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Abstract

This survey is mainly motivated by the increased availability and use
of panoramic image acquisition devices, in computer vision and various
of its applications. Different technologies and different computational
models thereof exist and algorithms and theoretical studies for geomet-
ric computer vision (“structure-from-motion”) are often re-developed
without highlighting common underlying principles. One of the goals
of this survey is to give an overview of image acquisition methods
used in computer vision and especially, of the vast number of cam-
era models that have been proposed and investigated over the years,



where we try to point out similarities between different models. Results
on epipolar and multi-view geometry for different camera models are
reviewed as well as various calibration and self-calibration approaches,
with an emphasis on non-perspective cameras. We finally describe what
we consider are fundamental building blocks for geometric computer
vision or structure-from-motion: epipolar geometry, pose and motion
estimation, 3D scene modeling, and bundle adjustment. The main goal
here is to highlight the main principles of these, which are independent
of specific camera models.



1
Introduction and Background Material

1.1 Introduction

Many different image acquisition technologies have been investigated
in computer vision and other areas, many of them aiming at providing
a wide field of view. The main technologies consist of catadioptric and
fisheye cameras as well as acquisition systems with moving parts, e.g.,
moving cameras or optical elements. In this monograph, we try to give
an overview of the vast literature on these technologies and on com-
putational models for cameras. Whenever possible, we try to point out
links between different models. Simply put, a computational model for
a camera, at least for its geometric part, tells how to project 3D entities
(points, lines, etc.) onto the image, and vice versa, how to back-project
from the image to 3D. Camera models may be classified according to
different criteria, for example the assumption or not of a single view-
point or their algebraic nature and complexity. Also, recently several
approaches for calibrating and using “non-parametric” camera mod-
els have been proposed by various researchers, as opposed to classical,
parametric models.

In this survey, we propose a different nomenclature as our main
criterion for grouping camera models. The main reason is that even
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so-called non-parametrics models do have parameters, e.g., the coor-
dinates of camera rays. We thus prefer to speak of three categories:
(i) A global camera model is defined by a set of parameters such
that changing the value of any parameter affects the projection func-
tion all across the field of view. This is the case for example with
the classical pinhole model and with most models proposed for fish-
eye or catadioptric cameras. (ii) A local camera model is defined by
a set of parameters, each of which influences the projection function
only over a subset of the field of view. A hypothetical example, just
for illustration, would be a model that is “piecewise-pinhole”, defined
over a tessellation of the image area or the field of view. Other exam-
ples are described in this monograph. (iii) A discrete camera model
has sets of parameters for individual image points or pixels. To work
with such a model, one usually needs some interpolation scheme since
such parameter sets can only be considered for finitely many image
points. Strictly speaking, discrete models plus an interpolation scheme
are thus not different from the above local camera models, since model
parameters effectively influence the projection function over regions as
opposed to individual points. We nevertheless preserve the distinction
between discrete and local models, since in the case of discrete models,
the considered regions are extremely small and since the underlying
philosophies are somewhat different for the two classes of models.

These three types of models are illustrated in Figure 1.1, where the
camera is shown as a black box. As discussed in more detail later in
the monograph, we mainly use back-projection to model cameras, i.e.,
the mapping from image points to camera rays. Figure 1.1 illustrates
back-projection for global, discrete and local camera models.

After describing camera models, we review central concepts of geo-
metric computer vision, including camera calibration, epipolar and
multi-view geometry, and structure-from-motion tasks, such as pose
and motion estimation. These concepts are exhaustively described for
perspective cameras in recent textbooks [137, 213, 328, 336, 513]; our
emphasis will thus be on non-perspective cameras. We try to describe
the various different approaches that have been developed for camera
calibration, including calibration using grids or from images of higher
level primitives, like lines and spheres, and self-calibration. Throughout
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Fig. 1.1 Types of camera models. Left : For global models, the camera ray associated with
an image point q is determined by the position of q and a set of global camera parameters
contained in a vector c. Middle: For discrete models, different image regions are endowed
with different parameter sets. Right : For discrete models, the camera rays are directly given
for sampled image points, e.g., by a look-up table containing Plücker coordinates, here the
Plücker coordinates Lq of the ray associated with image point q.

this monograph, we aim at describing concepts and ideas rather than
all details, which may be found in the original references.

The monograph is structured as follows. In the following section,
we give some background material that aims at making the math-
ematical treatment presented in this monograph, self-contained. In
Section 2, we review image acquisition technologies, with an emphasis
on omnidirectional systems. Section 3 gives a survey of computational
camera models in the computer vision and photogrammetry literature,
again emphasizing omnidirectional cameras. Results on epipolar and
multi-view geometry for non-perspective cameras are summarized
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in Section 4. Calibration approaches are explained in Section 5,
followed by an overview of some fundamental modules for structure-
from-motion in Section 6. The monograph ends with conclusions, in
Section 7.

1.2 Background Material

Given the large scope of this monograph, we rather propose summaries
of concepts and results than detailed descriptions, which would require
an entire book. This allows us to keep the mathematical level at a min-
imum. In the following, we explain the few notations we use in this
monograph. We assume that the reader is familiar with basic notions
of projective geometry, such as homogeneous coordinates, homogra-
phies, etc. and of multi-view geometry for perspective cameras, such as
the fundamental and essential matrices and projection matrices. Good
overviews of these concepts are given in [137, 213, 328, 336, 513].

Fonts. We denote scalars by italics, e.g., s, vectors by bold charac-
ters, e.g., t and matrices in sans serif, e.g., A. Unless otherwise stated,
we use homogeneous coordinates for points and other geometric enti-
ties. Equality between vectors and matrices, up to a scalar factor, is
denoted by ∼. The cross-product of two 3-vectors a and b is written
as a × b.

Plücker coordinates for 3D lines. Three-dimensional lines are
represented either by two distinct 3D points, or by 6-vectors of so-called
Plücker coordinates. We use the following convention. Let A and B be
two 3D points, in homogeneous coordinates. The Plücker coordinates
of the line spanned by them, are then given as:(

B4Ā − A4B̄
Ā × B̄

)
, (1.1)

where Ā is the 3-vector consisting of the first three coordinates of A
and likewise for B̄.

The action of displacements on Plücker coordinates is as follows.
Let t and R be a translation vector and rotation matrix that map
points according to:

Q �→
(

R t
0T 1

)
Q.
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Plücker coordinates are then mapped according to:

L �→
(

R 0
−[t]×R R

)
L, (1.2)

where 0 is the 3 × 3 matrix composed of zeroes.
Two lines cut one another exactly if

LT
2

(
03×3 I3×3

I3×3 03×3

)
L1 = 0. (1.3)

Lifted coordinates. It is common practice to linearize polynomial
expressions by applying Veronese embeddings. We use the informal
term “lifting” for this, for its shortness. Concretely, we apply lifting to
coordinate vectors of points. We will call “n-order lifting” of a vector a,
the vector Ln(a) containing all n-degree monomials of the coefficients
of a. For example, second and third order liftings for homogeneous
coordinates of 2D points, are as follows:

L2(q) ∼




q2
1

q1q2

q2
2

q1q3

q2q3

q2
3




L3(q) ∼




q3
1

q2
1q2

q1q
2
2

q3
2

q2
1q3

q1q2q3

q2
2q3

q1q
2
3

q2q
2
3

q3
3




. (1.4)

Such lifting operations are useful to describe several camera models.
Some camera models use “compacted” versions of lifted image point
coordinates, for example: 


q2
1 + q2

2
q1q3

q2q3

q2
3


.

We will denote these as L̄2(q), and use the same notation for other
lifting orders.



2
Technologies

We briefly describe various image acquisition technologies, with an
emphasis on omnidirectional ones. This section aims at describing the
most commonly used technologies in computer vision and related areas,
without any claim of being exhaustive. More information, including
historical overviews, can be found in the following references, which
include textbooks, articles, and webpages [50, 51, 54, 71, 103, 220, 227,
294, 326, 335, 528, 541].

2.1 Moving Cameras or Optical Elements

2.1.1 Slit Imaging

Slit imaging has been one of the first techniques to acquire panoramic
images. Various prototypes existed already in the nineteenth cen-
tury, usually based on a moving slit-shaped aperture. Historical
overviews are given in the references in the first paragraph of this
section. In the following, we only review some more recent, digital
slit imaging systems, mainly those developed for robotic and com-
puter vision; similar systems were also developed for photogrammetric
applications [326].

8



2.1 Moving Cameras or Optical Elements 9

Fig. 2.1 Examples of generation of central slit images. Top: “Standard” slit imaging princi-
ple and an early realization of it, the cylindrograph of Moëssard [351]. Bottom: Slit imaging
with a tilted 1D sensor, the so-called “cloud camera” and an image acquired with it (see
text).

Most of these systems either use a 2D camera or a 1D camera (also
called linear camera or pushbroom camera) which “scans” a scene while
moving, generating a panoramic image (cf. Figure 2.1). In the 2D cam-
era case, only one or several columns or rows of pixels are usually kept
per acquired image, and stitched together to form a panoramic image.
Note that pushbroom images are highly related to the so-called epipolar
plane images, see for example [56].

Sarachik, Ishiguro et al., and Petty et al. acquired panoramas from
a rotating perspective camera by glueing together pixel columns from
each image, and used them for map building or 3D measurement [247,
400, 434]. Barth and Barrows developed a panoramic image acquisition
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system based on a fast panning linear camera, thus significantly
decreasing acquisition times [38]. A similar system was developed by
Godber et al. [178]. Benosman et al. developed a panoramic stereo
sensor based on the same principle, consisting of two linear cameras
mounted vertically on top of each other [52]; they rotate together
about their baseline and panoramic images are generated by stacking
the acquired 1D images together. Issues of calibration, matching, and
3D reconstruction are addressed in [52]. Klette et al. reviewed several
design principles and applications of such devices [281].

Usually, the rotation axis is parallel to the “slits” of pixels used
to form the panoramic image. A historic example of rotating a tilted
camera, is a design described by Fassig [136], called “cloud camera”: it
acquires a hemispheric field of view by revolving a tilted camera with
a wedge-shaped opening around an axis (cf. Figure 2.1).

There are many more such systems; an exhaustive list is out
of scope. The above systems are all designed to deliver central
panoramic images: panoramic referring to omnidirectionality in one
orientation, central referring to images having a single effective point
of view. This is achieved by rotating the 1D or 2D camera about an
axis containing its optical center.

In the following, we review several non-central slit imaging
systems.

One-dimensional cameras, or pushbroom cameras, are routinely
used in satellite imaging, since they provide a cheap way of obtaining
high-resolution images and since they are well adapted to the way satel-
lites scan planets. Pushbroom panoramas are non-central since each col-
umn is acquired at a different position of the satellite. The special case
of linear pushbroom panoramas, where the camera motion is assumed
to be a straight line (cf. Figure 2.2(a)), was extensively modeled by
Gupta and Hartley [197], see Section 3.1.4. They also proposed a sen-
sor model and a calibration method for the case of pushbroom cameras
on an orbiting satellite, e.g., moving along an elliptical trajectory [198].

Concerning close-range applications, Zheng and Tsuji seem to be
among the first researchers to have introduced and used non-central
panoramic images [570, 571, 572], sometimes also called non-central
mosaics, motion panoramas, or omnivergent images. Like in other
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Fig. 2.2 Several ways of generating non-central slit or slit-like images.

systems, they proceeded by acquiring images using a moving camera,
through a vertical slit, and stacking the acquired slit images one next
to the other. If the camera is rotating about the vertical axis through
its optical center, then the acquired image is a cylindrical mosaic, or
panorama. If the camera is rotating about some other vertical axis, then
we obtain non-central mosaics (cf. Figure 2.2(b)). Zheng and Tsuji have
also proposed a generalization of this principle, for a camera moving
on any smooth path. In the case of a straight line, we of course find the
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above linear pushbroom panoramas. Zheng and Tusji used such motion
panoramas for route following of robots. Besides explaining the gener-
ation of panoramas, they also analyzed the apparent distortions in the
obtained images and other issues. They also used dual-slit panoramas
(two panoramas acquired using the same camera and two vertical slits)
for stereo computations (cf. Figure 2.2(c)), an idea that was later gener-
alized by Peleg et al. [394, 395, 397] and Li et al.[314], Seitz et al. [444].
Here, 3D points can be reconstructed from point matches between the
two non-central images by triangulation.

Ishiguro et al. used such panoramic views for map generation [246,
247]. They also used the dual-slit panoramas explained above for stereo
computations, as well as stereo from panoramas acquired at different
positions.

McMillan and Bishop used panoramic images for image-based ren-
dering, inspired by the plenoptic function concept [338].

Krishnan and Ahuja studied how to obtain the sharpest panoramic
images from a panning camera [288]. They showed that when using a
regular camera, whose CCD is perpendicular to the optical axis, the
camera should be rotated about an off-center point on the optical axis,
together with acquiring images with a varying focus setting. This effec-
tively yields non-central panoramas. Krishnan and Ahuja also proposed
another sensor design, where the CCD plane is not perpendicular to the
optical axis, and used it for panoramic image acquisition. The advan-
tage of such a sensor is that the depth of field volume is skewed and
so, while panning with a fixed focus setting, the union of the images’
depth of field volumes, is larger than for a fronto-parallel CCD, hence
avoiding to vary the focus setting while panning.

Usually, cameras are facing outward when acquiring slit images.
Inward facing cameras were also considered, as early as in 1895 [105],
leading to the principle of peripheral photography or images called
cyclographs. A sample cyclograph obtained using this approach is
shown in Figure 2.2(e). Let us mention another acquisition principle
that does not produce slit panoramas but is considering the acquisi-
tion of images taken around an object: Jones et al. proposed a setup to
acquire images as if taken all around an object, with a static camera and
object [258], whereas the usual approach is to use multiple cameras or a
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turntable. To do so, they placed a cylindrical mirror around the object
and used a rotating planar mirror to select the effective viewpoint.

Peleg et al. showed how to acquire non-central panoramas without
having to move the camera, by using a mirror of a particular shape
or a lens with a particular profile [396, 395]. When combining a static
central camera with the appropriate mirror or lens, the camera rays
of the compound system are distributed the same way as in circular
non-central panoramas, i.e., they are incident with a circle containing
the camera’s optical center (cf. Figure 2.2(b)).

Seitz et al. studied these ideas with the goal of obtaining the most
accurate 3D reconstruction from possibly non-central stereo pairs [444].
Their problem definition is that only a 2D set of lines of sight may be
acquired as an image, from viewpoints constrained within a sphere. In
order to maximize the reconstruction accuracy of points outside the
sphere, each point should be viewed along two lines of sight at least,
with maximum vergence angle. The result is that the lines of sight to
be stored are tangents of the sphere. How to best choose the appro-
priate tangents is described in [444], resulting in so-called omniver-
gent images. Interestingly, omnivergent stereo pairs, although being
pairs of non-central images, do have a standard epipolar geometry,
with horizontal epipolar lines, thus allow to directly apply standard
stereo algorithms (more on this in Section 3.4.2). However, acquiring
such spherical omnivergent images is not simple, although Nayar and
Karmarkar proposed systems for this task, based on catadioptric or
fisheye cameras [371]. An approximate omnivergent stereo pair can
be acquired via the dual-slit principle introduced by Zheng et al.,
see above.

Agarwala et al. have extended the principle of using slits of images
to compose panoramic images, toward the use of image regions, chosen
in order to better conform to the scene’s shape [4]. They apply this
to generate multi-viewpoint panoramas of urban scenes, such as of the
facades of buildings along streets (see Figure 2.2(f) for an example).

Ichimura and Nayar studied the problem of motion and structure
recovery from freely moving 1D sensors and rigid rigs of two or three 1D
sensors, as well as from special motions; their study subsumes several
previously studied cases such as linear pushbroom panoramas [243].



14 Technologies

2.1.2 Classical Mosaics

By “classical” mosaics, we refer to classical in terms of the com-
puter vision community, i.e., mosaics generated by stitching together
2D images, but noting that slit imaging to generate mosaics has been
done before, at least with analog cameras. A tutorial on image align-
ment and stitching has been published in the same journal as this
survey, by Szeliski [487]. Due to this good reference and the fact, that
classical mosaic generation is widely known, we do not describe this
any further and simply give a few additional references.

An early and often overlooked work on digital mosaics is by Yelick
and Lippman, who showed how to combine images obtained by a
rotating camera to generate a mosaic [322, 547]. In his bachelor the-
sis [547], Yelick also discussed other omnidirectional image acquisition
techniques, such as the fisheye lens and rotating slit cameras. Later
works on digital mosaics include those by Teodosio and Mills [496],
Teodosio and Bender [495] and Chen [92], to name but a few among
the many existing ones.

2.1.3 Other Technologies

Murray analyzed the setup by Ishiguro et al. and others (see Sec-
tion 2.1.1) and proposed an alternative solution where instead of rotat-
ing the camera about some axis, the camera looks at a planar mirror
which rotates about an axis [362]. Such a system was already proposed
for aerial imaging by Bouwers and van der Sande [58]. However, the
issue of how to compensate for the camera displacement during rota-
tions of the mirror, due to the airplane’s motion, was not fully discussed.
Other systems that use rotating mirrors or prisms are referenced by
Yagi [541], see also Section 2.3.4.

2.2 Fisheyes

The concept of fisheye view and lens dates back to more than a cen-
tury [48, 226, 350, 536]. Fisheye lenses or converters can achieve larger
than hemispheric fields of view but are usually still relatively costly.
A technical report suggesting inexpensive simple solutions to build
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fisheye lenses was provided by Dietz [115]. Some more references on
fisheyes are given in Section 3.1.7.

2.3 Catadioptric Systems

Using external mirrors together with cameras allows for a broad range
of design possibilities, which is one of the reasons of the large number
of catadioptric devices proposed alone in the computer vision commu-
nity. Camera design may follow different goals, foremost in our context
being a wide field of view, others being for example the compactness
of a sensor, a single effective viewpoint, image quality, focusing prop-
erties, or a desired projection function. In the following, we exclusively
describe geometric properties, in terms of projection function (focusing
etc. of course also depend on mirror geometry).

We may distinguish five types of catadioptric systems: (i) single-
mirror central systems, having a single effective viewpoint, (ii) central
systems using multiple mirrors, (iii) non-central systems, (iv) single-
lens stereo systems, and (v) programmable devices.

The fourth category, single-lens stereo systems, is of course a subset
of the third category, non-central systems, but is singled out here since
the goal is to obtain a sufficiently non-central system in order to enable
accurate 3D modeling whereas for other systems, “non-centrality” is
usually not a design goal but an artifact or a consequence of other
design goals.

2.3.1 Single-Mirror Central Catadioptric Systems

Baker and Nayar derived all single-mirror central catadioptric sys-
tems [22] (Bruckstein and Richardson obtained some of these results
independently [66]). Essentially the same results were also known out-
side the scope of catadioptric vision, e.g., were reported in 1637 by
Descartes [112] and later by Feynman et al. [142] and Drucker and
Locke [121]; further, it is likely that they were already known in antiq-
uity to Greek geometers. Single-mirror central catadioptric systems
can only be constructed using mirrors whose surface is obtained by
revolving a conic about a symmetry axis of the conic. In addition, the
camera looking at the mirror must be central and its optical center
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Fig. 2.3 Illustration of (compositions of) single-mirror central catadioptric systems. Effec-
tive viewpoints are shown in green and the position of the true camera, in blue. The latter
is only shown for the hyper-catadioptric case, for the para-catadioptric one, the camera is
telecentric, thus has an optical center at infinity.

has to coincide with one of the conic’s foci, otherwise the whole sys-
tem is non-central.1 The other focus is then the effective viewpoint of
the catadioptric system: any (back-projection) line going out from the
camera center goes, after being reflected in the mirror, through that
second focus (cf. Figure 2.3).

The following special cases exist: hyperboloidal (cf. Figure 2.3(a)),
paraboloidal (cf. Figure 2.3(b)), ellipsoidal, cone-shaped or planar mir-
rors. As for paraboloidal mirrors, one of the two real focus points is a
point at infinity. In order to obtain a wide field of view, the only option
is to “position” the camera at that point, which can be achieved using a
telecentric lens. As for cone-shaped mirrors, the camera’s optical center
has to be located at the cone’s tip; hence the only part of the mirror
the camera sees corresponds to the rays that graze the mirror surface.
Cone-shaped mirrors are thus theoretically excluded from the set of

1 It may be possible to achieve a central catadioptric system using a non-central camera
looking at a mirror which is not necessarily conic-based; all that matters is that the
rays that are back-projected from the non-central camera converge to a single point after
reflection in the mirror. For any non-central camera and a desired effective viewpoint, one
may be able to design an appropriate mirror.
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useful central catadioptric mirrors, although it has been shown that,
with a more general modeling of optics than applied in [22], practical
central viewing can still be achieved, see further below in this section.
Ellipsoidal mirrors do not allow to increase the field of view and are
thus not directly appropriate to build omnidirectional cameras; how-
ever, they are useful in designing so-called folded catadioptric systems,
consisting of two or more mirrors (see Section 2.3.2). As for spherical
mirrors, a special case of ellipsoidal ones, both real foci lie at the sphere
center; a camera positioned there only sees the reflection of itself, which
makes this case impractical. Overall, the only two systems deemed gen-
erally practical are the para-catadioptric and hyper-catadioptric ones,
based on paraboloidal and hyperboloidal mirrors.

Central hyper-catadioptric systems seem to have been used first, cf.
the patent by Rees in 1970 [424] and first applications in robotics and
computer vision by Yagi and his co-workers [540, 546]. They highlighted
the single viewpoint property if the camera is positioned at one of
the mirror’s foci and also discussed optical properties of the system
such as blur. They also combined cameras of different types, such as
in the MISS system which is composed of a cone-based catadioptric
camera (non-central) and a standard stereo system [544]. This allows
to combine mutual advantages of the sensors, such as good localization
using the catadioptric camera and larger resolution with the stereo
system. A full trinocular analysis of line images was also proposed.

Nayar introduced central para-catadioptric systems, consisting of
an orthographic camera and a parabolic mirror, positioned such that
the viewing direction of the camera is parallel to the mirror axis [367,
368]. He also showed that two para-catadioptric sensors with a field of
view of 180◦ each, can be put back-to-back to achieve a full spherical
field of view while still preserving a single effective optical center (cf.
Figure 2.3(c)). This is possible since a 180◦ field of view is achieved with
a para-catadioptric system if the mirror extends till the cross section
containing its finite focus. Since the finite focus is exactly the effective
optical center, putting two such mirrors back-to-back makes their finite
foci coincide and thus also the two effective optical centers.

Such systems are rather widely used nowadays and commercialized
by several companies, see e.g., [103].
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As mentioned above, cone-shaped mirrors were predicted as being
impractical to achieve central catadioptric systems. This issue was
reconsidered by Lin and Bajcsy [319, 320]. Their starting point was
that the geometric analysis of Baker and Nayar considered that each
3D point is imaged along a single light path, whereas due to the finite
aperture of real lenses, light rays emitted by a point within a finite
volume, hit the image area. Reciprocally, a camera whose main lens is
located at the tip of a cone (the actual tip being cut off) actually sees
the mirror surface and not only rays grazing it. Lin and Bajcsy showed
that it is possible to obtain sharp single-viewpoint catadioptric images
in this case.

2.3.2 Central Catadioptric Cameras with Multiple
Mirrors — Folded Catadioptric Cameras

Central catadioptric cameras can also be achieved when using more
than one mirror. This allows more compact sensor designs and gives
additional degrees of freedom to improve optical properties. Such
designs are also termed folded catadioptric cameras; an excellent refer-
ence is [372], where Nayar and Peri presented several designs, design
issues, and references to other works in this area.

Roughly speaking, when combining conic-shaped mirrors, and posi-
tioning them such that foci of successive mirrors in a sequence of reflec-
tions, coincide, then central image acquisition is possible: by placing a
camera at the left-over focus of the “last” mirror, the compound system
has a single effective viewpoint at the left-over focus of the “first” mir-
ror (cf. Figure 2.4(a)).

Previously, Yagi and Yachida proposed such a system, consisting
of two paraboloidal mirrors [542]. Nagahara et al. proposed a design
for catadioptric optics for head mounted devices (HMDs), consisting
of three mirrors, a planar, a hyperboloidal, and an ellipsoidal one,
arranged such as to provide a single effective viewpoint, while achiev-
ing a wide field of view and avoiding occlusions of the field of view by
the mirrors themselves [363]. Takeya et al. proposed another similar
design [488]. Kim and Cho addressed the problem of calibrating a
system composed of multiple successive mirrors, using a learning-based
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Fig. 2.4 Illustration of multi-mirror central catadioptric systems.

approach [280]. Nagahara et al. showed how to achieve uniform angular
resolution for a folded catadioptric camera with two mirrors and a single
effective viewpoint [364].

Another way of achieving central projection with multiple mirrors
is what is often called the “Nalwa pyramid”, although an earlier patent
on essentially the same system is due to Iwerks [250]. Iwerks, Nalwa
and independently, Kawanishi et al., proposed to use several regular
cameras and as many planar mirrors [250, 271, 365]. A camera looking
at a planar mirror produces the same image (up to side-swapping)
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as a camera located behind the mirror, at the position obtained by
reflecting the original center in the mirror, and “inversely” oriented
(cf. Figure 2.4(b)). The reflected optical center position is the effective
viewpoint here. The main idea consists in arranging camera–mirror
pairs such that the effective viewpoints coincide. This is the easiest done
in a pyramidal layout (cf. Figure 2.4(c)), but others are imaginable.
Nalwa’s original design consists of four camera–mirror pairs, Kawanishi
et al. used six. Main advantages of such a system are omnidirectional
viewing (the different camera images can be stitched together), a single
effective viewpoint, and high resolution (as compared to mono-camera
omnidirectional systems).

Gao et al. propose a similar design that has a hemispherical field of
view [155]. Majumder et al. and Hua et al. placed two mirror–camera
pyramids back-to-back such that the effective viewpoints of the two
pyramids coincide, thus also enhancing the vertical field of view of the
compound sensor [234, 235, 329].

Greguss developed the so-called panoramic annular lens (PAL)
which combines reflective and refractive elements in a compact layout
and achieves panoramic viewing with a full spherical field of view in
horizontal direction and a vertical field of view of about 40◦ [188, 425].
Greguss’ design has been used and/or improved for example by Pow-
ell [407] and Zhu et al. [574].

Yin and Boult built a sensor consisting of a tree of three different-
sized coaxial paraboloidal mirrors and an orthographic camera looking
at them [549]. Their motivation was not to achieve a single-lens stereo
system, rather to obtain an image pyramid by optical means: the three
mirrors are chosen such that they lead to omnidirectional images where
each one doubles the resolution with respect to the previous one. Ide-
ally, the mirrors’ foci should coincide in order for the three pyramid
images to correspond to the same viewpoint; this is not exactly the
case in the proposed system but it was shown that the misalignment is
negligible if the scene is sufficiently far away.

2.3.3 Non-central Catadioptric Cameras

Spherical mirrors. Hong et al. used a non-central catadioptric
system with a spherical mirror for robot homing, a visual servoing
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task [231]. They actually did not use the entire field of view that the
camera offers, but just a region around the horizon plane; the hori-
zon plane, i.e., the plane swept out by horizontal back-projection rays,
corresponds to a circle in the image plane. The robot on which the
camera is mounted is supposed to move on a horizontal ground plane.
Hence, points in the horizon plane are always imaged on the above
circle. In order to perform homing, the authors thus exploit a narrow
region around that circle, perform image analysis and matching in it
and use the result for a 2D visual servoing (translation and rotation
in the ground plane). While a spherical mirror always leads to a non-
central catadioptric system (unless the camera is placed at the sphere
center), considering only the image portion corresponding to the hori-
zon plane, actually corresponds to using an omnidirectional 1D camera
with a single effective viewpoint.

Cone-shaped mirrors. Yagi and Kawato used a catadioptric system
with a cone-shaped mirror (called COPIS) for robot motion estimation
and map building [542]. The system was non-central since the camera
was located at a certain distance from the tip of the cone. Yagi and
Kawato described the forward projection model as well as 3D point
triangulation and epipolar geometry for translational motion. They as
well as other researchers have used cone-shaped mirrors mounted verti-
cally on robots since vertical lines, which are omnipresent in man-made
scenes, are imaged as (long) radial lines and are thus easy to extract,
e.g., [61, 83, 321, 393, 456]. Mouaddib and his co-workers used this
idea for pose estimation, motion estimation, map building, etc. with
the sensor SYCLOP they developed [393]. They proposed a calibration
method, where the sensor is immersed in a hollow cube with a calibra-
tion checkerboard painted on the inside of each face [61, 83]. They then
use both, extracted points and vertical lines of the calibration object,
for calibration. A method for pose estimation (or, absolute localization)
is presented in [82].

Purpose-made mirrors optimizing resolution or satisfying
other design goals. A drawback of “standard” catadioptric sen-
sors is a significant variation of effective resolution, or spatial/angular
resolution, across the image area. Several works aimed at removing
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or alleviating this, see the nice overview by Hicks and Perline [225].
Different works aimed at achieving different properties for sensor reso-
lution. Uniform angular resolution is achieved by what is usually called
equidistant or equiangular projection: the angle spanned by the back-
projection ray of an image point and the optical axis, is proportional
to the distance between the image point and the principal point. This
is approximately the case for most fisheye lenses. Ollis et al. showed
how to compute mirror surfaces that provide an equiangular catadiop-
tric sensor [386]. Previously, Chahl and Srinivasan obtained a similar
result, a mirror shape where the angle between the optical axis and a
ray back-projected from the camera, is proportional to the same angle
after reflecting the ray in the mirror [84]. Conroy and Moore achieved a
sensor with solid angle pixel density invariance, i.e., where the surface
area of a circular image portion is proportional to the solid angle of
the corresponding field of view [99]. A similar work is due to Hicks and
Perline [225]. Another related work by Gächter et al. achieved a similar
goal [153], but for the case where the camera looking at the mirror has
a log-polar sensor arrangement, such as cameras studied by Tistarelli
and Sandini [505] and Pardo et al. [392].

All these works lead to non-central cameras. Nagahara et al. pro-
posed a catadioptric system that is central and has uniform angular res-
olution [364]; this was possible by using two appropriately shaped and
placed curved mirrors, whereas the above works used a single mirror
each.

