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Abstract

The design of bug-free and safe medical device software is challenging, espe-
cially in complex implantable devices. This is due to the device’s closed-loop
interaction with the patient’s organs, which are stochastic physical environ-
ments. The life-critical nature and the lack of existing industry standards to
enforce software validation make this an ideal domain for exploring design
automation challenges for integrated functional and formal modeling with
closed-loop analysis. The primary goal of high-confidence medical device
software is to guarantee the device will never drive the patient into an un-
safe condition even though we do not have complete understanding of the
physiological plant.

There are two major differences between modeling physiology and mod-
eling man-made systems: first, physiology is much more complex and less
well-understood than man-made systems like cars and airplanes, and spans
several scales from the molecular to the entire human body. Secondly, the
variability between humans is orders of magnitude larger than that between
two cars coming off the assembly line.

Using the implantable cardiac pacemaker as an example of closed-loop
device, and the heart as the organ to be modeled, we present several of
the challenges and early results in model-based device validation. We begin
with detailed timed automata model of the pacemaker, based on the speci-
fications and algorithm descriptions from Boston Scientific. For closed-loop
evaluation, a real-time Virtual Heart Model (VHM) has been developed to
model the electrophysiological operation of the functioning and malfunction-
ing (i.e., during arrhythmia) hearts. By extracting the timing properties of the
heart and pacemaker device, we present a methodology to construct timed-
automata models for formal model checking and functional testing of the
closed-loop system. The VHM’s capability of generating clinically-relevant
response has been validated for a variety of common arrhythmias. Based on
a set of requirements, we describe a framework of Abstraction Trees that al-
lows for interactive and physiologically relevant closed-loop model checking
and testing for basic pacemaker device operations such as maintaining the
heart rate, atrial-ventricle synchrony and complex conditions such as avoid-
ing pacemaker-mediated tachycardia.
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Through automatic model translation of abstract models to simulation-
based testing and code generation for platform-level testing, this model-
based design approach ensures the closed-loop safety properties are retained
through the design toolchain and facilitates the development of verified soft-
ware from verified models. This system is a step toward a validation and
testing approach for medical cyber-physical systems with the patient-in-the-
loop.

Z. Jiang and R. Mangharam. High-Confidence Medical Device Software Development.
Foundations and Trends® in Electronic Design Automation, vol. 9, no. 4, pp. 309-391, 2015.
DOI: 10.1561/1000000040.
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Medical Devices: Current State and Challenges

The medical device market is worth $289 billion, of which $110 billion is
from the US alone, with this number projected to reach $133 billion in 2016.
Examples include everything from adhesive bandages, stents, artificial joints,
drug infusion pumps to surgical robots, implantable cardiac pacemakers, and
devices still undergoing basic research like the artificial pancreas. To take one
example of the societal impact of medical devices, an estimated 3 million peo-
ple worldwide have implanted cardiac pacemakers (a heart rate adjustment
device), with 600,000 added annually. Clinical trials have presented evidence
that patients implanted with cardiac defibrillators (another heart rate adjust-
ment device) have a mortality rate reduced by up to 31%. Implanted cardiac
pacemakers and defibrillators have approximately 80,000-100,000 lines of
software code which essentially makes all sensing, control and actuation de-
cisions autonomously within the human body, over the 5-7 year device life-
time ﬂ With the increasing complexity of combining hardware and software
in a large class of these life-saving technologies, there is an urgent need for
approaches to rigorously validate the device and therapy to be safe and effi-
cacious.

"Paul L. Jones. Senior Systems/Software Engineer, Office of Science and Engineering Lab-
oratories, U. S. FDA. Personal communication, 2010.
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Figure 1.1: Current medical devices across a range of diagnostic and therapeutic
risk. Implantable software-controlled devices such as the pacemaker and defibril-
lator which operate in a closed-loop of sensing, control and actuation are amongst
the highest risk

The US Food and Drug Administration defines a medical device as an
instrument, apparatus, implement, machine, or implant which is:

e intended for use in the diagnosis of disease or other conditions, or in
the cure, mitigation, treatment, or prevention of disease, in humans or
other animals, or

e intended to affect the structure or any function of the human body or
other animals, and which does not achieve any of its primary intended
purposes through chemical action and which is not dependent upon
being metabolized for the achievement of any of its primary intended
purposes."
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Figure 1.2: Diagnostic-only and therapy-only devices do not interact with the patient
in direct closed-loop. The physician is responsible for the diagnostic and/or thera-
peutic decisions. However in closed-loop medical devices, the devices interact with
the patient in closed-loop and have to make therapeutic decisions based on their own
diagnosis.

In general, medical devices are categorized according to their risk factors
- Class I, Class II and Class III, corresponding to low-risk, medium-risk and
high-risk devices (Food and Administration| [2014]). Fig. [I.1] gives an intu-
itive description of medical devices examples across a range of diagnostic
and therapeutic risk.

1.1 Closing the Device-Patient Loop

Medical devices operate across a range of invasiveness and intervention with
the patient in the loop. For diagnostic-only devices, like an X-ray machine,
the physician operates the device to obtain patient data. Upon interpretation
of the data, the physician performs diagnosis followed by delivery of proper
therapy to the patient (Fig.[I.2}(a)). For therapy-only devices, e.g. a drug in-
fusion pump, the physician configures the device infrequently based on prior
diagnosis of the patient so the device executes the therapy on the patient
(Fig. @(b)). We denote these devices as Open-loop Medical Devices as
there is no direct feedback loop between the patient and the device. For open-
loop devices, the device operates under the supervision of professionally-
trained physicians. The device’s safety is mostly determined by how accu-
rately it provides information to the physicians or how faithfully it operates
as instructed by the physicians.

There is a class of devices with both diagnostic and therapeutic func-
tions, i.e. implantable cardiac devices to treat cardiac arrhythmia, deep brain
stimulation devices [2009]) to treat Parkinson’s disease and artificial
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pancreas to treat Type-1 diabetes. These devices capture and diagnose the
patient’s physiological conditions from sensory data, and deliver therapy in
response (Fig. (C)). These devices usually operate (semi-) autonomously
with very little human intervention. Although therapies can be delivered more
timely with these devices, malfunctions or inappropriate therapies from these
devices also cannot be corrected timely, which can cause serious adverse ef-
fects on patients’ health. Therefore, these devices are usually classified into
the highest risk category and undergo the most stringent regulation. We de-
note them as Closed-loop Medical Devices.

There are multiple challenges to develop safe and effective closed-loop
medical devices:

1.1.1 Closed-loop Interactions with Complex Physiology

When using open-loop medical devices, the diagnosis and therapy decisions
are made by medical professionals, who have expert knowledge of human
physiology. Therefore they are able to identify adverse health conditions and
adjust the therapy accordingly. On the other hand, closed-loop medical de-
vices have to make both the diagnosis and therapy decisions on their own.
The domain expertise required to make those decisions has to be programmed
into the device. It is impossible to encode all the knowledge of human phys-
iology into the device. Therefore, for unanticipated physiological conditions,
when the appropriate response has not been programmed into the device, the
device may deliver inappropriate therapy which can have an adverse effect on
patient’s health.

