not multiply the 
one-period ahead forecast with the lead time, but instead calculate the forecast of the 
demand over the lead time horizon  and review period, 1pT . The MMSE forecast 

for lead time demand is then given by 
 

   Dt

T

Dp
T
t D

ρ

ρρ
TD

p

p  


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

1
1ˆ

2
1 .     (4.28) 

 
Clearly, the MMSE forecasting scheme is optimal at minimising the variance of the 
forecast error of future demands, as it explicitly takes the correlated demand structure 
into account. This is not the case in the non-optimal moving average and exponential 
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smoothing procedures. When demand is i.i.d. ( =0), the above equations reveal that 
the MMSE forecast reduces to a constant equal to the mean demand. It is interesting 
to observe the closed form expressions for our two metrics, 
 

Bullwhip = 
)1(

)1)(1(2
1

21








 pp TT

      (4.29) 

 
and  
 

NSAmp = 
 

2

212

)1(

)2)(1()1(1





  pp TT

pT
.    (4.30) 

 
These results hold if the MMSE forecasting scheme is used in a classical Order-Up-
To policy. 
 
Zhang (2004) showed that the MMSE forecasting method is clearly the winner among 
the three forecasting methods of moving average, exponential smoothing and MMSE, 
if only inventory costs are considered at a single echelon.  That is, it leads to the 
lowest inventory cost when the cost function in Equation (2.3) is used. Moreover, it 
can be shown (Zhang (2004), Alwan et al. (2003), Hosoda (2005)) that there is no 
bullwhip effect for a negatively correlated process under an optimal MMSE 
forecasting scheme. In other words, for negatively correlated demand, the variability 
in orders is dampened with respect to the observed demand. This is a very important 
result and it demonstrates how important the interplay is between forecasting 
methods, demand processes and replenishment rules. This is the main conclusion of 
Section 4. 
 
 
5. Transferring the inventory decisions to the upstream levels: Vendor 

Managed Inventory as a variance reduction tool 
 
In a traditional supply chain, each level in the supply chain issues 
production/replenishment orders without considering the situation at either up- or 
downstream tiers of the supply chain. There is no formal collaboration, no 
information sharing and no collaborative forecasting procedures. Consequently most 
players in supply chains do not respond directly to the market but respond to 
replenishment orders from downstream echelons. This creates distorted demand 
information in the supply chain and consequently the bullwhip effect. In the previous 
sections we focused on new replenishment rules to dampen variability, in this section 
we propose to shift the inventory decision rights from the downstream to the upstream 
member of the supply chain. The latter approach is better known as Vendor Managed 
Inventories (VMI). Under VMI, downstream players share demand and inventory 
position information with the upstream players who then make inventory 
replenishment decisions (Lee and Chu, 2005). One may even go one step further and 
let the supplier not only to make stock level decisions, but also to own the goods until 
they are sold or assembled in a product (sometimes this is called consignment 
stocking). VMI contracts often stipulate restrictions such as the right to return excess 
stock to the upstream or in case of a consignment stock agreement the right to charge 
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inventory carrying costs if the inventory flow time exceeds a certain agreed upon time 
limit.   
 
Although VMI has been extensively covered in the literature, many suppliers have 
little incentive to accept the process. The arguments being that an investment in IT 
technology is required, the inventory-carrying cost and warehousing costs are shifted 
to the supplier, lowering once again the thin profit margins. Thus, there is a need to 
develop a theory on the “economics of VMI”. 
 
Let’s therefore enumerate the most important advantages of VMI.  First VMI 
eliminates one decision point and merges the replenishment decision with the 
production and materials planning of the supplier. Here, the supplier takes charge of 
the customer’s inventory replenishment on the operational level, and uses this 
visibility in planning his own supply operations, e.g. more efficient production 
schedules and transportation planning. With VMI, multi-echelon supply chains then 
can act in a coordinated way. There is no need to design supply chain contracts and 
upstream suppliers can choose a reorder quantity that best fits the production system. 
VMI often results in more frequent replenishments and consequently the order 
quantity variance is reduced. Economies in transportation can also be obtained 
through route planning and optimization of truck fill and with other methods such as 
joint replenishment and inventory routing techniques. The VMI model is, in other 
words, a channel coordination strategy between downstream and upstream players.  
 
VMI allows the supplier to proactively plan his production and shipments to the 
customer, instead of reacting to the customer’s orders and thus may yeild some 
production and transportation economies.  Additionally, the supplier often has a much 
better market knowledge about his products than the retailer. Therefore, he is in a 
better position to generate forecasts and this leads to improved inventory performance 
and customer service levels at every stage of the supply chain.   VMI may also result 
in a tighter retailer-supplier relationship and thus can be considered a buy-in strategy. 
 