Hicks and Bajcsy as well as Kweon et al. showed how to compute
mirror shapes such that a particular scene plane that is “fronto-
parallel” to the mirror is imaged without distortion, while still
providing a very wide field of view [222, 223, 297]. This was done
for both, perspective and orthographic cameras looking at the mirror.
Srinivasan contributed a similar result, i.e., a mirror that gives a wide
field of view while directly providing a rectified image: in [457], he
showed how to compute the shape of a mirror that directly provides
cylindrical panoramas, i.e., rectangular images where the two coordi-
nates relate to azimuth respective elevation angles of points relative
to the camera’s optical axis. He found that there is no smooth mir-
ror shape achieving this property, but that this can be approximated
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by a piecewise planar mirror with a layout similar to a Fresnel lens
array.

Kondo et al. proposed an anisotropic mirror shape, i.e., that is not a
surface of revolution, with the aim of obtaining panoramic vision while
allocating higher spatial resolution to a preferred azimuth range, e.g.,
corresponding to the driving direction of a robot [284, 286].

Nayar and Karmarkar showed how to acquire 360 × 360 mosaics
by stitching together image slices acquired by a rotating slice camera
[371]. The slice camera is designed such as to have a 360◦ field of view
in one direction, while being orthographic in the other direction. This
is achieved by a specially designed mirror; in case the camera looking at
the mirror is orthographic itself, the mirror is a cone. Nayar and Kar-
markar’s design extends slit imaging, cf. Section 2.1.1, to the acquisition
of a full spherical field of view, by being based on an omnidirectional
slit camera that rotates.

Peleg et al. showed how to acquire circular non-central mosaics using
a mirror of a special shape [395, 396], see Section 2.1.1.

A few more general approaches exist for mirror design, as follows.
Gaspar et al. proposed a general approach allowing to derive several
of the above mirror designs in a unified framework [156, 157]. Hicks as
well as Menegatti formulated and provided a solution to the so-called
prescribed projection problem [221, 341]: the input is a desired mapping
between an object surface and the image plane of a camera in a given
position. The goal is to compute a mirror and its location, that together
realize this mapping, i.e., the image taken by the resulting catadioptric
system is as specified. In many cases, there is no exact solution to
the problem, but approximate solutions can be found. Swaminathan
et al. addressed the same problem as Hicks in [486] and proposed a
solution that minimizes reprojection errors in the image plane, i.e.,
where the desired and the actual scene-to-image mapping (the “inverse”
of the prescribed projection problem) give image points as close to one
another as possible. Kondo et al. proposed another approach for the
same problem, akin to photometric stereo [285]. This approach allows
to conceive discontinuous mirror shapes.

All the above sensors are necessarily non-central (with the excep-
tion of [364]), although for many applications, one may model them
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sufficiently well using a central approximation, see also the discussion
in Section 3.6.

Krishnan and Nayar recently proposed a catadioptric camera whose
main optics is a fisheye, a camera they call cata-fisheye [289]. The
motivation for this design is to achieve a spherical field of view in
azimuth while not necessarily having a hemispherical one in elevation.
Indeed, in many applications, such as videoconferencing and vehicle-
mounted computer vision, a vertical field of view of a few dozens of
degrees is often sufficient. Krishnan and Nayar proposed to achieve
this by putting a convex mirror in front of a fisheye. The produced
image consists of two annular regions: the outer one corresponds to
the direct view at the scene through the fisheye, whereas the inner
one shows the reflection in the mirror. Here, the outer image region
would usually correspond to the part of the vertical field of view that
is above the camera, while the inner region shows a part that is below.
One advantage of this system is thus that the full image resolution is
dedicated to the desired vertical field of view (as opposed to “wasting”
resolution on a full hemispherical fisheye field of view if parts thereof
are not relevant for a given application). Other advantages are a good
image quality since a mirror of low curvature may be used, and a rather
compact design. It is furthermore easy to regulate the desired vertical
field of view by displacing the mirror or employing mirrors of different
shapes. Strictly speaking, the system is non-central in general, but the
working range in which the parallax is negligible, is explained in [289].

2.3.4 Single-Lens Stereo Systems

As mentioned at the beginning of Section 2.3, we consider here cata-
dioptric systems that are intentionally non-central in order to enable
stereovision, whereas the systems in the previous section are non-
central “by accident” or due to conforming to design goals prohibiting a
single effective viewpoint. Most catadioptric single-lens stereo systems
are achieved by setting one or more planar or curved mirrors in front
of the camera [73, 74, 99, 143, 183, 203, 255, 333, 366, 386, 455] or in
addition by keeping a direct view on the scene for a part of the camera’s
field of view [15, 49, 261, 295, 343, 422, 569].
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Advantages of mirror-based stereo systems over multi-camera
setups are that no camera synchronization and radiometric alignment
of camera are required and that only one set of intrinsic parameters
has to be calibrated, as opposed to calibrating each camera in a
multi-camera setup.

Mouaddib et al. proposed a set of performance criteria to compare
different single-lens catadioptric stereo systems [354, 355].

In the following, we describe some systems, first some using planar
mirrors.

Planar mirrors. One of the earliest references suggesting a design
for a mirror-based single-lens stereo system is probably a paper of
1899 by Finsterwalder [144], a seminal paper which summarized vari-
ous results on camera calibration, pose and motion estimation, epipolar
geometry, and even projective reconstruction from uncalibrated images.
On pages 20–22 of this paper (written in German), Finsterwalder pro-
posed to use a setup of three mutually perpendicular planar mirrors to
photograph small objects put between the camera and the mirrors. He
suggested that this gives up to eight perspective images (direct view
up to multiple reflections) which can be used for stereo reconstruction.
We do not know if this system has ever been built.

The idea of using a single planar mirror to acquire stereo images
for 3D modeling, a direct and a reflected view of an object, has been
considered by various researchers in the early twentieth century, see for
example [39, 117, 409, 562, 563]. Some of these works were motivated
by the modeling of coastal landscapes from images taken aboard a
ship, the mirror surface being formed by a sea or lake. Note also that
systems composed of planar mirrors were proposed for stereo viewing
(as opposed to stereo imaging) as early as in 1838, by Wheatstone [526,
527] (see also [229]).

Kaneko and Honda showed that when acquiring an image of an
object consisting of a part with a direct view of the object and another
with its reflection in a planar mirror, this indeed corresponds to a stereo
configuration and allows to reconstruct the object in 3D [261] (see
also a similar approach by Zhang and Tsui [569]). This approach was
extended by Mitsumoto et al. whose approach relaxed the requirement
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of knowing the mirror’s position and who also proposed to use an addi-
tional planar mirror, to better recover occluded object parts [343].
Arnspang et al. also proposed to put planar mirrors in front of the
camera [15, 422]. One of the setups they suggested consisted of two
mirrors facing each other and which are parallel to the camera’s opti-
cal axis (cf. Figure 2.5(a) and (b)). Here, a scene point may be seen
multiple times: in the direct camera view, reflected in the mirrors or
even after a double reflection, once in each mirror. Arnspang et al. for-
mulated the triangulation problem for their setup and also proposed to
extend the setup by arranging more than two mirrors in a cylindrical
ring in front of the camera (cf. Figure 2.5(c)).

A similar idea was suggested by Han and Perlin who proposed a
single-lens stereo system akin to kaleidoscopes [203]. The camera looks
through a tapered tube whose inside is made of planar mirror facets.
Each planar mirror, together with the actual camera, corresponds to a
virtual camera. Hence, each scene point can be seen multiple times in
what is effectively a multi-view stereo system. Furthermore, multiple
reflections of light rays may happen inside the tube, thus multiplying
the number of virtual cameras and viewpoints, much like what one can
observe in a kaleidoscope. Han and Perlin’s idea was to use this acquisi-
tion system for the acquisition of the Bidirectional Texture Reflectance
of objects, based on the large number of viewpoints contained in a sin-
gle snapshot. Kuthirummal and Nayar proposed a similar system, see
further below.

Goshtasby and Gruver used two planar mirrors and no direct view of
the scene [183]. Cafforio and Rocca, Inaba et al. as well as Mathieu and
Devernay used four planar mirrors, where a pair each gives one virtual
camera, via the successive reflections in two mirrors (see Figure 2.6);
the system is thus basically equivalent to one with two planar mirrors,
but allows for an easier setup by more easily avoiding self-reflections of
the camera in the mirrors [74, 244, 333]. Gluckman and Nayar analyzed
in detail the relative orientation and epipolar geometry of such systems
as well as their self-calibration [174, 175].

In [177], Gluckman and Nayar studied the question of how to obtain
an optically rectified stereo pair using a single-lens catadioptric system
with planar mirrors. They found that an odd number of mirrors is
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Fig. 2.5 Illustration of some single-lens catadioptric stereo systems.

required and for the cases of one and three mirrors, derived the con-
straints on mirror placement that ensure rectified images. They also
showed how to optimize the mirror placement in order to minimize the
overall size of the entire sensor.

Avni et al. built a system composed of two cameras and two planar
mirrors: the cameras as well as an object to be modeled in 3D are
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Fig. 2.6 Left : Single-lens stereo system using planar mirrors. Here, four mirrors are used
for practical reasons, leading to two effective viewpoints, shown in green. Right: A practical
realization of the system, image courtesy of Frédéric Devernay [333].

positioned above the mirrors such that each camera sees the object’s
reflections in both mirrors [20]. Hence, a total of four images of the
object are obtained, allowing a multi-view 3D modeling.

Non-planar mirrors. Nayar used two specular spheres in the field
of view of a camera to obtain stereo information [366]. Southwell et al.
presented a design of a single-lens catadioptric stereo sensor with curved
mirrors where one convex mirror is fixed on top of a second, larger
one [143, 455]. Hence, points in the common field of view of the two
individual catadioptric images are seen twice and can be reconstructed.
Similar designs were proposed by Cabral et al. [73] and Jang et al. [255].
Jang et al. especially discussed how to maximize the effective stereo
baseline.

Nene and Nayar described several single-lens catadioptric stereo
configurations where both (virtual) cameras in a stereo system are cen-
tral [374]. The first uses, like in other systems, two planar mirrors;
Nene and Nayar described the epipolar geometry of this setup. The
other proposed configurations use mirrors of revolution of conic-shape
placed such that the camera is at a focus point of each of the mirrors, see
Figure 2.7(a). Hence, each mirror corresponds to a central catadioptric
system and by using two or more mirrors arranged this way, a stereo
system is obtained where each (virtual) camera is central. Nene and
Nayar described the cases of pairs of ellipsoidal, pairs of hyperboloidal
and pairs of paraboloidal mirrors and derived the epipolar geometry for
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Fig. 2.7 Other single-lens catadioptric stereo systems. Top: System using two hyperbolic
mirrors with a coinciding focus point, at which the camera is located. This is a single-lens
stereo system where each view is central. Bottom: Single-lens stereo system by Sagawa
et al. composed of paraboloidal mirrors and sample acquired image; the camera looks at
the mirrors from below. Images courtesy of Ryusuke Sagawa.

each of those. Other cases are straightforward to imagine, e.g., combing
ellipsoidal/hyperboloidal/planar mirrors in the appropriate manner.

Murphy presented a panoramic imaging system for planetary rovers
where a single camera looks at a convex mirror with a hole in the mid-
dle, through which the camera sees through a fisheye lens [361]. Hence,
a single image contains two panoramas, one for the lower part (the
catadioptric view) and one for the upper one (fisheye). The system is
similar to that of Krishnan and Nayar (cf. Section 2.3.3), although its
aim is to obtain single-lens stereo while that of Krishnan and Nayar’s
design is omnidirectional viewing with a desired distribution of spa-
tial resolution across the image. Benosman et al. proposed a sensor
where a camera has both, a direct view of the scene and a view on a
hyperbolic mirror [49]. The motivation is to have a high resolution in
a dominant direction via the direct perspective image, e.g., the direc-
tion ahead of a robot, together with a lower-resolution panoramic view
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of the surroundings. Yi and Ahuja proposed another single-lens stereo
system, consisting of a hyperboloidal mirror and a concave lens [548].
The camera has a direct view of the mirror and an indirect one of it,
through the concave lens, thus effectively producing a stereo pair.

Sagawa et al. built a single-lens catadioptric stereo system consisting
of one camera looking at seven spherical or paraboloidal mirrors [432],
see Figure 2.7(b) and (c). Although in principle such a system can be
used for multi-baseline stereo, the prototype shown in [432] is of small
dimension and thus has a small baseline. Its intended application is the
detection of close-by objects, for which accurate 3D reconstruction is
not necessary. The calibration of the sensor is discussed in [282], see
also Section 5.3.2.

Lanman et al. built a similar catadioptric acquisition system con-
sisting of a single high-resolution camera looking at a set of spherical
mirrors arranged on a plate [298]. Their system is larger than Sagawa’s
since one intended application is 3D modeling. The system is obviously
non-central since already a single spherical mirror leads to a non-central
image. While a single spherical mirror is only “slightly non-central”
(more on this in Section 3.6), the setup by Lanman et al. effectively gen-
erates a large “baseline”, allowing for single image 3D reconstruction.
A practical method for calibrating the system, including the proper-
ties of second surface mirrors, is proposed in [298], and the multi-mirror
view geometry is analyzed, i.e., conditions that hold for points observed
in different mirrors, to be images of the same scene point.

Kuthirummal and Nayar proposed a system similar to the one by
Arnspang et al. and Han and Perlin (see above), where the piecewise
planar tube is replaced by a cone or cylinder-shaped one [295], see
Figure 2.5(d)–(f). They demonstrated the use of their system for single-
image 3D scene and reflectance recovery.

Orghidan et al. designed a structured-light type depth sensor
composed of a camera looking at two hyperboloidal mirrors and a laser
emitter [388]. They showed how to model and calibrate this system and
use it for 3D modeling.

Rotating mirrors. Other catadioptric single-lens stereo systems
have been proposed, using mirrors that rotate between different image
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acquisitions in order to produce stereo images, e.g., by Teoh and
Zhang [497], Nishimoto and Shirai [376], Murray [362], and Gao and
Ahuja [154].

2.3.5 Programmable Systems

Hicks and Nayar et al. proposed methods and system designs allowing
to modify the shape of the mirror in a catadioptric system in order to
adapt the sensor to a change in the scene or to acquire an image in a
desired way [224, 296, 370].

Nayar et al. proposed to use a programmable array of micro-
mirrors to achieve programmable, or purposive, imaging [370, 369].
They demonstrated the use of digital micro-mirror devices (DMDs),
routinely used in projectors, for tasks such as high dynamic range
image acquisition, optical appearance matching, or generally speaking,
the change of imaging geometry. In a similar work, Hicks et al. also sug-
gested to use micro-mirrors to control the way an image is acquired,
e.g., by actively controlling the spatial resolution across an image [224].

The following two ideas are not strictly speaking programmable
systems. Kuthirummal and Nayar studied the possibility of using a
flexible mirror sheet as reflector in a catadioptric system [296]. They
proposed to recover the current shape of the mirror from its outline in
the image and additional assumptions; once the shape is determined,
the catadioptric system is effectively calibrated. The system is not pro-
grammable in the same sense as those by Hicks and Nayar et al. but is
described in this section since it operates by changing the mirror shape
during image acquisition.

Fergus et al. proposed the concept of random lens imaging [140]. One
practical instance of this concept is a camera looking at a collection of
randomly positioned small mirrors or refractive elements. A calibration
method is proposed and potential applications of the general concept
for tasks, such as super-resolution and depth sensing, are described.

2.4 Stereo and Multi-camera Systems

Using two or more cameras to achieve omnidirectional viewing is a well-
known principle and will not be covered in great detail here, besides a
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few historical references and references to stereo systems based on omni-
directional cameras. A nice overview of omnidirectional stereo systems
is due to Zhu [573].

Lin and Bajcsy proposed a catadioptric stereo system consisting
of two cameras looking at one cone-shaped mirror from different dis-
tances [321]. The cameras are aligned with the cone’s axis of revolution;
to be precise, one camera lies on the axis, the other one looks at the
mirror through a beam splitter such that it virtually comes to lie on the
mirror axis. Hence, epipolar planes contain the axis, which simplifies
the epipolar geometry and 3D reconstruction.

Spacek proposed to use two cone–camera pairs, one on top of the
other and all cameras and mirrors axis-aligned [456]. He derives the
equations for stereo computations and highlights that cone-based cata-
dioptric cameras, although being non-central, can be used for stereo
and may be advantageous over the more common central catadioptric
systems due to their higher spatial resolution (lower vertical field of
view). A similar system, consisting of two hyper-catadioptric cameras,
was used in [57, 413].

Other stereo systems combine omnidirectional and traditional cam-
eras, to combine their respective advantages, see e.g., [3, 79, 118, 268].

Multi-camera systems composed of several perspective cameras have
been built at least as early as in 1884, initially mainly if not exclu-
sively for aerial imaging. The earliest work known to us (no effort was
made for an exhaustive bibliography research) is that of Triboulet,
who, as reported in [504] experimented from 1884 on with a multi-
camera system consisting of seven cameras attached to a balloon: one
camera looked downward and six cameras were equally distributed
around the balloon’s circumference (the system thus resembles the
popular Ladybug sensor by Point Grey, http://www.ptgrey.com).
Similar other multi-camera systems from the early twentieth century
include those by Scheimpflug [438] and Thiele [499], cf. Figure 2.8.
Several other systems were developed throughout the first half of the
twentieth century, see for example [87, 403, 423, 502].

Other systems used multiple lenses in the same camera body. Gasser
as well as Aschenbrenner invented systems where multiple cameras
share the same focal plane and film; due to a suitable arrangement
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Fig. 2.8 Three multi-camera systems from the first decade of the twentieth century. Top: two
systems developed by Thiele [499]. The first one, called auto-panoramograph, was attached
at the bottom of a balloon. The second system, the stereo-panoramograph, is equivalent
to an omnidirectional stereo rig with a baseline of 2 m. Bottom: A system developed by
Scheimpflug [438], consisting of seven oblique cameras and a central one. Shown are eight
original images acquired with the system and a mosaic composed from them using a special
projection equipment called photo-perspectograph.

of prisms and mirrors, the different cameras directly generate a com-
posite wide-angle image on the film [18, 160]. These systems were,
like most of the above, intended for aerial imagery. Multi-lens cameras
were used at least as early as in 1882: Londe used multi-lens cameras
to study epileptic seizures, by capturing a succession of time-delayed
images [71], similar to the famous motion series by Muybridge according
to an acquisition principle he developed in 1872 [71].

2.5 Others

2.5.1 Plenoptic Camera

Adelson and Wang proposed the so-called plenoptic camera, a design
that essentially gives multiple pinhole images while using a single main
aperture and a single sensor array [2]. When placing a lenticular array
in front of a camera’s sensor plane, each lenslet together with a subset
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of the sensor array’s pixels forms a tiny pinhole camera. That pinhole
camera effectively only captures rays entering the camera’s main aper-
ture within a subregion of the aperture, as opposed to regular cameras,
where each pixel integrates light rays from all over the aperture. Con-
ceptually, a plenoptic camera thus corresponds to a multi-camera sys-
tem consisting of cameras arranged on a planar grid. Acquired images
can be used to perform stereo computations or various computational
photography tasks. We will not consider plenoptic cameras further in
this article since they are not usually used for panoramic imaging,
although in principle nothing would prevent to use them with fish-
eye lenses (besides the drop of spatial resolution for the already low-
resolution individual pinhole sub-cameras).

More information on plenoptic cameras and similar designs
can for example be found on http://en.wikipedia.org/wiki/

Integral photography and in [429, 162] The concept of plenoptic
camera is highly related to that of integral imaging [323] and paral-
lax stereogram [248] or panoramagram [249].

2.5.2 Biprism

A single-lens stereo system using a biprism rather than a mirror, that
directly produces rectified images, has been developed by Lee et al.
[303].

2.5.3 Spherical Lens and Spherical Image Area

Krishnan and Nayar proposed an omnidirectional sensor consisting of
a transparent sphere, around which sensing elements are uniformly
arranged on a spherical surface, with free space between neighboring
elements [290]. Hence, individual sensing elements can see through the
transparent sphere and other sensing elements, to perceive the scene.
The design goals of the system are an omnidirectional field of view with
a single center of projection and uniform spatial resolution.

2.5.4 Krill-Eye

Hiura et al. proposed an optical arrangement for wide-angle imaging
system, termed krill-eye, that is inspired by compound animal eyes [228]
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The system consists of gradient refractive index (GRIN) lenses aligned
on a spherical surface. Hiura et al. proposed a theoretical study on
image quality and focusing properties and built a proof-of-concept
prototype.

2.5.5 Rolling Shutter Cameras

Meingast et al. and Ait-Aider et al. studied the case of rolling shutter
CMOS cameras, where the image area is not exposed simultaneously,
but in a rolling fashion across rows of pixels [10, 171, 340]. The conse-
quence is that when taking a picture of a moving object, it will appear
distorted. Meingast et al. developed projection models for the general
and several special cases of object motion and showed how optical flow
can be modeled [340]. They also addressed the calibration of the sensor.
Ait-Aider et al. used the rolling shutter’s apparent drawback to develop
an approach that computes both, the pose of a known object and its
instantaneous velocity, from a single image thereof [10]. There is a con-
ceptual link to pushbroom cameras, as follows, highlighted in a similar
fashion in [171, 340]. An alternative way of looking at the rolling shut-
ter phenomenon is to consider a static object and a pushbroom camera
moving around it with a velocity that combines the inverse velocity
of the object and a motion that compensates the difference in pose
associated with different rows of pixels in the camera.

The effect of rolling shutters was also taken into account by Wilburn
et al. who built a multi-camera array with CMOS cameras [529, 530],
with several applications such as synthetic aperture imaging or allowing
to acquire videos with increased frame rate, dynamic range, resolution,
etc. A method for calibrating such a camera array was proposed by
Vaish et al. [516].
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Camera Models

In the following, we review a certain number of camera models that
were proposed in the literature. Some of them are based on physical
models, others are of a more algebraic nature.

These models can be described and sorted according to various crite-
ria. A first characteristic concerns the spatial distribution of the camera
rays along which a camera samples light in the environment. Most mod-
els have a single optical center through which all camera rays pass. We
also speak of central camera models. For these, the back-projection
function (see below) delivers the direction of the camera ray. Non-
central camera models do not possess a single optical center. In
that case, the back-projection operation has to deliver not only the
direction but also the position of a camera ray, e.g., some finite point
on the ray. We will also use Plücker coordinates to represent camera
rays. Special cases of non-central cameras are oblique camera, where
no two camera rays meet [390] and axial cameras where there exists
a line that cuts all camera rays. A special case of this are x-slit or
two-slit models where there exist two lines that cut all camera rays.
This is for example the case for linear pushbroom cameras [197].

A second property of camera models and one we would like to stress
particularly, concerns how global or local a model is. The following
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definitions have already been introduced in Section 1.1, cf. also Fig-
ure 1.1. Most models have a small set of parameters and in addition,
each parameter influences the projection function all across the field of
view. We call these, global models, since they hold for the entire field
of view/image area. Second, there exist several more local models,
e.g., models with different parameter sets for different portions of the
image. These models have usually more parameters than global ones,
but have a higher descriptive power. Finally, at the extreme, we have
discrete models, where the projection or back-projection function is
merely sampled at different points, e.g., sampling the back-projection
function at every pixel. These models have many parameters, one set of
them per sampled location. They are sometimes called non-parametric
models, but we do not find this entirely appropriate, since they do have
parameters; hence the proposed name of discrete models. Let us note
that the transition from global to local to discrete models is not dis-
continuous: some local models have the same parametric form as global
ones, and to use discrete models, one usually needs some interpolation
scheme, for example to be able to back-project any image point, not
only sampled ones. In that respect, discrete models plus, such as inter-
polation scheme, are actually local models in our language.

Many of the global and discrete models described in the following
are well known. This is less true for the local models, although they
may represent a good compromise between tractability (number
of parameters, stability of calibration) and generality. We would
like to point out the work of Martins et al. [331], which is rather
often cited but often described only partially or not appropriately.
They proposed three versions of the so-called two-plane model, see
Sections 3.1.3 and 3.2.1 for more details. These foreshadowed several
important contributions by others, mostly achieved independently.
First, it contains one of the first proposals for a local camera model
(the spline-based version of the developed two-plane model). Second,
it sparked works on discrete camera models, where camera rays are
calibrated individually from images of two or more planar calibration
grids [85, 189], an approach rediscovered by [191, 477]. Third, the
linear and quadratic versions of the two-plane model, when written
in terms of back-projection matrices, are nothing else than particular
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instances of rational polynomial models; they are thus closely related
to the division and rational models explained by Fitzgibbon [145]
and Claus and Fitzgibbon [98] or the general linear cameras of Yu
and McMillan [559], as well as others, which found a lot of interest
recently. Martins et al. may also be among the first to explicitly use
lifted coordinates (cf. Section 1.2) in camera models.

Finally, a third main property of camera models we consider is that
some models have a direct expression for forward projection, others for
back-projections, some work easily both ways. This is important since
forward and back-projections are convenient for different tasks: forward
projection for distortion correction of images and bundle adjustment,
back-projection for minimal methods for various structure-from-motion
tasks, such as pose and motion estimation.

A few more general notes and explanations of notations follow.
Back-projection versus forward projection. One defines the

other but one or the other may be more difficult to formulate alge-
braically. For example, the classical radial distortion model is written
using polynomials; even with only one distortion coefficient, the poly-
nomials are cubic, making it cumbersome to write the inverse model.
This model is traditionally used for back-projection although some
researchers used the same expression for forward projection. Other
polynomial models are also used for either direction.

Generally speaking though, back-projection is often easier to for-
mulate. This is especially true for catadioptric systems, where back-
projection comes down to a deterministic “closed-form” ray-tracing
whereas forward projection entails a search for which light ray(s) emit-
ted by a 3D point gets reflected by the mirror(s) into the camera.
Also, when using rational polynomial functions in point coordinates
to express camera models, this is straightforward for back-projection;
using such a model for forward projection, results in general in curved
“camera rays”, i.e., the set of 3D points mapped onto an image point,
form a curve, not a straight line (cf. Section 3.1.8 on the cubic camera
model by Hartley and Saxena [210]).

For these and other reasons, we will emphasize back-projection
formulations in the following. Another reason for this is that back-
projection is less often used in the literature although it enables to
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clearly formulate several structure-from-motion tasks and epipolar
geometry.

Back-projection will be formulated in two different ways, either by
giving expressions allowing to compute two points on a camera ray, or
by directly giving the Plücker coordinates of the ray. As for the first
case, one of the two points on the ray will be its point at infinity and
the other, a finite point, denoted by

Bi and Bf ,

respectively. The point at infinity will be given as a 3-vector, the finite
point as a 4-vector, both in homogeneous coordinates. Note that in this
survey we do not consider the possibility of camera rays that lie com-
pletely on the plane at infinity; such a case is of small practical interest
and if necessary, all formulas are easy to adapt. Plücker coordinates of
camera rays will be written as

Bl.

They can of course be easily computed from the two points Bi and Bf ,
cf. Section 1.2.

The reason for using both expressions for back-projection is that
the two-point expression is better suited to formulate pose estimation,
whereas the Plücker-based expression allows to formulate motion esti-
mation and epipolar geometry in a straightforward manner. When we
deal with central camera models, we will only give the point at infinity
Bi of camera rays, i.e., their direction, always assuming that cameras
are in canonical position, i.e., with the optical center at the origin.

Whenever possible, we try to write the back-projection operation
using back-projection matrices, operating on (lifted) image point coor-
dinates. We will use full back-projection matrices

Bl

of size 6 × n, that map image points to camera rays in Plücker coordi-
nates, and partial back-projection matrices

Bi

of size 3 × n, that map image points to camera ray directions. The
values of n for different models depend on which liftings of image
coordinates are required.
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Finally, let us note that the back-projection for a true camera usu-
ally gives rise to a half-line in 3D; many camera models do not take
this fully into account and only model back-projection via infinite lines.
We do the same in this monograph and, for ease of language, use the
term ray or camera ray to denote a line of sight of a camera.

Radial distortion. In this section, models are presented in differ-
ent forms, depending if they are backward or forward ones, or only
model radial distortion or more general distortions. Radial distor-
tion models are given in different forms; they are defined by a 1D
(un)distortion profile or (un)distortion function, mapping radial dis-
tances in the distorted image (distances of image point to distortion
center) to either radial distances in the undistorted image or the inci-
dence angle between camera rays and the optical axis.

We use the following notations. The radial distance is denoted
by rd (in distorted images) and ru (in undistorted images). The angle
between a camera ray and the optical axis is denoted by θ. Radial
distortion models are usually given as a mapping between any of these
three entities. For simplicity, we always assume in the following that
the radial distortion center is equal to the principal point and that
it is known and located at the origin. When considering a distortion
center different from the origin, the given back-projection equations
can be modified in a straightforward manner, by preceding them with
the translation bringing the distortion center to the origin. When
considering a distortion center different from the principal point, the
modifications of back-projection equations are equally straightforward.
Whereas in the following, we suppose that the perspective back-
projection consists merely in “undoing” the focal length, considering
a distortion center that is different from the principal point, requires
a full perspective back-projection.

Extrinsic parameters. Camera pose, or extrinsic parameters,
is straightforward to take into account. As for back-projection,
translations and rotations can be applied as follows (cf. Section 1.2):

Bf �→
(

R t
0T 1

)
Bf
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Bi �→ RBi

Bl �→
(

R 0
−[t]×R R

)
Bl.

3.1 Global Camera Models

3.1.1 Classical Models

By “classical models”, we mean those used most often in applications
and academic research, i.e., the pinhole model, affine camera models,
and pinhole models enhanced with classical terms for radial and tan-
gential distortions.

Pinhole model. The pinhole model, or perspective projection,
assumes that all camera rays pass through a single point, the opti-
cal center and that there is a linear relationship between image point
position and the direction of the associated camera ray. That relation-
ship can be expressed via a so-called calibration matrix which depends
on up to five intrinsic parameters:

K =


fu s x0

0 fv y0

0 0 1


,

where fu respectively fv is the focal length measured in pixel dimen-
sions, horizontally respectively vertically, s is a so-called skew term
which may for example model non-rectangular pixels or synchroniza-
tion errors in the image read-out, and (x0,y0) are the coordinates of the
principal point, the orthogonal projection of the optical center onto the
image plane. The linear relation between image points and ray direc-
tions can be written as:

q ∼ KBi.