Technological development of materials, sensors, embedded computing,
energy storage, communications and packaging usher new closed-loop thera-
pies (e.g. deep brain stimulation). While the spectrum of closed-loop interac-
tions between the device and the human physiology may not be fully under-
stood, the challenge is to ensure the device never drives the patient into an ad-
verse state under all physiological conditions. Furthermore, the incremental
addition of new therapies in legacy devices (e.g. cardiac rhythm therapy), may
result in conflicted diagnostics and behavior of the device for well-understood
behaviors and result in inappropriate and unsafe operations.
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1.1.2 Limited Diagnostic and Therapeutic Functions

One fundamental rationale behind closed-loop medical devices is to enable
patients to live their lives normally with limited explicit interaction with the
device, and also with minimal physician supervision. In fact, a large number
of closed-loop medical devices are autonomous implantable devices. As a re-
sult, the sensing and therapy capabilities of these devices are limited, in order
to minimize power consumption, heat dissipation and invasiveness. Limited
sensing capabilities, and hence limited observability, may cause misdiagno-
sis as the device may be unable to distinguish the source between two sensed
signals from different conditions that now seem similar and result inappropri-
ate therapy. Due to limited therapeutic capabilities, there exists sub-optimal
physiological conditions that are untreatable. The device may even drive the
body to a less optimal state by over-treating the patient by preempting the
body’s natural response. In later chapters, we will describe examples in which
an untreatable condition is deteriorated into an adverse condition due to the
device interaction.

1.1.3 Software-related Medical Device Recalls

Due to the complexity of the diagnostic and therapeutic functions of the
closed-loop devices, these functions are mostly controlled by their software
components. Software embedded in a medical device, unlike electrical and
mechanical components, does not fail due to corrosion, fatigue or have sta-
tistical failures of subcomponents. Software failures are uniquely sourced in
the design and development of the system. According to the US Food and
Drug Administration, in 1996, 10% of all medical device recalls were caused
by software-related issues (Maisel et al. [2001]]). This percentage rose to
an average of 15% of recalls from 2008 to 2012 (Fig. [I.3). Malfunctions
of closed-loop medical devices usually have severe consequences, which
will be categorized as Class I, meaning there is a “reasonable probability
that use of these products will cause serious adverse health consequences or
death.” (Food and Administration| [2006]], [Zhang et al.|[2015]], Sandler et al.
[2010]).
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change
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2008 13 141 2 156 18.3%
2009 9 111 1 121 15.4%
2010 4 73 3 80 8.9%

2011 11 182 10 203 15.8%
2012 12 169 5 186 15.5%
Sum 49 676 21 746 15.1%

Figure 1.3: Medical device recalls due to software issues have risen from 10% in the
1990s to 15% in the past decade (]Food and Administration| |]2012|])

1.2 Medical Device Regulation Efforts and Challenges

The medical device industry is regulated to ensure the safety of the patients
and the public. In the United States, the FDA is the primary regulatory au-
thority responsible for assuring the safety, efficacy and security of patients
using medical devices. Based on the rationale that 1) manufacturers know
their devices better than the regulator, and 2) the variety of medical devices
requires a variety of approaches, it is the device manufacturers’ responsibility
to demonstrate the safety and efficacy of the medical devices. Manufacturers
are required to complete a pre-market submission before the devices can be
released to the market. The level of requirements for the submission is deter-
mined by the safety classification of the devices. A set of general guidelines
are recommended by the FDA (Food and Administration|[[1997, 2002, 2005]])
which list the activities that need to be performed to ensure device safety.

In safety-critical industries such as automotive electronics, avionics and
nuclear systems, international standards are enforced for software system de-
velopment, evaluation, manufacturing and post-market changes
[2009], [Feiler et al| [2010])). This awareness is only beginning to enter the
medical device industry as compliance with international standards are "rec-
ommended" in the aforementioned guidelines (Jetley et al. [2006]) but the
burden of their interpretation and enforcement is on the device manufacturer.
The basic rationale behind these standards is that: if all the risks/hazards of
the device are identified and reasonably mitigated, and the device is devel-
oped with rigorous process, the device is reasonably safe.
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IEC 60601-1
Medical electrical equipment safety

Figure 1.4: International standards for medical device safety. These standards define
the required activities during the development process.

Fig. [I.4] describes the primary standards to ensure medical device safety
and their relationships. The IEC 60601 Medical Electrical Equipment - Gen-
eral requirements for basic safety and essential performance is a product
safety standard that all electronic medical devices must comply to. IEC 60324
specifies the processes and activities needed to perform during the software
development life cycle to ensure software safety.

Risk management is a core activity throughout the software development
life cycle. ISO 14971 is specified for the application of risk management
to medical devices. In addition, for each risk management activity of ISO
14971, ISO 80002-1 provides additional guidelines for the software com-
ponent, which highlights and explains approaches to assuring that software
safety is adequately addressed.

1.2.1 Risk Management Challenges of Closed-loop Systems

While it is not normally possible to develop a device that is safe with a proba-
bility of 100% under all physiological and operating conditions, approaching
the problem along the lines of risk analysis, risk evaluation and risk con-
trol helps better address a “designed-for-safety" mindset. Fault Tree Analysis
(FTA) is a common tool in risk analysis in which hazards of the system are
first identified and the possible causes of the hazards are analyzed until the
initial faults are reached. Fig. [[.5](a) demonstrate an example fault tree for
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Figure 1.5: Fault Tree Analysis (FTA) Examples. (a) FTA for a hazard for a car; (b)
FTA for a hazard in implantable pacemaker. The dashed line shows two mechanisms
that were not identified during hazard analysis but discovered in post-market studies.

automobile. FTA is very good at showing how resistant a system is to single
or multiple initiating faults. It is not good at finding all possible initiating
faults since causes are conjectured and analyzed manually.

In closed-loop medical devices, there may exist interactions between the
device and the patient that can cause certain hazard, but are unknown due
to limits in physiological knowledge, behavior not captured in patient trials
and the separation of the software development teams and the medical do-
main experts. Fig. [[.5](b) describes an example fault tree for a hazard for an
implantable pacemaker. There are several causes for undesirable fast ventric-
ular rate. The well-understood cause is the intrinsic ventricular tachycardia
(solid line). However, with pacemaker implanted, new mechanisms to cause
hazard are introduced into the closed-loop system, as illustrated by the two
branches with dotted lines. These two branches were not identified during the
initial fault tree analysis, and were only identified after the devices have been
released into the market, causing unnecessary adverse effects to the patients
Furman and Fisher| [1982]]. Risks identified at this late stage are also more
costly to fix, increasing the cost for device development.