We briefly illustrate the benefits of VMI with a real life example, Boute and 
Lambrecht (2007). We analyze the ordering pattern of a bakery company focusing on 
authentic specialties in the biscuit and cake world: caramelized biscuits, waffles, 
frangipane, and cake specialties amongst others. For certain products, a make-to-order 
policy is employed and the assumptions used in this paper are largely satisfied. In 
2002, the firm introduced a VMI program implemented in the SAP software. In 
Figure 5.1 we show a graph of the shipments from the production facility to the 
distribution centre of a retailer (for one specific product) in the pre-VMI period 
(2001-mid 2002) and the shipments in the post-VMI implementation period (mid 
2002-2005). The coefficient of variation of the shipment quantities went down from 
1.14 to 0.45 (a number observed for other products as well). We were also able to 
collect (post-VMI) data on the shipments from the distribution centre of the retailer to 
the different retail outlets. For the specific product discussed above, we obtain a 
coefficient of variation of 0.40.  
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Figure 5.1. The impact of VMI on the order variability  
 
The company now benefits from a higher flexibility in its production planning, since 
the VMI program allows the company to plan proactively instead of reactively. It is 
also able to utilize the production facilities more efficiently, as the outputs need not be 
ramped up and down based on large swings in orders. It reduced its transportation 
costs considerably due to an improved and more stable transport planning. Moreover, 
inventories decreased both at the manufacturer and at the retailer, improving the 
freshness of the products of the end consumer. Finally, the customer service level 
improved as product availability increased, thereby increasing the profitability for 
both the manufacture and the retailer. 
 
 
6.  Coordination of replenishment rules in a multi-echelon setting 
 
In this section we study a two-echelon supply chain model consisting of a retailer and 
a manufacturer reacting to stationary i.i.d. stochastic consumer demand.  It is based 
upon Disney et al. (2008). Both echelons implement our periodic review generalized 
Order-Up-To policy (OUT) replenishment policy with matched controllers.  
Consequently both echelons incur costs that we assume to be directly proportional to 
the long term variance of the inventory level and the long term variance of the 
replenishment orders.  
 
The combined total cost of the retailer and manufacturer has to be minimized. This 
can be done in several ways. One possibility is that both the retailer and the 
manufacturer act independently and minimize their own local costs.  However, 
another possibility is that the retailer and manufacturer coordinate their replenishment 
decisions to reach a globally optimal solution.  
 
This supply chain coordination is not only realized through sharing demand 
information, but the actors also have to share information with respect to the 
parameters of the replenishment rules used and their lead-times. This is of course a far 
more advanced coordination scheme than what is often proposed in the literature. 
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Assume demand is a stationary i.i.d. random process with a positive mean, DD  4 , 
greater than four standard deviations of the demand variance to ensure the likelihood 
of negative demand is negligible.  Under this assumption the best possible forecast for 

all future demands (to minimise the mean squared error) is Dt DD ˆ . That is, to 

set the forecast tD̂ , to a time invariant constant D , equal to the unconditional mean 

of the demand process, D .   
 
To recap, the generalised OUT policy with matched controllers is given by 

 

1
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     (6.1) 

 
When the demand forecast is set equal to the mean of the demand process then this 
reduces to 
 

1
1

( . )
pT

t t p t
i

O D aD NS T D O 


     .                                          (6.2)                                 

After substitution and simplifcation (see Disney et al., (2006a)) we obtain 

1 1( )t t t tO O D O    .                                                                                (6.3) 

 
6.1. The retailer’s order and inventory variance 
 
Let us now start to construct our two echelon supply chain model by first considering 
the retailer.   The retailer’s demand from the consumers is a stationary i.i.d. random 
process. Later we will assume the retailer incurs two types of costs; one directly 
proportional to the long-run variance of the retailers inventory level and the other 
directly proportional to the long-run variance of the retailer replenishment orders 
placed on the supplier (manufacturer).  So we wish to quantify these variances 
produced by the retailer’s replenishment rule.  This has already been presented earlier 
in Section 4.2.1 but we will present here again. 
 

2

2 2
RO

D

 
 




         (6.4) 

 
In Equation (6.4) 2

D  denotes the variance of consumer demand and 2
RO  is the 

variance of orders placed by the retailer on the manufacturer.  Interestingly we note 
that under the assumptions of; stationary i.i.d demand, forecasts generated by 
conditional expectation, and matched feedback controllers, bullwhip is independent of 
the lead-time, Tp. If either of these assumptions is not meet, than the bullwhip effect 
does depend upon the lead-time, Tp.  The variance of the retailer’s net stock is 
(inventory on hand minus backlog) given by 
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2
RNS  denotes the variance of the retailers net stock.  When Tp=1 (a further assumption 

we will make later in order to ease the exposition of our investigation on the 
manufacturer in the supply chain) Equation (6.5) reduces to 
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For completeness we note that the variance of WIP is given by Equation (6.7), which 
is of the same form as the smoothing component in the inventory variance equation. 
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6.2. The manufacturer’s order and inventory variance 
 
The manufacturer responds to the retailer’s orders and we assume that he uses our 
generalised OUT policy with matched controller, Equation (6.1), for scheduling 
production.  For simplicity, we assume, from this point on for the rest of this section 
unless explicitly stated, a unit replenishment lead-time at both the retailer and the 
manufacturer exists.  It is remarkable to note that the retailer’s lead-time does not 
influence the order variances at either echelon of the supply chain.   In fact, the 
retailer’s lead-time only affects the retailer’s inventory levels, whilst the 
manufacturer’s lead-time influences both the manufacturer’s order and inventory 
variance.  
 