The model is equally easy to use for forward and back-projections.
In what follows, we will assume square pixels, i.e., s = 0 and fu =fv =f :

K =


f 0 x0

0 f y0

0 0 1


. (3.1)
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Affine models. We also briefly mention affine camera models, where
the optical center is a point at infinity. Various submodels thereof
exist, often called orthographic, weak-perspective, and para-perspective
models, going from the most specific to the most general affine
model [13, 232]. These models can give good approximations of pin-
hole cameras in the case of very large focal lengths or if the scene
is shallow in the direction of the camera’s optical axis as well as far
from the camera. Back-projection is slightly different from the pinhole
model in that the direction is the same for all camera rays (the direction
corresponding to the optical center) and the essential back-projection
operation is thus not the computation of the ray direction, but of a
finite point on the ray.

Classical polynomial distortion models. The pinhole model has
been enhanced by adding various terms for radial, tangential, and other
distortions. The most widely established models are described for exam-
ple in [63, 64, 149, 152, 451]. The usual model for combining radial and
decentering distortion (one type of tangential distortion) is:

x̄d = xd − x0

ȳd = yd − y0

r2
d = x̄2

d + ȳ2
d (3.2)

xu = xd + p1(r2
d + 2x̄2

d) + 2p2x̄dȳd + x̄d

n∑
i=1

kir
2i
d

yu = yd + 2p1x̄dȳd + p2(r2
d + 2ȳ2

d) + ȳd

n∑
i=1

kir
2i
d ,

where n is the number of radial distortion coefficients used. The
distortion corrected image points correspond to a pinhole model, i.e.,
are related to camera ray directions by:

Bi ∼ K−1


xu

yu

1


.

In the above model, it is assumed that the radial distortion center coin-
cides with the principal point. Other models exist that consider them as
distinct and/or include additional distortion terms, see e.g., [149, 215].
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If we neglect tangential distortion and suppose that image coordi-
nates are centered in the distortion center and that the latter is equal
to the principal point, then we can deduce, from Equation (3.2), the
radial (un)distortion function:

ru = rd

(
1 +

n∑
i=1

kir
2i
d

)
. (3.3)

This relates the distance of a point from the distortion center, before
and after distortion. From this, it is easy to extract the relationship
between the radial distance in the distorted image and the incidence
angle of the camera ray with the optical axis:

θ = atan
ru

f
= atan

rd

(
1 +

∑n
i=1 kir

2i
d

)
f

, (3.4)

which depends on the focal length of the camera.
Let us now consider a radial distortion with a single coefficient k1.

We can write down the camera ray direction in the following form:

Bi ∼ K−1


xd + k1x̄dr

2
d

yd + k1ȳdr
2
d

1


 ∼


(xd − x0)(1 + k1r

2
d)

(yd − y0)(1 + k1r
2
d)

f




∼ Bi
3×10L3(qd),

where the lifting operation L3(·) is given in Equation (1.4) and the
back-projection matrix is:

Bi∼



k1 0 k1 0 −3k1x0 −2k1y0 −k1x0 1 + k1a 2k1x0y0 −x0(1 + k1c)
0 k1 0 k1 −k1y0 −2k1x0 −3k1y0 2k1x0y0 1 + k1b −y0(1 + k1c)
0 0 0 0 0 0 0 0 0 f


,

with a = 3x2
0 + y2

0, b = x2
0 + 3y2

0 and c = x2
0 + y2

0.
Since the first and third columns are equal, as well as the second

and fourth ones, we may use a more compact back-projection matrix
of size 3 × 8:

Bi
c ∼

(
k1 0 −3k1x0 −2k1y0 −k1x0 1 + k1a 2k1x0y0 −x0(1 + k1c)
0 k1 −k1y0 −2k1x0 −3k1y0 2k1x0y0 1 + k1b −y0(1 + k1c)
0 0 0 0 0 0 0 f

)
,
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which operates on lifted image coordinate vectors of the form:


q3
1 + q1q

2
2

q2
1q2 + q3

2
q2
1q3

q1q2q3

q2
2q3

q1q
2
3

q2q
2
3

q3
3




.

If we assume a known principal point (equal to the distortion center
here) and translate image points such that the principal point lies at
the origin, then the back-projection equations reduce further to:

Bi
c ∼


k1 0 0 0 0 1 0 0

0 k1 0 0 0 0 1 0
0 0 0 0 0 0 0 f


,

which can be compacted similarly to the above:

Bi
cc ∼


k1 0 1 0 0

0 k1 0 1 0
0 0 0 0 f


 operating on




q3
1 + q1q

2
2

q2
1q2 + q3

2
q1q

2
3

q2q
2
3

q3
3


.

Back-projection matrices for combined radial and tangential dis-
tortion models are equally straightforward to derive. Note that this
back-projection formulation allows to easily write down equations for
the epipolar geometry, cf. Section 4.2.1.

Inversion of models. Devernay and Faugeras discussed the
analytical inversion of the classical radial distortion model with one
coefficient, using Cardan’s method. This analysis was adapted by Ma
et al. to other variants of polynomial radial distortion models, espe-
cially rational polynomials [327], cf. also Section 3.1.8. Heikkilä showed
how to formulate an approximate inverse model for radial and tangen-
tial distortions [215]. A more detailed and accurate inverse model was
proposed by Mallon and Whelan [330].
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Other models and works. The standard radial and tangential dis-
tortion model is a backward one, going from distorted to undistorted
coordinates. Often, the same model is also employed for forward pro-
jection, see e.g., [41, 216, 525, 521], in which case the model coefficients’
values will differ of course.

Many researchers have used other polynomial models for distortion/
undistortion, e.g., the so-called polynomial fisheye transform (PFET)
by Basu and Licardie [41], which is nothing else than a general poly-
nomial relating rd and ru, including even terms. Such models were for
example applied for endoscope calibration, see [17, 204, 454, 565]. Other
calibration approaches using such models are [8, 42, 134, 148, 215, 216,
274, 302, 330, 381, 436, 437, 514, 515, 521, 525, 534]. These approaches
often differ with respect to the choice of calibration object, potentially
carrying out controlled motions to position it in front of the camera,
and with respect to the strategy for estimating the unknowns (e.g., esti-
mating some parameters first while keeping others at initial values).

Kölbl proposed to use a trigonometric series to model radial
distortion, in order to better condition the normal equations occur-
ring in distortion estimation [283]. Several other distortion models are
described in [275, 276].

Shih et al. established an approach for evaluating the errors made
when neglecting lens distortion during calibration [449]. This is a
function of the actual amount of true distortion, the number and
positions/distribution of calibration points, the amount of noise and
possibly other factors.

Very wide fields of view. It is well known that the above classical
radial distortion model is not appropriate for cameras with a very wide
field of view. To see this, refer to Equation (3.4): in order to achieve
a hemispheric field of view (θ = 90◦), one would need rd and thus the
extent of the image area, to be infinitely large. Many alternative models
exist, described in subsequent sections.

3.1.2 Extensions for Modeling Zooming and Focusing

In [64], Brown explained that lens distortion varies with a camera’s
focus setting but that knowledge of the distortion for two focal settings
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allows to interpolate the distortion for any other setting. Also, radial
distortion depends on the distance of the object to the camera. These
effects are rigorously proven but seem to be used relatively seldomly
in practice.

There exist various approaches for modeling zoom lenses and the
influence of zooming on the intrinsic parameters, as well as for modeling
other intricate phenomena related to camera calibration, see e.g., [11,
16, 53, 70, 96, 100, 102, 128, 150, 313, 469, 531, 533, 532].

3.1.3 Two-Plane Model

Chen et al. introduced implicit camera models in computer vision
[89, 90]. Their two-plane model is mostly known through the subse-
quent paper by Martins et al. [331] and follow-up papers by Wei and
Ma [522, 524] and others. As explained in the introduction of this sec-
tion, the two-plane model is rather rich in ideas, which is why it will
be covered in some detail here.

The model is defined as follows [331]. Consider two images of a
planar calibration grid, put in known positions and assume that we
can extract matches between the image and grid in both images. Since
the grid positions are known, points on the grid actually define a 3D
calibration object, which may be used as input to classical calibration
approaches. The motivations for the two-plane model are to not rely
on pre-defined camera models for the calibration and to handle non-
central cameras. This may be achieved as follows. If we have dense
matches, we may compute, for each image point for which we have
two matches, the associated camera ray, simply by computing the line
spanned by the two matched grid points. This idea was fully introduced
later, by Gremban et al. [189] and Grossberg and Nayar [191]. Martins
et al. did not assume dense matches; hence, in order to compute camera
rays, one must have recourse to some interpolation scheme. Basically,
for an image point we want to back-project, we need to determine
the corresponding points on the two grids. To do so, Martins et al.
proposed three interpolation schemes to compute corresponding points
on calibration grids, from extracted matches: two global schemes (linear
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Fig. 3.1 Illustration of the two-plane model. A1 and A2 represent the interpolation trans-
formations for the two grids, affine respectively quadratic transformations for the linear
respectively quadratic versions of the model.

and quadratic) and a local one (spline-based). The global schemes are
illustrated in Figure 3.1.

First version — “Linear interpolation”. The mapping between
the image plane and each planar calibration grid was supposed to be
an affine transformation: 

Xi

Yi

Zi


 = Ai q,
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where i = 1,2 is the index of the grid and

Ai =


Ai,11 Ai,12 Ai,13

Ai,11 Ai,12 Ai,13

0 0 Zi


,

and it is assumed that q3 = 1. Here, Martins et al. assumed that the
two calibration grids are parallel to the X,Y plane, at known depths Zi.
They stated that other cases can also be handled similarly, but did not
develop this further.

A more proper formulation using homogeneous coordinates also for
3D points, would separate the pose of the grid, parameterized by a
rotation and translation, from the interpolation function “inside” the
plane, which can be an affine transformation (as in Martins et al.’s
work) or a projective one:

Qi ∼
(

Ri ti

0T
3 1

)
︸ ︷︷ ︸
pose matrix




1 0 0
0 1 0
0 0 0
0 0 1




︸ ︷︷ ︸
M

Ai q ∼
(

R̄i ti

0T
2 1

)
4×3

Ai q,

where R̄i consists of the first two columns of Ri and M maps 2D coor-
dinates on the grid plane, to 3D coordinates. The computation of the
interpolation mappings Ai (i.e., the calibration) would be carried out
between image points and 2D points on calibration grids, instead of 3D
points as in the original formulation above.

The back-projection ray of an image point q can be computed
from the two grid points Q1 and Q2 according to Equation (1.1) in
Section 1.2. Let Pi =

(
R̄i ti

)
. Then:

Bl ∼
(

(A2q)3P1A1q − (A1q)3P2A2q
(P1A1q) × (P2A2q)

)
.

This expression is quadratic in the coordinates of the image point q.
It is thus clear that back-projection can be written via a 6 × 6
back-projection matrix:

Bl ∼ Bl
6×6 L2(q) (3.5)

operating on lifted image point coordinates L2(q) (cf. Equation (1.4)).
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In the special case of calibration planes parallel to the XY -plane
and of affine transformations Ai, we get:

Bl =




0 0 0 A1,11 − A2,11 A1,12 − A2,12 A1,13 − A2,13
0 0 0 A1,21 − A2,21 A1,22 − A2,22 A1,23 − A2,23
0 0 0 0 0 Z1 − Z2
0 0 0 Z2A1,21 − Z1A2,21 Z2A1,22 − Z1A2,22 Z2A1,23 − Z1A2,23
0 0 0 Z1A2,11 − Z2A1,11 Z1A2,12 − Z2A1,12 Z1A2,13 − Z2A1,13
b1 b2 b3 b4 b5 b6


,

(3.6)

where the last row is given by the vector

b =




A1,11A2,21 − A1,21A2,11

A1,11A2,22 + A1,12A2,21 − A1,21A2,12 − A1,22A2,11

A1,12A2,22 − A1,22A2,12

A1,11A2,23 + A1,13A2,21 − A1,21A2,13 − A1,23A2,11

A1,12A2,23 + A1,13A2,22 − A1,22A2,13 − A1,23A2,12

A1,13A2,23 − A1,23A2,13




.

If instead of affine transformations, projective ones are adopted for
A1 and A2, then the back-projection matrix Bl has no zero coefficients
anymore.

Second version — “Quadratic interpolation”. Here, the inter-
polation function between the image plane and each of the calibration
grids, is assumed to be quadratic, and modeled by:

Xi

Yi

Zi


 = Ai L2(q),

with 3 × 6 matrices Ai. Obviously, camera rays can be expressed via
a back-projection matrix operating on degree-4 liftings of the image
coordinates:

Bl ∼ Bl
6×15 L4(q).

Third version — “Linear spline interpolation”. This is a local
camera model according to our definition and will thus be explained in
Section 3.2.1.
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Observations. In [331] it is noted that “The basic difference between
this model and the pinhole model is that all lines of sight are not
forced to go through the same point”. A second major difference is
that this model allows to handle non-perspective distortions that may
in principle be quite general.

The linear two-plane model is actually identical to the general lin-
ear camera (GLC) model of Yu and McMillan [559], cf. Section 3.4.4,
although it is formulated differently. Also, whereas the two-plane model
was proposed in order to interpolate calibration data, the GLC was
introduced in order to generate novel spatial distributions of camera
rays, with applications for example in image synthesis.

The linear and quadratic two-plane models are particular instances
of rational polynomial camera models, which were later introduced
in full generality, cf. Section 3.1.8. Also, the two-plane models may
be among the first to explicitly use lifted image coordinates in their
formulation.

Finally, as mentioned above, they inspired works on discrete camera
models; with the possibility of getting dense matches, it is indeed natu-
ral to calibrate camera rays directly for sampled image positions instead
of computing interpolation transformations, as proposed by Gremban
et al. [189], Grossberg and Nayar [191], and others, see Section 3.3.

Extensions. Izaguirre et al. showed how to incorporate the camera
motion in the back-projection matrix [251]. Since we have explicitly
written the back-projection, this can also be done easily by combining
back-projection (e.g., Equation (3.5) for the linear two-plane model)
with extrinsic parameters, as explained in Equation (1.2).

The two-plane model is formulated as a back-projection; Gremban
et al. proposed an approach to deduce the forward projection operation
[189]. In addition, they already posed the basis for a fully ray-based
camera calibration, which is treated in Section 3.3.

The two-plane model was further generalized by Wei and Ma in sev-
eral articles, as follows. In [522] necessary and sufficient constraints were
derived for the back-projection matrix to correspond to a perspective
back-projection, i.e., when no non-perspective distortion is present.
In [523, 524] the authors also modeled the forward projection, using
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the same algebraic model but with independent parameters and esti-
mation processes. There, they also investigated the epipolar geometry
associated with their camera model. The findings of [524] do not seem to
be fully general since both for the forward projection and the epipolar
geometry, the existence of an optical center of the cameras seems to be
assumed, whereas the considered camera model in general corresponds
to non-central cameras.

It would be worthwhile to establish the conditions under which two
cameras following the two-plane model, form a stereo pair, along the
lines of Seitz and Kim’s study [445], see Section 3.4.2. Further, it would
be interesting to establish necessary and sufficient constraints on the
back-projection matrices under which the camera is central.

Champleboux et al. extended the two-plane model in two respects
[85]. First, by allowing the use of more than two images of calibration
planes. Second, by modeling the function that maps image points to
lines of sight, using bicubic B-splines. They applied their approach to
the calibration of cameras but also of radiographic and range sensors.

Fiala and Basu used a 1D version of the two-plane model to calibrate
the radial distortion profile of catadioptric cameras [143].

Lavest, Delherm et al. used the two-plane model to calibrate zoom
cameras for different zoom settings and to obtain 3D reconstructions
from images taken with different zoom factors but without moving the
camera [109, 300, 301].

3.1.4 Models for Slit Cameras

Consider slit image acquisition proceeding by moving a 1D perspective
camera with a constant translational velocity while acquiring images,
which are stacked together to form a 2D image, i.e., a linear pushb-
room panorama (cf. Section 2.1.1 and [197]). It is obviously an axial
camera since all viewpoints lie on a straight line due to the camera’s
translational motion. In addition, all camera rays, for all acquisitions,
cut the plane at infinity in the same line — the intersection of the
1D camera’s view plane with the plane at infinity. Linear pushbroom
cameras are thus a special case of two-slit camera, with one slit being
a line at infinity [389].



52 Camera Models

Gupta and Hartley proposed models for the linear pushbroom
panorama and its multi-view geometry [197]. They showed that for-
ward projection can be modeled by a 3 × 4 projection matrix, which
relates 3D point coordinates with lifted coordinates of the correspond-
ing image point. They also showed expressions for back-projection. Let
us re-derive them here. Let the 1D camera be modeled by the following
back-projection operations, where q are the homogeneous coordinates
of image points:

Bf =
(
t
1

)
+

q2

q3

(
v
0

)
∼ q3

(
t
1

)
+ q2

(
v
0

)
Bi =

(
a 0 b

)
q = q1a + q3b.

Here, the second image coordinate is assumed to correspond to the
acquisition time and v gives the translational velocity of the camera; t
is the optical center position at the first acquisition and vectors a and
b depend on the 1D camera’s intrinsic parameters and orientation. The
latter are constant, thus the point at infinity of a back-projected ray
does not depend on the second image coordinate (which explains the
column of zeroes in the second above equation).

The Plücker coordinates of camera rays may now be expressed as
follows, based on the above two equations defining Bf and Bi (cf.
Equation (1.2)):

Bl =
( −q3(q1a + q3b)

(q3t + q2v) × (q1a + q3b)

)

=
(

0 −a 0 −b
v × a t × a v × b t × b

)
︸ ︷︷ ︸

Bl
6×4




q1q2

q1q3

q2q3

q2
3


.

The geometry of more general two-slit cameras was studied by
Pajdla and Zomet et al. [389, 576]. Among other issues, Zomet et al.
derived the forward projection equations and have shown that 3D lines
are imaged as conics. Feldman et al. showed that the back-projection for
the same two-slit cameras can be expressed via a 6 × 6 back-projection
matrix, operating on second order lifted image coordinates [139]. As will
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be seen later (Sections 4.2.1 and 4.3), once it is established that back-
projection can be written as a linear mapping operating on order-2
lifted image coordinates, it follows automatically that 3D lines are
imaged as conics and that there exists a fundamental matrix of size
6 × 6.

Models for other slit image systems are in principle straightforward
to establish. Consider the case of a 1D camera rotated about some axis
(not necessarily containing the 1D camera’s optical center). Let the axis
be the Z-axis and the optical center at the first acquisition (q2 = 0) be
at position t. Further, let the intrinsic parameters and orientation of
the 1D camera be subsumed by vectors a and b, as above for the
linear pushbroom case. Then, full back-projection operations can be
written as:

Bf =




cos(kq2/q3) −sin(kq2/q3) 0 0
sin(kq2/q3) cos(kq2/q3) 0 0

0 0 1 0
0 0 0 1



(
t
1

)

Bi =


cos(kq2/q3) −sin(kq2/q3) 0

sin(kq2/q3) cos(kq2/q3) 0
0 0 1


(q1a + q3b).

Here, k expresses the rotational velocity and q2/q3 the time. Due to the
trigonometric expressions in the rotation matrix, it is not possible to
write the back-projection in polynomial form though and for example
to establish fundamental matrices.

3.1.5 Models for Central Catadioptric Cameras

Geyer and Daniilidis proposed a unifying model for single-mirror cen-
tral catadioptric systems (cf. Section 2.3.1) [164, 165]. It is embodied
by a two-step projection procedure, defined by a unit sphere and a pin-
hole camera, as follows (cf. Figure 3.2). First, a 3D point is mapped
onto the sphere, by intersecting the sphere with the line spanned by
the point and the sphere’s center. Second, that intersection point is
projected into a (virtual) pinhole camera. Geyer and Daniilidis showed
that this model subsumes all single-mirror central catadioptric systems
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Fig. 3.2 Unified central catadioptric model of Geyer and Daniilidis. Left : Projection from
3D to 2D. The line joining the 3D point and the center of the sphere, cuts the sphere. The
intersection points are then projected by a virtual pinhole camera. Right : Back-projection.
An image point is first back-projected relative to the virtual pinhole camera. The intersec-
tions of the camera ray with the sphere are determined. The final camera rays are the lines
spanned by the intersections points and the center of the sphere. For clarity, the second
final camera ray is shown as a dashed line.

(see Section 2.3.1 for a list of these); the center of the sphere is the
effective viewpoint of the modeled system. Note that the first step,
projection onto the sphere, has two mathematical solutions; in practice,
one usually knows which one to pick but when formulating multi-view
geometry for instance, one may have to carry along both solutions. Also
note that the virtual pinhole camera of the model is not equivalent to
the camera looking at the actual mirror in the true catadioptric system;
it is just an algebraic model.

Back-projection with this model can be formulated as follows. With-
out loss of generality, let us assume that the sphere is of radius 1 and
centered in the origin. Let the projection matrix of the virtual pinhole
camera be given as:

M−1
3×3
(
I3×3 −t

)
.

Then, an image point is back-projected, relative to the virtual pinhole,
as:

Bf
v ∼

(
t
1

)
Bi

v ∼ Mq.
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The back-projection ray intersects the sphere in two points, written in
homogeneous coordinates as:(

(Mq)T(Mq)t − (tTMq)Mq ± √
DMq

(Mq)T(Mq)

)
,

with D = (tTMq)2 − (tTt − 1)(Mq)(Mq)T. The final back-projection
directions are then given by the first three coordinates of these two
points (since the sphere center is the origin):

Bi ∼ (Mq)T(Mq)t − (tTMq)Mq ±
√

DMq.

Due to the square root in this expression, it is in general not possible
to directly obtain polynomial expressions.1 For the special case where
the virtual pinhole lies on the sphere though, i.e., for tTt = 1, the two
directions are:

Bi
1 ∼ t

Bi
2 ∼ (Mq)T(Mq)t − 2(tTMq)Mq.

This special case corresponds to para-catadioptric cameras. The first
direction is independent of the image point q and can thus be discarded;
the second one can be written via a 3 × 6 back-projection matrix B
which depends on M and t:

Bi
2 ∼ Bi

3×6 L2(q).

Let us finally consider the usual special case where the principal point
is supposed to be known and to be the origin and the optical axis
of the camera to be aligned with the mirror axis. Further, without
loss of generality, we assume that the camera’s optical center lies on
the Z-axis. Then, M ∼ diag(1,1,k) and tT = (0,0,−1) and the back-
projection becomes:

Bi
2 ∼


0 0 0 −2k 0 0

0 0 0 0 −2k 0
1 0 1 0 0 −k2


L2(q).

1 However, Sturm and Barreto showed that polynomial back-projection expressions can be
obtained by using degree-4 liftings of image coordinates [473].
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The first and third columns are identical and the second one only con-
tains zeroes. We can thus write the back-projection in a more compact
form as:

Bi
2 ∼


 0 2k 0 0

0 0 2k 0
−1 0 0 k2






q2
1 + q2

2
q1q3

q2q3

q2
3


.

Geyer and Daniilidis analyzed various properties of catadioptric sys-
tems using their model, among which the projection of points and lines,
the concepts of projective duality, epipolar geometry, etc. Barreto and
Araújo proposed a modified version of this model and used it to study
various geometric properties, especially those related to line images and
their application for calibration [25, 28, 29]. Mei and Rives proposed
to extend the model by adding classical terms for radial and tangential
distortion [339].

A similar model was previously proposed by Smith et al. [453]. Their
two-step model is defined by an arbitrary quadric surface, an effective
viewpoint and a direction for an orthographic projection. A 3D point is
first mapped onto the quadric surface by intersecting the line spanned
by the point and the effective viewpoint, with the quadric. The inter-
section point is then orthographically projected to give the final image
point. In practice, Smith et al. assumed that the quadric’s highest point,
in the direction of the orthogonal projection, lies above the effective
viewpoint; the orthographic projection of the effective viewpoint itself
is also considered as a distortion center. The final model used by Smith
et al. has four parameters and it can model non-radially symmetric
systems. It subsumes central para-catadioptric cameras as well as the
division model (cf. Section 3.1.8) but not hyper-catadioptric cameras.

Ying and Hu proposed another extension by replacing the sphere
with a general quadric of revolution [550]. One of the quadric’s foci is
chosen as effective viewpoint. The projection of a 3D point is modeled
in two steps analogous to Geyer and Daniilidis’ model: the line spanned
by the 3D point and the effective viewpoint is cut by the quadric. The
two intersection points are then projected into a virtual pinhole camera
whose optical center is located on the mirror’s revolution axis. This
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gives the two theoretical images of a 3D point. Back-projection follows
the inverse procedure. Ying and Hu showed that this model, besides
central catadioptric cameras, also subsumes some fisheye models, such
as stereographic projection (cf. Section 3.1.7) and the division model.
A similar extension was proposed by Barreto, who showed that when
replacing the sphere with a paraboloid, one may represent the division
model [26, 27].

Bayro-Corrochano and López-Franco rewrote the model of Geyer
and Daniilidis in terms of conformal geometry and gave the correspond-
ing formulas for forward projection of points and lines and the back-
projection of image points [44]. Tolvanen et al. expressed the model of
Geyer and Daniilidis in terms of Clifford algebra [507]. Perwass and
Sommer proposed a model similar to Geyer and Daniilidis’, expressed
in geometrical algebra terms; it subsumes the para-catadioptric and
division models [399].

3.1.6 Non-central Catadioptric Cameras

Consider any non-central catadioptric system. Even if everything is
known about the system, i.e., the shape of the mirror, the calibration
of the camera looking at it as well as the relative camera–mirror pose,
forward projection is a difficult problem. As for back-projection, it suf-
fices to first back-project an image point relative to the camera, to find
the (first) intersection point of the back-projected ray with the mir-
ror and to reflect the ray according to Snell’s law. For some setups,
back-projection may be written analytically, e.g., for spherical or cone-
shaped mirrors.

Forward projection is much harder since it is not immediately given
at which point on the mirror the reflection happens. Again, for some
cases, analytical models can be formulated but in general, there is no
closed-form solution for this problem, so researchers have proposed to
solve it by non-linear optimization. One possibility is for example to
optimize the desired image point coordinates, where the cost function
is the distance between the back-projected and reflected ray, and the
3D point whose projection is sought. Another possibility is to optimize
the reflection point on the mirror, using for example a similar cost
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function: the distance between the camera’s optical center and the line
joining that point and the 3D point, after reflecting that line in the
mirror.

The special case of quadric-shaped mirrors was investigated by
Gonçalves and Araújo who showed how to formulate the problem via
three polynomials and to reduce it to an optimization in a single vari-
able [179]. Vandeportaele also characterized the problem using poly-
nomials and studied the number and nature of roots for the general
as well as special cases of quadric-shaped mirrors [517]. Agrawal et al.
contributed similar results for different types of quadric-shaped mirrors
as well as for the case of cameras looking through refractive spheres [5].

3.1.7 Fisheye Models

Classical models. Several models were suggested for fisheye lenses
(or rather, the opposite: fisheye lenses are constructed in order to satisfy
such models) [48, 146, 226, 350, 536] — stereographic, equiangular,2

sine-law, and equi-solid angle projection:

rd = k tan(θ/2)

rd = kθ

rd = k sinθ

rd = k sin(θ/2).

Their back-projection equations are given in Table 3.1 (where the coef-
ficient k is replaced by f to homogenize notations). We observe that
stereographic back-projection can be written using polynomials; it can
be written via a 3 × 4 back-projection matrix operating on lifted image
coordinates (here, we suppose that the principal point is known and
located at the origin) and that it is (not surprisingly) equivalent to the
back-projection of para-catadioptric cameras. The other three models
do not have back-projection expressions in terms of polynomials.

In [146], Fleck compared these models with respect to several cri-
teria, among which the maximum theoretical field of view and light

2 This is more often called equidistant model, but in the context of back-projection, we
prefer to use the word equiangular.
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fall-off. The stereographic model is preferred by Fleck, due to represent-
ing a good compromise between field of view, light fall-off, and a good
approximate local preservation of Euclidean shapes. It seems though
that most fisheyes are designed to approach the equiangular model,
which is thus the model used most often for fisheye camera calibration.

Hall et al. for example used an equiangular model for a fisheye lens-
based imaging system used for robot guidance [80, 382, 383].

An experimental evaluation of some of the above fisheye models for
a particular camera was performed by Schneider et al. [439].

As a sidenote, let us remark that interestingly, some of
the first scientific applications of fisheye lenses concerned the
area of forest management (see http://en.wikipedia.org/wiki/

Hemispherical photography), where they were already used in the
1950s. Researchers in agricultural and forestry departments came up
with calibration methods, independently from photogrammetrists. For
example, Clark and Follin used the equiangular model for fisheyes [94].
Their application was forest management and panoramic images were
used for assessing light interception and leaf areas in forests. Therefore,
they were interested in images with equi-area properties, i.e., where the
area of an image region is proportional to the solid angle of the corre-
sponding field of view. In [94], they assessed how well different fisheye
lenses approach this property.

Other models. Various other models were proposed for fisheye
lenses, or lenses with a wide field of view in general, some of them
aiming at subsuming several of the above classical models.

Herbert proposed the following alternative model for fisheye
cameras [219]:

rd = θ +
5∑

i=1

ai sin
iπ θ

θmax
,

where θmax is the camera’s field of view (assumed known).
Various fisheye lens designs and some performance characteristics

were presented by Kumler and Bauer [294]. They used the following
model:

rd = k sin(βθ),
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which encompasses the sine-law and equi-solid angle models shown
above. Also, if β is very small, this model approaches the equiangular
one.

A similar general model was proposed by Gennery [161]:

rd =
sin(βθ)

k cos(max(0,βθ))
.

For β = 1 this gives the pinhole model, for β = 0.5 stereographic pro-
jection, β = −0.5 gives equi-solid angle projection, and β = −1 the
sine-law projection. As β approaches zero, this model approaches the
equiangular one. Gennery suggested to couple this model (which sub-
sumes ideal fisheye models) with a classical polynomial distortion
model. Gennery’s full model includes also the position of the effec-
tive optical center along the optical axis, as a function of θ or rd; his
full model is thus a non-central one (an axial model to be precise) and
resembles in that respect that of Tardif et al. [491], see Section 3.3.2.
Besides this effect, Gennery also included the orientation of the optical
axis relative to the image plane, in order to model non-perpendicularity.

Yet another similar model was suggested by Bakstein and
Pajdla [23], who used a combination of the stereographic and equi-solid
angle models, depending on four parameters:

rd = atan
θ

b
+ csin

θ

d
.