After the fault tree has been constructed, probabilities for the initial faults
are analyzed bottom up to calculate the probability of each hazard. The tech-
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Figure 1.6: Top table: Risk index according to occurrence and severity. Bottom table: Risk
control using risk index

nique is called Failure Mode and Effects Analysis (FMEA). Then the risks
are evaluated by assigning risk index to each hazard according to their occur-
rence and severity (Fig. @) After the risks are evaluated, different activities
are required to mitigate the risks according to the risk index. The risks are
then be re-evaluated to calculate the residual risk and analyze the risk/ben-
efit. This is part of the risk control process. FMEA is good at exhaustively
cataloging initiating faults, and identifying their local effects. It is not good
at examining multiple failures or their effects at a system level.

1.2.2 Pre-Market Evaluation with Clinical Trials

Regardless of how rigorous the risk management and the device development
process are, the devices have to be able to achieve their design goal on the
real patient, which can only be evaluated within its physiological environ-
ment. Devices that have high risk factors, including the closed-loop medical
devices, are required to submit clinical evidence for their safety and efficacy,
often in form of clinical trials. In clinical trials, the devices are used on a pre-
selected population of patients following carefully-designed protocols. The
goal of a medical trial, in part, is to obtain unambiguous results for the pri-
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mary question of the trial which can support the safety and/or efficacy of the
devices. However, conducting clinical trials is very time consuming and ex-
pensive, and risks found during clinical trials are very expensive to fix (U. S.
Food and Drug Administration| [2013]]).

To address this safety gap between ensuring the device satisfies its thera-
peutic requirements with the patient-in-the-loop and testing its software spec-
ifications, new approaches for closed-loop validation of the device software
within the physiological context are needed - this is the primary focus of this
article.

1.3 Model-based design to improve medical device safety

With the deluge of software-based closed-loop medical devices in the coming
years, relying on clinical trials as the only closed-loop evaluation method to
identify risks rooted in device software is not scalable. Model-based design
and virtual integration have been proposed and applied in other industries like
automotive and avionics (First et al.| [2009], [Feiler et al.|[2010]), and can po-
tentially help during the development process and provide extra confidence
to the device before conducting clinical trials. However, unlike man-made
systems like automobiles and aircrafts, physiological systems are less under-
stood with larger variations for the type and degree of patient conditions. The
lack of faithful models of physiological environment of the closed-loop med-
ical devices is one of the reason that model-based design is not well-adopted
in the medical device industry.

As computational models of human physiology are developed, they can
be used to interact with closed-loop medical devices or their models. The
FDA is starting to recognize in-silico modeling and simulation as regulatory-
grade evidence for device safety and efficacy. For example, |Ghorbani and
Bogdan| [2013]] developed glucose-insulin models that can be used to evalu-
ate control algorithms for artificial pancreas devices which can sense blood
glucose and deliver insulin. Simulation results with the models have been
recognized by FDA to replace animal trials, in part, which significantly re-
duced cost (B. P. Kovatchev and M. Breton and C. Dalla Man and C. Co-
belli [2009]). With the increasing interest and recognition from the regula-
tors, computer models and simulations are expected to play bigger role as as
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Figure 1.7: Percentage of computer simulation is expected to increase as safety and
effectiveness evidence of medical devices

“regulatory-grade evidence" evidence in the development of future closed-
loop medical devices (Fig. [T.7).

1.4 Contributions

In this article, we use an implantable cardiac pacemaker as a working exam-
ple to demonstrate how model-based design can help improve the safety and
efficacy medical device software. We demonstrate the application of model-
based design in several design activities during the development process,
from the perspective of the manufacturer’s design validation team. We assume
availability of design artifacts including pacemaker design and physiological
requirements. By demonstrating the process of developing verified models to
generate verified code, the results of our model-based closed-loop evaluation
should be able to support the device’s safety and efficacy requirements during
the regulation process.

Our proposed model-driven design for closed-loop medical devices
(Fig.[I.8) begins with developing heart models that can interact with real and
modeled pacemakers (Jiang et al.|[2012a]]). In Chapter 2, we introduce our
heart models for closed-loop model checking and testing of implantable car-
diac devices, and the rationale for the difference between heart models used
in these two applications. For closed-loop evaluation, the heart models have
to be able to represent and respond under different physiological conditions.
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Figure 1.8: Model-driven design for verified models to verified code for the closed-
loop heart and pacemaker system

The heart models are available in different formalisms to interact with the
pacemaker design in closed-loop across different design stages. In Chapter 3,
we validate the heart models and discuss how to identify model parameters
from patient data so that the heart model can represent different physiological
conditions.

In Chapter 4, we introduce the pacemaker software specification which
is referenced from a dual chamber pacemaker design from Boston Sci-
entific (Boston Scientific Corporation| [2007b]). The software specifica-
tion is converted to an abstract formalism called Timed Automata (Alur
and Dill [[1994]). The timed automata model of the pacemaker will be
the starting point for our model-based analysis and implementation. In
Chapter 5, we identify two basic hazards for pacemaker and use the UP-
PAAL model checker (Larsen et al. [1997]]) to evaluate whether the haz-
ards have been reasonably mitigated. With the help of heart models in-
troduced in Chapter 2, we are able to cover the closed-loop behaviors of
large variety of heart conditions so that we can evaluate whether there ex-
ists any known and even unknown mechanism to induce hazards (Jiang
et al.[[2014]). Pacemaker and heart models used in model-checking are ab-
stract as model checkers do not scale well with increased model complexity.
So complex dynamics of the heart and pacemaker are not captured at this
stage.
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In Chapter 6, we describe the development of an automatic model trans-
lation procedure to translate models from UPPAAL to Stateflow (Inc.[[2016])
to ensures that abstract models used for verification over-approximate the
more detailed models used downstream (Pajic et al.| [2012]]). The Stateflow
model of the pacemaker is then evaluated with heart models with relatively
complex dynamics (Jiang et al.| [2010], Jiang and Mangharam| [2011]], Jiang
et al.| [2011]]). Once the detailed models pass simulation-based testing with
closed-loop dynamics, they are automatically generated into code and are
subject to platform-level integration testing (Jiang and Mangharaml [2016]).
This model-driven design approach ensures the closed-loop safety properties
are retained through the design toolchain and facilitates the development of
verified software from verified models.

1.5 Useful terminologies for often misinterpreted terms

Ensuring the safety of complex medical devices has drawn interest not only
from stakeholders like regulators and industries, but also medical profes-
sionals and academia. Different communities have different interpretations
over certain terminologies, often causing misunderstandings. In this paper
we adopt the terminologies from the regulation perspective, so that the results
we have fit into the regulation framework. Most of the definitions are referred
from the FDA guideline document General Principles of Software Validation
(Food and Administration| [2002]). Below are several terminologies that we
use throughout the paper which worth clarifying.