The retailers order process, after passing through the generalised OUT policy, is now 
auto-correlated.  Thus, we may exploit this structural information to forecast both the 
demand over the lead-time and the demand in the period after the lead-time with 
conditional expectation.     This alters the way in which the target pipeline content 

( tDTp ˆ.  in (6.1)) and the target net stock ( tDa ˆ  in (6.1)) is calculated in the generalised 

OUT policy, but has the advantage of generating optimal forecasts.  These forecasts 
are optimal in the sense that they minimise the mean squared error between the 
forecast and its realisation over the lead-time and review period.   
 
The manufacturers order variance for the case when Tp=Mp=1 is given by 
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and the manufacturer’s inventory variance when Tp=Mp=1 is given by 
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where,   is the retailer’s proportional feedback controller, as before, and M  is the 

corresponding feedback controller in the manufacturer’s replenishment policy.  More 
details about how these variance ratios where obtained can be found in the Disney et 
al. (2008). The limit values of (6.8) and (6.9) contain some interesting insights.  When 
  approaches zero, the manufacturers order and inventory variances both go to zero.  
This is due to the fact that the retail orders are simply a constant (equal to the mean 
demand).  When the manufacturers feedback gain, M , approaches zero, the variance 

of the manufacturers net stock is infinite.  This is because the net stock is now an 
accumulation of random variables and is non-stationary with no natural mean.  
Equation (6.9) shows that decreasing   will reduce the manufacturer’s inventory 

requirements, but decreasing M  will increase the manufacturer’s inventory 

requirements. 
 
In the following sections, we develop several supply chain policies ranging from local 
optimization to global optimization. 
 
6.3. The sequential optimisation scenario: The self-serving focus 
 
In order to test various supply chain policies, we have to define a cost function to be 
used. We will first assume that the costs in the supply chain are linearly related to the 
variance of the order rate and inventory levels at each echelon in the supply chain. For 
example, we assume the inventory holding and shortage costs are linearly related to 
the inventory variance, and production / replenishment on-costs resulting from 
variable schedules are linearly related to the order variance. Furthermore we assume 
inventory variance is equally as costly as order variance.  Later in section 6.5 we will 
consider the case when costs are linearly related to the standard deviations.  
 
These two cost functions (variances and standard deviations) may of course be subject 
to debate. The 2 2 and RNS MNS   terms are linked to the safety stock needed (see Disney 

et al. (2008)) and consequently cover inventory holding costs of the safety stock and 
backorder costs. The 22  and MORO   terms are linked to production switching costs or 

adjustments costs due to order rate changes (capacity adjustment costs).  
 
We also consider order rate variance (standard deviation in section 6.3) as equally 
important as inventory level variance (standard deviation in section 6.3). It is however 
perfectly possible that the bullwhip may be more costly then inventory variance 
amplification or vice versa, depending on the context. In this case we have to apply 
weights to these factors. This may change the shape of the cost curves that are derived 
in this paper. We refer to Disney, Towill and Van de Velde (2004), for an 
investigation on such weighting schemes. Alternative objective cost functions are also 
discussed in Kim and Ryan (2003), Disney and Grubbström (2004) and Chen and 
Disney (2007). 
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6.3.1. The selfish retailer 
 
First, let us consider the retailer. If the retailer only incurs inventory related costs (that 
is, the costs related to the order variance are constant or zero) then the retailer costs 
are given by (6.6) and the optimal behaviour of the retailer is to set  =1 as 
minimising (6.6) w.r.t.   results in  *=1. 
 
However if the retailer has both inventory and order related costs then his costs are 
given by (6.10), 
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      (6.10) 

 

and the optimum 
5 1

0.618034
2

 
  , the golden ratio, as we saw earlier in 

Section 4.2. 
 
6.3.2. The selfish manufacturer 
 
Now let us consider the manufacturer.   If the retailer has used  =1 to minimise the 
retailers inventory costs, the manufacturer faces a demand pattern that is exactly equal 
to the consumers demand as the retailer has simply “passed on the orders”.   The 
manufacturer’s variance ratio and cost analysis in this case is exactly the same as the 
retailer’s variance trade-off.  Thus our previous remarks in Section 6.3.1 for the 
retailer hold for the manufacturer (after the obvious change in notation).   That is the 
manufacturer’s cost and the optimal feedback controller, *

M , are given by (6.10) and 

the golden ratio respectively.  
 