Basu and Licardie proposed a distortion function called fisheye
transform (FET) [41], inspired by the work of Schwartz on the geometry
of the human visual system [441]:

rd = s log(1 + λru)

ru =
erd/s − 1

λ
.

Although it is called fisheye transform, this model does not handle
fields of view of 180◦ or higher.

Devernay and Faugeras proposed the FOV model (field-of-view
model) [113]:

ru =
tan(rd ω)
2tan ω

2
.
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According to their description, the model is equivalent to the equiangu-
lar model. However, this seems to be the case only for particular values
of the parameter ω (cf. Figure 3.4(c) in Section 3.5). If we include
the focal length of the perspective projection in the model, we get the
following expression for the back-projection angle θ:

θ = atan
tan(rdω)
2f tan ω

2
.

For

f =
1

2tan 1
2ω

the FOV model becomes equivalent to the equiangular model:

θ = rdω.

Like Gennery (see above), Devernay and Faugeras suggested to com-
plement their model (or other fisheye models) by additional terms, e.g.,
the classical polynomial radial distortion model, to calibrate cameras.

3.1.8 Polynomial and Rational Polynomial Models

Most of the models in the previous section were based on trigonometric
functions, whereas polynomial expressions were used in the classical dis-
tortion models of Section 3.1.1. The two-plane models of Section 3.1.3
were also embodied by polynomials. In this section, we review several
other polynomial-based models.

A first possibility is to model radial distortion using polynomials,
but instead of relating the distorted and undistorted radial distances as
in Equation (3.3), one considers the relation between distorted radial
distances and incidence angles between camera rays and the optical
axis:

rd =
n∑

i=1

ciθ
i. (3.7)

This model was for example used by Herbert [219], Xiong and
Turkowksi [539], Kannala and Brandt [266], Kannada et al. [267], Ying
et al. [553], and Stehle et al. [459]. Kannala and Brandt further added
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non-polynomial terms to account for tangential distortions [266]. They
also showed an approximation of the inverse (backward) model. Note
that the model in Equation (3.7) subsumes the equiangular model,
which corresponds to using only the first coefficient c1.

The reciprocal is of course also possible, i.e., models of the form:

θ =
n∑

i=1

ci r
i
d .

This was used for example by Inoue et al. where a 12-th degree poly-
nomial was found to be suitable to calibrate a fisheye converter [245].

Beauchemin et al. proposed a polynomial model, but where
polynomials relate polar image point coordinates before and after
distortion, instead of Cartesian ones [46, 47]. Their model consists
of two polynomials, one for the radial distortion function (distance
from distortion center), one for the radial angle, capturing tangential
distortions.

Hellmeier as well as Remy et al. used splines to model the 1D dis-
tortion function [218, 427].

Rational polynomials for radial distortion. Finally, several
researchers have proposed models based on rational polynomials, as
follows.

Fitzgibbon and independently, Bräuer-Burchardt and Voss, pro-
posed the so-called division model, which has one distortion coeffi-
cient c [145, 62]. Before this, that model was already used by Lenz and
Tsai [305, 306] (see also the textbook [253, 254] by Jähne); however,
they used it as forward model, i.e., in the below equations, one would
swap the forward and back-projection equations. The division model
as defined by Fitzgibbon and Bräuer-Burchardt and Voss, is given as:

ru =
rd

1 − cr2
d

rd =

√
1 + 4cr2

u − 1
2cru

.

A nice feature is that the model has a closed-form inverse.
The division model can be generalized by using general rational

polynomials to relate ru and rd, as proposed by Ma et al. [327]. Rational
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polynomials were already used before the introduction of the division
model, e.g., by Hellmeier [218].

Mičušik and Pajdla [346] and Mičušik [344] used a similar model for
the relation between image distance rd and the angle between optical
axis and camera rays, instead of the relation between image distances
in distorted and undistorted images, as above. Their model has two
parameters and is of the form:

θ =
ard

1 + br2
d

.

It is in some sense a division model for the equiangular fisheye model,
which it extends. Like for the equiangular model, expressing back-
projection directions involves trigonometric functions; hence, Mičušik
and Pajdla proposed to linearize their back-projection model using a
Taylor development in order to perform an initial estimation of the
model parameters during (self-)calibration.

Rational polynomials for full back-projection models. Instead
of using rational functions to model the 1D distortion function, as
above, one may use them for the actual back-projection mapping, as
foreshadowed by the two-plane methods of Chen and Martins et al.
[89, 90, 331] (see Section 3.1.3) and fully introduced by Claus and
Fitzgibbon [98]. In general, one may write general mappings between
distorted and undistorted image points:

La(qu) ∼ M Lb(qd),

where the matrix M would contain the coefficients of homogeneous poly-
nomials relating the lifted coordinates in the distorted and undistorted
image planes (for full generality, we assume that different liftings may
be possible, i.e., a �= b). We speak of rational polynomial models here
since “undoing” homogeneous point coordinates involves divisions of
coordinates.

It is more common though to use this kind of model directly for the
back-projection mapping of distorted image points to back-projection
directions or rays:

Bi ∼ Bi Lb(qd), (3.8)

Bl ∼ Bl Lb(qd). (3.9)



64 Camera Models

In practice, Claus and Fitzgibbon used a bi-quadratic such model for
central cameras, i.e., b = 2 and Bi of size 3 × 6 [98]. It is easy to see that
this encompasses the division model as well as the para-catadioptric
and stereographic models. Note that in order to represent the classical
radial distortion model, higher order liftings are required (cubic in the
case of a single distortion coefficient, cf. Section 3.1.1).

Let us also note that the two-plane models of Chen and Martins
et al. (see Section 3.1.3) are instances of rational polynomial back-
projection models.

It may be worthwhile to study which instances of the models (Equa-
tions (3.8) and (3.9)) correspond for example to radially symmetric,
central, perspective, or otherwise special camera models.

Rational polynomial forward models. Rational polynomial
models are usually either applied for the back-projection function as
proposed by Claus and Fitzgibbon [98], or for the 1D radial undis-
tortion function as proposed by Ma et al. [327]. Hartley and Saxena
also proposed a rational camera model, but for the forward projection
function [210]: the image point coordinates are expressed via ratio-
nal polynomial functions of the 3D point coordinates (Hartley and
Saxena used cubic polynomials). In the general case, this corresponds
to curved camera rays, i.e., the set of 3D points that get projected onto
the same image point, form a curve. Hartley and Saxena showed that
this model is a good fit for SAR cameras. It also subsumes “linear”
cameras such as perspective and linear pushbroom ones, although fit-
ting it to data obtained from these may lead to overfitting due to a
strong overparameterization.

Essentially the same approach seems to be in routine use to model
satellite imagery, cf. [147]. In Section 11.3 of that reference, the gen-
eral term of “replacement sensor models” is employed to denote any
camera model that replaces a rigorous, physics-based, model by empir-
ical expressions. The most used ones are rational polynomial functions,
much like in the above works.

Hall et al. proposed the RTcam (rational tensor camera model)
[200]. It essentially proceeds by first transforming 3D points via bi-
quadratic rational functions, followed by a perspective projection to a
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2D image plane (the full RTcam model is defined for arbitrary dimen-
sions of scene and image). Together, the two imaging steps still cor-
respond to bi-quadratic rational functions. Similar to the GLC model
(see Section 3.4.4), the development of the RTcam is mainly motivated
by applications in stylized, or non-photorealistic, rendering.

3.1.9 One-Dimensional Radial Models

Thirthala and Pollefeys formally introduced so-called 1D radial camera
models [500, 501]. They hinge on the existence of an optical axis and
a center of distortion. Planes containing the optical axis are called
radial planes and lines going through the distortion center, radial lines.
The only main assumption about the projection function is that all
3D points in a radial plane are imaged to points on a same radial
line. This effectively allows completely arbitrary radial distortions, and
especially, does not require any radial symmetry of the distortion (the
distortion “function” may be different for each radial plane–line pair)
and it allows for non-central projections.

To make the model tractable, a second assumption is used though,
namely that the projection can be modeled by a 2 × 4 projection
matrix, mapping 3D points onto radial lines, represented by two homo-
geneous coordinates. In other words, it is assumed that there exists a
projective relationship between the pencil of radial planes in 3D and
that of radial lines in the image. Thirthala and Pollefeys showed that
quadrifocal tensors can be formulated based on these projection matri-
ces, and used for self-calibrating cameras. In general, no matching con-
straints exist for less than four images. However, for the case of pure
rotational camera motion, a trifocal tensor exists and can also be used
for self-calibration.

One-dimensional radial models have actually been used somewhat
implicitly before, especially embodied within the radial alignment con-
straint (RAC) of Tsai [515], used also in other works [468, 106]. Tsai
proposed a camera calibration approach for cameras with radial dis-
tortion, where one of the initial steps concerns the estimation of the
calibration grid’s pose relative to the camera. At this stage, it is
assumed that the camera follows a 1D radial model and that the
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distortion center is known. Compared to the general model of Thirthala
and Pollefeys, Tsai further assumed that angles between radial lines and
associated radial planes are identical (e.g., he had to know the aspect
ratio). Using these assumptions, the radial plane associated with each
extracted calibration point can be computed. One may then estimate
the pose of the calibration grid using the constraint that with the cor-
rect pose, each point on the grid, must lie in the radial plane of the
matched image point. It is clear that the pose cannot be fully com-
puted: any translation along the optical axis will still satisfy the above
constraint. Hence, 5 degrees of freedom are computed, from a minimum
of 5 point matches.

A 1D radial model assumption was also used in the calibration
approach of Hartley and Kang [209]. In the initial step, they used this
to compute the distortion center from the image of a calibration grid;
see more on their approach in Section 5.1.2.

3.1.10 Neural Networks

The projection or back-projection function has also been modeled and
computed using neural networks, see for example [9, 7, 535, 577]. This is
an interesting approach since it is inherently flexible and can be applied
to calibrate various kinds of cameras with various types of distortion.

3.2 Local Camera Models

3.2.1 Two-Plane Model

The third version of the two-plane model proposed by Chen and
Martins et al. [89, 90, 331] (cf. Section 3.1.3) is a local camera model.
Here, for each of the two calibration images, the extracted matches
define triangulations of the image and calibration grids respectively, cf.
Figure 3.3. Back-projection is now modeled separately for each pair of
matching triangles, by an affine transformation as in the first version of
the two-plane model, computed from the matches associated with the
three triangle vertices. To back-project an image point, the following
is done. For each calibration image, the triangle into which the image
point falls is determined. A point on the calibration grid is computed
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Fig. 3.3 Illustration of a local two-plane model (cf. text). For the second image, the trian-
gulation is shown only partially.

via the affine transformation associated with that triangle. This is done
separately for both calibration images/grids. The back-projected cam-
era ray is then computed by spanning the line between the points on
the two calibration grids.

3.2.2 Warping-Based Models

Very similar to the two-plane approach is the following idea. Whereas
the two-plane model interpolates 3D points on calibration grids, the
following methods perform an interpolation in the image domain. They
can all be applied with a single image of a grid, as for the correction of
non-perspective distortions.
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The general idea is as follows: consider one calibration plane and
an image thereof, as well as matches between the plane and the image.
Consider any warping scheme that maps the acquired image into the
“ideal” image of the calibration plane (let’s say, a texture map of
the plane). Since the ideal image is distortion-free (it is a perspec-
tive image), this warping thus removes non-perspective distortions.
If we determine the parameters of this warping using the acquired
image, we may then apply it to any other image and thus remove its
non-perspective distortions. This gives images which are distortion-
corrected, i.e., images as acquired by some perspective camera. How-
ever, we don’t yet know the associated perspective camera. Still, when
acquiring and then warping one or more images, the resulting images
correspond to images acquired by the same perspective camera. This
enables the application of any algorithm valid for perspective cameras,
to these images. For example, if images of a calibration grid are acquired
(be it planar or three-dimensional), any classical perspective calibra-
tion algorithm may be applied to calibrate the virtual camera. The
same holds true for self-calibration. The complete calibration of the
true camera is then the combination of the warp, with the computed
perspective (self-)calibration.

Several methods following this general idea were proposed; they
mostly differ in the choice of interpolation scheme which is required to
warp entire images (the role played by the piecewise affine warp in the
two-plane method). Without going into details, we cite the approaches
of Green et al. [186], Goshtasby [182], Yokobori et al. [557], Brand
et al. [59, 60], and Jackowski et al. [252]. Peuchot and Saint-André [401]
and Bogner [54] also mentioned the feasibility of this type of approach.
The method of Jackowski et al. corrects for color non-linearities in
addition to geometrical distortions [252].

Sagawa et al. used the same idea and combined it with a structured
light-type approach in order to get dense matches between the image
and the calibration grid (a flat screen) [433], an approach used also for
example by Grossberg and Nayar, Tardif et al. and Dunne et al. (see
Section 3.3). From dense matches, the distortion-corrected image can
be constructed pixel-by-pixel instead of requiring piecewise warps and
an interpolation scheme.
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It seems somewhat surprising that apparently, none of the above
works went through the last obvious step to obtain a complete camera
calibration. Namely, given these distortion-corrected, hence “virtual”
perspective images, one may apply any calibration approach for pinhole
cameras to calibrate the perspective part of the projection in addition
to the non-perspective one. Such approaches were proposed previously,
but only in combination with a plumb-line type distortion correction
based on classical polynomial distortion models, see e.g., the work of
Grosky and Tamburino [190]. Dunne et al. seem to be the first to com-
bine the above generic distortion correction with a subsequent pinhole
calibration [125]. They also used a structured-light type approach to
get dense, per-pixel, matches between calibration grids and images; due
to the per-pixel nature of the approach, we consider it in the discrete
class of models and describe it in the next section.

Comment. All approaches in this section are valid for central cam-
eras only since they are based on the idea of (bijective) warps of
distorted images into perspective ones. The two-plane approach of
Section 3.2.1 is in some sense a non-central counterpart.

3.2.3 Other Local Models

Qiu and Ma proposed an approach that is similar in spirit to the warp-
based ones described above [410]. They used as input an image of a 3D
calibration object, as opposed to a planar grid as in most other simi-
lar approaches. From 2D-to-3D matches, they then seemed to compute
a best-fit perspective projection matrix for that image and projected
the 3D calibration points using it. The result will constitute the ideal
image onto which the distorted input image will be warped, for dis-
tortion correction. Input to the next step of calibration are the images
of calibration points in the distorted image and in the ideal image,
respectively. The goal is then to compute distortion functions ∆x and
∆y such that: (

xd

yd

)
=
(

xu + ∆x(xu,yu)
yu + ∆y(xu,yu)

)
.
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In [410], the distortion functions were estimated at a regular lattice
of image pixels using non-parametric regression, and extended to the
whole image by linear or nearest-neighbor interpolation.

As mentioned above, Qiu and Ma used a 3D calibration object and
fitted a perspective projection matrix to the 2D-to-3D matches. The
approach could easily be adopted to using a 2D calibration grid: then
one may directly use the model of the grid as ideal image, such as in
most other similar approaches or, one may compute the best-fit homog-
raphy (instead of projection matrix) between the 2D-to-2D matches
and use it to project the calibration points into an ideal image that is
“closer” to the actual input image. The rest of the approach would be
strictly identical.

Ragot proposed a similar idea, where 3D-to-2D matches obtained
from an image of a calibration grid are interpolated to determine the
forward respectively back-projection of generic 3D respectively image
points [412]. The interpolation is done within triangular tessellations
of 3D respectively image points.

Munjy proposed another very similar approach, based on the finite
element method [359, 360]. He considered a regular triangular or rect-
angular tessellation of the image plane and modeled the distortion
function with the help of one focal length per vertex (giving the angle
between the line of sight associated with the vertex, and the optical
axis). Focal lengths of all other image points can then be computed via
bilinear interpolation of the focal lengths of the vertices of the trian-
gle/rectangle in which image points lie. The parameters of the model
(principal point, focal lengths of vertices) are computed by bundle
adjustment (can be done when using a calibration grid but also in full
self-calibration mode where 3D point coordinates are also optimized,
using multiple images).

Lichti and Chapman extended this approach by coupling it with the
classical radial and tangential distortion terms [315]. Back-projection
is thus carried out by correcting for these classical distortions and then
back-projecting the resulting points using the local focal length com-
puted from the finite-element model. Lichti and Chapman also dis-
cussed correlations among the model’s parameters and how to acquire
images in order to minimize them. In [316], they further extended the
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approach by including continuity constraints in order to overcome dis-
continuities of the distortion function due to the bilinear interpolation
carried out over neighboring rectangles.

Schreier et al. [440] and Cornille [101] used a similar model, where
B-splines are used to map positions in distorted images to those in
undistorted ones. They used that approach to calibrate optical and
scanning electron microscopes.

Stevenson and Fleck computed a 2D distortion function that is
piecewise over a triangular tessellation of the image plane [463]. The
basic idea is to apply an affine warp to each individual triangle such that
the image becomes distortion-free. A notable difference with most other
similar works is that the distortion-free image is generated with respect
to stereographic projection instead of perspective, i.e., distortion-free
does not mean as usual that straight lines remain straight (as in per-
spective projection) but rather that any sphere is imaged as a circle
(a property of stereographic projection). Consequently, the input are
images of spherical objects. In a first step, ellipses are fitted to their
outlines in the images (which is an approximation, precluding the use
of too large spheres). Then, the Delaunay triangulation of the cen-
ters of all ellipses is computed. Let us now consider one triangle and
the associated three ellipses, centered in the triangle’s vertices. We may
compute an affine transformation that maps the three ellipses as closely
as possible into circles. This transformation is naturally only defined
up to a scale change (“circle-ness” does not depend on scale). The goal
is then to find a new triangulation that is consistent with the original
one, modulo these local affine transformations. This new triangulation
would be nothing else than the stereographic image of the set of sphere
centers. This description does not exactly correspond to the approach
taken by Stevenson and Fleck, but transcribes its basic idea. Once the
new triangulation computed, the input image can be warped into a
stereographic image by piecewise warping it from the original into the
new triangulation. The result is an uncalibrated stereographic image,
i.e., whose “focal length” (overall scale) is arbitrary and whose distor-
tion center is unknown.

The approach is somewhat similar in spirit to the warping-based
ones of Section 3.2.2, in that it results in a piecewise warp of an image,
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allowing to undistort it. Differences however are the use of stereographic
projection as reference instead of perspective and that the warp is
not computed on the basis of an ideal input image (the model of a
2D calibration grid), but using images of 3D primitives (here, spheres).

3.3 Discrete Camera Models

3.3.1 Ray-Based Models

As explained in the introduction to this section, most discrete camera
models can be seen as the limiting case of the above local models,
where interpolation is required in the immediate vicinity of pixels
instead of in larger image regions. The main difference between
the following discrete approaches and the local ones is the explicit
motivation to calibrate individual camera rays, as opposed to forward
or back-projection mappings.

The idea of calibrating individual camera rays for discrete image
locations was formulated by several researchers. Among the first were
probably Gremban et al. who proposed extensions of the two-plane
method in [189] and discussed the possibility of a ray-based calibra-
tion. However, they concluded that “A lookup table of calibration data
for each pixel would be prohibitively expensive”. This has to be under-
stood in the historical context; such a lookup table requires four coeffi-
cients per pixel, i.e., is of a size which does not pose memory problems
anymore nowadays. As alternative solution, Gremban et al. effectively
proposed global and local camera models, based on global and local
interpolation schemes to compute camera rays for any pixel: global
schemes are based on a function that is valid for the whole image plane
whereas local schemes look up the closest image points from calibration
data (in the case of back-projection) or the closest lines of sight (in the
case of forward projection) and interpolate accordingly.

Using structured light-type acquisition setups, such interpolations
can be avoided altogether, by matching image points directly to calibra-
tion points. This has been used by various researchers, e.g., Grossberg
and Nayar [191], Dunne et al. [123, 124, 125], Sagawa et al. [433] (cf.
Section 3.2.2), and Tardif et al. [491].
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Southwell et al. proposed an idea for a structured-light type
ray-based camera calibration approach [455]. The idea was to insert
the camera in a cylinder painted on the inside in smoothly varying
color shades such that each “point” on the cylinder has a unique color.
Then, for each camera pixel, the scene point it sees can in theory be
uniquely determined. Southwell et al. proposed to calibrate a camera
by generating a look-up table where for each pixel, the direction of its
camera ray is stored, after computing it from the matched point on
the cylinder. They did not use this approach in practice though, due
to practical and signal processing problems.

Grossberg and Nayar proposed a generic imaging model consisting
of geometric as well as radiometric and optical parts [191]. The geomet-
ric part is identical in spirit to the two-plane model and its successors.
However, Grossberg and Nayar calibrated pixels individually, without
any interpolation, using structured light-type approaches allowing to
densely match images and calibration objets (e.g., flat screens). Fur-
ther, instead of computing lines of sight for individual pixels, they actu-
ally computed half-lines. This was mainly achieved by computing and
using the caustic of the imaging system which is used as the hull of
the imaging system’s model, from which camera rays emanate in an
outward direction. Besides the geometric part of the imaging model, it
also contains radiometric and optical aspects: for example, each pixel is
associated with individual radiometric response and point spread func-
tions. Overall, a line of sight (or rather, a half-line), together with these
non-geometric properties, make what Grossberg and Nayar termed a
raxel, a sort of tiny camera associated with each individual pixel of the
imaging system.

Such a ray-based imaging model has been used recently by several
researchers to devise calibration and structure-from-motion algorithms,
for example by Ramalingam et al. [414, 415, 418, 477], Dunne et al.
[123, 124, 125], and Gonçalves and Araújo [180]. Ray-based calibration
approaches are described in Section 5.1.2.

Debaecker et al. proposed to model the field of view of each pixel
by a cone instead of a (half-)line in order to model the fact that pixels
gather a volume of light rays [108]. This may be seen as an alternative
to using a point spread function like Grossberg and Nayar.
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Comments. In the above works, it is usually proposed to compute
one camera ray per image pixel. Note however that this choice, while
being intuitive, is not the only one for a discrete imaging model. Indeed,
one may compute rays for any other discrete sample of image locations.
With a regular super-pixel-based sampling for example, one ray for
every n-th pixel would be computed; to compute rays for every pixel,
an interpolation scheme would then be required, i.e., we are looking at
local camera models, see the previous section. Even with a per-pixel
sampling, interpolation is required to perform back-projection for every
image point. Finally, nothing prevents in principle to apply a sub-pixel
sampling for ray-based calibration. The appropriate choice of sampling
density is a model selection question and depends on several factors,
see the general discussion in Section 3.6.

3.3.2 Discrete Sampling of the Distortion Curve

Instead of computing camera rays at a discrete set of image loca-
tions, which is nothing else than gathering samples of a generic back-
projection mapping, one may also gather such samples for any variant
of the 1D (un) distortion function: rd(θ),θ(rd), rd(ru), or ru(rd).

Most calibration approaches based on this idea then fit some global
distortion model to these samples. Examples are some collimator-based
calibration approaches (cf. Section 5.1.4) or an early approach for plane-
based calibration by Hallert (cf. Section 5.1.2) [201].

More recent such approaches are the ones by Stevenson and
Fleck [462] (see Section 5.3.2), Hartley and Kang [209] and Tardif et al.
[491] (see Section 5.1.2), as well as Ying and Hu [552] (see Section 5.1.1).
In addition to modeling the usual 1D distortion function, Tardif et al.
and Ying and Hu also considered a non-central radial distortion model:
to each radial distance rd, is associated an angle θ as well as an optical
center on the optical axis. This is thus a radially symmetric axial model,
similar to the one proposed by Gennery (cf. Section 3.1.7) [161].

3.3.3 “Isolated” Camera Rays

Grossmann et al. have considered what might be the most discrete
camera model, consisting of a sparse set of pixels and associated camera
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rays, with no requirement that rays have close-by neighboring rays [192,
194]. Their proposed self-calibration approach (see Section 5.3.3) only
makes the assumption that the camera is central.

3.4 Models for the Distribution of Camera Rays

What a camera sees of a scene depends on the light rays it captures, not
on its intrinsic geometry, i.e., which pixel exactly catches the photons
of which light ray. In that respect, we may split the camera’s intrinsic
parameters into two sets: one that explains which light rays the camera
captures (these will then be considered as camera rays) and one that
explains the mapping between camera rays and image points. To make
the distinction clearer, let us consider any two different central cam-
eras, e.g., a perspective camera and a central catadioptric one. Being
central, both cameras catch exactly the same set of light rays: all light
rays that contain the optical center (here, we neglect of course the
finite aperture of our cameras and their different fields of view). What
differs is the mapping from image locations to rays and consequences
thereof (e.g., non-perspective distortions and the spatial/angular res-
olution profile). On top of this come the extrinsic parameters, telling
the global orientation and position of the camera, or in other words, of
its set of camera rays.

In this section, we summarize several works which are primarily
concerned with the first part of the “intrinsic geometry” of cameras,
namely a description of which rays a camera captures: the locus, or spa-
tial distribution, of camera rays. Several taxonomies and computational
models have been proposed in the last years [390, 405, 445, 472, 559].
The main motivation of these works is to reason on the spatial distribu-
tion of camera rays; the mapping between rays and image points is of
secondary importance although some of these works also propose such
a mapping in order to obtain a full camera model.

3.4.1 From Central to Oblique Cameras

Cameras may be classified according to the existence of a geometric
entity that is incident with all camera rays [390, 405, 472]. For a central
camera, there exists a 3D point, the optical center, that is incident
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with all rays. Any other camera is non-central. Among non-central
cameras, several subgroups exist, as follows.

In an axial camera, all rays cut some real 3D line. A special case is
the two-slit camera, where there exist two real lines that cut all rays
(for example, linear pushbroom panoramas, cf. Section 2.1.1). Cam-
eras falling outside any of these categories are usually termed fully
non-central or the like. A special case here are oblique cameras, for
which any two camera rays are either identical or skew [390]. Oblique
cameras are the most non-central cameras possible. A special case are
linear oblique cameras, see Section 3.4.3, for which all rays are cut
by an imaginary 3D line [389] (in fact, by two conjugated imaginary
lines [405]).

Other cases are cameras, whose rays are incident with a circle, as is
the case with circular non-central mosaics (cf. Section 2.1.1). Another
example is catadioptric camera consisting of a cone-shaped mirror and
a camera located on the mirror axis. All reflected rays are incident with
a circle centered in the mirror axis. However, such systems are also of
the axial type, since all reflected rays also intersect the mirror axis.

One may define many other categories of cameras, by choosing other
geometric primitives to which all rays are incident.

3.4.2 Ray Distributions Allowing for Standard
Stereo Geometry

Pajdla [390] and Seitz and Kim [445] were interested in studying which
sets of camera rays admit stereo imaging conditions. What is meant by
this? To explain this, we look ahead to Section 4 on epipolar geome-
try. The basic question of epipolar geometry and stereovision is, given
a point in one image, which are the potentially matching points in
the other image. The answer to this is: all points whose camera rays
intersect the ray of the first point. These define an epipolar curve in
the second image. Epipolar curves in the first image are defined anal-
ogously. Essentially, two cameras are in standard stereo geometry if
epipolar curves in the two images are in a one-to-one relationship: the
camera ray of any point on an epipolar curve in one image cuts all
camera rays of points on the related epipolar curve in the other image
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(for a more precise definition, see [445]). An auxiliary requirement is
that the set of epipolar curves in each image is one dimensional.

Not surprisingly perhaps, the set of rays of two cameras in standard
stereo geometry, lie on a set of doubly ruled quadrics3 [390, 445]. The
two individual cameras then correspond to the two rulings of these
quadrics. Note that this comprises several types of non-central cameras,
such as circular non-central mosaics and others [445] as well as linear
oblique cameras [390].

This result concerns the locus of camera rays and is independent
of the mapping from rays to image points. What it implies is that for
any two cameras in standard stereo geometry, the acquired images may
be warped into images where epipolar curves are horizontal lines and
matching epipolar lines have the same vertical coordinate. In other
words, it is possible to rectify images and then apply any standard
stereo algorithm.

3.4.3 Linear Oblique Cameras

Pajdla studied the case of linear oblique cameras, already mentioned
above [390]. A defining characteristic of these is the existence of a linear
transformation that maps each 3D point to the unique camera ray
containing that point. Pajdla showed that all linear oblique cameras
are projectively equivalent to the one defined as follows: the camera
ray containing a 3D point (X,Y,Z,W )T is spanned by that point and
the point with coordinates (Y,−X,W,−Z)T.

This defines the set of camera rays in a linear oblique camera.
In order to get a full camera model, including the mapping between
rays and image points, Pajdla proposed to use a plane as reference. Let
q be the homogeneous 2D coordinates of a point in the reference plane
(the image plane if one likes). Each point inside the plane is mapped
to a 3D point by some 4 × 3 pose matrix M:

Q ∼




X

Y

Z

W


 ∼ Mq.

3 For central cameras, this is the pencil of epipolar planes.
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The camera ray is then spanned by Q and the second 3D point, defined
above. It is easy to prove that the camera ray can be written as:

Bl ∼ BlL2(q),

with Bl a 6 × 6 back-projection matrix depending on M, operating on
lifted image point coordinates. The back-projection matrix is always of
rank at most 4.

For example, if we choose the following pose matrix:

M =




1 0 0
0 1 0
0 0 0
0 0 1


,

which corresponds to choosing the XY -plane as reference plane, then
one obtains the following back-projection matrix:

Bl ∼




0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0

−1 0 −1 0 0 0




. (3.10)

We may see that, similarly to what was shown for the classical
radial distortion model (cf. Section 3.1.1) or para-catadioptric cameras
(cf. Section 3.1.5), the back-projection matrix may be compacted. The
second column only contains zeroes and the first and third ones are
identical. Hence, back-projection for linear oblique cameras may be
written as:

Bl ∼




0 0 −1 0
0 1 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0

−1 0 0 0







q2
1 + q2

2
q1q3

q2q3

q2
3


.
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Observation. Linear oblique cameras are actually subsumed by the
linear two-plane model of Chen and Martins et al. (cf. Section 3.1.3): it
is easy to prove that the back-projection matrix of Equation (3.10) can
be obtained from the one of the two-plane model (cf. Equation (3.6))
by an appropriate choice of affine transformations A1 and A2.