1.5.1 Requirements vs. Specifications

By the definition of FDA (Food and Administration|[2005]]), the requirements
of a system describe what the system should achieve and the specifications
of a system describe how the system is designed to satisfy the requirements.
For example, a requirement for an autonomous car is "The car should not hit
objects". The corresponding specification can be "brake if the speed of the car
is greater than = and the distance to the object is less than y". We can see that
a car satisfying its specification may not satisfy the requirement (e.g. when
the car is driving too fast or the obstacle pops up right in front of the car). In
this paper, we use the word requirement in particular to denote the intended
uses of the medical devices to improve physiological conditions.
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Figure 1.9: Validation activities during the software development life cycle (D A. Vogel

(2011

1.5.2 Validation vs. Verification vs. Testing

As defined in|[Food and Administration| [2002]], software validation is the con-
firmation by examination and provision of objective evidence that:

1. software specifications conform to user needs and intended uses, and

2. the particular requirements implemented through software can be con-
sistently fulfilled

The first aspect ensures the device is safe and effective. The second aspect
maintains the traceability of requirements throughout the development life
cycle. Software verification fulfills the second aspect of software validation
by "providing objective evidence that the design outputs of a particular phase
of the software development life cycle meet all of the specified requirements
for that phase. "

Testing is the technique that can be used for validation and/or verifica-
tion. Fig. [I.9illustrates the relationship between validation, verification and
testing, and different activities during the software development life cycle to
ensure the safety and effectiveness of the software.
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1.5.3 Closed-loop vs. Open-loop Evaluation

In open-loop evaluation, i.e. open-loop testing, input sequences are send to
the system and system outputs are compared with expected outputs. In open-
loop testing, the system outputs do not affect the inputs afterward. In closed-
loop evaluation, the environment of the system is taken into account. System
outputs affect the state of the environment and thus affect the input sequences.
For closed-loop medical devices, clinical trials are currently the most com-
mon closed-loop evaluation method. Enable closed-loop evaluation at model
level requires models of the environment, which is human physiology for
closed-loop medical devices.

Closed-loop evaluation accomplishes two goals in model-based design:
1) It enforces environmental constraints so that the test space is smaller and
the test cases have physiological relevance. 2) Execution traces can be better
interpreted as the physiological models encode domain knowledge.



2

Modeling the Physiological Environment

Closed-loop medical devices such as the implantable cardiac pacemaker and
defibrillator are designed to operate autonomously and interact with the hu-
man body to maintain and improve the physiological condition of the patient.
To evaluate the device within the closed-loop context of the human body, the
knowledge of the physiological contexts (e.g. patient arrhythmia, physical
activity) and the signals by which the device interacts with the organ(s) to
manage the condition is essential. By constructing physiological models and
encoding physiological requirements, our goal is to evaluate the safety and
efficacy of the device therapy across a range of physiological conditions.

Consequently, it is important to model the physiological environment of
the device such that details unrelated to the interaction between the device
and the human are abstracted away, while essential information required to
differentiate different patient conditions are maintained. As we will see, to
validate the device operation across a range of physiological conditions and
for a set of safety and efficacy properties, a family of models are needed
which refine the closed-loop context to appropriately express the condition to
be verified. In this chapter, we would therefore like to answer the following
questions:

326
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e How does the device interact with the physiological environment?
e What details must the physiological environment models capture?

o What are the different modeling philosophies when developing envi-
ronment models for testing and for model checking?

Models, especially environment models of the human physiology, which
span a large spectrum of scale and complexity, should be designed in accor-
dance with their respective applications. Each application of the environment
model has a different focus and has distinct modeling requirements which
influence the model complexity and model identifiability.

Model complexity is generally measured in terms of the size of the state
space and the computation complexity of state transitions, which affect the
computation cost (memory and time) for closed-loop validation. Model com-
plexity is largely influenced by the type of interactions with the device (e.g.
analog signals, sensing, actuation) and the environment conditions specified
by the physiological requirements.

Model Identifiability is a metric for the feasibility of identifying model
parameters from data. There are two methods for model construction: non-
parametric modeling in which no prior knowledge is assumed and the model
construction is purely data-driven; and parametric modeling in which domain
knowledge of the physiological conditions is taken into account. For exam-
ple, to model the electrophysiological activity of the heart, there is abundant
literature describing the phenomena of individual arrhythmia, which makes
parametric modeling of the environment favorable.

In the following sections, we introduce the physiological contexts within
which the implantable pacemaker operates, and proceed to construct heart
models for closed-loop validation of the pacemaker. Note that for two dif-
ferent applications, i.e. model checking of the device model in the loop and
functional testing of the actual device in the loop, models are constructed dif-
ferently as we address their respective requirements for environment models.

2.1 Physiology Basis of the Heart and the Pacemaker

Before we get into the details of heart modeling, we use this small section to
introduce the physiology basis of the heart. Readers with knowledge of this
subject can skip to the modeling sections.
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Figure 2.1: (a) The circulation system. (b) Electrical Conduction system of the heart

2.1.1 Blood Circulation System

The heart is the "motor" for blood circulation within our body. The heart has
two ventricles which pump the blood out of the heart, and two atria which
gather blood from the body and pump them into the ventricles. (Fig. 2.1](a))
There are two circulations through the heart: the Pulmonary circulation and
the Stemic circulation. In the pulmonary circulation, the right atrium collects
oxygen-depleted blood from all over the body and pumps it into the right
ventricle. The right ventricle then pumps low-oxygen blood to the lungs. The
blood gets oxygenated in the lungs and gathers into the left ventricle. In the
stemic circulation, the oxygenated blood in the left atrium is pumped into
the left ventricle. The left ventricle pumps the blood to the rest of the body
and the heart itself. After the body extracts the oxygen from the blood and
injects carbon dioxide, the oxygen-depleted blood then flows back to the right
atrium.
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2.1.2 Electrical Conduction System of the Heart

The oxygen demand of the body changes during different activities. For ex-
ample, the demand is higher while running and lower while sleeping. To sat-
isfy these demands, the heart muscles in the atria and the ventricles have to
contract with certain frequency and in accordance to optimize the Cardiac
Output, which refers to the volume of blood pumped by the heart per minute
(mL blood/min). The coordinated contractions of the heart muscles are gov-
erned by the electrical conduction system of the heart (Fig. [2.1/(b)) A Nor-
mal Sinus Rhythm (NSR) is the healthy heart rhythm which provides efficient
blood flow. During a NSR, electrical signals are periodically generated by
the Sinoatrial (SA) node in the upper right atrium, which acts as the intrinsic
pacemaker of the heart. The signals conduct throughout both atria and trigger
muscle contractions to push blood into the ventricles. After a long conduction
delay at the AV node so that both ventricles are fully filled, the signals conduct
through fast-conducting His-Purkinje system to trigger almost simultaneous
contractions of the ventricles and pump blood out of the ventricles.

Derangement from NSR can result in insufficient cardiac output and thus
insufficient oxygen supply to the body and/or the heart itself, which are re-
ferred to as Arrythmia. Arrhythmia impair the heart’s ability to efficiently
pump blood and compromise the patient’s health. Arrhythmia are categorized
into so-called Tachycardia and Bradycardia. Tachycardia features undesir-
able fast heart rate which can cause inefficient blood pumping. Bradycardia
features slow heart rate which results in insufficient blood supply. Bradycar-
dia are due to failure of impulse generation with anomalies in the SA node,
or failure of impulse propagation where the conduction from atria to the ven-
tricles is delayed or blocked.