However, if the retailer has used the golden   in the inventory and WIP feedback 
loops, then the manufacturer’s demand process has changed, and thus, his actions now 
have different consequences.   Let us illustrate further.  Using (6.8) and (6.9), with   
equal to the golden ratio, the manufacturer’s order and inventory variance (and their 
sum) is shown in Figure 6.1.  
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Figure 6.1. The manufacturer’s variance trade-off with a golden retailer  
 

Figure 6.1 shows there is a much greater region of order smoothing in the 
manufacturers replenishment policy with a golden retailer as the manufacturers order 
variance is less than unity for all M >1.06471. The manufacturer’s local cost when 

both inventory and order variance costs are present is given by 
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Differentiating (6.11) w.r.t. M , solving for zero gradient and selecting the relevant 

root yields 
 

*

,M O NS 

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=0.589296       (6.12) 

 
However, if the manufacturer’s cost function consists of costs associated with the 
variance of the inventory levels only, then the cost function to be minimised is 
 

      
 £

5 3 5 5 3 2 2

4 2

M M

M M

M
 

 

   



.     (6.13) 

 
Again minimising (6.13) w.r.t M  yields,   

 
*
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Summarising our results from the sequential local optimisation of the supply chain we 
have developed the following table that details the feedback gains and the resulting 
costs.  
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* = 0.61803 
*
M = 1 

R£ = 2.61803 
M£ = 1.11146 
SC£ = 3.72946 

* = 0.61803 
*
M = 0.589296 

R£ = 2.61803 
M£ = 1.661384 
SC£ = 4.299418 

 
Table 6.1. The self-serving solutions  

 
6.4.  The global optimisation problem: Supply chain coordination 
 
In this section we will show that the self-serving focus results in poor performance by 
considering what happens when supply chain members coordinate the replenishment 
decisions.   Equations (6.4), (6.5), (6.8) and (6.9) allow us to explore the complete 
solution space for feedback design in our supply chain. More specifically, we can 
compute the values of the feedback controllers that the supply chain parties can use to 
improve overall costs. For example, the following contour plots (Figure 6.2) illustrate 
the performance of the supply chain for all possible settings. 
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Figure 6.2. The complete supply chain total cost solution space with costs related 
to the variance of order rates and inventory levels 

 
Using numerical techniques we have been able to find the actual optimal settings for 

*  and *
M  to minimise global supply chain costs as shown in Table 6.2. 
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* = 0.390526 
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M = 1 

R£ = 2.833627 
M£ = 0.547575 
SC£ = 3.3812 

* = 0.347278 
*
M = 0.565464 

R£ =2 .951647 
M£ = 0.829541 
SC£ = 3.78119 

 
Table 6.2. The global optimum supply chain solutions 
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By comparing the £SC  in Table 6.1 and 6.2, we observe that supply chain gains are 

realized by a global optimization (for all scenarios).  The coordinating mechanism 
dominates the non-coordinating mechanism. The supply chain gain, however, is 
allocated to the manufacturer and the retailer incurs higher costs. This of course will 
not result in a coordination policy. Cachon (2003) describes what is needed to 
coordinate the supply chain: “if a coordinating contract can allocate rents arbitrarily, 
then there always exists a contract that Pareto dominates a non-coordinating contract, 
i.e. each firm’s profit is no worse off and at least one firm is strictly better off with the 
coordinating contract”.  
 
Therefore part of the supply chain gain has to be allocated to the retailer so that the 
retailer has an economic incentive to cooperate. For all scenarios the gain is large 
enough to compensate the cost increase of the retailer. That means that the cost of the 
retailer, after allocation, is not worse and the manufacturer is strictly better off with 
coordination.  
 
In the global solution,   is larger than in the local optimization solution. 
Consequently the retailer will incur a larger variance of the inventory level which 
results in a higher level of safety stock to guarantee a given level of customer service. 
The extra investment in safety stock has to be compensated by the supply chain gain 
in order to motivate the retailer to participate. This can be realized by a lower price 
charged by the manufacturer. 
 
In Table 6.3 we quantify a naïve solution of  = M =1 to benchmark a practice quite 

often found in industry. In this case the members of the supply chain are interested in 
minimizing investment in inventory and consequently follow a naïve JIT strategy.  
We can see that the naïve solution (that is not accommodating for the supply chain 
cost structures and failing to tune replenishment rules accordingly) is always more 
costly than the case where supply chain players act rationally and minimize their local 
costs. Superior performance occurs when supply chain players “think outside the box” 
and act to minimize global supply chain costs. 
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Table 6.3. The naïve solution 
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6.4.2. The altruistic retailer  
 

As indicated by Cachon (2003), supply chain members may consider coordination 
mechanisms (and the corresponding contracts) costly and complicated. Our global 
optimization policy requires that (i) forecasts are generated with conditional 
expectation, (ii) a proportional OUT policy is employed throughout the supply chain 
(iii) that the feedback controllers are globally optimized. This may be hard to 
implement. We therefore suggest in this section an “easier to implement” policy. We 
will compare the results of this strategy with the three previous policies (the local 
optimum solution, the global optimum solution and the naïve solution). 
 