3.4.4 General Linear Camera Model (GLC)

Yu and McMillan proposed the so-called General Linear Camera model
(GLC) [559, 558], which parameterizes the set of camera rays by affine
transformations of three basis rays. Concretely, they adopted a two-
plane parameterization of rays (see also a paper by Gu et al. [196] on
this parameterization) as follows. The three basis rays are given by
points:

Ai =




ui

vi

0
1


 Bi =




si

ti
1
1


,

where we assume that the two planes are Z = 0 and Z = 1. All other
rays are then given by two parameters α and β, defining points in the
two planes via affine transformations of the basis points parameterized
by two scalars α and β:

A =


αu1 + βu2 + (1 − α − β)u3

αv1 + βv2 + (1 − α − β)v3

0
1


 B =


αs1 + βs2 + (1 − α − β)s3

αt1 + βt2 + (1 − α − β)t3
1
1


.

Yu and McMillan showed that this model allows to generate the
set of camera rays of several imaging geometries, such as pinhole and
orthographic cameras but also non-central cameras such as some two-
slit ones. It also allows to generate less classical imaging geometries,
called by Yu and McMillan the pencil camera, the twisted orthographic
camera, and the bilinear camera.

Like for linear oblique cameras, the initial main motivation of the
GLC model is to propose a model for the locus of camera rays, not
necessarily a full camera model. For linear oblique cameras, a way to
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get such a full model, mapping image points to rays, was shown above.
As for the GLC, a natural choice is to consider the two parameters α

and β as 2D image coordinates. Before going further, let us replace the
image coordinates by homogeneous ones such that:

q ∼

α

β

1


.

Then:

A ∼

(u1 − u3)q1 + (u2 − u3)q2 + u3q3

(v1 − v3)q1 + (v2 − v3)q2 + v3q3

0
q3


 B ∼


(s1 − s3)q1 + (s2 − s3)q2 + s3q3

(t1 − t3)q1 + (t2 − t3)q2 + t3q3

q3

q3


.

Finally, the camera ray, spanned by A and B, can be written via
the following 6 × 6 back-projection matrix, operating on lifted image
coordinates L2(q):

Bl =




0 0 0 u1 − u3 − s1 + s3 u2 − u3 − s2 + s3 u3 − s3

0 0 0 v1 − v3 − t1 + t3 v2 − v3 − t2 + t3 v3 − t3
0 0 0 0 0 −1
0 0 0 v1 − v3 v2 − v3 v3

0 0 0 u3 − u1 u3 − u2 −u3

b1 b2 b3 b4 b5 b6




.

(3.11)

For the sake of conciseness, the coefficients bi are not shown here; they
can be easily computed if necessary.

Observations. We see that the rays in a GLC can be modeled by a
quadratic rational camera model, cf. Section 3.1.8. Furthermore, by
comparing the back-projection matrices of the GLC and the linear
version of the two-plane model (Equation (3.6) in Section 3.1.3), we
observe that they have exactly the same form. It can indeed be proven
that the two models are equivalent. This is maybe not surprising since
both models are based on affine transformations in two reference planes,
although they are parameterized in different ways. Whereas the moti-
vation for developing the two-plane model of Chen and Martins et al.
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was to interpolate between calibration data, Yu and McMillan were
aiming at developing novel camera geometries. Compared to works on
the two-plane model, Yu and McMillan carried out an in-depth study
of the modeled camera geometries.

Other considerations on GLCs. In [560], Yu and McMillan gave
a projection equation for a special case of GLCs (concretely, a transfor-
mation that maps each 3D point to the ray it lies on in the GLC). They
also showed how to relate two GLCs which differ in the choice of image
plane. Whereas for perspective cameras, corresponding points in two
different image planes (but with the same optical center) are related by
a homography, this relationship is a quartic rational function for the
considered special case of GLCs. In the general case of GLCs, this rela-
tion will be even more complicated. However, if parallel reference planes
are used, then changing the distance between them does not matter:
for any GLC with a particular distance between the planes, there is an
equivalent GLC defined with planes separated by another distance.

The GLC model is defined by three basis rays. An extension to
multiple basis rays was proposed and analyzed for up to six rays, by
Popescu et al. [406].

3.4.5 Linear Families of Lines

Ponce proposed to model the set of camera rays by two-parameter lin-
ear families of straight lines, either degenerate reguli (rank-3 families)
and non-degenerate linear congruences (rank-4 families) [405]. This
framework subsumes the GLCs of Yu and McMillan [558, 559] and
the linear oblique cameras of Pajdla [390]. Ponce gives formulas for
projection, back-projection, and epipolar and multi-view geometry, for-
mulated such that the two parameters of the considered linear families
of camera rays are considered as image point coordinates. The back-
projection matrix is of size 4 × 6 for two-slit cameras and linear oblique
ones, and 5 × 6 for the “pencil cameras” of Yu and McMillan [559].
All models subsumed by Ponce’s formulation can be expressed by
6 × 6 back-projection matrices, leading to 6 × 6 fundamental matrices
(cf. Section 4). Batog et al. generalized the theoretical framework



82 Camera Models

of [405] by characterizing all admissible maps that allow to model linear
cameras, i.e., cameras whose rays form a linear family of lines [43].

3.4.6 Caustics

Roughly speaking, the caustic of an imaging system is the surface
enveloping the set of camera rays, i.e., it is tangent to all rays. Caus-
tics are an excellent tool to analyze properties of imaging devices, as
nicely advocated by Swaminathan et al. [484]. A caustic provides one
possible description of a viewpoint locus of a camera, i.e., a point set
such that any camera ray goes through at least one of the points in
the set (ideally through exactly one). For a central camera, the caustic
degenerates into a point and for axial ones, into a line segment. The
caustic allows to study “how central” a camera is, i.e., how much its
extent deviates from a single point. Swaminathan et al. showed how
to compute the extent and shape of the caustic for axial catadiop-
tric systems based on conic-shaped mirrors and such that the camera’s
optical center lies on the mirror axis [484]. They showed how to use
this analysis to determine a best approximation of a single viewpoint,
useful for example for approximate perspective view generation. They
also analyzed how resolution varies across the image area, and recipro-
cally, proposed an approach to compute a mirror profile that satisfies
a desired resolution profile. Finally, the parametric form of the caustic
for a class of catadioptric sensors is used in a calibration approach,
described in Section 5.3.2.

Usually, to each image point corresponds exactly one point on the
caustic. This corresponds to the “viewpoint” associated with that image
point. To compute the entire camera ray, one still needs its direction.
For axial systems, it can be easily computed since the camera ray must
pass through the axis and also be tangent to the caustic. For fully non-
central systems, the full determination of camera rays requires a second
map (of directions), besides a map from image points to the caustic.

3.5 Overview of Some Models

In Table 3.1, some of the models seen in this section are summarized.
Note that in the table, we do not always use the same notation for these
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models as in the previous sections; rather, we try to homogenize nota-
tions by naming coefficients of camera models k or k1,k2, . . .. Further,
parameters akin to the focal length are denoted by f .

The shown models are all radial distortion models; their equations
are given under the assumption that the distortion center is identical
to the principal point and located at the origin. How to relax these
assumptions is outlined in the introduction to this section.

The table contains six different ways of modeling the imaging trans-
formation. Cells annotated by “N/A” correspond to cases where there is
no closed-form expression or, if there is no expression of back-projection
in terms of polynomials (second column).

Sample graphs of the function θ(rd) for several camera models are
given in Figure 3.4.

3.6 So Many Models . . .

This section reviewed some camera models existing in the computer
vision literature. Although it is certainly not exhaustive, the list of
models is rather long. One may ask, which model one should choose
or recommend. For example, recurring questions are, should one use a
non-central camera model for a slightly misaligned catadioptric system
or stick with a central model, or should one model fisheye lenses with
a central or non-central model.

The general answer to these questions is: it depends . . .
The choice of camera model depends of course on how appropriate

a model is in general for the type of camera used. For example, one
would obviously never use a pinhole model for fisheye cameras. More
interesting parts of the question are: how to determine the appropriate
order of a polynomial model, how to select among altogether different
types of models, how to decide if it is worth using a non-central model
rather than a central one, etc.

The choice of camera model or of the number of coefficients of a
model may depend on several factors:

• The amount of noise in the calibration data.
• The amount of calibration data: how many images are used

and how many calibration points (or other primitives used
for calibration)?
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Fig. 3.4 Graphs of the function θ(rd) for some camera models. In the first two rows, dis-
tortion model coefficients k are chosen such that for rd = 1, we have θ = 90◦.

• The quality of the spatial distribution of calibration data:
how well do the data cover the field of view (both across the
field of view and in depth), how good is the spatial distri-
bution of the set of camera positions, how different are the
camera orientations, etc.?

• The “true” camera model: is it central or not, how pro-
nounced are non-perspective distortions, etc.?
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The choice depends on the combination of these and possibly other
factors. For example, Zhang showed that the self-calibration of the
classical radial distortion model, even with a single coefficient, from
matches between images, is only stable if the actual distortion is pro-
nounced and if extracted image points are accurate [566].

Let us consider extreme cases. Without noise in the data, the true
model can be estimated without error (assuming we are not in a degen-
erate situation for the position of the calibration data, such as the
twisted cubic for pinhole camera calibration [67]). Even with noise,
the availability of infinitely many calibration data may allow a perfect
calibration of the true camera model.

In practice, there is noise and the number of data is finite and we
must consider the interplay of the above factors. To stress that the
choice of camera model depends on all of these factors, we may note
that even for one and the same camera, different models may be chosen
for different scenarios. For example, fisheye lenses are probably not
perfectly central, i.e., not all camera rays go through a same 3D point.
However, the viewpoint locus is at most as large as the aperture of the
lens, i.e., a few centimeters, and in practice, much smaller. Hence, if
the fisheye lens is used for an application where the scene of interest
is meters away from the camera, then an approximation by a central
imaging model should be sufficient (unless we use many images and
extremely accurate image points for calibration). However, if the scene
in some hypothetical application is much less than a meter away, a
non-central model may make sense.

So far, the discussion was rather qualitative. To actually imple-
ment a method for choosing among camera models requires quantita-
tive goodness measures.

Clearly, our question is one of model selection, for which a large
body of literature exists. The main principle of model selection is to
find a good compromise between the goodness of fit to the data and the
complexity of a model; roughly speaking, a good model should explain
the data well but not have too many parameters. The reason for this is
that in general, a model with more parameters has a better chance to
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Fig. 3.5 Illustration of overfitting. Seven points are sampled from a quadratic polynomial
(red curve) and perturbed by random noise. Then, a quadratic and a degree-6 polynomial
are fitted to the points (green and orange curve respectively). The degree-6 polynomial fits
the data perfectly as expected but is an extreme overfit as can be seen from the two random
trials above, whereas the degree-2 polynomial fits stably and accurately.

well fit the data.4 If more parameters than necessary are allocated then
this constitutes an overparameterization and it may lead to overfitting:
in addition to explaining the phenomenon underlying the observed data
(here, an imaging process) the model parameters will tend to explain
the noise in the data.5 If we tip the balance among the above factors,
e.g., too few or too badly distributed data compared to the amount of
noise, then the model will no longer be a trustworthy explanation of
the phenomenon. The usual sample illustration of overfitting concerns
the problem of fitting a polynomial to data points, cf. Figure 3.5.

The problem of overfitting in camera calibration is real but can be
rather safely reduced by following a few guidelines. If an application
allows it, one should always acquire more than the minimum required

4 The fit gets always better if one extends the number of parameters of the same model,
e.g., by using additional coefficients for modeling radial distortion or a finer tessellation
for local camera models. As for different models, this needs not always be the case.

5 Another manifestation of this are correlations between the estimated parameters.
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amount of data (in terms of number of images, number of calibration
points, etc.). The image area should be completely covered by calibra-
tion points: distortions are usually strongest, i.e., most observable at
the image border and even in the absence of distortions, a better cov-
erage of the image area gives a better leverage on calibration and other
structure-from-motion tasks (e.g., motion estimation gets stabler the
wider the field of view that is effectively used). By design, calibration
grids usually have well-distributed calibration points. One of the most
important aspects is that images should be taken from as different as
possible viewpoints and, crucially, with as different camera orientations
as possible. The latter aspect includes rotations about the optical axis
(required if an aspect ratio is to be computed) but more importantly,
one should acquire images with different directions of the optical axis
(or, orientations of the image plane). Naturally, one should also spend
an effort to get the most accurate image point extraction.

These are just a few general guidelines. More intricate ones which
may be important for high accuracy calibration are that cameras should
best be calibrated in the same conditions as in the final application,
e.g., same temperature, atmospheric conditions, even in the same ori-
entation (tilting a camera may already affect its intrinsic parameters),
etc. More on these issues can be found in photogrammetric literature,
e.g., [336, 451].

Coming back to the model selection problem: model selection meth-
ods for camera calibration were proposed for example by El-Melegy
and Farag [127], Ma et al. [327], and Orekhov et al. [387]. See also
the good discussion by Derrien and Konolidge in [111], who also evalu-
ated the geometric error committed when approximating a non-central
camera by a central model. An alternative to usual model selection
methods is to evaluate the quality of different camera models (and of
the estimated coefficients thereof) using other data than that used for
calibration. One possibility is cross-validation, i.e., evaluate calibration
results using calibration images not used for calibration. Another one is
to judge the quality of calibration within an actual intended application
of the calibration: calibration is rarely a goal in its own but is carried
out in order to realize some application, such as 3D modeling or ego-
motion estimation. If ground truth data for these or other applications
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are available, then it is obviously a good idea to measure the quality
of a calibration result via the quality of the subsequent result in the
considered application.

A final comment is that while it is not possible to recommend this or
that camera model in general, it seems a good idea to enhance “ideal”
models for cameras with large fields of view (e.g., the equiangular one),
with classical radial or tangential models, as proposed for example by
Devernay and Faugeras [113], Kannala and Brandt [266], Gennery [161],
and Mei and Rives [339].



4
Epipolar and Multi-view Geometry

Epipolar geometry is central to stereovision. On the one hand, knowing
it enables to strongly constrain the problem of matching two images.
On the other hand, it can be estimated from matches and then allows
for motion estimation, self-calibration, and triangulation of 3D points
or other geometric primitives. Epipolar geometry has been well stud-
ied for perspective cameras, since the nineteenth century (see, e.g.,
the excellent paper [144] by Finsterwalder on geometric foundations of
photogrammetry, as well as modern treatments [137, 213]).

As for non-perspective cameras, much has been done in the last
20 years and this section aims at giving a concise overview. It will be
seen in the following that epipolar geometry is a very powerful tool
for the self-calibration of non-perspective distortions; this is based on
a strong link to the plumb-line calibration approach (cf. Section 5.2.1),
explained in Section 4.3.

We start the section by considering the case of calibrated cam-
eras, where the epipolar geometry can be represented by an essential
matrix. Except the question if cameras are central, non-central, axial,
etc., the essential matrix is independent of the camera type. In Sec-
tion 4.2, we consider the epipolar geometry of uncalibrated cameras

90
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and particularly, fundamental matrices for non-perspective cameras.
Finally, since epipolar curves are images of straight lines (camera rays
of the other camera), we consider the computation of line images in
Section 4.3 and, most importantly, the above mentioned strong links
between self-calibration and plumb-line calibration of non-perspective
cameras.

4.1 The Calibrated Case

The epipolar geometry for a pair of calibrated central cameras can be
represented by the essential matrix E [324] and the associated epipolar
constraint on back-projected image points:

(Bi
2)

T ([t]×R)︸ ︷︷ ︸
E

Bi
1 = 0, (4.1)

where t and R are the relative translation and rotation between the two
views. Note that since we directly work with the directions of camera
rays, the above formulation is independent of the type of central camera
and also works when considering two cameras of different types.

The essential matrix for non-central cameras was introduced by
Pless [402]. For non-central cameras, we must consider the complete
camera rays instead of only their directions as in Equation (4.1). Let
L1 and L2 be the camera rays associated with matching image points
in a pair of views. They must intersect one another (in the 3D point
whose images are the two matching image points). Putting together
Equations (1.2) and (1.3) of Section 1.2, this leads to the essential
matrix and epipolar constraint for non-central calibrated cameras:

LT
2

(−[t]×R R
R 0

)
L1 = 0. (4.2)

The essential matrix acts on Plücker coordinates of camera rays and is
thus of size 6 × 6.

In [402], Pless also gave the epipolar constraint for continuous cam-
era motion. We refer to Section 6.2 for notes on the estimation of
the central and non-central essential matrices and subsequent camera
motion estimation.
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Sturm specialized Pless’ epipolar constraint to calibrated axial, two-
slit, and central cameras, for all cases with finite/infinite slits respec-
tively optical centers [472]. For axial and two-slit cameras, the essential
matrices are of size 5 × 5 and 4 × 4, respectively. It was also shown how
to establish trifocal matching tensors for these camera models.

Gasparini and Sturm showed how to derive matching tensors for
line images as opposed to images of points, for central, two-slit, axial,
and fully non-central calibrated cameras [158].

4.2 The Uncalibrated Case

4.2.1 Generalities

The epipolar geometry of uncalibrated perspective cameras can be rep-
resented by the fundamental matrix [137, 213]. How about other central
cameras or the case of non-central ones? The answer is immediate if
back-projection can be represented as a matrix–vector product (or, by
polynomials or rational polynomials, cf. Section 3.1.8).

Central cameras. Let Bi be the back-projection matrix of a central
camera, of size 3 × n and operating on lifted image coordinates L̄a(q),
where a and n depend on the camera model (e.g., n = 5 and a = 3 for
the one-coefficient classical radial distortion model, cf. Section 3.1.1).
By plugging Bi

1 ∼ BiL̄a(q1) and Bi
2 ∼ BiL̄a(q2) into the epipolar con-

straint (4.1), we directly get the fundamental matrix:

(L̄a(q2))T (Bi)T[t]×R Bi︸ ︷︷ ︸
F

L̄a(q1) = 0.

It is of size n × n.
It is of course possible to derive the fundamental matrix for two

cameras of different types with back-projection matrices of different
sizes 3 × m respectively 3 × n:

(L̄b(q2))T (Bi
2)

T[t]×R Bi
1︸ ︷︷ ︸

F

L̄a(q1) = 0. (4.3)

The fundamental matrix will accordingly be of size m × n.
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Due to the presence of the rank-2 skew-symmetric matrix [t]×, the
fundamental matrix is always of rank smaller or equal than 2, in general
of rank 2.

Non-central cameras. The situation for non-central cameras is
analogous: it suffices to plug back-projection matrices Bl of size 6 × n

into the non-central epipolar constraint (4.2). A difference from the
central case is that the rank of the non-central fundamental matrix
depends on the rank of the back-projection matrices as well as on the
relative position of the two cameras. For example, the back-projection
matrices of two-slit cameras are of rank 4; the rank of the two-slit fun-
damental matrix is 4 if the two views are in general position, and lower
if the two views share one slit or if their slits are incident (cf. [139] and
Section 4.2.2).

Epipolar curves. For perspective cameras, Fq1 represents the epipo-
lar line in the second view, associated with a point q1 in the first view.
In our general setting, epipolar lines are replaced by epipolar curves. It
is easy to see that the order of epipolar curves is identical to the order
of image coordinate lifting (a and b respectively in Equation (4.3)). For
example, for liftings of order 2,3 respectively 4, epipolar curves are con-
ics, cubic respectively quartic curves. This observation tells us imme-
diately that for all cameras that can be modeled by back-projection
matrices operating on second order lifted image coordinates, epipolar
curves are conics, e.g.,: linear pushbroom cameras and other types of
two slits (cf. Section 3.1.4), linear oblique cameras (cf. Section 3.4.3),
para-catadioptric cameras (cf. Section 2.3.1), the division model (cf.
Section 3.1.8), all GLCs (cf. Section 3.4.4), etc. Also, epipolar curves for
the one-coefficient classical radial distortion model (cf. Section 3.1.1),
are obviously cubic (cf. [566]).

As described in Section 3.4.2, non-central cameras may or may not
be in standard stereo configuration: they are, if epipolar curves in the
two images are in a one-to-one correspondence. This is for example the
case for two-slit cameras with relative positions as mentioned above
(e.g., they share a slit), which corresponds to a fundamental matrix
of rank 2. Otherwise, one can still compute epipolar curves in both
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images, but they now form 2D families in each image and are no longer
in one-to-one correspondence. An algebraic consequence is an increase
in the rank of the fundamental matrix, for the above example of two-slit
cameras, an increase from 2 to 3 or 4.

Let us note that Rademacher and Bishop already described how to
understand epipolar curves for arbitrary non-central images [411]. They
also suggested the concept of an internal epipolar geometry, i.e., an
epipolar geometry of a non-central camera with itself: when considering
any ray of the camera, all other rays that cut it, are associated with an
epipolar curve. For oblique cameras, no internal epipolar curves exist
by definition.

Epipoles. For central cameras, one may define epipoles analogously
to the pinhole case: the image of the optical center of one camera is
the epipole in the other camera’s image plane. Further, all epipolar
curves go through the epipole. In general, there may be more than one
epipole, for example for central catadioptric cameras (see an example
in Figure 4.1) for which each 3D point is mathematically imaged in two
points (cf. Section 3.1.5). In that case, all epipolar curves go through
all epipoles. Another example is the classical radial distortion model;

Fig. 4.1 Epipolar geometry for a perspective and para-catadioptric image pair. Cyan circles
indicate three point matches and associated epipolar lines/curves are shown in red. Epipoles
are shown in white; there exist two of them in the para-catadioptric image.
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in the case of one distortion coefficient, there are three epipoles: either
three real points or one real and two conjugate imaginary points.

For non-central cameras, the notion of optical center and thus of
epipole does not exist anymore. However, in the special cases of axial
and two-slit cameras, a weaker notion can be defined as follows: the
image of the camera axis (or axes in the case of a two-slit camera) in
the other camera gives a curve that is incident to all epipolar curves.

The non-polynomial case. The results in this section so far only
apply to cameras whose back-projection can be modeled by matrices.
In other cases, e.g., for most of the fisheye models of Section 3.1.7
(cf. also Table 3.1), fundamental matrices do not exist. The epipolar
geometry is still defined of course, it just cannot be expressed in the
usual matrix–vector style. The epipolar geometry has been studied for
some of these cases, see the following section.

4.2.2 Existing Works

In the following, a few existing works on the epipolar geometry of non-
perspective cameras are reviewed.

Classical polynomial distortion model. Zhang, in [566], studied
the epipolar geometry of two radially distorted images and showed that
epipolar curves are cubic if only one radial distortion coefficient is con-
sidered. He proposed a non-linear optimization method for estimating
the distortion coefficients of the two images and the perspective funda-
mental matrix.

Central catadioptric cameras. Svoboda et al. studied the epipolar
geometry for central catadioptric cameras [482, 479, 481]. They showed
that epipolar curves are conics and gave formulas for computing these
conics, from known camera calibration and motion. They also showed
the existence of two epipoles per image, in general, which are incident
with each epipolar conic.

Geyer and Daniilidis showed that the epipolar geometry of
para-catadioptric cameras can be represented via a fundamental
matrix [166]. It acts on lifted coordinates of image points and is of
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size 4 × 4 if one assumes that images have square pixels (in the gen-
eral case, it is of size 6 × 6 [471]). It can thus be estimated linearly
from 15 or more point matches. Geyer and Stewénius proposed a min-
imal 9-point algorithm to compute the fundamental matrix between
two para-catadioptric cameras, based on constructing a Gröbner basis
of the polynomial equation system given by the point matches [172].

Geyer and Daniilidis [168] and independently, Sturm [471], showed
how to systematically derive multi-view relationships for para-
catadioptric cameras. Their approaches use a direct extension of the
framework used for perspective images by Faugeras and Mourrain [138]
and Triggs [511]. They allow to re-derive the above para-catadioptric
fundamental matrix and in addition, trifocal or quadrifocal tensors.
Sturm showed that using the same framework, one may obtain multi-
view relations for any combination of para-catadioptric, perspective,
or orthographic images [471]. It is clear from Section 4.2.1 that this
easily generalizes to all types of camera models represented by back-
projection matrices.

Other central catadioptric cameras than para-catadioptric ones,
i.e., those based on hyperboloidal or ellipsoidal mirrors, are less
nicely modeled. The main reason for this is that mathematically, each
image point is back-projected to two camera rays (cf. Section 3.1.5).
Although only one of them is physically plausible, it is not possible
to dissociate the two rays while expressing them using polynomials
in the image point coordinates. Sturm and Barreto showed that it
is possible to represent the two rays by a single geometric object (a
line complex) which can be represented using polynomials [473]. This
enabled the definition of back-projection and fundamental matrices,
the latter being of size 15 × 15.

Non-central catadioptric cameras. Cone-shaped mirrors usually
lead to non-central catadioptric cameras (cf. Section 2.3.1). The epipo-
lar geometry for such cameras, when restricted to planar motions, was
derived by Yagi and Kawato [542]. As for two cameras mounted one
on top of the other, with aligned mirror axes, the epipolar geometry is
simple [456]: the mirror axes pierce the two image planes in the epipoles
and the radial lines going through the epipoles, are epipolar lines. One
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may see that this situation is always true for pairs of radially symmetric
axial cameras with aligned camera axes.

Würz-Wessel proposed a numerical approach for computing epipolar
curves in images of free-form mirror surfaces [538].

Central and non-central panoramas. Ishiguro et al. showed that
in central panoramic images (see Section 2.1.1), 3D lines are imaged
as sinusoidal curves [246, 247]. Consequently, epipolar curves are sinu-
soidal too, a result also derived by McMillan and Bishop [338] and Bun-
schoten and Kröse [68, 69]. Torii et al. studied the multi-view geometry
of central panoramas [509].

Huang et al. studied the epipolar geometry for non-central
panoramic images generated by a perspective 1D sensor rotated about
an axis parallel to the sensor line but not necessarily passing through
the 1D camera’s optical center [236, 237, 238]. Further, the 1D sen-
sor may be oriented such that the sensor line, the optical center, and
the rotation axis are not coplanar. Huang et al. derived the epipolar
geometry for such images as well as several special cases [236, 238] and
proposed motion estimation methods [237]. Šivic and Pajdla proposed
an in-depth geometric study of non-central panoramic images and their
stereo configurations [450].

Menem and Pajdla established the epipolar geometry between a
non-central panoramic image and a pinhole image [342].

Polynomial and rational polynomial models. Claus and Fitzgib-
bon uncovered the fundamental matrix for the bi-quadratic rational
function model (see Section 3.1.8) [98]. It is a 6 × 6 matrix that maps
lifted image points to the six coefficients (five plus a scale factor) of
the epipolar conics in the other image. If one restricts the model to the
one-parameter division model, then image lines are circles and epipolar
geometry may be written via a 4 × 4 fundamental matrix [31, 98].

Barreto and Daniilidis showed that this is the case even if the two
cameras have different distortion coefficients [31]. They also showed
how to compute the fundamental matrix and extract the distortion
coefficients from it. In [35], they showed that the combination of a
para-catadioptric camera and one following the division model is also
subject to a fundamental matrix.
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Two-slit cameras. Gupta and Hartley showed that the epipolar
geometry of linear pushbroom cameras can be modeled by a 4 × 4 fun-
damental matrix, expressed in lifted point coordinates [197]:

(
q2,1q2,3 q2,1q2,2 q2,2q2,3 q2

2,3
)
F


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q1,1q1,3

q1,1q1,2

q1,2q1,3

q2
1,3


 = 0,

where qj,k denotes the kth homogeneous coordinate of a point in
image j. Images of straight lines are hyperbolas and consequently, so
are epipolar curves.

Feldman et al. have developed the fundamental matrix for more
general two-slit cameras [139]. To be precise, they considered the case
where a two-slit image is constructed from images acquired by a per-
spective camera that translates by a constant speed parallel to the
image plane, such that at each acquisition instant t, the vertical pixel
column at coordinate s(t) = αt + β is taken from the perspective image,
where α and β can be arbitrary values. The final image is obtained by
concatenating these pixel columns. For any pair of values α and β, this
construction corresponds to a two-slit camera. The first slit is the line
of optical centers corresponding to the translational motion whereas
the second slit depends on the values of α and β. The two slits, when
seen along their common perpendicular, form a right angle.

Feldman et al. showed that two two-slit images constructed from
the same original image sequence but with different values α and β

are subject to an epipolar constraint embodied by a 6 × 6 fundamental
matrix, acting on the lifted image coordinates. They also revealed the
general conditions under which two two-slit images have an epipolar
geometry (see also Section 3.4.2); this is the case if the two cameras
share one slit completely or if each slit of one camera intersects both
slits of the other camera. In the first case, the stereo system has a pencil
of epipolar planes, in the second case, these are replaced by epipolar
quadrics.

Note that even if the cameras are not in one of these configurations,
there exists a fundamental matrix for two-slit images, of size 6 × 6. It
allows, as usual, to compute the epipolar curve (here, a conic) for every
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image point. However, epipolar curves in the two images are no more
in a one-to-one correspondence: different points on the same epipolar
curve in one image, may be associated with different epipolar curves in
the other image.

Khan et al. showed that there exists a fundamental matrix between
a linear pushbroom panorama and a perspective image and used this
for estimating the position of a query perspective image with respect
to a set of georeferenced panoramic images [273].

One-dimensional radial camera model. Thirthala and Pollefeys
showed the existence of quadrifocal tensors for the 1D radial camera
model [500]; refer to Section 3.1.9 for some more details.

The case of pure rotations. It is well known that two images taken
by a pinhole camera undergoing a pure rotation about its optical center
are related by a homography. How about other central cameras?

We consider the case of cameras modeled by back-projection matri-
ces of size 3 × n, acting on a-order lifted image coordinates. For any
pair of matching points q1 and q2, we must have:

R Bi
1 L̄a(q1) ∼ Bi

2 L̄a(q2),

where R is the rotation relating the two images. This constraint can be
written as:

{RBi
1L̄a(q1)} × {Bi

2L̄a(q2)} = 03,

which is equivalent to three bilinear constraints (only two being inde-
pendent) on the lifted image coordinate vectors:

(L̄a(q2))TMjL̄a(q1) = 0, j = 1 · · ·3,

with three matrices Mj of size n × n which depend on the rotation
matrix R and the two back-projection matrices.

There is no bijective homography in general, unlike in the pinhole
case, but it is replaced by the above bilinear constraints, which allow,
for any point q1, to compute all potential matches q2. In general,
there are only finitely many matches. To be precise, since the matching
constraints are linear in the lifted coordinates of q2, there are in general
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at most a2 potential matches (two independent constraints on a-order
lifted coordinates).

As for the 1D radial camera model and the case of pure rotations,
Thirthala and Pollefeys showed the existence of trifocal tensors [500,
501] (cf. Section 3.1.9).