2.1.3 Electrophysiology and Implantable Cardiac Devices

The electrical activities of the heart closely couple with the mechanical con-
tractions thus the electrical activities of the heart can be monitored and used
to diagnose arrhythmia. The most well-known method is Electrocardiogram
(ECG), which measures the integration of electrical activities of the heart
measured along different axis on the body surface. The electrical activities
can also be directly measured by inserting electrodes through the vein into
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Figure 2.2: (a) Lead placement for a dual chamber pacemaker. (b) Electrogram
(EGM) signals measured from pacemaker leads and corresponding internal pace-
maker events

the heart. The electrodes are placed against the inside heart wall and localized
electrical activities can be measured. Physicians can also deliver pacing se-
quence through the electrodes to explore the heart conditions. This procedure
is referred to as Electrophysiological (EP) Testing (Josephson| [2008]]) and
the signals are referred to as electrograms (EGMs) (Fig. 2.2]b). The timing
and morphology of the ECG and EGM signals together are used to diagnose
arrhythmia.

The implantable cardiac pacemakers are rhythm management devices de-
signed to treat bradycardia. A typical dual chamber pacemaker has two leads
inserted into the heart through the veins which can measure the local elec-
trical activity of the right atrium and right ventricle respectively (Fig. [2.2]a).
According to the timing between sensed impulses, the pacemaker may de-
liver electrical pacing to the corresponding chamber to maintain proper heart
rhythm.

2.2 Physiological Models of the Heart

To study the mechanisms of heart diseases and their effects on cardiac out-
put, different physiological models of the heart have been developed. Fig.[2.3]
illustrates several aspects that these models capture. With the development of
the imaging techniques like MRI, detailed anatomical structures of the heart
can be modeled and studied (Schulte et al| [2001]]). These models are fun-
damental in other modeling aspects as well, as the anatomy of the heart dic-
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Figure 2.3: Physiological models of the heart from different perspectives

tates the electrical and mechanical behaviors of the heart. Fig. [2.3](a) shows
models for heart muscle fiber orientations by [E.W. Hsu and C.S. Henriquez
[2011]]. With anatomy models the electrical and/ or mechanical properties of
the heart can be studied. Fig. @(b) illustrate a model of blood flow within
the ventricles (Peskin and McQueen|[1989])). Electrical properties of the heart
at cellular level has been modeled (Sachse et al.| [2008]]) and by combining
these cellular models with the structural models, the electrical activities of
the whole heart are studied, especially the mechanism of different arrhythmia
(Trayanova and Boyle|[2014], (Grosu et al.| [2011]], Murthy et al.|[2013]). In-
trinsic heart rate variability has been modeled to synthesize optimal control
of pacemaker pacing. (Bogdan et al.| [2013]]) Abstraction of the electrical cel-
lular model has also been attempted by [Islam et al.| [2014]] to reduce model
complexity without sacrificing accuracy. The electrical properties and the me-
chanical properties of the heart are closely coupled. Models combining both
of these aspects are also developed to study the effects of different arrhythmia
on cardiac outputs (Trayanova and Boyle| [2014], [Rossi et al.| [2011]).
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2.3 Heart Models for Closed-loop Validation of Implant-
able Cardiac Devices

Models should be developed according to their applications. The aforemen-
tioned models of the heart are mostly used for understanding the mechanisms
of different heart diseases. Physiological models developed for closed-loop
evaluation of medical devices should have the following considerations:

C1. Interfacing with the device: The model should be able to generate phys-
iological signals that the device sense from the real physiological entities.
And the model should be able to take device output as input and change its
states accordingly. Model complexity should also be adjusted according to
the device interface to hide unnecessary details.

C2. Differentiate different physiological conditions: To evaluate the safety
and effectiveness of the device, the device has to be evaluated under cer-
tain physiological conditions specified by the requirements. For example, the
pacemaker is supposed to maintain proper heart rate during Bradycardia. The
model should be expressive enough to be able to differentiate the physiolog-
ical condition (Bradycardia in the example) from other conditions. Failing to
do so may result in false-positives or false-negatives in the evaluation result.
C3. Physiological/logical interpretation of model states: In closed-loop
evaluation we are checking the device safety and effectiveness against the
physiological requirements. However, due to the limited interface (e..g two
leads for a dual chamber pacemaker) it is always difficult to determine only
from an execution trace that the therapy is safe and effective. Therefore, being
able to provide physiological meanings to the states of the model also allows
us to interpret the closed-loop execution more accurately, thus reducing the
number of physiologically impossible executions during the evaluation. To
satisfy these requirements, the model structure of these physiological models
should base on physiological or clinical first principles so that states and state
transitions of the closed-loop executions can be explained with physiological
language.

C4. Available patient data: In closed-loop evaluation, physiological models
are developed to represent certain physiological condition across a population
of patients or even a particular patient. The model parameters must be iden-
tified so that the behaviors of the models match the behaviors of the patients
(groups). Due to the limited sensing capability of closed-loop medical de-
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vices, the obtained data is sparse. i.e. we can not put a sensor on every tissue
region of the heart. Therefore the complexity of the model should be in ac-
cordance with the available data to avoid over-fitting, which occurs when a
model has too many parameters relative to the number of observations, and
this can introduce errors during prediction.

The electrophysiological models mentioned in the last section (Trayanova
and Boyle [2014]], |Grosu et al.| [2011]) satisfy C1-C3. However, the param-
eter space of these models are too large (10+ parameters for each cellular
model multiplied by 10° of elements) which not only increase simulation
complexity, but also impossible to identify due to lack of data. As introduced
in Section[2.1.3] the pacemaker has only two leads at fixed locations and only
use timing between local activation events for diagnosis. These models with
high spatial fidelity possess details that can be abstracted without sacrificing
the three considerations.

Electrophysiology testing (EP testing) has been an active clinical field to
diagnose and treat arrhythmia with minimal-invasive procedures. During an
EP testing procedure, the physicians diagnose heart conditions by examining
the patterns and intervals of local electrical activations (temporal) measured
from electrodes placed into different locations of the heart (spatial). EP test-
ing is the perfect modeling level for closed-loop evaluation of implantable
cardiac devices because: 1) it is the basis of implantable cardiac devices (C1),
2) physicians can use EP testing to diagnose most arrhythmia thus distinguish
them (C2,C3), 3) there are abundant patient data available (C4).

In the remaining chapter we will introduce our heart modeling efforts
based on EP testing, and model adaptation for two different applications of
closed-loop evaluation of implantable cardiac devices.