We assume that the manufacturer is following a low inventory policy and sets 1M  . 

The retailer however, is willing and able to alter his replenishment rule to incorporate 
a proportional controller in the feedback rule. We call this policy the “altruistic 
retailer” policy. The results are shown in Table 6.4. 
 
As can be seen from Table 6.4, the altruistic retailer can obtain near optimal 
performance for the supply chain by a proper reaction (i.e., by tuning the feedback 
controllers of the replenishment rule) to the non-cooperative manufacturer.  In fact the 
performance is within 5% of the true optimum when the manufacturer has both 
inventory and order variance costs; there is no difference in the costs if the 
manufacturer has only inventory variance costs. 
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   = 2.28782 
R£ = 2.46828 

M£ = 0.657735 
SC£ = 3.12156 
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M£ = 0.990137 
SC£ = 3.72972 

In
ve

n
to

ry
 

an
d

 o
rd

er
 

va
ri

an
ce

 
co

st
s 

  = 2.56065 
R£ = 2.833627 
M£ = 0.547575 
SC£ = 3.3812 

  = 3.09894 
R£ = 3.039953 
M£ = 0.890773 
SC£ = 3.930725 

 
Table 6.4. The altruistic retailer 

 
6.5. Linking the variance ratios to costs in the supply chain 
 
In this section we will quickly explore an alternative cost function based on a more 
traditional, OR / inventory theory approach.  Some costs may be assumed to be 
constant or independent of the inventory levels or orders, but we simply ignore them 
here. Such costs may be materials, energy and administration overheads, for example.  
However to capture the costs that may reasonably be assumed to be dependent on the 
inventory levels and order rates we will assume a linear system with normally 
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distributed demand exists with piece-wise linear, convex inventory holding costs then 
the holding costs are 

 

Holding costs =
 



 

otherwise 0

0 if tt NSNSH
,      (6.15) 

 
where H is a the unit cost of holding a unit in inventory per period.  Likewise if piece-
wise linear, convex backlog costs exist, 
 

Backlog costs =


 

otherwise 0

0 if )( tt NSNSB
,      (6.16) 

 
where B is the cost of a backlog per unit per period, and we set the safety stock target  

 

* 12NS

H B
k erf

H B
        

       (6.17) 

 
to achieve the economic stock-out probability, then the inventory related costs will be 
given by (Disney et al. (2006b)), 
 

 
2

1

$
min

Holding  Backlog costs
2

H B
erf

H B
NS B H e

I




     
   .   (6.18) 

 
We notice from (6.18) that the inventory holding and backlog costs are linearly 
related to the standard deviation of the net stock levels.  k* can be related back to our 

approach we used earlier to set the TNS via the relation 
D

k
a

*

 . 

 
In a similar manner, if there are piece-wise linear, convex lost capacity costs of  
 

Lost capacity costs = 
   



 

otherwise 0

 if DSOODSN tt ,    (6.19) 

 
where S is the slack capacity above the mean demand rate (not to be confused with the 
traditional variable associated with the OUT level) and N is the cost per unit per 
period of not producing to the available production capacity and there are piece-wise 
linear, convex over-time costs of  
 

Overtime costs = 
   



 

otherwise 0

 if DSODSOP tt ,     (6.20) 

 
where P is the cost per unit per period of producing in over-time, and we invest in 
enough capacity (above / below average demand) to achieve an economic over-time 
probability,  
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* 12O

N P
S erf

N P
        

,       (6.21) 

 
then the bullwhip related costs are equal to (Disney et al. (2006b), 
 

 
2

1

$
min

Lost capacity  Over-time costs
2

N P
erf

N P
O N P e

C




     
   .  (6.22) 

 
Equation (6.22) shows us that the bullwhip costs are linearly related to the standard 
deviation of the order rates.   Thus, it is interesting to investigate an objective function 
where the standard deviations, rather than the variances, of the inventory levels and 
order rates are used as building blocks.   
 
For ease of exposition, we will restrict ourselves here to the case where the standard 
deviations of the inventory levels and order rates are equally weighted; that is when 
H=N and B=P (or interestingly when H=P and B=N) at both echelons.  This change 
to the objective function has a number of implications, but we note that major 
conclusions we have drawn so-far remain qualitatively unchanged.  
 
Consider first the local optimisation collaboration scheme, the self serving solutions 
outlined in Section 6.3.  The objective function for the retailer when only inventory 
costs are present becomes 
 

 £

1

2RNS pR T
 

  


,       (6.23) 

 
and the feedback gain that minimises the retailers cost is  =1.  This is the same result 
as before when we considered the variance of the inventory levels and it implies that 
the manufacturer faces i.i.d. demand when the retailer considers only his inventory 
cost are important.   However, when the retailer has costs related to the standard 
deviation of both inventory levels and order rates the objective function becomes 
 

 £

1

2 2RO RNSR Tp
 
  

    
 

.    (6.24) 

 
Minimising (6.24) w.r.t.   results in the following expression for *  
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We notice that the golden ratio solution no longer exists and the optimal *  is now 
dependent on the retailers lead-time, Tp.    
 