The case of planar scenes. Like for pinhole cameras, the case of
a planar scene is very similar to that of a rotating central camera. For
example, Draréni et al. derived the expression for plane homographies
for linear pushbroom cameras and proposed a calibration approach
using planar grids [120]. Fitzgibbon mentioned plane homographies for
the division model [145]. Sturm and Barreto showed the existence of
plane homographies for all central catadioptric cameras [473].

4.3 Images of Lines and the Link between Plumb-line
Calibration and Self-calibration of Non-perspective
Cameras

As will be discussed in Section 5.2.1, non-perspective camera parame-
ters can in general be fully calibrated from images of straight lines.
There is a strong link between this, epipolar geometry and self-
calibration: from point matches between images, one can compute
the epipolar geometry. Epipolar geometry allows to compute epipolar
curves, which are nothing else than images of straight lines (of camera
rays of the respective other camera). It is thus obvious that epipo-
lar geometry allows for the self-calibration of non-perspective imaging
models, at least partially. One may even directly use any plumb-line
technique for self-calibration: from the epipolar geometry, one may
generate arbitrarily many epipolar curves and use these as input to
plumb-line calibration. This direct link between plumb-line calibra-
tion, epipolar geometry, and self-calibration is implicitly present in all
non-perspective self-calibration approaches, although it has not been
explained before in its full generality. It will be developed further in
Section 5.3.1.

Line images. As for the computation of a 3D line’s image, this is
particularly simple for cameras modeled by back-projection matrices.



4.3 Plumb-line Calibration and Self-calibration of Non-perspective Cameras 101

In the case of non-central cameras and back-projection matrices of size
6 × n, operating on a-order lifted image coordinates La(q), the image
of a 3D line L is computed as follows. An image point q lies on the line
image if its back-projected camera ray intersects the line L, i.e., if (cf.
Equation (1.3)):

LT
(

03×3 I3×3

I3×3 03×3

)
Bl

︸ ︷︷ ︸
cT

La(q) = 0. (4.4)

We immediately see that the image of L is the curve of order a whose
coefficients are given in the vector c. In the case of a = 2 for example,
the line image is a conic; the six coefficients defining its symmetric
matrix representation, are contained in c. An example of a line image
in a linear pushbroom panorama is shown in Figure 4.2.

In the case of central cameras, we can obtain the analogous result
after computing the full back-projection ray from Bf (the origin) and
Bi ∼ BiLa(q) (the direction of the ray):(

BiLa(q)
0

)
∼
(

Bi

0

)
6×n

La(q).

By inserting this in Equation (4.4), we compute the line image for
central cameras as:

cT ∼ LT
(

03×3 I3×3

I3×3 03×3

)(
Bi

0

)
∼ LT

(
0
Bi

)
.

Fig. 4.2 The image of a line in a linear pushbroom panorama.
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Fig. 4.3 Line images for the equiangular camera model. The black curve is the image of any
line in the focal plane i.e., the plane containing the optical center and perpendicular to the
optical axis. It is naturally a circle and corresponds to the hemispheric part of the field of
view. The other curves show the images of lines whose interpretation planes (plane spanned
by a line and the optical center) form angles of 70,50,30, and 10 degrees with the optical
axis, respectively. The limiting case of 0 degrees corresponds to lines that are coplanar with
the optical axis and whose images are lines going through the distortion center. Although
in general, line images are not algebraic curves, the parts within the hemispheric field of
view, i.e., within the black circle, can be relatively well approximated by conics.

Let us denote by l the second sub-vector of length 3 of L. This repre-
sents the line at infinity of the plane spanned by the optical center (the
origin) and L. The line image can then also be written as:

cT ∼ lTBi.

Non-polynomial back-projection. In this case, line images cannot
be computed by matrix–vector products. Still, it suffices to plug into
Equation (4.4) the expression of back-projected image points to get
an equation defining the line image, allowing for example to plot it.
For example, Figure 4.3 shows line images for the equiangular camera
model; the figure suggests that although they are not algebraic curves,
e.g., are not conics, they can be well approximated by conics within a
hemispheric field of view.



5
Calibration Approaches

This section aims at providing an overview of different calibration
approaches, mainly with respect to the type of images or other infor-
mation that are used for calibration, with an emphasis on approaches
developed for omnidirectional cameras. The section is a far from
exhaustive treatment of the topic of calibration. A few other references
are as follows. An excellent overview of photogrammetric calibration
approaches and their historical development, together with the devel-
opment of distortion models, is the paper [95] by Clarke and Fryer,
see also a paper by Remondino and Fraser [426] and a book section by
Boland [55]. Among the many books covering the topic, we may cite
the Manual of Photogrammetry, its fourth edition of 1980 [451] and
the more recent fifth edition [336]. The article [430] by Roelofs is an
interesting extended account of the state of the art on calibration up
to 1951. Other relevant books are [19, 195, 213, 287] to cite just a few.

5.1 Calibration Using Calibration Grids

5.1.1 Three-Dimensional Grids

This is probably the most well-known calibration approach and will
not be detailed much further. Let us just note that in order to
calibrate omnidirectional cameras, several researchers used hollow
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3D calibration objects painted with markers or patterns on the inside,
such that cameras are put inside the object for calibration, see,
e.g., [23, 61, 83, 413, 455, 506, 519, 552]. Usually, the object was used to
gather 3D-to-2D matches which could then be used like in traditional
calibration approaches. Ying and Hu used two hemispherical calibration
objects with different radius to calibrate a model akin to the two-plane
one (cf. Section 3.1.3) [552].

Among the many other approaches, let us mention one by Shih et al.
who proposed a method for calibrating one radial distortion coefficient
as well as the perspective camera parameters, via the solution of an
8 × 8 eigenvalue problem [448]. This is very similar to recent approaches
for the simultaneous estimation of multi-view geometry (e.g., the fun-
damental matrix) and a distortion model (e.g., the division model), for
example the approaches of Fitzgibbon and Claus [98, 145] and Mičušik
and Pajdla [344, 346, 347, 349]. Shih et al. also gave a similar calibration
method for the usage of planar grids.

Bastanlar et al. developed a calibration approach for central cata-
dioptric cameras that is akin to the DLT approach for pinhole cameras
[40]: computation of a projection matrix from 3D-to-2D matches,
followed by the extraction of intrinsic parameters. In the case of cata-
dioptric cameras, the projection matrix is somewhat different from that
of a pinhole camera: as shown by Sturm and Barreto [473], it is possi-
ble to formulate a projection matrix but which does not directly map
3D points to 2D points, the reason being the existence of two theoretical
image points (cf. Section 3.1.5). Instead, the projection matrix maps
3D points to a degenerate dual conic, representing these two image
points. Besides this difference, DLT-like calibration is also possible, as
exploited by Bastanlar et al. [40]. Gasparini et al. and Barreto et al.
developed similar procedures for using planar grids [36, 159].

Huang et al. proposed a calibration approach for non-central
panoramic images and compared it experimentally to a line-based and
a self-calibration method [239].

5.1.2 Planar Grids

Many approaches have been developed for using planar grids in
camera calibration, due to their ease of manufacture, storage, and use.
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Planar or near-planar objects, e.g., crosses, are routinely used in
photogrammetry, usually via a (self-calibrating) bundle adjustment
procedure. Computer vision researchers proposed “closed-form” type
solutions [475, 567], which are suboptimal and should be followed by a
bundle adjustment (cf. Section 6.4).

In this section, we concentrate on plane-based calibration
approaches developed for omnidirectional cameras or other cameras
with general distortion profiles. There are many approaches for global
camera models, which usually apply similar procedures: an optional
initialization procedure, followed by a bundle adjustment. We will thus
not describe them in any more detail and refer the reader to the ref-
erences on camera models in Section 3.1. As for the local models, the
calibration procedures designed for them are mostly already outlined
in Section 3.2. In the following, we give a few details on plane-based
approaches for discrete camera models, for two variants thereof — ray-
based models and discrete samples of the distortion curve.

Ray-based calibration. Several similar approaches for ray-based
or raxel-based calibration were proposed, e.g., by Gremban et al. [189],
Champleboux et al. [85], and Grossberg and Nayar [191]. The principle
is simple: two or more images of planar calibration grids are acquired,
with a known motion of the camera or grid between the acquisitions.
A dense matching between the grid in each position, and the camera
image, is carried out. Hence, for each pixel, one can compute its camera
ray by fitting a 3D line to the set of matched grid points, which can
be put in the same coordinate frame since the motion between image
acquisitions is known. This way, camera rays can be computed for each
individual pixel (or some other spatial sampling of the image area, be
it sub-pixel or super-pixel-wise).

Debaecker et al. used a similar procedure to calibrate their cone-
based camera model from multiple images of planar grids [108]. These
methods can be considered as dense versions of the two-plane approach,
cf. Section 3.1.3.

This type of approach was generalized by Sturm and Ramalingam
in order to allow an image acquisition without having to know the
camera/grid motion [477]. While the approach based on the knowledge
of camera/grid motion can in theory work with two images, a minimum
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of three images is required in the case of unknown motion. Sturm and
Ramalingam showed that from matches for three images, the unknown
camera/grid motion can be recovered via the computation of particular
trifocal tensors. Once the motion is known, the above approach can be
readily applied to compute the camera rays and thus to finalize the
calibration. In [477], the minimal case of three images was considered;
this was extended toward using multiple images in [418], allowing for an
easier calibration of omnidirectional cameras. Sturm and Ramalingam
developed several variants of their approach, for using planar as well as
3D calibration grids, as well as for calibrating fully non-central [477],
central [477], or axial cameras [420]. In [416], they gave a minimal
solution for the calibration of a central camera using matches for four
pixels and three grids.

Gonçalves and Araújo used this approach to first compute pixel–ray
matches, to which they then fitted a catadioptric model [180].

Dunne et al. used a structured-light type approach where an LCD
screen is used as planar calibration grid, allowing to achieve dense
matches between the grid and the image through the display of a
sequence of particular patterns [125]. Matches between the grid and one
of the input images are used to define a warping from the image to the
grid. The warping, when applied to that input image, will by definition
lead to a perspectively correct image of the grid — the grid itself. This
warping thus eliminates all non-perspective distortions. After apply-
ing it to other images of grids (they do not need to be of the same
grid), one may use any calibration approach for perspective cameras
to calibrate the perspective part of the camera projection, e.g., the
methods of Zhang or Sturm and Maybank for planar grids [475, 567].
This approach combines the ideas of warp-based approaches (cf. Sec-
tion 3.2.2) and ray-based calibration.

Discrete sampling of the distortion curve. In the 1950s, Hallert
developed formulas for non-linearly optimizing either intrinsic or extrin-
sic parameters of a camera looking at a planar grid, supposing the
respective other set of parameters is known [201]. He also included
the computation of a radial distortion model in his procedure. The
model he used is of the discrete sampling type (cf. Section 3.3.2): he
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used a calibration grid of 5 × 5 regularly distributed points and seemed
to assume that the grid can be positioned such that the center point
coincides with the distortion center. Then, he computed the radial dis-
tance in the undistorted image, for every circle centered in the grid’s
center point and going through other points in the grid. From the com-
puted values, he seemed to interpolate the complete distortion function,
between distorted and undistorted radial distances. This is probably
one of the first examples where radial distortion is determined by com-
puting samples of the distortion function, as also done for example by
Hartley and Kang [209] and Tardif et al. [491], see below.

Hartley and Kang proposed a set of methods for calibrating cameras
with general radial distortion [209]. Their key observation is that point
matches between a planar calibration grid and an image with what-
ever radial distortion are subject to a constraint akin to the epipolar
constraint and that the epipole in the image plane is nothing else than
the center of radial distortion. The latter may thus be computed by
fitting a fundamental matrix to the point matches and extracting the
epipole from it (one may also use multiple images and fundamental
matrices to get a better estimate). It was shown that this can also be
done, in a similar fashion, when using a 3D calibration grid or by self-
calibration, i.e., from images of an unknown scene (see Section 5.3.1).
Hartley and Kang then used the assumptions of a radially symmetric
camera and of a monotonic distortion curve, to compute the latter,
from multiple images of grids. They showed how to compute a discrete
sampling of the distortion curve as well as how to fit parametric models
thereof.

Hartley and Kang’s approach was studied experimentally by
Barreto et al. for the task of calibrating endoscopic cameras using pla-
nar grids [37]. It was found to be superior to using the division or a
classical model for radial distortion.

Tardif et al. proposed two approaches for plane-based calibra-
tion of a general radially symmetric radial distortion model (cf. Sec-
tion 3.3.2) [491]. The approach is similar in spirit to Hartley and Kang’s
although the method for finding the distortion center is less elegant.
The basic versions of these approaches work for central cameras; an
extension for non-central ones was also proposed.
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5.1.3 One-Dimensional Grids: Sticks or Circular
Grids Positioned in Radial Planes

Adorni et al. proposed a calibration method for the task of back-
projecting an omnidirectional image onto a fronto-parallel ground plane
[3]. They made the assumption of a radially symmetric camera and
acquired an image of a linear calibration object lying on the ground
plane, carefully positioned such that the camera’s optical axis “pierces”
the object at a known position. For each marker on the calibration
object, the distance to the optical axis as well as the distance of the
image point from the assumed distortion center is recorded in a look-up
table. By interpolating the information contained in this look-up table
and using the assumption of radial symmetry, each image point can be
mapped to the point on the ground plane that it sees, and vice versa,
i.e., back-projecting the image to the ground plane is possible. A simi-
lar approach was proposed earlier by Southwell et al. which instead of
markers on the calibration object used one with a fractal Grey code
pattern printed on it [455].

As for classical cameras, i.e., non-omnidirectional ones, using sticks
with markers is probably the de facto standard approach for calibrating
commercial multi-camera systems for motion capture, although many
alternative approaches exist, e.g., [33, 480]. How to calibrate a single
camera using a 1D object, was shown by Zhang [568].

5.1.4 Calibration Grids at Infinity — Collimators, Stellar
Calibration, Vanishing Points

A classical photogrammetric calibration technique exploits arrays of
collimators or devices with a movable collimator [95, 202, 269, 492].
The incidence angle of each collimator with the lens to be calibrated is
measured, e.g., using theodolites or a goniometric apparatus. One can
interpret such an array as a calibration grid lying at infinity: instead
of providing matches between image positions and 3D points, they
directly provide directions of camera rays for image positions. If a pla-
nar array is used (collimator beams are coplanar) and positioned such
that that plane contains the distortion center, one can directly sample
the radial distortion function from the observations, or fit any radial
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distortion model to them. In the case of a non-planar array, tangen-
tial distortions may be measured as well. More generally speaking, one
may fit any global or local central camera model to data obtained from
collimators.

Another classical method termed stellar calibration consisted in
exploiting the well-known angular position of stars to calibrate cameras
(care had to be taken though to take into account, e.g., atmospheric
refractions) [151]. This may again be seen as using a calibration grid
lying at infinity.

Finally, we may mention calibration techniques exploiting vanish-
ing points arising from scene structure, e.g., associated with parallel
edges of buildings. Knowing the angles between the associated direc-
tions in 3D gives essentially the same input as collimators and images of
stars, although usually with (much) lower accuracy. Also, the number
of vanishing points in typical scenes is low, often not higher than three.
Thus, this kind of observation could typically not be used to measure
non-perspective distortions. However, from three vanishing points with
known angles, up to three intrinsic parameters of the pinhole model can
be estimated. Methods doing so are for example those by Gracie [185],
Caprile and Torre [81], and Echigo [126].

Hughes et al. showed that vanishing points arising from sets of paral-
lel lines may be used to calibrate the distortion center of radially sym-
metric distortion models [241]. They did this for the division model
(which was used as an approximation to the equiangular model), by
showing the following properties. Lines are imaged to circles and a set
of parallel lines are imaged to circles which intersect in two vanishing
points; these correspond to the two mathematical images under the
division model, of the point at infinity associated with the set of lines.
The line joining the two vanishing points also contains the center of
radial distortion. Thus, when observing at least two different sets of
parallel lines, the distortion center can be computed in a straightfor-
ward manner. It seems that this approach may be used for any radially
symmetric distortion model. In [240], Hughes et al. extended the pre-
vious approach by estimating another intrinsic parameter besides the
distortion center, namely the proportionality factor k of the equiangu-
lar camera model (cf. Section 3.1.7).
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5.2 Using Images of Individual Geometric Primitives

By individual primitives, we mean that their relative position is not
known.

5.2.1 Lines — The Plumb-Line Approach

Brown introduced the so-called plumb-line approach which allows to
calibrate non-perspective distortions from images of straight lines [64].
Since then, many such approaches have been proposed for differ-
ent camera models, see below. Line-based calibration approaches are
attractive since they allow to separate perspective from non-perspective
parts of the imaging model and since their algebraic complexity is
typically lower than that of full calibration formulations, allowing for
easier closed-form type solutions. Further, since lines are omnipresent
in urban or interior scenes or in man-made objects, they allow for
a calibration in many applications where calibration grids cannot be
employed.

Classical polynomial distortion model. Kang proposed a plumb-
line method where snakes that are constrained by the radial distortion
model are used to fit to images of straight lines, thereby estimating the
distortion coefficients [263].

Alvarez et al. [14] used a classical distortion model and a plumb-line
type method, based on observations of sets of collinear points. They
defined a cost function which measures how close undistorted points
are from being collinear. That measure is not based on the Euclidean
distance between points and lines, i.e., is an algebraic distance. How-
ever, Alvarez et al. showed that it is possible to find the distortion
coefficients that are globally optimal under that measure, using a stan-
dard resultant-based technique. This is possible for up to two distortion
coefficients but hints on how to possibly handle more than two are also
given in [14].

Many other plumb-line approaches were proposed for the classical as
well as other distortion models, e.g., [127, 240, 241, 272, 337, 408, 427,
485, 503, 510, 520, 521, 553, 575]. Ricolfe-Viala and Sánchez-Salmerón
combined a plumb-line constraint with a constraint expressing the
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invariance of the cross-ratio of collinear points, to calibrate a classi-
cal distortion model from images of planar grids [428].

Central panoramas. Smadja et al. proposed a plumb-line calibra-
tion method for circular central panoramas, acquired by a 1D camera
rotating about its optical center [452].

Catadioptric cameras. As for catadioptric cameras, Geyer and
Daniilidis introduced a plumb-line method [164, 165, 167]. Based on
their unified model (see Section 3.1.5), they showed that from two
respectively three images of lines, one may fully calibrate a central
hyper-catadioptric respectively para-catadioptric camera. They gave
an algorithm for the para-catadioptric case; Barreto and Araújo devel-
oped an algorithm for hyper-catadioptric cameras [28, 31] as well as
an improved algorithm for para-catadioptric ones that is able to fully
compute the mirror shape [30, 32]. Ying and Hu, Vandeportaele et al.,
and Wu et al. gave similar algorithms [518, 537, 551]. Previously, Geyer
and Daniilidis also proposed a method for calibrating para-catadioptric
cameras from images of sets of parallel lines [163].

It is noteworthy that central catadioptric cameras can be fully cali-
brated from just images of lines, contrary to perspective cameras, with
or without the classical radial or tangential distortion models. In the
latter case, images of straight lines only allow to calibrate the cam-
era up to an arbitrary perspective projection, whereas for catadioptric
cameras, a full calibration is possible. One explanation for this is that
catadioptric cameras cannot be modeled by a perspective projection fol-
lowed by a distortion in the image plane. Rather, the distortion already
happens in the first step of the projection (in the unified model of Geyer
and Daniilidis, when mapping 3D points onto a sphere). Every camera
model for which this can be said may be fully calibrated from images
of lines even if their relative position is unknown.

Fish-eye models. Devernay and Faugeras presented a plumb-line
method in [113] and applied it to different distortion models: the clas-
sical backward model used by Brown [64], but also the models proposed
by Basu and Licardie and the field-of-view model (see Section 3.1.7).
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Polynomial and rational polynomial models. Claus and Fitzgib-
bon proposed two plumb-line methods for the bi-quadratic rational
function camera model (see Section 3.1.8) [97]. They are both based
on the fact that with that model, lines are imaged as conics. The
first method starts with estimating conics from extracted line images
and recovers distortion parameters via the factorization of a measure-
ment matrix consisting of the matrices of all image conics. The second
method is of the bundle adjustment type; it estimates the distor-
tion model’s coefficients using as cost function the Sampson distance
between image points and line images (conics). Barreto as well as
Strand and Hayman proposed similar plumb-line methods for the
1-parameter division model, for which line images are circles [26, 466].

Discrete camera models. Tardif et al. showed how to calibrate a
general radially symmetric radial distortion model with a plumb-line
approach [489]. Their method is applicable to both, a parametric radial
distortion curve and a discrete sampling of it.

General remarks. Whenever the back-projection operation can be
written using polynomials, it is easy to set up “closed-form” solutions
for plumb-line calibration. Consider the case of back-projection matri-
ces for central cameras, of size 3 × n, for any n. As we have seen in
Section 4.3, the image of a line L can be written as:

cT ∼ lTBi,

where l is the line at infinity of the plane spanned by the optical center
and the line L. If we have m line images, we can set up a system like:

cT
1
...

cT
m


 ∼


lT1

...
lTm


Bi.

It is easy to see that the back-projection matrix can be recovered
by factorizating the matrix on the left, like in factorization-based
methods for structure-from-motion [508]. It can only be determined
up to the pre-multiplication with an arbitrary 3 × 3 matrix, which
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corresponds to a projective transformation of the directions of back-
projected points — the perspective part of the imaging process. In
other words, the non-perspective distortions are fully recovered. Once
this is done, one may apply any calibration or self-calibration method
designed for perspective cameras, to make the calibration complete.

This approach can work with a minimum of three line images,
although this is not recommended in practice; in that case, the matrix
on the left of the above equation can directly be adopted as solution
for Bi. If prior knowledge on the camera is available, i.e., if constraints
on Bi are available, fewer line images may be sufficient in theory.

One may apply the same approach to non-central cameras, with
more general back-projection matrices, e.g., of size 6 × n. In that case
however, it must be taken into account that often, they will be of rank
lower than 6, a fact that has to be taken into consideration when esti-
mating them.

Finally, as always, the best approach for calibration is to optimize
a meaningful geometrical/statistical error criterion, possibly after
initializing with any of the above approaches, which usually comes
down to a non-linear bundle adjustment like optimization process.
For example, one may simultaneously estimate the coefficients of
undistorted lines and of camera model parameters where the cost
function is the sum of Euclidean distances between undistorted lines
and points. It will in general be better even to minimize distances in
the original, distorted image, i.e., distances between original image
points and line images, where the latter are parameterized by camera
model parameters and parameters for line images (two for central
cameras, four for non-central ones).

5.2.2 Spheres

Algorithms using images of spheres for the calibration of perspective
cameras were proposed for example by Penna [398], Daucher et al. [104],
Teramoto and Xu [498], and Agrawal and Davis [6], to name a few.

Stevenson and Fleck used images of spheres to calibrate a local
camera model, see Section 3.2.3 [463].

Ying and Hu showed how to use sphere images for calibrating central
catadioptric cameras [551]. In these cameras, spheres are mapped to
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conics, like in perspective images (to be precise, the mathematical
image of a sphere is the union of two conics, but in true cameras only
one of them is usually visible). Ying and Hu showed that from three
or more extracted conics, the catadioptric camera can be calibrated.
Ying and Zha analyzed the relationships between sphere images and
the image of the absolute conic and proposed a linear calibration algo-
rithm based on these [554, 555, 556].

5.2.3 Circles

Herbert proposed a calibration procedure where instead of point
matches or images of lines, projections of circles painted on the inside
of a hemisphere are used [219]. Coefficients of his distortion models
(see Section 3.1.7) are then estimated by measuring and comparing the
imaged areas of such circles.

Many algorithms using circles for calibrating pinhole cameras have
been proposed in the literature, see [91, 199, 257, 476] to name just a
few.

5.3 Self-calibration

Self-calibration has attracted great interest in the computer vision com-
munity in the last close to 20 years. The possibility of camera self-
calibration was already well known in photogrammetry, although it
was usually identified with the non-linear simultaneous optimization
of intrinsic and extrinsic camera parameters and scene structure (self-
calibrating bundle adjustment), whereas computer vision researchers
aimed at developing initialization approaches.

Most computer vision self-calibration works concern pinhole
cameras; a good general reference is the book by Hartley and Zisser-
man [213]. In the following, we describe approaches for non-perspective
cameras.

5.3.1 Self-calibration from Image Matches

General observations. As explained in Section 4.3, there is a strong
link between plumb-line calibration (calibration from line images) and
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self-calibration. From image matches, epipolar geometry can be recov-
ered; epipolar curves can be generated and since they are images of
straight lines (camera rays) they can be used as input to any plumb-
line approach. Instead of this, mainly conceptual, idea of explicitly
generating line images from a computed epipolar geometry, one may
directly use fundamental matrices for self-calibration.

In the following, we only consider the self-calibration of the non-
perspective part of a central camera model. By this we mean that
it suffices to recover its 3 × n back-projection matrix up to the pre-
multiplication by any (invertible) 3 × 3 matrix M. The effect of M is
a projective transformation of the directions of back-projected camera
rays, i.e., a perspective part of the camera model.

In the following, we consider the case of a fundamental matrix
between two images taken by the same central camera. Let B be
its 3 × n back-projection matrix (we omit the superscript i here for
ease of notation). The fundamental matrix is then given by (cf. Equa-
tion (4.3)):

F ∼ BT[t]×R B.

Consider rows of F; they are linear combinations of the rows of B,
with coefficients of these combinations given by the matrix (BT[t]×R).
Similarly, the columns of F are linear combinations of the columns of
BT, i.e., of the rows of B. This suggests the idea of determining the rows
of B by computing a basis of the space of row and column vectors of F.
To do so, let us now look at the singular value decomposition (SVD)
of F:

F ∼ UΣVT,

where all matrices are of size n × n. Since F is of rank 2 in general, the
SVD can be reduced by only considering the first two columns of U,
the first two rows of VT and the two non-zero singular values in Σ:

F ∼ Ūn×2Σ̄2×2V̄T
2×n.

The columns of Ū as well as the rows of V̄T are linearly dependent
on the rows of B. Let us stack them together in a 4 × n matrix and
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compute its SVD: (
ŪT

V̄T

)
4×n

= W4×nΓn×nXT
n×n.

In the absence of noise, the above matrix is of rank 3 in general, since
all its rows are linearly dependent on the three rows of B. The three
rows of XT corresponding to the non-zero singular values in Γ can now
be directly adopted as the rows of the back-projection matrix B. It is
clear that the rows of B are only defined up to linear combination of the
rows of XT, but this does not matter: as stated above, B needs only be
recovered up to a projective transformation M, and this means nothing
else than a linear combination of its rows.

A more compact alternative procedure would proceed as follows.
Stack F on top of FT and compute the SVD of this 2n × n matrix:(

F
FT

)
= UΣVT.

Using similar arguments as above, the matrix on the left is of rank 3
in general and the three rows of VT corresponding to non-zero singular
values in Σ can directly be chosen as rows of B, which concludes this
self-calibration algorithm.

A similar procedure was proposed by Claus and Fitzgibbon for
the case of 3 × 6 back-projection matrices [98]. The self-calibration
approach for para-catadioptric cameras by Geyer and Daniilidis (cf.
Section 5.3.1) follows the same principle [166, 170]. In their case, the
back-projection matrix could be fully determined (up to a rotation
instead of a projective transformation), due to using constraints on
the coefficients of B. More generally speaking, there are two ways of
obtaining more than the self-calibration of “just” the non-perspective
part of B. (i) Use constraints on the entries of B. (ii) In any case,
once B is estimated up to a projective transformation, we are in the
situation of an uncalibrated perspective camera. From the fundamen-
tal matrix between two perspective images, one may estimate up to
two intrinsic parameters [206, 474]; usually one just computes the focal
length. Hence, in many cases it should be possible to obtain a full
self-calibration of non-perspective cameras from a single fundamental
matrix.
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From the above, it is straightforward to extend self-calibration to
the use of multiple fundamental matrices for a better stability and/or
to the self-calibration of two or more cameras with different parame-
ters/models. Without giving a formal proof, it should be possible for
example, to self-calibrate three entirely different cameras (possibly with
different sizes of back-projection matrices), from the three pairwise fun-
damental matrices. This possibility was demonstrated by Geyer and
Daniilidis for para-catadioptric cameras [166, 170].

In the following, we review a few self-calibration approaches pro-
posed in the literature for different types of non-perspective camera
models.

Classical distortion model. Zhang proposed an approach for the
simultaneous estimation of one radial distortion coefficient and the per-
spective fundamental matrix, by non-linear optimization of the epipolar
constraint [566]. Based on his experimental results, Zhang concluded
that the distortion coefficients can only be estimated reliably if match-
ing points can be extracted accurately and if the actual distortion is
significant (cf. the discussion in Section 3.6). In other cases, the estima-
tion is ill-conditioned or in other words, taking into account distortion
coefficients besides the fundamental matrix constitutes an overparam-
eterization. One may further add that it seems to be required that
image matches be well distributed across the image planes, as is always
required when estimating radial distortion, which is most observable
toward the borders of images.

In [461], Stein proposed a virtually identical method, as well as an
extension to three views. Here, trifocal transfer errors are used to define
a cost function which is optimized simultaneously over the distortion
and trifocal tensor coefficients.

Non-central panoramas. Huang et al. proposed a self-calibration
method for non-central panoramic images acquired by rotating 1D cam-
eras [239]. In their approach, it is required that images be obtained by
rotating about the same axis.

Catadioptric cameras. Gluckman and Nayar showed how to deter-
mine the focal length of the camera in a single-lens catadioptric stereo
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system using one camera and two planar mirrors [174, 175]. Since this
setup is identical to a system of two perspective cameras, perspec-
tive self-calibration approaches can be readily applied. Gluckman and
Nayar used point matches between the two views and the fundamental
matrix estimated from them. Their reported results were not perfect.
We believe that this is because of a generic degeneracy: whenever the
two mirrors are arranged in a rotationally symmetric position with
respect to the camera’s optical axis, the two virtual cameras (the real
camera reflected in the two mirrors) are in a degenerate relative pose
for focal length computation [474]. In situations close to this, results
may be expected to be inaccurate.

The first self-calibration approach for non-perspective catadioptric
systems is probably due to Kang, who considered the central para-
catadioptric case [262]. Based on an expression of the epipolar geom-
etry as a function of the relative motion between two views and the
relevant intrinsic parameters, he proposed a cost function consisting of
the sum of distances between image points and epipolar circles. This
cost function was minimized non-linearly.