2.4 Heart Models for Closed-loop Testing

During closed-loop testing, the devices interact with the environment (or its
models) under different environmental conditions. The closed-loop execu-
tions are monitored and violations of safety and efficacy requirements are
reported. In model-based closed-loop testing, the environment models are ex-
pected to mimic the behaviors of actual environment and its interaction with
the device. Thus, the environment models are in general deterministic so that
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Figure 2.4: (a) The generation of Action potential; (b) Action potential; (c1) The second
activation arrived during ERP; (c2) Arrived during RRP; (c3) Arrived after refractory.

the execution traces are reproducible and are able to mimic different arrhyth-
mia. Complex dynamics during state transitions also need to be captured to
validate violations within longer executions traces.

2.4.1 Modeling Philosophy

As the pacemaker can only sense and actuate from two locations within the
heart, only structures and parameters that affect inputs to the pacemaker are
needed. Since the two leads are fixed, the accurate spatial locations of differ-
ent heart anatomical structures are not necessary. Instead, the topology of the
electrical conduction system of the heart is more important.

2.4.2 Timing Behaviors of Cellular Electrophysiology

The contraction of heart muscles is triggered by external voltage applied to
the tissue. After the activation, a transmembrane voltage change over time
can be sensed due to ion channel activities, which is referred to as an Action
Potential (Fig. [2.4[a)). The upstroke of the action potential is called depolar-
ization, during which the muscle will contract. The voltage change caused
by the depolarization will depolarize the tissue nearby, which causes an ac-
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tivation wave across the heart. After the depolarization there is a refractory
period during which the tissue recovers to the pre-excitation state and the
voltage drops down to the resting potential. The refractory period can be di-
vided into Effective Refractory Period (ERP) and Relative Refractory Period
(RRP) (Fig.[2.4(b)). During ERP, the tissue cannot be depolarized due to the
lack of charge. As a result, the activation wave will be "blocked" at the tis-
sue during ERP (Fig. 2.4(c1)). During RRP, the tissue is partially recovered
and the tissue can be depolarized. However, the new action potential gener-
ated by the depolarization will have different morphology (e.g. attenuated in
magnitude and duration), thus affecting the refractory periods of the tissue
and conduction delay of the activation wave (Fig. [2.4(c2)). Fig.[2.4(c1)-(c3)
show the action potential shape change and corresponding timing change in
refractory periods when the tissue is activated at time stamp t1, ¢2, t3 after
the initial activation ¢0.

2.4.3 Heart Model Components

We introduce the model components that can be used to configure heart mod-
els corresponding to different heart conditions. As discussed earlier, the ac-
tion potential of a heart tissue has 3 timing periods during which the tissue
responds to external electrical stimuli differently. We use an extended timed-
automata formulation (Alur and Dilll [1994])) to model the timing behaviors
of a heart tissue during each cycle.

Node Automata: We refer to the tissue model as node automaton and
Fig. [2.5](a) shows the structure of a node automaton i. 3 states correspond
to the timing periods of the action potential. From Rest state, the node can
either self-activate or get activated by external stimuli (Act_node) and go to
ERP state. During ERP state the node does not respond to external stimuli
(blocked). During RRP state, the node can still be activated and go to ERP
state, however the ERP period and the conduction delay of the tissue are
affected by the "earliness" of the activation arrived during the RRP period,
which is tracked by a shared variable C(7). The new ERP period is deter-
mined by a function over clock value g(f(¢)) which mimics the beat-to-beat
dynamics described in Josephson| [2008]]. The function g and f are given by:

f&)=1—t/Trrp (2.1)
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SA node) that can be activated by an external trigger; (b) Path automaton modeling
the electric conduction and propagation between two node automata; (c) Electrical
conduction system of the heart; (d) Model of the electrical conduction system of the

heart using a network of node & path automata Jiang et al.| [2012al).

and
(SIT) o Tmin + (1 - (1 - x)?)) . (Tmax - Tmin)ai - AV
g Tnin + (1 - -773) : (Tmax - Tmz’n)ai 7é AV

where T, and T4, are the minimum and maximum value for Terp of the
tissue.

2.2)

Due to the limited number of observable points within the heart, mod-
eling the electrophysiological behavior of every tissue of the heart and its
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full anatomy is unnecessary and unfeasible. In our heart models, only self-
activating tissue and key hubs of the electrical conduction system are mod-
eled as node automata.

Path Automata: The electrical conduction through the tissue between
nodes are abstracted using path automata. The path automata can be used to
represent structural or topological (functional) electrical connections between
nodes. Fig.[2.5](b) shows a path automaton connecting node a and b.

The initial state of a path automaton is Idle, which corresponds to no con-
duction. The states corresponding to the two conduction directions are named
after the physiological terms: Antegrade (Ante) and Retrograde (Retro).
These states can be intuitively described as forward and backward conduc-
tions. If path actuation Act_path event is received from one of the nodes con-
nected to it, there is a transition to Ante or Retro state based on the activation
source in the path automaton. At the same time, the clock invariant of the
state is modified according to the shared variable C(a/b). This corresponds
to the change of the conduction delay that is caused by the early activation.
Similar to node automaton, the changing trend is extracted from clinical data
and the function % is defined as:

h(c) = { path_len/v - (14 3c),i = AV
path_len/v - (1+ 3c%),i # AV
where path_len denotes the length of the path and v is the conduction veloc-
ity.

After Tante or Tretro time expires, the path automaton sends out
Act_node(b) or Act_node(a) respectively. A transition to Conflict state oc-
curs followed by the transition to Idle state. The intermediate state Conflict is
designed to prevent back-flow, where the path is activated by the node b it has
just activated. If during Ante or Retro state another Act_path event is received
from the other node connected to the path automaton, a transition to Double
state will occur, corresponding to the two-way conduction. In this case, the
activation signals eventually cancel each other and the transition to Idle state
is taken.

2.3)

2.4.4 Modeling the Heart’s Electrical Conduction System

The node and path automata are the basic building blocks for heart modeling.
Hearts with different conditions are modeled by using different conduction
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Figure 2.6: The influence of conduction velocity and probe configuration on the EGM mor-
phology. The left columns show the placement of probes in relation to the path; the right
columns show the functional EGM.

topologies with appropriate timing parameters for each node and path au-
tomata. Fig. 2.5/(d) shows one such topology of a network of node and path
automata.

2.4.5 Interaction with the Heart Model

In EP testing and during pacemaker implantation, the local electrical activi-
ties, measured as electrogram (EGM) signals, are used to diagnose heart con-
ditions. During heart model construction, we can assign a node automaton at
electrode locations and the transitions to the ERP state can be used to rep-
resent the local activation events. In a more general setup where electrodes
are assigned anywhere within the heart model, a probe model is designed
to generate synthetic EGM signals using spatio-temporal information from
the proximity to the network of node and path automata. Fig. shows the
morphology of EGM signal changes with different conduction velocity and
probe configurations. A detailed description of the probe model can be found
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Figure 2.7: The heart model was developed in Matlab/Simulink and code was automatically
generated to operate on an FPGA platform for platform-level testing.

in|Jiang and Mangharam|[2011{].