Analytical analysis of the manufacturers standard deviation costs is rather lengthy, 
and thus we resort to a numerical investigations for the case of Tp=Mp=1. The solution 
space is portrayed graphically is very similar to Figure 4; enough so, that our major 
conclusions (altruistic behaviour on behalf of the retailer with either a smart or naïve 
manufacturer, improves overall supply chain performance) remain unchanged, 
although absolute numbers are slightly different.    
 
Table 6.5, details the four specific supply chain cooperation strategies for the different 
cost structures.  Again, the internal relationships and its relationship to the self-
serving solutions remain intact.   
 

 Manufacturer incurs
Inventory standard  
deviation costs only

Inventory and order standard 
deviation costs

Naive Local Altruistic Global Naive Local Altruistic Global 
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   1 1 0.282367 0.282367 1 1 0.181132 0.198942 

M  1 1 1 1 1 0.435421 1 0.553122 

R£ 1.41421 1.41421 1.74981 1.74981 1.41421 1.41421 2.00881 2.27938 

M£ 1.41421 1.41421 0.561212 0.56121 2.41421 2.09849 0.859025 0.86359 

SC£ 2.82843 2.82843 2.31102 2.31102 3.82843 3.51271 2.86783 2.8162 
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  1 0.435421 0.217316 0.217316 1 0.435421 0.153642 0.163839 

M  1 1 1 1 1 0.471807 1 0.575123 

R£ 2.41421 2.09849 2.24157 2.24157 2.41421 2.09849 2.4157 2.37816 

M£ 1.41421 0.80851 0.44196 0.44196 2.41421 1.45936 0.75344 0.74684 

SC£ 3.82843 2.907 2.68577 2.68577 4.82843 3.55786 3.16914 3.125 

 
Table 6.5. The supply chain solutions when costs are linearly related to the 

standard deviation 
 
 
To summarise all of our investigations considered in this section, we have 
standardised (by defining the naïve designs costs as 100%) all of the costs in the 
different supply chain collaboration schemes with both the variance and standard 
deviation versions of our objective function. These are shown in Table 6.6.   Again we 
highlight that the head-line results are similar for both cost functions (variance or 
standard deviations). 

 
For the naïve strategy, players in the supply only need to operate with standard 
replenishment software and have a standard trading relationship with their customers 
and suppliers.   It is an easy option.  But the naïve strategy results in an inefficient use 
of inventory and capacity. So to improve their performance, players should make re-
engineering efforts to minimise lead-times and additionally create the most accurate 
forecasts they can achieve.  These changes will directly improve business 
performance.  Indeed, these efforts are required for all supply chains and will reduce 
inventory requirements in supply chains. 
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More perceptive players will try to understand their own cost structures, demand 
patterns and tune their replenishment rules in order to minimise their own local costs.  
This may be an appropriate strategy if a player has a very large customer or supply 
base, is geographically or culturally separated or is unwilling or unable to collaborate 
with others.   
 
In order to be tune the OUT policy in the manner we have investigated here, some 
adjustments to computer code or decision support systems may be required.  For 
example a grocery retailer we have worked with has actually re-coded their in-house, 
bespoke replenishment system to incorporate a proportional controller in the WIP and 
inventory feedback loops. Other companies we have worked with who have standard 
ERP software have exploited spreadsheet based decision support systems to assist 
replenishment analysts when they conduct final conformation of replenishment 
decisions.  
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costs 

Supply chain 
design  

Variance 
costs 

Standard 
deviation 

costs 
Naïve 100 100 Naïve 100 100 

Self serving 100 100 Self serving 92.36 91.75 
Altruistic 78.04 81.71 Altruistic 74.59 74.91 
Globally 
optimal 78.04 81.71 Globally 

optimal 71.18 73.56 
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Supply 
chain 
design 

Variance 
costs 

Standard 
deviation 

costs 

Supply chain 
design  

Variance 
costs 

Standard 
deviation 

costs 
Naïve 100 100 Naïve 100 100 

Self serving 74.59 75.93 Self serving 71.66 73.69 
Altruistic 67.62 70.15 Altruistic 65.51 65.63 
Globally 
optimal 67.62 70.15 Globally 

optimal 63.02 64.72 

 
Table 6.6.  Standardised cost summary 

 
 
6.6. Practical considerations 
 
The global optimisation strategy requires players to first intimately understand their 
own business, as well as other players cost structures, demand patterns and 
replenishment rules and to be able to tune their replenishment rules appropriately.   
Furthermore, some agreement has to be reached to re-allocate the supply chain 
“gains” between the players.  This should be possible as the global optimisation 
strategy Pareto dominates the self serving solution.  However in a supply chain with 
an extended vendor base, it may be difficult to gain the commitment from the large 
number of suppliers and the re-engineering effort will increase substantially. 
 