Geyer and Daniilidis showed how to self-calibrate para-catadioptric
cameras from point matches, via the estimation of the 4 × 4 funda-
mental matrix [166, 170]. Their key observation was that the null-
space of the fundamental matrix contains the vector representation
of the image of the absolute conic (a circle in their case). They showed
that the fundamental matrix is of rank 2; if both images are taken
by the same camera, then the left and right null-spaces may be inter-
sected to find the image of the absolute conic and thus to calibrate
the camera. Geyer and Daniilidis also showed that if the images are
taken with different para-catadioptric cameras, then their intrinsic
parameters can be found from the fundamental matrices between three
images. These observations can be generalized, cf. the above paragraph
“General observations”.

Sturm showed that a similar concept can be used for the self-
calibration of para-catadioptric cameras from homographies associated
with scene planes [471].

In [344, 347, 349], Mičušik and Pajdla proposed an approach for
the estimation of the epipolar geometry of non-central catadioptric
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cameras, demonstrated for the examples of a spherical mirror (always
non-central) and misaligned para- and hyper-catadioptric systems.
The approach proceeds in several steps. First, an appropriate central
approximation to the full non-central back-projection is derived. This
approximate model is then linearized such that its coefficient(s) can
be estimated simultaneously with the fundamental matrix, by solving
a quadratic eigenvalue problem similarly as in Fitzgibbon’s approach
for the division model (see below). This allows to initialize and then
optimize the complete, non-central model.

Polynomial and rational polynomial models. Fitzgibbon
showed how to simultaneously estimate radial distortion and perspec-
tive multi-view relations such as the fundamental matrix, plane homo-
graphies, or trifocal tensors, by solving quadratic or cubic eigenvalue
problems [145]. The approach is based on the division model (see Sec-
tion 3.1.8). This was extended by Mičušik and Pajdla [344, 346, 349]
(see previous paragraph), Barreto and Daniilidis [33, 34], Claus and
Fitzgibbon [98], and Steele and Jaynes [458].

Claus and Fitzgibbon showed how to estimate the coefficients of the
full bi-quadratic rational function model for central cameras (i.e., 3 × 6
back-projection matrices) from point matches between two views [98].
They also analyzed the nature of epipolar curves (conics) and showed
how to calibrate the model from one image of a planar calibration grid.

Mičušik and Pajdla used a division-type model as an extension
to the equiangular fisheye model (see Section 3.1.7) and showed,
analogously to Fitzgibbon’s approach, how to simultaneously esti-
mate its two parameters and the fundamental matrix [344, 346, 349].
If both parameters of their model are used, 15 point matches are
required; for a one-parameter version 9 matches are sufficient. They
used an analog approach to self-calibrate a one-parameter model of
para-catadioptric cameras, leading to a quartic instead of a quadratic
eigenvalue problem [344, 348, 349].

Barreto and Daniilidis showed that even if two images with differ-
ent distortion coefficients for the division model are considered, they
are subject to a 4 × 4 fundamental matrix [34]. They gave an algo-
rithm for linearly estimating the distortion coefficients and the epipolar
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geometry, from a minimum of 15 point matches. The same factoriza-
tion approach is used in [33] to calibrate the nodes of a multi-camera
network, including radial distortion, intrinsic and extrinsic parameters.

Li and Hartley proposed a different method for estimating distortion
coefficients of the division model from point matches in two views [311,
312]. They decoupled the estimation of distortion coefficients from that
of the fundamental matrix and showed how to estimate one or two
coefficients of the division model from 9 point matches.

Kúkelová and Pajdla proposed a minimal method for the self-
calibration problem with one distortion coefficient, using 8 point
matches [292]. In [72, 291, 293], Kúkelová, Byröd et al. gave minimal
methods for the following two problems. (i) Estimating the fundamental
matrix together with two different coefficients for the division model,
from 9 point matches (a non-minimal linear solution for this problem
was first given by Barreto and Daniilidis [34], see above). (ii) Estimat-
ing the epipolar geometry and one distortion coefficient (identical for
both images) in the case of partially calibrated images (known principal
point and square pixels); a minimal method for estimating the distor-
tion coefficient and the essential matrix (as opposed to the fundamental
matrix) was given.

Steele and Jaynes extended Fitzgibbon’s approach in two ways [458].
First, they solved a more general quadratic eigenvalue problem, allow-
ing to obtain less ambiguous and more accurate results in the case of
more than the minimum of 9 point matches. Second, their approach
may be used to simultaneously estimate a global distortion coefficient
and fundamental matrices for multiple image pairs, thus increasing the
accuracy of each of these estimates.

Kannala et al. proposed a bundle adjustment type approach for the
self-calibration of a unified central catadioptric model (Section 3.1.5)
and the polynomial model of Equation (3.7), from matches between
two images [267].

Discrete camera models. Thirthala and Pollefeys showed how to
self-calibrate the 1D radial camera model (see Section 3.1.9) from four
images, based on estimating the associated quadrifocal tensor [500].
Their approach is stratified, starting with a projective reconstruction
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and converting it to a Euclidean one. At that stage, the radial dis-
tortions of the camera are not yet calibrated, just the mapping from
radial planes to radial lines. To get a full calibration, Thirthala and
Pollefeys used the assumption of radial symmetry. They either fit a
division model to the reconstruction [501] or a discrete camera model.

In addition to their approaches for grid-based calibration of general
radial distortion models (see Section 5.1.2), Hartley and Kang also
showed that self-calibration is possible [209]. They observed however
that results are too unstable in the presence of even small amounts of
noise.

Tardif et al. proposed an approach for the self-calibration of a gen-
eral radially symmetric radial distortion model (cf. Section 3.3.2) from
images of a planar scene with unknown structure [489]. A more robust
extension which also works for images with different radial distortions
was presented in [490]. A factorization-based method for the same prob-
lem was given by Ramalingam et al. [417].

5.3.2 Special or Known Motions

Like for perspective cameras, using special types of camera motion
or actually knowing the camera motion usually allows to simplify the
self-calibration problem. This enables less complex algebraic problem
formulations, allows to work with fewer images, and often gives more
accurate results. As for perspective cameras [207], the most used motion
is pure rotation about the optical center; an approximate rotation is suf-
ficient if the scene is sufficiently far away. In the following, we describe
several approaches, first ones based on special types of motion (but
with unknown motion parameters), then ones using knowledge of the
motion parameters.

Classical distortion model. Stein proposed a method based on
pure rotational camera motion [460]. Matching (undistorted) image
points are related by a special homography. Distortion coefficients and
that homography are estimated simultaneously, by non-linear optimiza-
tion, using a reprojection error type cost function.

Sawhney and Kumar showed the importance of estimating
non-perspective distortion for generating mosaics based on images
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acquired with a rotating camera [435]. They proposed a direct method
(i.e., based on image intensities rather than feature matches) for simul-
taneously estimating distortions and image alignment transformations.
In their work, they only considered a single term of the classical radial
distortion model, but it is obvious that other distortion models may be
estimated from images taken under pure rotation.

Fish-eye models. Xiong and Turkowski performed the self-
calibration of a fisheye camera from pure rotations [539]. The camera
model they used is the extension of the equiangular model described in
Section 3.1.7. The calibration is performed by non-linear minimization,
where the distortion center/principal point is initialized as the center
of the image’s bounding ellipse.

Discrete camera models. Thirthala and Pollefeys showed how to
self-calibrate the 1D radial camera model (see Section 3.1.9) from three
images taken under pure rotational motion [500, 501]. To be precise,
in the non-central version of the 1D radial model, pure rotation would
rather correspond to camera poses such that all optical axes intersect
in a single point. A full self-calibration algorithm was given for central
cameras.

Tardif et al. showed how to self-calibrate a general radially
symmetric radial distortion model using either pure rotational or pure
translational camera motion [489]. They used both a parametric radial
distortion curve and a discrete sampling thereof.

The probably most general self-calibration problem considered to
date, besides the work of Grossmann et al. (see Section 5.3.3), con-
cerns the ray-based self-calibration of a general central camera. In the
following works, the only assumption made is that of continuity —
neighboring image points have neighboring camera rays.

Ramalingam et al. showed that from pure translational motions,
the self-calibration of camera rays is possible up to a projective
transformation of their directions [419]. They stated that a com-
plete self-calibration is possible from two rotational motions and gave
an algorithm for full self-calibration from one translational and two
rotational motions. In [421], they proposed an algorithm that only
requires two rotational motions.
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Nistér et al. and Grossmann et al. [193] gave several similar results,
mainly for the case of infinitesimal rotations or translations [380, 193].
Their main result is an algorithm for self-calibration from rotational
optical flow. They issued the conjecture that two infinitesimal rotations
about different axes are sufficient for a complete self-calibration. This
was theoretically proven by Espuny and Burgos Gil who also gave a
practical algorithm [130, 131].

Known motions. Stevenson and Fleck developed an approach using
a robot arm and a light source to calibrate a camera [462]. The cam-
era is mounted on the robot arm which then rotates the camera by
known angles (the rotation should be about the camera’s optical cen-
ter, although this is not further discussed in [462]). The image of the
fixed light source is extracted in each frame. The approach calibrates a
radially symmetric central model, as well as optical parameters such as
light fall-off across the image plane. The gist of the proposed approach
is as follows. An initial estimate of the distortion center is assumed;
the camera is rotated such that the light source is seen at the distor-
tion center. Then, the camera is successively rotated in one direction
by some small angle increment. The observed image positions of the
light source, together with the known rotation angles, directly allow to
construct a discrete sampling of the distortion function. Stevenson and
Fleck also described how to correct the initial estimate of the distortion
center.

Similar active approaches were also proposed by Du and Brady
[122] and Kojima et al. [282] and seem to be in use for the calibration
of cameras for space and planetary exploration, see e.g., [334].

Swaminathan et al. proposed an approach for calibrating non-
central catadioptric cameras, using image matches and knowledge of
the camera motion [484]. The approach is based on a parametric model
for the caustic of catadioptric cameras; its coefficients are non-linearly
optimized in a bundle adjustment like manner.

5.3.3 Image Statistics

Farid and Popescu showed in [135] that distortion coefficients, as well as
coefficients of non-linear intensity transformations, may be estimated
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from single images without the use of calibration objects. This is based
on a frequency analysis of the image and on the assumption that non-
linear transformations (geometric or intensity distortions) introduce
specific higher-order correlations in the frequency domain. In some
sense, this approach is an example of using natural image statistics, here
for camera calibration. A similar approach was developed by Yu [561].

Grossmann et al. showed that a highly discrete camera model,
consisting of “isolated” camera rays (see Section 3.3.3), can be self-
calibrated just by taking images of unknown scenes, based on simple
assumptions about their appearance [192, 194]. Roughly speaking, it
is assumed that the smaller the angle between two camera rays, the
more likely it is that the associated pixels produce similar greylevels;
this is in some sense, an assumption on the statistics of natural images.
When acquiring a sufficiently large set of images, observed differences
between greylevels of different pixels, allow to infer the topology of the
camera rays. Based on a simple off-line training, one may even recover
the angles between rays and finally, their directions in a common coor-
dinate system.

5.4 Special Approaches Dedicated to Catadioptric Systems

In this section we only cover methods that were not explained in any
of the above sections. When using catadioptric cameras, one rarely
does not know anything at all about the shape of the mirror, unless
it is taken “off-the-shelf” or if the producer of a catadioptric camera
does not disclose any information about the mirror’s shape. In case the
mirror shape is known, calibration can be considered as estimating the
relative pose between camera and mirror, and possibly the camera’s
intrinsic parameters. Otherwise, several possibilities exist, as explained
below.

Known mirror shape. One of the two (self-)calibration methods
proposed in [262] by Kang is based on the extraction of the mirror’s
upper circular rim in the image. From this, some or all intrinsic param-
eters can be computed. This idea was used in several other works, for
example [110].
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Strelow et al. proposed a calibration method using 3D calibration
grids [467]. They assumed that the perspective camera looking at the
mirror is already calibrated. The calibration of the catadioptric sensor
then comes down to estimating relative mirror-to-camera pose. Strelow
et al. estimated this together with the pose of the calibration grid,
by non-linearly optimizing the reprojection error of calibration points.
Lhuillier showed how to optimize the mirror-to-camera pose and the 3D
position of points observed and matches in several images, via bundle
adjustment [308].

Aliaga used a parabolic mirror, looked at by a perspective
camera [12]. Hence, the catadioptric system is non-central. A calibra-
tion procedure was proposed that estimates the focal length of the
perspective camera and its position relative to the mirror (the orien-
tation seems to be assumed to be perfect, i.e., the optical axis to be
parallel to the mirror axis), as well as a radial distortion coefficient.

Similar but more restrictive approaches exist that require knowl-
edge of the mirror shape and the camera’s intrinsic parameters, i.e.,
calibration comes down to estimating the relative mirror-to-camera
pose. Mashita et al. [332] supposed that the perspective camera is cali-
brated and that the mirror’s circular upper boundary can be extracted
in the image. Then, classical algorithms for estimating the pose of a
circle in 3D can be applied, e.g., [114], after which the pose of the
entire mirror, relative to the camera, is known. This effectively gives
the calibration of the entire catadioptric system. This is similar to the
approach by Kang described above, which was developed for central
para-catadioptric cameras, whereas the one by Mashita et al. is for
perspective cameras and central as well as non-central setups.

Another such method was proposed by Fabrizio et al. where besides
the upper boundary of the mirror, a second circular section of it must
be observable in the image, e.g., the footprint of a black needle glued
on the mirror of some prototypes of catadioptric systems [133]. From
the images of these two circles, the mirror pose is computed along with
some intrinsic camera parameters.

Unknown mirror shape. Several possibilities exist to perform cal-
ibration in this case, some of which are explained in the following.
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If it is known that the catadioptric camera is one of the central
types (cf. Section 2.3.1), then one may for example use any of the
unified models (cf. Section 3.1.5) to calibrate it.

A more general approach was proposed by Caglioti et al. for the case
where all that is assumed is that the mirror is a surface of revolution
[78]. The perspective camera looking at the mirror can be positioned
arbitrarily and the mirror shape can be arbitrary (besides being a sur-
face of revolution), hence the system is non-central in general. The
proposed calibration approach requires to extract the silhouette of the
mirror in the image as well as the image of at least one straight line in
the scene. This input allows to calibrate intrinsic camera parameters
(focal length and principal point), the shape of the mirror (its profile)
and the relative pose of mirror and camera.

It is of course possible to cut the calibration process in two steps,
where in a first step one reconstructs the mirror shape using any of
the many methods for specular surface reconstruction available in the
literature, most of which are based on analyzing images of patterns
reflected in the mirror (a representative list of references is out of scope
for this manuscript). An alternative to these classical approaches is to
use polarization imaging, as proposed for example by Morel et al. [352].

Naturally, another possibility is to calibrate the catadioptric system
using any of the global, local, or discrete models described in the pre-
vious section. If the mirror is of arbitrary shape, only local or discrete
models might work.



6
Structure-from-Motion

The goal of this section is to briefly describe the main building blocks
of structure-from-motion in a simple way, that is independent of the
camera model used. This is to highlight the underlying (simple) princi-
ples, allowing to establish links between seemingly different approaches
that abound in the literature and to easily adapt these principles to
new camera models.

The first three sections are dedicated to the main building blocks
for calibrated cameras: pose and motion estimation, and triangulation
of points. These will be explained for central and non-central cam-
eras. The fourth section aims at highlighting the central role of bundle
adjustment in all of structure-from-motion and calibration. The fifth
section lists a few works on 3D scene modeling from omnidirectional
cameras, from single or multiple views. In the last section, the related
issues of distortion correction and stereo rectification are discussed;
they are not really structure-from-motion topics, but necessary for 3D
scene modeling.

Overall, we believe that the most important ingredients of structure-
from-motion systems are: algorithms working with the minimum
required amount of data, to be embedded in robust estimation schemes
such as RANSAC, and a (robust) bundle adjustment, allowing to get

127



128 Structure-from-Motion

optimal results for all of the individual problems. Other important con-
tributions, not discussed further in this section, are methods determin-
ing globally optimal solutions of structure-from-motion problems, see
e.g., [260] and references therein. Besides the minimal methods, other
algorithms that give suboptimal results may be useful, e.g., to get a
better initial estimate from the set of inliers of a model determined
using a minimal method. Finally, this section only covers some main
structure-from-motion problems; many special cases exist, using lines
or other primitives than the points considered in the following, con-
cerning dynamic scenes or objects, etc.

6.1 Pose Estimation

Computing the pose relative to a calibrated perspective camera, of an
object with known structure, is one of the most classical problems in
photogrammetry (where it is called “resection”) and computer vision,
see, e.g., a review paper by Haralick et al. [205]. Pose, i.e., object posi-
tion and orientation, is usually computed using point or line correspon-
dences between the object and the image, although other possibilities
exist, for example computing the pose of a spherical object from its
silhouette in the image [114]. The minimum number of required point
correspondences is three, in which case there may be up to four pos-
sible solutions [230]. Any of the numerous algorithms that were pro-
posed for the perspective camera model can be easily adapted to any
other central camera model, since instead of working with the original
2D image coordinates, each algorithm uses, explicitly or implicitly, the
directions of the back-projected camera rays. Hence, these algorithms
can be used for any central camera as soon as it is calibrated. There
exist different formulations for the pose estimation problem. Here, we
use one that is directly suited for central as well as non-central cam-
eras. Minimal solutions for the non-central pose estimation problem
were proposed independently by Chen and Chang [88], Nistér [378],
Nistér and Stewénius [379], and Ramalingam and Sturm [414, 415].
See also papers by Fabrizio and Devars [132] and Schweighofer and
Pinz [442] about the n-point pose problem for central and non-central
cameras.



6.1 Pose Estimation 129

General problem formulation. The problem can be formulated as
follows. Instead of explicitly estimating the rotation and translation of
the object model, we estimate the depth of object points relative to the
camera, i.e., their position along the known camera rays, associated
with the matched image points. Given the position of 3 points, the
rotation and translation for the entire object can then be computed
easily (via absolute pose estimation, see for example [233]). We use
the finite and infinite parts of back-projection, cf. the introduction of
Section 3: a camera ray is defined by a finite point Bf (for central
cameras, the optical center) and the direction Bi. A point on the ray
is then parameterized by a scalar λ:

Q ∼ Bf + λ

(
Bi

0

)
.

With three object points Qj , parameterized by λj , j = 1 · · ·3, we
can set up three constraint equations: the Euclidean distances between
these points must be identical to the prior known values. The squared
distance between two points Qj and Qk is quadratic in λj and λk. From
the three pairs of points, we thus get a total of three quadratic equations
in three unknowns. One may use any appropriate numerical method for
solving such a system; it is simple for example to convert the equation
system into a degree-8 polynomial in one of the unknowns and then
to use any numerical root finding method to get the up to eight real
solutions. This should naturally be embedded in a robust estimation
scheme, such as RANSAC, where each of the potential solutions is
scored against the other point matches.

Central cameras. The usual special case of central cameras allows
for a slight simplification. As finite point Bf , the origin may be adopted
for all camera rays; our points can then be parameterized as:

Qj ∼
(

λjBi
j

1

)
.

If we swap the sign for all three λj , the distances between the Qj are
not affected. Hence, for each solution of our three constraint equations,
there exists a mirror solution with all signs swapped. This allows to
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reduce the complexity of the estimation problem: instead of solving the
equivalent of a degree-8 polynomial, a degree-4 polynomial is sufficient.

Other pose problems. Josephson and Byröd gave a minimal
method for estimating camera pose, together with the focal length
and one radial distortion coefficient (division model), from four
matches [259].

A special case is that of planar pose, where the unknown object
pose consists of a translation in one plane (usually, a horizontal ground
plane) and a rotation about the normal of that plane. Minimal solutions
requiring 2 point matches only exist [12, 393]. Gourichon et al. proposed
a bio-inspired method for planar pose estimation [184].

6.2 Motion Estimation

Generalities. Motion or egomotion estimation, or relative orienta-
tion, is another classical problem. The goal is to estimate the motion
of a camera or the relative pose of calibrated cameras, from matches
between images but without using information on the scene structure.

The first truly minimal solution for central cameras was developed
by Nistér [377]: an approach for estimating all possible essential matri-
ces [324] from 5 point matches (up to 10 theoretical solutions).

As for non-central cameras, the concept of essential matrix was
introduced by Pless [402], cf. Section 4.1. It can be estimated by solving
a linear equation system, established from 17 or more point matches;
extracting the motion parameters from the essential matrix is then
relatively straightforward. Note that if the cameras are not “fully non-
central”, e.g., are of the axial type, then such a linear estimation pro-
cess may be underconstrained, as pointed out by Mouragnon et al.
[357]. Other degeneracies were studied by Kim and Kanade [279]. Kim
et al. proposed two motion estimation algorithms for the case where the
non-central system consists of two or more central cameras with non-
overlapping fields of view, i.e., where points are only tracked by indi-
vidual cameras but where no handover between cameras occurs [277].
Finally, a minimal solution for the general non-central case, from 6
point matches, was given by Stewénius et al. [464].
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Contrary to motion estimation from central cameras, the scale of
the translation can also be estimated with non-central cameras. How-
ever, this is only accurate if the trade-off of several factors is favorable
(cf. the general discussion in Section 3.6): the cameras should be suf-
ficiently non-central, compared to the amount of noise, the distance of
the scene from the cameras, etc. The other way round: if a camera is
not sufficiently non-central, then it is advisable to model it as a central
system and use traditional motion estimation, cf. also a study by Kim
et al. [278].

In the following, we briefly cite a few works on motion estimation
for omnidirectional cameras.

Works on motion estimation for omnidirectional cameras.
Yagi et al. considered the motion estimation with a central hyper-
catadioptric camera [543]. The robot-mounted camera is supposed to
move on a horizontal ground plane; the topic of [543] is to estimate
small perturbances to perfect planar motion (so-called rolling), from
optical flow.

McMillan and Bishop estimated the motion between two calibrated
cylindrical images [338]. This is done by non-linear minimization of
the distances between back-projection rays associated with match-
ing image points. Kang and Szeliski [264] used the classical 8-point
method for linearly estimating the essential matrix in the same case.
Other approaches for motion estimation that are based on computing
the essential matrix, explicitly or implicitly from directions of back-
projected image points, are [86, 479]. Svoboda discussed the issue of
properly normalizing coordinates of image matches to ensure a good
conditioning [391, 479], along the lines of Hartley’s approach [208].
Bazin et al. proposed a motion estimation method for catadioptric cam-
eras that decouples the estimation of rotation and translation param-
eters [45]. The method is designed for man-made environments and
requires the detection of sets of parallel lines.

Gluckmann and Nayar estimated motion from the optical flow [173].
In order to use a wide field of view and to use the same method for
motion estimation for different imaging geometries, they mapped the
flow field to a sphere centered in the optical center, using camera
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calibration information. Then, extensions of classical algorithms for
motion estimation from optical flow, from planar to spherical viewing
surfaces, can be readily applied, independently of the actual camera’s
imaging geometry. We also refer to the seminal work on determining
camera motion from the flow field on the viewing sphere, by Nelson
and Aloimonos [373], where they also clearly explained why wide fields
of view are superior to narrow ones for motion estimation. See also the
papers [141] by Fermüller and Aloimonos who studied the same issue
while drawing analogies with the evolution of biological eyes, [304] by
Lee et al., and [375] by Neumann et al. who proposed a mathematical
formulation for designing non-central cameras that are optimal for
motion estimation. Shakernia et al. proposed a similar approach to
that of Gluckman and Nayar, but instead of back-projecting optical
flow to a sphere, they used another curved surface which is implicitly
defined by the lifting operation carried out when back-projecting
image points [446].

In [468], Strelow and Singh described how to combine image point
matches in omnidirectional cameras with inertial sensor readings, for
structure and motion estimation. A first approach assumes a calibrated
camera. A second approach works for uncalibrated cameras — only the
assumption of a radial projection function is required (cf. Section 3.1.9).
This is highly related to work by Thirthala and Pollefeys, see Sec-
tions 3.1.9 and 5.3.1, and to the RAC (radial alignment constraint) by
Tsai [515].

Shakernia et al. formulated motion estimation under the assumption
of small displacements between images [447].

Lim et al. introduced a so-called antipodal-epipolar constraint that
allows to decouple the estimation of rotation and translation for cam-
eras with larger than hemispheric fields of view [318]. This result is
based on the notion of antipodal image points: points whose camera
rays are aligned but which correspond to opposite viewing directions.
If two antipodal points in one camera can both be matched in the other
camera, then a specific epipolar constraint becomes available. Lim et al.
showed how to independently estimate translation and/or rotation from
two or more pairs of such antipodal point matches. In [317], they showed
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a similar decoupling approach whose inputs are optical flows measured
at antipodal point pairs.

6.3 Triangulation

Points. Reconstructing a 3D point from matches in two or more cal-
ibrated images (called intersection in photogrammetry) is of course an
essential module in structure-from-motion. Like for the other problems,
an optimal solution requires in general a bundle adjustment or a global
optimization approach. For the special cases of two or three perspec-
tive images, “direct” optimal solutions were proposed by Hartley and
Sturm [211] and Stewénius et al. respectively [465].

Suboptimal but generic solutions are to estimate the 3D point that
minimizes some distance measure relative to the camera rays associated
with the input image matches, for example the Euclidean distance [478]
or an angle-based measure, see Section 6.4.

Lines. The triangulation of lines or line segments is useful, especially
in 3D modeling of man-made objects. Whereas for points, it does not
matter if they are reconstructed from central or non-central cameras
(a single ray is used per camera), there is a difference in the case of
lines. As for central cameras, whatever type they are, a line image can
be back-projected to an interpretation plane in 3D — the plane spanned
by the optical center and the original 3D line. From two images, the
line can thus be triangulated by computing the intersection of the two
interpretation planes.

As for non-central cameras, they allow in general the triangulation
of 3D lines from single images. The reason is that the back-projection
is no longer a plane but some other surface and in general, the original
3D line is the only straight line on that surface. Another way of formu-
lating this is by considering image points lying on a line image, and the
associated camera rays. It is well known that for four lines in general
position, there exist two lines incident to all of them. If more than four
camera rays associated with a line image are considered, the original
3D line can be found as the only one incident to all of them, using
the approach of Teller and Hohmeyer [494]. Of course, if the camera



134 Structure-from-Motion

is of the axial type, all camera rays are incident with the camera axis;
this can be taken care off by computing all candidate 3D lines (two
in general) and by discarding the camera axis. There may be ambigu-
ous solutions for the 3D line, depending on the camera used and the
position of the original line.

Algorithms and in-depth theoretical studies for line triangulation
from non-central images are given by Caglioti and Gasparini [75, 76, 77]
as well as Lanman et al. [299]. Morita et al. described an early method
for reconstructing 3D lines from two fisheye images [353]. Although not
described as such, the method seems equivalent to intersecting interpre-
tation planes. Like other researchers, for example Vasseur and Mouad-
dib [519], Morita et al. used the fact that 3D lines in spherical images,
appear as great circles. Yamazawa et al. described a Hough-transform-
based approach for detecting line segments in omnidirectional images
and demonstrated the 3D reconstruction of lines from image triplets
[545]. Another approach for 3D line (segment) triangulation for omni-
directional images is for example [242].

6.4 Bundle Adjustment

As mentioned earlier, bundle adjustment is imperative for obtaining an
accurate solution of any structure-from-motion, calibration, or other
similar problem, an exception being problems for which global opti-
mizers exist. Bundle adjustment means in principle nothing else than
a simultaneous non-linear optimization of all unknowns; in addition, it
implies that a meaningful cost function is used, see below. Other impor-
tant issues are the exploitation of the problem structure at hand to
obtain efficient algorithms; this includes the well-known sparsity of the
normal equations solved at each iteration of the usually employed non-
linear least-squares methods but also the question of how to order data
in the case of image sequences with multiple overlaps. More on bundle
adjustment can be found in the overview paper by Triggs et al. [512].

Bundle adjustment is most often a non-real-time process. Recently,
approaches that may be qualified as hybrids between bundle adjust-
ment and simultaneous localization and mapping (SLAM) [107] were
proposed, by Mouragnon et al. [356, 358] and Engels et al. [129]. SLAM,
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mostly used in robotics, solves in principle exactly the same problem as
structure-from-motion: estimating camera motion and scene structure.
The main difference is the real-time requirement in robotics applica-
tions, which lead to sequential solutions for cameras and other sensors
(SLAM), whereas bundle adjustment and structure-from-motion sys-
tems were often developed without having to satisfy this requirement.
The hybrid approaches of Mouragnon et al. and Engels et al. allow for
real-time performance by following an overall sequential scheme, while
continuously performing a complete non-linear optimization on as long
subsequences as possible with the available computing power.

As mentioned above, an important aspect of bundle adjustment is
the choice of cost function. As generally agreed, the “best” cost function
is based on the reprojection error, i.e., the distance between measured
image points and those predicted by the unknowns (scene structure,
camera intrinsics or extrinsics). To be more precise, the cost function
should be defined based on a statistical model of the noise in the input
data, whenever this is available. If the input, as usual, are extracted
image points then one should use an uncertainty estimate of the inter-
est point extractor; under the default assumption of i.i.d. Gaussian
noise this automatically leads to the standard cost function defined as
the sum of squared distances between measured and predicted image
points. Ideally, actual uncertainty estimates of image point positions
should be used.

Minimizing reprojection errors requires carrying out forward projec-
tions of 3D points; as described elsewhere in this manuscript, for some
cameras back-projection is easier to formulate. Further, if already cali-
brated cameras are considered, then one may develop a generic bundle
adjustment working with camera rays instead of image points as basic
input. Such procedures were for example proposed by Ramalingam
et al. [414, 415], Schweighofer et al. [443], and Lhuillier [309, 310].

Ramalingam et al. used as cost function, the distance between
camera rays and 3D points, which is simple to use but subopti-
mal. Schweighofer et al. gave a provably convergent algorithm for
estimating camera motion and 3D structure, using the same cost
function [443]. As an alternative solution for non-central cameras,
Ramalingam et al. proposed to partition the set of camera rays into
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clusters of approximately convergent rays, which are then treated as
individual pinhole cameras inside a classical reprojection error-based
bundle adjustment. Such an idea was also suggested though apparently
not implemented, by Martins et al. [331].