2.4.6 Heart-on-a-Chip Platform

Platform testing remains the primary means to verify and validate device soft-
ware. Currently testing is done by feeding recorded open-loop heart signals
to the device and evaluating the device output. Consequently, the change in
the state of the heart condition, in response to device output, is not taken into
account. Thus, device malfunctions involving state changes due to multiple
closed-loop interactions will not be captured during open-loop testing.

To this effect, the heart model described above is also implemented on
hardware platform (Fig. [2.7) for closed-loop testing. Since each heart model
is a network of node and path automata running concurrently, we imple-
mented the heart model on an FPGA, so that increasing in the number of
nodes and paths would not affect real-time constraints. The second genera-
tion heart model implementation has been implemented on a lower cost fast
micro-controller platform. The fast clock ensures that executions of all nodes
and paths can be finished within 1ms. The Heart-on-a-Chip platform includes
a heart model implementation which is able to represent common heart condi-
tions such as bradycardia, tachycardia, heart block, etc (for mode details refer
to [Jiang et al.| [2012a]). The parameters of the heart model can be changed
at run-time by either switching among pre-defined parameter sets, or sending
values directly to the model through a user interface in Matlab. A monitoring
system observes logical interactions between heart model and the pacemaker
and checks them against safety invariants at run-time.
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As shown in (Fig.[2.8), with an analog interface the heart model can inter-
act with a commercial pacemaker in real time. Our analog interface uses an
optical isolation circuit to separate the pacemaker circuit and the heart imple-
mentation. Signals generated from the heart are attenuated to the appropriate
level to interact with a Boston Scientific pacemaker and analog pacing signals
are converted to pacing events received by the heart model.

2.5 Heart Models for Closed-loop Model Checking

During closed-loop model checking, the whole closed-loop state space of the
device and the environment is mathematically explored against physiological
requirements. The ideal environment models should be: (1) simple enough
to avoid the state space explosion problem (Clarke et al|[1994]]), (2) gen-
eral enough to cover possible physiological operation parameters, and (3)
expressive enough to represent specific physiological conditions in-depth. It
is obvious that no single model can achieve all three properties. A rigorous
framework should be adapted so that models with the appropriate level of

Real Pacemaker
from Boston Scientific

Figure 2.8: Heart-on-a-Chip testbed for real-time closed-loop testing of the pacemaker or
model of the pacemaker with the heart model on the hardware platform
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refinement, from a family of models, are selected based on the requirement
type. For example, for a simple property that the pacemaker must maintain
the heart rate above a desired level, a relatively abstract model will suffice.
For a more complex property such as the termination of Pacemaker Medi-
ated Tachycardia (Josephson| [2008]]), an appropriately refined model which
expresses the physiological condition will be selected.

2.5.1 Modeling Philosophy

Model Formalism: Choosing an appropriate formalism for the physiological
models is important as the formalism determines the closed-loop state space
and hence the feasibility to do model checking. The pacemaker utilizes the
timing of local electrical events to diagnose heart conditions. It is therefore
natural to use timed-automata models of the heart. With this formalism, we
use the UPPAAL model checking tool (Behrmann et al.|[2004]]) such that the
whole closed-loop state space is explored symbolically.

Model Coverage: Pacemakers are designed to treat bradycardia by
maintaining the appropriate heart rate when the intrinsic rate is low.
However, at the same time, a pacemaker should not adversely affect other
heart conditions such as supraventricular tachycardia (Zhang et al.| [20135]).
Even for the same patient, the heart condition changes over time and must
be addressable by the modeling effort. In order to achieve safety across
all possible heart conditions, the heart models used during closed-loop
verification should be able to cover all possible heart behaviors, more
precisely, their mapping to pacemaker inputs. Over-approximation (Clarke
et al. [2003]]) with non-determinism can be used to simplify model structure
while covering larger variety of environmental behaviors. Techniques like
model-checking can then be used to examine the whole closed-loop state
space for property violations.

Ambiguity due to Limited Sensing Capability: The spatial sensing
resolution of pacemakers is low, in terms of the number of sensing location
(2-3 leads), as well as the information obtained from each sensing location
(binary events with no analog morphology). Through the process of abstrac-
tion, if different heart conditions are able to generate exactly the same input
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sequence to the pacemaker, there will be ambiguities in concretizing abstract
closed-loop executions. For certain conditional requirements, it is important
to differentiate all possible concrete executions corresponding to an abstract
execution. As the result, the heart model(s) should have the capability to
differentiate these heart conditions when verifying certain properties. Thus,
a single heart model will not suffice and a family of heart models are required.

Information Loss during Abstraction: While over-approximation achieves
simplicity and coverage, it also inevitably introduces invalid behaviors
(e.g. not clinically feasible or relevant) into the model which can cause
false-negatives and false-positives during model checking. To solve this
problem, refined models of the heart should be available which can resolve
spurious counterexamples and eliminate invalid executions when necessary
to avoid false-positives.

The most challenging aspect during closed-loop model checking is the
abstraction and refinement of the environment model. In Jiang et al.| [2014]
we developed a series of heart model abstractions at various abstraction lev-
els. The models are abstracted using abstraction rules derived from phys-
iological knowledge, thus ensuring that each abstraction step covers more
physiological conditions. The models in adjacent abstraction levels also sat-
isfy timed-simulation relationship (Yamane|[2006]) to ensure complete cov-
erage in the more abstract model. In the remainder of this section, we briefly
discuss this multi-scale modeling process and the domain knowledge used.
The detailed abstraction and proof for simulation relationship can be found
in Jiang et al.|[2014]).

2.5.2 Timed Automata and Timed Simulation

Timed automata (Alur and Dill| [[1994]) is an extension of a finite automaton
with a finite set of real-valued clocks. It has been used for modeling and
verifying systems which are triggered by events and have timing constraints
between events. UPPAAL is a standard tool for modeling and verification
of real-time systems, based on networks of timed automata. The graphical
and text-based interface makes modeling more intuitive. Requirements can
be specified using Computational Tree Logic (CTL), as described in (Clarke
and Emerson| [[1982], and violations can be visualized in the simulation
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environment.

The rest of this section describes the process of model abstraction and
refinement where more abstract models cover more of the state space but can
only prove simpler properties. As we refine models, they cover lesser state
space but can prove more complex properties. The reader looking for a more
intuitive understanding of the area may skip the detailed description in the
rest of this chapter, during the first reading.

Syntax of Timed Automata

A timed automaton G is a tuple (S, Sy, ¥, X, inv, E'), where

e S is a finite set of locations.

e Sy € S is the set of initial locations.

e 3 is the set of events.

e X is the set of clocks.

e inw is the set of invariants for clock constraints at each location.

e F isthe set of edges. Each edge is a tuple (s, o, ¥, \, s’) which consists
of a source location s, an event o € X, clock constraints ¥, A as a set
of clocks to be reset and the target location s’.