The altruistic retailer strategy, although not as efficient as the global optimal strategy 
has good performance with considerably less effort as there are no supply chain re-
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engineering requirements essential to the manufacturer.  It only requires the retailer to 
understand cost structures, demand rates, lead-times and replenishment rules 
throughout the supply chain. It may also not even be necessary to have a formal re-
allocation of the supply chain gain.  This could be redistributed though traditional 
pricing polices and the willingness of manufacturers to accept cost reductions over 
time.   
 
Other attractions may also exist for the retailer to behave altruistically. For example, 
the UK grocery company who has reduced the bullwhip produced by their 
replenishment rules (via incorporating a proportional controller discussed therein) did 
so in order to reduce the workload variability in their warehouse and transportation 
activities.  Furthermore, from a queuing theory viewpoint, bullwhip reduction may 
actually have a compensating effect on inventory requirements due to reduced 
manufacturing lead-times, Boute et al. (2007).   This may help to offset the predicted 
extra inventory investment at the retailer.  This will be especially important for 
retailers concerned about maintaining a wide product range with correspondingly 
large requirements for shelf space. 
 
 
6.7. Summary  
 
Four different cost scenarios were constructed using the variance expressions and four 
different optimisation strategies where undertaken; a naïve solution, a local optimum 
solution, an altruistic retailer solution, and a global optimum solution.  The naïve 
solution resulted in the worst performance.  
 
Interestingly, when total supply chain costs are considered, the classic OUT policy is 
not optimal in a multi-echelon scenario, even when only inventory costs exist.  We 
demonstrated this with three different optimisation strategies.  The first of these was a 
local optimisation strategy where the retailer first tuned his replenishment rule to 
minimise his costs and the manufacturer then tuned his replenishment rule 
accordingly.  This improved the performance of the supply chain from a global 
perspective, but was not globally optimal.   This global optimal was identified from 
our variance ratios numerically and plotted graphically.  Inspection of these results, 
lead us to the final scenario where action as only taken by the retailer.  Although this 
scenario is not optimal, reasonable performance from the supply chain could be 
achieved from the altruistic retailer, without re-engineering efforts at the 
manufacturer.  
 
In order to achieve this coordination scheme, supply chain players need to share 
information about demand patterns, replenishment policies, parameter settings and 
lead-times. We concede that this may be difficult to achieve.  However, our 
experience suggests that both retailers and manufacturers may have other incentives 
over and above the supply chain gains we have discussed here to undertake such 
seemingly altruistic behaviour.   

 
It is interesting to note that in this simple two-echelon supply chain model, the best 
result comes from the players acting in the best interest of the supply chain, and not 
by the players acting solely in their own immediate interest.   This is in contrast to 
Adam Smith, for example, who argued that the best result for a group resulted from 
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each individual player acting solely in own interests.  It is however congruent with the 
arguments of John Nash.  Superior performance is achievable if firms coordinate their 
actions. 
 
7.  New directions in bullwhip research 
 
We now briefly review a small number of research streams we are currently working 
on in our quest to solve the bullwhip problem.  
 
7.1. The square root law for bullwhip 
 
Let’s turn our focus now to a distribution network.  Assume that we have multiple 
retailers being served by a number of distribution centres.  All transportation lead-
times are the unity, regardless of the number of distribution centres that exist.   Each 
retailer faces i.i.d. demand with the same mean and variance.   Furthermore each 
retailer and distribution centre employs a traditional OUT policy with MMSE 
forecasting and unit feedback gains.  For such a scenario Maister (1976) introduced 
the “Square Root Law for Inventory” when consolidation occurs in the distribution 
network.   Quoting directly from Maister,  
 

“If the inventories of a single product (or stock keeping unit) are originally maintained at a 
number (n) of field locations (refereed to as the decentralised system) but are then 

consolidated into one central inventory then the ratio n
inventory  system dcentralise

inventory system seddecentrali  exists, 

Maister (1976)” 
 
Amazingly, the square root law also exists for bullwhip costs.   Consider the capacity 
related costs at the DC echelon. Equation (7.1) shows us that bullwhip or capacity 
costs are given by 
 

YC O£ ; 
 

2

2
1 2

1 






 




PN

N
erf

ePN
Y .      (7.1) 

 
Y is a constant determined by the lost capacity and overtime costs.   This was derived 
in Section 6.5. It is easy too prove the square root law for bullwhip exists by 
considering that in the decentralised supply chain the standard deviation of the orders 

at each of the n distribution centres is 2
cO   , and in the centralised supply chain 

(with only one distribution centre) the standard deviation of the orders is 2
cO n  . 