Lhuillier proposed and justified the use of an angle-based cost func-
tion [309, 310]. To be precise, he suggested to use the squared tangent
of the angle between the back-projected camera ray (computed from
estimated camera parameters) and the line spanned by the optical cen-
ter and the estimated 3D point. He also discussed how to minimize the
reprojection error for catadioptric cameras.

Kannala et al. used a different angle-based cost function for bundle
adjustment (sum of squared sines) [267], inspired by Oliensis [385].

6.5 Three-Dimensional Scene Modeling

In this section, we cite a few approaches for complete 3D scene modeling
from omnidirectional images. Most of them rely on a combination of
the above structure-from-motion techniques and binocular or multi-
view dense stereo methods.

Kato et al. used a shape-from-silhouette approach with a fisheye
camera to reconstruct a moving object, whose motion was supposed to
be determinable [270].

Kang and Szeliski used mosaics acquired by a calibrated perspec-
tive camera and expressed in cylindrical coordinates [264]. After motion
estimation and bundle adjustment based on interest points, they carried
out a dense multi-baseline stereo algorithm. A similar system, active-
vision based, was proposed by Ishiguro et al. [247]. Teller and his group
used georeferenced omnidirectional images for city modeling [493].
Bunschoten and Kröse [68, 69], Doubek and Svoboda [119], Mičušik
et al. [345], and Havlena et al. [214] presented other multi-baseline
stereo approaches for central omnidirectional images.

One of the most advanced approaches, demonstrated on long image
sequences, is that of Lhuillier [310].

There also exist approaches for 3D modeling from single omni-
directional images. Sturm proposed a method for para-catadioptric
cameras, exploiting user-provided geometric scene constraints such as
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perpendicularity or parallelism of lines and coplanarity of points [470].
The method consists of two steps, first a calibration step, then the
actual 3D modeling. It is important to underline that the second step is
not specific to omnidirectional images, but could be applied to any cal-
ibrated central image: the available geometric constraints are applied
on the back-projected camera rays and it does not matter what the
underlying imaging geometry is.

Another single-view 3D modeling approach for omnidirectional
images is due to Chen and Ip [93]. The same comment as above applies,
i.e., the actual 3D modeling method is valid for any central camera and
not specific to omnidirectional ones. Chen and Ip used a rectangular
object in fronto-parallel position, to calibrate a radial lens distortion
model and used that object also as reference plane for the 3D model.

6.6 Distortion Correction and Rectification

By distortion correction we understand here the generation of perspec-
tively correct images from distorted ones. This is highly related to the
problems of texture mapping and stereo rectification. Let us first con-
sider texture mapping from one image: given a calibrated image and
some surface, the goal is to “paint” the surface by back-projecting the
image and its intensities onto it. Geometrically, this could be done by
considering one pixel after the other; for each pixel, we determine the
intersection of its camera ray and the surface and apply the pixel’s
intensities at that point. It is well known that such a process may lead
to holes in the paint and other artifacts and that it is recommended to
proceed in the opposite direction. To do so, let us consider a represen-
tation of the texture map as a 2D digital image. In addition, we need
the mapping between positions in the texture map and points on the
3D surface. The texture map is then computed similar to the above but
the other way round: for each pixel of it, we compute the corresponding
point on the surface and project it into the input image. The intensities
applied to the texture map pixel are then computed using some inter-
polation scheme, from the intensities in the input image in the vicinity
of the computed image position. This is a standard procedure and can
be applied to any type of surface and camera.
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The application of this procedure to distortion correction is straight-
forward: it suffices to choose a plane as 3D surface for this texture
mapping. The result will be a perspectively correct image, whenever
the input image was taken by a central camera (see Figure 6.1). For
non-central cameras though, generation of perspectively correct images
is only possible in general if the scene geometry is known (one can then
texture map the scene and render it from any desired viewpoint with a

Fig. 6.1 Examples for distortion correction. Left and middle: A fisheye image and distortion
corrected sections of it. Right: A cubemap generated from a fisheye image.
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virtual perspective camera). Swaminathan et al. proposed an approach
to obtain good approximations of perspective views if the scene struc-
ture is unknown but if simple priors on it are available [483]. A similar
approach, for misaligned hyper-catadioptric cameras, was proposed by
Jeng and Tsai [256]. Ding and Yu proposed an interactive approach for
minimizing distortions in multi-perspective images that can be modeled
using the general linear camera model (GLC, see Section 3.4.4) [116].
This problem is an instance of the more general image-based rendering
problem [181, 307].

As a sidenote, let us mention an optical procedure for generating
perspective images from a fisheye image, explained and demonstrated
in 1925 by Beck [48]: he placed the negative of the fisheye image in the
camera and reversed the action of the latter, by illuminating the neg-
ative and placing a photoplate in front of the camera. The photoplate
then gets imprinted with a perspective photograph corresponding to
the part of the fisheye’s field of view covered by the plate.

Using planar 3D surfaces for distortion correction has its limits,
since a hemispheric field of view would require an infinitely large texture
map to hold the entire distortion-corrected input image. An alternative
is to use cubemaps, i.e., where partial perspective view are rendered
onto the insides of a virtual cube, see Figure 6.1 and for example the
paper [265] by Kangni and Laganière. Cubemaps and other useful pro-
jections for environment mapping were well explained by Greene [187].
See also the work [564] by Zelnik-Manor et al. for various other sugges-
tions for projections used to warp spherical images to flat ones.

The above texture mapping scheme can be applied for other tasks
than the correction of non-perspective distortions. A typical example
is to warp the usual circular omnidirectional images, which are hard
to interpret by humans, into panoramic images; in that case, the 3D
surface is the inside of a cylinder and the texture map corresponds to
the unrolled cylinder. Besides this, the generation of the texture map
is done exactly the same way as above.

Another application is stereo rectification. This consists in warping
an image pair such that the warped images have an epipolar geome-
try where epipolar curves correspond to scanlines, i.e., where they are
straight lines and such that in addition corresponding epipolar lines
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have the same vertical image coordinate. This enables efficient imple-
mentations of stereo matching algorithms. As for perspective images,
rectification can be achieved by applying appropriate homographies to
each image (there exist infinitely many solutions for these homogra-
phies; different methods differ in the choice of a particular solution),
see for example [21, 65, 176, 212, 325, 451].

Geyer and Daniilidis proposed a stereo rectification method for
para-catadioptric cameras, which applies conformal warping transfor-
mations [169]. Banno and Kanade showed a rectification method for
spherical images [24]. Heller and Pajdla proposed a stereographic rec-
tification procedure for omnidirectional stereo pairs [217]. Instead of
mapping epipolar curves to scanlines, they suggested to map them to
circles; this is based on the observation that this way of rectifying min-
imizes, in some sense, the distortions between original and rectified
images.

In 3D, one may picture stereo rectification as follows. Rectified
images correspond to perspective cameras which are oriented identically
(i.e., their optical axes are parallel and the image planes are rotated
the same way) have the same focal length and whose baseline is par-
allel to the horizontal image direction. Given an input stereo pair, one
may transform it into a rectified geometry, as follows. First, compute
the baseline and choose any planar surface that is parallel to the base-
line, at some finite distance from it. That surface will play the role of
image plane for the rectified images. Next, for each camera, compute
the rotation that would make the optical axis orthogonal to that plane
and such that the image plane’s horizontal axis becomes parallel to the
baseline. Finally, one has to zoom in or out one or both of the views
by appropriate factors that lead to equal focal lengths for both images.
Rotating a camera in 3D and changing its focal length is equivalent to
applying an appropriate projective transformation on its 2D image, the
homography used in rectification algorithms.

This principle can be applied to any central camera, even non-
perspective ones. The warping transformations are no longer homo-
graphies in general but this does not matter; all that is needed is the
forward projection for the cameras, the determination of the rectified
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image plane, and the application of the above distortion correction
method.

One problem with this approach is that a planar image surface is not
adequate for handling wide field of view cameras, as explained above.
A second main problem is that the case where an epipole lies inside
the image cannot be handled; it would again require an infinitely large
rectified image.

For a fully general solution, one thus has to use other projection
surfaces than planes. Roy et al. used a cylindrical surface, whose axis is
orthogonal to the baseline [431]. The final rectified images are obtained
by projecting the input images on the cylinder and unrolling it. If a
parametric projection model is available for both cameras, then the
mapping from rectified to original images can be written in closed form.

Fig. 6.2 Example of the rectification procedure of Pollefeys et al. On the left, two input
images (the epipoles are marked as white dots), on the right the two rectified images.
Courtesy of Marc Pollefeys [404].
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Abraham and Förstner showed such a rectification procedure for fisheye
cameras [1].

Pollefeys et al. proposed a yet more general approach, which is appli-
cable even without a closed-form projection model and which exploits
the fact that in true cameras, the search for matches can usually be
restricted to half-epipolar lines [404]. Essentially, the approach gen-
erates rectified images by straightening individual epipolar curves, as
follows (cf. Figure 6.2). The set of pairs of epipolar curves are browsed.
For each pair, a new row is added to each rectified image. Roughly
speaking, the intensities of pixels along each epipolar curve are just
plotted one after the other on that new row of pixels. It does not mat-
ter if or if not the position of the plotted pixel in the rectified image is
in any simple parametric relationship to the pixel in the input image;
all that matters is that all intensities found along an epipolar curve
are reproduced on a single row in the rectified image. This approach is
highly general and is even applicable to non-central cameras, as long
as they satisfy the standard stereo geometry, cf. Section 3.4.2. A con-
ceptual difference to the above approaches is that in general, it may
not correspond to a projection on (or, texture mapping of) some 3D
surface.



7
Concluding Remarks

We have described some image acquisition technologies and associated
camera models, with an emphasis on omnidirectional cameras. Princi-
ples and existing works on basic issues for geometric computer vision,
such as epipolar geometry, calibration, and structure-from-motion, were
reviewed. One of the goals in writing this monograph was to give a sur-
vey of the literature and to highlight links between existing works and
underlying principles. While aiming at a certain level of exhaustiveness
in the coverage of the literature, such a survey can never be complete;
we apologize for any significant omission. The reader is invited to notify
the authors of works that should be cited; an addendum to this mono-
graph shall be maintained on the first author’s website.

Let us briefly summarize what we consider some of the main
issues we were trying to convey. We concentrated on models for back-
projection, in order to stress that these enable a simple and system-
atic formulation of epipolar geometry, self-calibration, pose and motion
estimation, and the projection of 3D lines. For distortion correction
and bundle adjustment however, forward projection should ideally be
used. An important issue we discussed concerns the choice of camera
model, for example if or if not a non-central model is appropriate in
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some application. Our conclusion is that there is no single and simple
answer, but that this choice depends on multiple factors such as the
“true” camera geometry, the amount of noise in data, the distribution
of calibration points, and so forth.

Finally, we note that this monograph is restricted to geometric
aspects of omnidirectional vision. Equally if not more important, are
optical and photometric characteristics; these are well explained and
studied for example by Okatani and Deguchi [384] and in various papers
by Nayar et al.
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[62] C. Bräuer-Burchardt and K. Voss, “A new algorithm to correct fish-eye and
strong wide-angle-lens-distortion from single images,” in Proceedings of the
IEEE International Conference on Image Processing, Thessaloniki, Greece,
pp. 225–228, 2001.

[63] D. Brown, “Decentering distortion of lenses,” Photogrammetric Engineering,
vol. 32, pp. 444–462, May 1966.

[64] D. Brown, “Close-range camera calibration,” Photogrammetric Engineering,
vol. 37, no. 8, pp. 855–866, 1971.

[65] L. Brown, “A survey of image registration techniques,” ACM Computing Sur-
veys, vol. 24, pp. 325–376, December 1992.

[66] A. Bruckstein and T. Richardson, “Omniview cameras with curved surface
mirrors,” in Proceedings of the IEEE Workshop on Omnidirectional Vision,
Hilton Head Island, South Carolina, pp. 79–84, 2000.

[67] T. Buchanan, “The twisted cubic and camera calibration,” Computer Vision,
Graphics and Image Processing, vol. 42, pp. 130–132, April 1988.
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[216] J. Heikkilä and O. Silvén, “Calibration procedure for short focal length off-the-
shelf CCD cameras,” in Proceedings of the 13th International Conference on
Pattern Recognition, Vienna, Austria, pp. 166–170, IEEE Computer Society
Press, August 1996.

[217] J. Heller and T. Pajdla, “Stereographic rectification of omnidirectional stereo
pairs,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, Miami, USA, pp. 1414–1421, 2009.

[218] H.-J. Hellmeier, “Fisheye-Objektive in der Nahbereichsphotogrammetrie —
Theoretische und praktische Untersuchungen,” PhD thesis, Technische Uni-
versität Braunschweig, Germany, 1983.

[219] T. Herbert, “Calibration of fisheye lenses by inversion of area projections,”
Applied Optics, vol. 25, no. 12, pp. 1875–1876, 1986.

[220] R. Hicks, “The page of catadioptric sensor design,” http://www.math.
drexel.edu/ ahicks/design/.

[221] R. Hicks, “Designing a mirror to realize a given projection,” Journal of the
Optical Society of America A, vol. 22, no. 2, pp. 323–330, 2005.

[222] R. Hicks and R. Bajcsy, “Catadioptric sensors that approximate wide-angle
perspective projections,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA,
pp. 545–551, 2000.

[223] R. Hicks and R. Bajcsy, “Reflective surfaces as computational sensors,” Image
and Vision Computing, vol. 19, no. 11, pp. 773–777, 2001.

[224] R. Hicks, V. Nasis, and T. Kurzweg, “Programmable imaging with two-axis
micromirrors,” Optics Letters, vol. 32, no. 9, pp. 1066–1068, 2007.

[225] R. Hicks and R. Perline, “Equi-areal catadioptric sensors,” in Proceedings of
the Workshop on Omnidirectional Vision, Copenhagen, Denmark, pp. 13–18,
2002.



References 161

[226] R. Hill, “A lens for whole sky photographs,” Quarterly Journal of the Royal
Meteorological Society, vol. 50, no. 211, pp. 227–235, 1924.

[227] historiccamera.com, “Illustrated history of photography,” http://www.historic
camera.com/history1/photo history300.html.

[228] S. Hiura, A. Mohan, and R. Raskar, “Krill-eye: Superposition compound eye
for wide-angle imaging via GRIN lenses,” in Proceedings of the 9th Workshop
on Omnidirectional Vision, Camera Networks and Non-Classical Cameras,
Kyoto, Japan, 2009.

[229] O. Holmes, “The stereoscope and the stereograph,” The Atlantic Monthly,
vol. 3, pp. 738–749, June 1859.

[230] R. Holt and A. Netravali, “Camera calibration problem: Some new results,”
Computer Vision, Graphics and Image Processing: Image Understanding,
vol. 54, pp. 368–383, November 1991.

[231] J. Hong, X. Tan, B. Pinette, R. Weiss, and E. Riseman, “Image-based hom-
ing,” in Proceedings of the IEEE International Conference on Robotics and
Automation, Sacramento, California, USA, pp. 620–625, April 1991.

[232] R. Horaud, F. Dornaika, B. Lamiroy, and S. Christy, “Object pose: The link
between weak perspective, paraperspective and full perspective,” Interna-
tional Journal of Computer Vision, vol. 22, pp. 173–189, March 1997.

[233] B. Horn, H. Hilden, and S. Negahdaripour, “Closed-form solution of absolute
orientation using orthonormal matrices,” Journal of the Optical Society of
America A, vol. 5, pp. 1127–1135, July 1988.

[234] H. Hua and N. Ahuja, “A high-resolution panoramic camera,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai,
Hawaii, USA, pp. 960–967, 2001.

[235] H. Hua, N. Ahuja, and C. Gao, “Design analysis of a high-resolution panoramic
camera using conventional imagers and a mirror pyramid,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 356–361,
2007.

[236] F. Huang, “Epipolar geometry in concentric panoramas,” Technical
Report CTU-CMP-2000-07, Center for Machine Perception, Czech Technical
University, Prague, 2000.

[237] F. Huang, R. Klette, and Y.-H. Xie, “Sensor pose estimation from multi-center
cylindrical panoramas,” in Proceedings of the Third Pacific Rim Symposium
on Advances in Image and Video Technology, Tokyo, Japan, pp. 48–59, 2008.

[238] F. Huang, S. Wei, and R. Klette, “Epipolar geometry in polycentric panora-
mas,” in Proceedings of the 10th International Workshop on Theoretical Foun-
dations of Computer Vision, Dagstuhl Castle, Germany, (R. Klette, T. Huang,
and G. Gimel’farb, eds.), pp. 39–50, Springer-Verlag, 2000.

[239] F. Huang, S.-K. Wei, and R. Klette, “Comparative studies of line-based
panoramic camera calibration,” in Proceedings of the Workshop on Omni-
directional Vision and Camera Networks, Madison, Wisconsin, USA, 2003.

[240] C. Hughes, P. Denny, M. Glavin, and E. Jones, “Equidistant fish-eye calibra-
tion and rectification by vanishing point extraction,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp. 2289–2296,
2010.



162 References

[241] C. Hughes, R. McFeely, P. Denny, M. Glavin, and E. Jones, “Equidistant (fθ)
fish-eye perspective with application in distortion centre estimation,” Image
and Vision Computing, vol. 28, no. 3, pp. 538–551, 2010.

[242] Y. Hwang, J. Lee, and H. Hong, “Omnidirectional camera calibration and
3D reconstruction by contour matching,” in Proceedings of the Second
International Symposium on Visual Computing, Lake Tahoe, USA, pp. 881–
890, 2006.

[243] N. Ichimura and S. K. Nayar, “A framework for 3D pushbroom imaging,”
Technical Report CUCS-002-03, Department of Computer Science, Columbia
University, 2003.

[244] M. Inaba, T. Hara, and H. Inoue, “A stereo viewer based on a single camera
with view-control mechanisms,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 1857–1864,
1993.

[245] A. Inoue, K. Yamamoto, N. Mizoue, and Y. Kawahara, “Calibrating view
angle and lens distortion of the Nikon fish-eye converter FC-E8,” Journal for
Forestry Research, vol. 9, pp. 177–181, 2004.

[246] H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo for making
global map,” in Proceedings of the 3rd IEEE International Conference on
Computer Vision, Osaka, Japan, pp. 540–547, 1990.

[247] H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2,
pp. 257–262, 1992.

[248] F. Ives, “Parallax stereogram and process of making same, U.S. Patent
725,567,” 1903.

[249] H. Ives, “A camera for making parallax panoramagrams,” Journal of the Opti-
cal Society of America, vol. 17, pp. 435–437, 1928.

[250] U. Iwerks, “Panoramic motion picture camera arrangement, U.S. Patent 3,118,
340,” 1964.

[251] A. Izaguirre, P. Pu, and J. Summers, “A new development in camera cali-
bration — calibrating a pair of mobile cameras,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Saint Louis, Michigan,
USA, pp. 74–79, 1985.

[252] M. Jackowski, A. Goshtasby, S. Bines, D. Roseman, and C. Yu, “Cor-
recting the geometry and color of digital images,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, pp. 1152–1158, October
1997.

[253] B. Jähne, Digitale Bildverarbeitung. Springer-Verlag, 1st Edition, 1989.
[254] B. Jähne, Digital Image Processing: Concepts, Algorithms, and Scientific

Applications. Springer-Verlag, 1st Edition, 1991.
[255] G. Jang, S. Kim, and I. Kweon, “Single camera catadioptric stereo system,” in

Proceedings of the 6th Workshop on Omnidirectional Vision, Camera Networks
and Non-Classical Cameras, Beijing, China, 2005.

[256] S. Jeng and W. Tsai, “Analytic image unwarping by a systematic calibration
method for omni-directional cameras with hyperbolic-shaped mirrors,” Image
and Vision Computing, vol. 26, pp. 690–701, May 2008.



References 163

[257] G. Jiang, H.-T. Tsui, L. Quan, and A. Zisserman, “Single axis geometry by
fitting conics,” in Proceedings of the 7th European Conference on Computer
Vision, Copenhagen, Denmark, pp. 537–550, 2002.

[258] A. Jones, P. Debevec, M. Bolas, and I. McDowall, “Concave surround optics
for rapid multi-view imaging,” in Proceedings of the 25th Army Science Con-
ference, Orlando, USA, 2006.

[259] K. Josephson and M. Byröd, “Pose estimation with radial distortion and
unknown focal length,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Miami, USA, 2009.

[260] F. Kahl, S. Agarwal, M. Chandraker, D. Kriegman, and S. Belongie, “Prac-
tical global optimization for multiview geometry,” International Journal of
Computer Vision, vol. 79, no. 3, pp. 271–284, 2008.

[261] S. Kaneko and T. Honda, “Calculation of polyhedral objects using direct
and mirror images,” Journal of the Japan Society for Precision Engineering,
vol. 52, no. 1, pp. 149–155, 1986.

[262] S. Kang, “Catadioptric self-calibration,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, Hilton Head Island, South
Carolina, USA, pp. 201–207, 2000.

[263] S. Kang, “Radial distortion snakes,” IEICE Transactions on Information and
Systems, vol. E84-D, no. 12, pp. 1603–1611, 2001.

[264] S. Kang and R. Szeliski, “3-D scene data recovery using omnidirectional multi-
baseline stereo,” International Journal of Computer Vision, vol. 25, no. 2,
pp. 167–183, 1997.

[265] F. Kangni and R. Laganière, “Epipolar geometry for the rectification of cubic
panoramas,” in Proceedings of the 3rd Canadian Conference on Computer and
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[351] P. Moëssard, Le cylindrographe, appareil panoramique. Gauthier-Villars et fils,
Paris, 1889.

[352] O. Morel, R. Seulin, and D. Fofi, “Catadioptric camera calibration by polariza-
tion imaging,” in Proceedings of the Iberian Conference on Pattern Recognition
and Image Analysis, Girona, Spain, pp. 396–403, 2007.

[353] T. Morita, Y. Yasukawa, Y. Inamoto, U. Takashi, and S. Kawakami, “Mea-
surement in three dimensions by motion stereo and spherical mapping,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, San Diego, California, USA, pp. 422–428, 1989.

[354] E. Mouaddib, R. Sagawa, T. Echigo, and Y. Yagi, “Stereovision with a sin-
gle camera and multiple mirrors,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Barcelona, Spain, pp. 800–805, 2005.

[355] E. Mouaddib, R. Sagawa, T. Echigo, and Y. Yagi, “Two or more mirrors for
the omnidirectional stereovision?,” in Proceedings of the 2nd IEEE-EURASIP
International Symposium on Control, Communications, and Signal Process-
ing, Marrakech, Morocco, 2006.

[356] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real-time
localization and 3D reconstruction,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, New York, USA, pp. 363–370,
June 2006.

[357] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Generic
and real-time structure from motion,” in Proceedings of the 18th British
Machine Vision Conference, Warwick, England, 2007.

[358] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Generic
and real-time structure from motion using local bundle adjustment,” Image
and Vision Computing, vol. 27, no. 8, pp. 1178–1193, 2009.

[359] R. Munjy, “Calibrating non-metric cameras using the finite-element method,”
Photogrammetric Engineering & Remote Sensing, vol. 52, pp. 1201–1205,
August 1986.

[360] R. Munjy, “Self-calibration using the finite element approach,” Photogram-
metric Engineering & Remote Sensing, vol. 52, pp. 411–418, March 1986.

[361] J. Murphy, “Application of panospheric imaging to a teleoperated lunar
rover,” in Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, Vancouver, Canada, pp. 3117–3121, 1995.

[362] D. Murray, “Recovering range using virtual multi-camera stereo,” Computer
Vision and Image Understanding, vol. 61, no. 2, pp. 285–291, 1995.

[363] H. Nagahara, Y. Yagi, and M. Yachida, “Super wide field of view head
mounted display using catadioptrical optics,” Presence, vol. 15, no. 5,
pp. 588–598, 2006.

[364] H. Nagahara, K. Yoshida, and M. Yachida, “An omnidirectional vision sensor
with single view and constant resolution,” in Proceedings of the 11th IEEE
International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007.



170 References

[365] V. Nalwa, “A true omnidirectional viewer,” Technical Report Bell Laborato-
ries Technical Memorandum, BL0115500-960115-01, AT&T Bell Laboratories,
1996.

[366] S. Nayar, “Sphereo: Determining depth using two specular spheres and a single
camera,” in Proceedings of the SPIE Conference on Optics, Illumination, and
Image Sensing for Machine Vision III, Cambridge, USA, pp. 245–254, Novem-
ber 1988.

[367] S. Nayar, “Catadioptric omnidirectional camera,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Puerto Rico, USA,
pp. 482–488, 1997.

[368] S. Nayar, “Omnidirectional vision,” in Proceedings of the Eight International
Symposium on Robotics Research, Shonan, Japan, October 1997.

[369] S. Nayar, “Computational cameras: Redefining the image,” Computer, vol. 39,
no. 8, pp. 30–38, 2006.

[370] S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging: Towards a
flexible camera,” International Journal of Computer Vision, vol. 70, no. 1,
pp. 7–22, 2006.

[371] S. Nayar and A. Karmarkar, “360 × 360 mosaics,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Hilton Head Island,
South Carolina, USA, pp. 380–387, 2000.

[372] S. Nayar and V. Peri, “Folded catadioptric cameras,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins,
Colorado, USA, pp. 217–223, 1999.

[373] R. Nelson and J. Aloimonos, “Finding motion parameters from spherical
motion fields (or the advantages of having eyes in the back of your head),”
Biological Cybernetics, vol. 58, no. 4, pp. 261–273, 1988.

[374] S. Nene and S. Nayar, “Stereo with mirrors,” in Proceedings of the 6th IEEE
International Conference on Computer Vision, Bombay, India, pp. 1087–1094,
January 1998.

[375] J. Neumann, C. Fermüller, and Y. Aloimonos, “Polydioptric camera design
and 3D motion estimation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Madison, Wisconsin, USA,
pp. 294–301, 2003.

[376] Y. Nishimoto and Y. Shirai, “A feature-based stereo model using small dispar-
ities,” in Proceedings of the IEEE International Workshop on Industrial Appli-
cations of Machine Vision and Machine Intelligence, Tokyo, Japan, pp. 192–
196, 1987.

[377] D. Nistér, “An efficient solution to the five-point relative pose problem,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
pp. 756–770, June 2004.

[378] D. Nistér, “A minimal solution to the generalized 3-point pose problem,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, Washington, USA, pp. 560–567, 2004.

[379] D. Nistér and H. Stewénius, “A minimal solution to the generalised 3-point
pose problem,” Journal of Mathematical Imaging and Vision, vol. 27, no. 1,
pp. 67–79, 2007.



References 171

[380] D. Nistér, H. Stewénius, and E. Grossmann, “Non-parametric self-
calibration,” in Proceedings of the 10th IEEE International Conference on
Computer Vision, Beijing, China, pp. 120–127, October 2005.

[381] Y. Nomura, M. Sagara, H. Naruse, and A. Ide, “Simple calibration algorithm
for high-distortion-lens camera,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 14, pp. 1095–1099, November 1992.

[382] S. Oh and E. Hall, “Guidance of a mobile robot using an omnidirectional vision
navigation system,” in Proceedings of spie, Mobile Robots II, Cambridge,
USA, pp. 288–300, 1987.

[383] S. Oh and E. Hall, “Calibration of an omnidirectional vision navigation system
using an industrial robot,” Optical Engineering, vol. 28, no. 9, pp. 955–962,
1989.

[384] T. Okatani and K. Deguchi, “On photometric aspects of catadioptric cam-
eras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Kauai, Hawaii, USA, pp. 1106–1113, 2001.

[385] J. Oliensis, “Exact two-image structure from motion,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1618–1633,
2002.

[386] M. Ollis, H. Herman, and S. Singh, “Analysis and design of panoramic stereo
vision using equi-angular pixel cameras,” Technical Report CMU-RI-TR-99-
04, Carnegie Mellon University, 1999.

[387] V. Orekhov, B. Abidi, C. Broaddus, and M. Abidi, “Universal camera cal-
ibration with automatic distortion model selection,” in Proceedings of the
IEEE International Conference on Image Processing, San Antonio, USA,
pp. 397–400, 2007.

[388] R. Orghidan, J. Salvi, and E. Mouaddib, “Calibration of a structured light-
based stereo catadioptric sensor,” in Proceedings of the Workshop on Omni-
directional Vision and Camera Networks, Madison, Wisconsin, USA, 2003.

[389] T. Pajdla, “Geometry of two-slit camera,” Technical Report CTU-CMP-2002-
02, Center for Machine Perception, Czech Technical University, Prague, March
2002.

[390] T. Pajdla, “Stereo with oblique cameras,” International Journal of Computer
Vision, vol. 47, no. 1–3, pp. 161–170, 2002.

[391] T. Pajdla, T. Svoboda, and V. Hlavac, “Epipolar geometry of central
panoramic cameras,” in Panoramic Vision: Sensors, Theory, and Applica-
tions, (R. Benosman and S. Kang, eds.), pp. 85–114, Springer-Verlag, 2001.

[392] F. Pardo, B. Dierickx, and D. Scheffer, “CMOS foveated image sensor: Signal
scaling and small geometry effects,” IEEE Transactions on Electron Devices,
vol. 44, no. 10, pp. 1731–1737, 1997.

[393] C. Pégard and E. Mouaddib, “A mobile robot using a panoramic view,” in
Proceedings of the IEEE International Conference on Robotics and Automa-
tion, pp. 89–94, April 1996.

[394] S. Peleg and M. Ben-Ezra, “Stereo panorama with a single camera,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, Fort Collins, Colorado, USA, pp. 1395–1401, 1999.

[395] S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: Panoramic stereo imag-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, pp. 279–290, March 2001.



172 References

[396] S. Peleg, Y. Pritch, and M. Ben-Ezra, “Cameras for stereo panoramic imag-
ing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Hilton Head Island, South Carolina, USA, pp. 208–214, 2000.

[397] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet, “Mosaicing on adaptive
manifolds,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, pp. 1144–1154, October 2000.

[398] M. Penna, “Camera calibration: A quick and easy way to determine the scale
factor,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, pp. 1240–1245, December 1991.

[399] C. Perwass and G. Sommer, “The inversion camera model,” in Proceedings of
the 28th DAGM Symposium, Berlin, Germany, pp. 647–656, 2006.

[400] R. Petty, S. Godber, M. Robinson, and J. Evans, “3-D vision systems using
rotating 1-D sensors,” in Proceedings of the IEE Colloquium on Application
of Machine Vision. London, UK, pp. 6/1–6/6, 1995.
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