Thus, 
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Yn

Yn

c

c 
2

2

costs bullwhip dcentralise

costs bullwhip seddecentrali




,    (7.2) 

 
which is the “Square Root Law for Bullwhip”, Disney, McCullen and Saw (2006). 
This result surprised us, as intuitively, we expected it to have the opposite impact. 
This result also suggests that reasons to consolidate distribution networks are actually 
a lot stronger than previously thought (as this is often based solely on inventory 
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costs).   The likely impact of this is to force companies to consolidate even further 
than they have in the past, increasing the amount of traffic on the road.  Thus, 
internalising the external costs transportation causes is now even more important.  
Extending this approach to consider more complex demand processes, arbitrary lead 
times, sophisticated forecasting techniques and novel replenishment rules seem to be a 
very profitable research area. 
 
7.2. Multi-product scenarios 
 
Joint replenishment polices (JRP) which control more than one product in the same 
inventory replenishment decision is a very promising but complex issue.  It is closely 
related to the inventory routing problem (IRP) and there are some initial results on 
both the JRP and the IRP that have some interesting properties and show improved 
economic performance, Mustaffa and Disney (2005).  This is especially true when 
order set-up or transportation costs are considered. Another variation of the multi-
product scenario is the case where the demand for one product influences the demand 
for another product.  This type of interaction could be captured by the so-called 
Vector Auto Regressive (VAR) demand process, Sadeghi and Disney (2007).   
 
7.3. Stochastic lead-times 
 
Recently we have discovered that there is a link between smoothing and lead-times.   
We have been using queuing theory to model a manufacturer.  The manufacturer 
works on a make-to-order, first come, first served basis.  When a retailer smoothes his 
replenishment order that is placed on a manufacturer, the lead-time that the 
manufacturer needs to produce and deliver the products is reduced.  Thus, there is a 
link between bullwhip and lead-time variability Boute et al. (2007).   The smoother 
the retailer’s order is, the quicker the manufacturer can replenish his order, on the 
average.   Thus, there is actually a mechanism to break the bullwhip, inventory trade-
off we spoke of in Section 4.2.1.  Other research that has also recently considered 
similar problems; Chatfield et al. (2004) has investigated the impact of stochastic 
lead-times, information quality and information sharing in the OUT policy via a 
simulation experiment.  This approach is further clarified with analytical insights in 
Kim et al. (2006). 
 
7.4. Multi-echelon supply chain scenarios 
When we consider multi-echelon supply chains there are a whole range of new 
options available to us.  For example, we have already spoke of VMI, here 
downstream supply chain states are communicated to suppliers and this information is 
used in their replenishment decisions.  This type of arrangement is closely related to 
what is known as the echelon-stock policy or the echelon order-up-to policy, Hoberg 
et al. (2007). 
 
Collaboration and coordination mechanisms for multi-echelon supply chains also 
have very good economic performance as we have discussed in Section 6.   For 
example, if a retailer is willing and able to smooth his replenishment orders he places 
on his supplier, the supplier will be able to manufacture product more efficiently.  
However, this is effectively an altruistic contribution on behalf of the retailer if the 
supplier does not share the gains with the retailer, Hosoda and Disney (2006). There is 
a lot more research to conduct on this type of collaboration. 
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Interestingly, there may also be a benefit to mis-specification of the demand process.  
For example, if an AR(p) demand process is forecasted with a non-optimal 
forecasting technique such as exponential smoothing and capacity and inventory costs 
exist then superior performance can sometimes result in a single or multi-echelon 
setting.  In a multi-echelon case it is even possible to deliberately mis-specify the 
demand process, forecast this mis-specified demand with conditional expectation and 
gain an economic benefit.   It appears that optimal forecasts are only cost optimal in 
supply chains for single echelon scenarios where only inventory cost exist, Hosoda 
and Disney (2007). 
 
Finally, there is a novel method discussed in Gaalman and Disney (2007b) for co-
ordinating a multi-echelon supply chain. This policy has been derived using optimal 
control theory and, in a sense, is like a VMI supply chain in reverse. The core of the 
idea is that because the retailer’s lead-time is shorter than the manufacturer’s lead-
time, he can correct some of the manufacturer’s forecast errors.  In this way, the 
retailer is accounting for the state of the “upstream” supply chain.  The analysis of this 
policy is not yet complete but initial findings are promising. 
 
In general multi-echelon policies offer a very promising route for future bullwhip 
analysis.  However, they will require a significant industrial engineering effort to 
implement in practice. Collaboration and co-ordination mechanisms are also needed.   
However, the biggest problem with multi-echelon research is properly capturing the 
effect of lost sales and capacity constraints.   This is very difficult to achieve as these 
systems are non-linear.  However, Markov Chains do offer a means of analysis and 
will even cope with quantised systems where only integer amount of products can be 
ordered from a supplier or production system.   
 
 
7.5. Concluding remarks 
 
Finally, if you would like to explore more about the bullwhip effect, please go to 
www.bullwhip.co.uk.   There you will find a collection of simulations, java explorers, 
table top games and reference lists associated with the bullwhip effect. 
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