For the clock variables X, the clock constraints ¥ € U can be induc-
tively defined by ¥ := x L c||¥; A Uy, where L € {<,=,>},and c € N.

Semantics of Timed Automata

A state of a timed automaton is a pair (s, v) which contains the location s € S
and the valuation v for all clocks. The set of all states is 2. For all A € X,
v[A := 0] denotes the valuation which sets all clocks = € \ as zero and the
rest of the clocks unchanged. For all ¢t € R, v + ¢ denotes the valuation which
increase all the clock value by t. There are two kinds of transitions between
states. The discrete transition happens when the condition of an edge has
been met. So we have:

(s,0,U,\,s") € E,v =T, 0\ :=0] Einv(s)
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= (s,v) = (s, v[\:=0])

The timed transition happens when the timed automaton can stay in the
same location for certain amount of time. We have:

§ € RV < §,v+6 Einv(s)

= (5,0) 2 (s,v+0)

Timed Simulation

For two timed automata 7' = <SI,S5,21,X1,invl,E1> and T2 =
(52,52,%% X2 inv?, E?), a timed simulation relation is a binary relation
sim C Q! x Q2 where Q! and O? are sets of states of T and 7. We say T
time simulates T (T <; T?) if the following conditions holds:

e Initial states correspondence: ({(sg,0), (s3,0)) € sim

e Timed transition: For every ({s1,v1), (s2,v2)) € sim, if (s1,v1) LN
(s1,v1 + 6), there exists (s2,v2 + d) such that (s2, v2) LN (s2,v2 +9)
and
((s1,v1 + ), (s2,v2 + J)) € sim.

e Discrete transition: For every ((s1,v1), {s2,v2)) € sim, if (s1,v1) %
(sh,v]), there exists (sh,v)) such that (sp,ve) = (sh,vh) and
({s1, 1), (s5,v5)) € sim.

Certain properties are preserved for timed simulation relation. For ¢ €
ATCTL, if M <y M’, we have M' E ¢ = M [ p|Yamane [2006]
However, M £ ¢ = M - ¢ does not hold. Violations of ATCTL yield
counter-examples and the validity of which need to be checked on more
refined model.

It is known that timed simulation relation is also closed under composi-
tion |[Yamane [2000]]. So when we have two heart models H; <; Hy we will
have Hi||P =<; Hs||P where P is the timed-automata model of the pace-
maker. For ¢ € ATCTL, we have Hs||P = ¢ = Hi||P = ¢. With this
property we can verify the pacemaker model with abstract heart model. In the
rest of the section, we will describe how we develop our initial heart model
from the physiological perspective and abstract the model step by step so
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that the complexity of the model is reduced for verification. Given two heart
models Hy, Hy and a timed simulation mapping Sim={2; x 2o, there are no
automated methods to check 1 <; Hs. In the Appendix, we show the man-
ual proof for the timed simulation relation between two heart models Hs and
Hj. Other timed simulation relations can be proved similarly.

2.5.3 Abstraction 0: Initial Abstraction

For the initial heart model, we assume the heart tissue is modeled with all its
spatial detail. For the temporal aspect, we model each tissue region as an au-
tomaton NO shown in Fig. 2.9(b). The beat-to-beat dynamics of heart tissue,
modeled by the deterministic model, is abstracted using non-determinism.
For example, the ERP period and conduction delay of the tissue are non-
deterministically chosen from ranges instead of deterministic functions. The
whole heart can be modeled by composing tissue models with different pa-
rameters Hy = Ng||NZ--- N&. However, for a real heart, the number n is
very large and the connectivity and parameter values are difficult, and per-
haps impossible, to determine, which makes verification with Hy infeasible.

2.5.4 Abstraction 1: Abstract Conduction Delays With Paths

At the first abstraction step, we separate the conduction delay (modeled by
the cond state in NO) from the new node automata /N1 and model the con-
duction between two nodes using path automaton P1. Since the beat-to-beat
dynamics are abstracted with non-determinism, the RRP state is merged with
the Rest state in N 1. The procedure gives us the intuition to abstract the heart
as a conduction network as shown in Fig. [2.9](c).

2.5.5 Abstraction 2: Merging Equivalent States

The heart model H still has equivalent locations. In Abstraction 2 we further
abstract the node and path automata by merging equivalent states. In the new
node automaton N2 we merge the RRP state with the Rest state with:

No.Trest_min = Ni.Trest_min + Ny.Trrp_min

No.Trest_max = Ny.Trest_max + N1. Trrp_mazx

Under the assumption that the ERP period of a node automaton is much
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longer than the conduction delay of a path automaton, the Double and Con-
flict location of the path automaton is merged with the ldle state. The heart
can be modeled as Hy = N3 || P}||N2|| P2 N5.

2.5.6 Abstraction 3: Replacing Blocking with Non-deterministic
Conduction

In Abstraction 3, we replace the blocking behavior of the ERP location of
the node with non-deterministic conduction in the path automaton. There
exists a transition

Act_node_1? Act_path_17

RE|ID||RE
Act_path_1!

RE||ID|RE
in N3 || P}|| N2 to replace transition

Act_node_17

ER|ID|ER ———— ERJ|ID||ER
in Ny || Py || N3
Without the ERP constraint the AV node is no longer needed and the

heart can be modeled as Hy = N3 || P3||N3. The detailed proof for this timed
simulation relation can be found in Jiang et al. [2014].

2.5.7 Abstraction 4: Random Heart Model (RHM)

In Abstraction 4, we further simplify the heart model by removing the con-
duction path between two nodes. By setting Trest_min for both nodes to 0
the new heart model Hy = N3 ||NZ covers all possible behavior of Hj. This
random heart model with two nodes is the most abstract model that will be
used at the beginning of the closed-loop model checking process.

Eventually we have a series of heart models with:

NING -~ Ng
=, N}|PL|N? - P|| NP
=, N}| P} N2 | PR(N?
=, N}|[ P3| N3 | P2IN3
=, N}|[Py||NZ
= N{[|NZ

Using this technique, we systematically create a family of heart models
with different levels of complexity and expressiveness. In Chapter 5| we de-
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scribe how to balance between complexity and expressiveness and use these
heart models for closed-loop model checking of implantable pacemaker.

2.5.8 Discussion

In this chapter, we use heart modeling as example to demonstrate how to de-
velop physiological models for closed-loop evaluation of closed-loop medical
devices. We emphasized that models should be developed according to their
applications. We developed heart models based on clinical Electrophysiolog-
ical Testing, and modeled the topological and temporal behaviors of the heart
with timed-automata formulation. In the next chapter we will demonstrate the
identification and validation of the heart models.
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Figure 2.9: (a) Electrical voltage change measured on the heart tissue and its adjacent tissue
region (dotted) upon activation. The whole process is divided into timing periods with differ-
ent behaviors. (b) The original tissue model which captures the refactory timing behaviors of
the heart tissue. (c) The conduction property is separated to the path automaton and the heart
can be modeled as conduction network. (d) Equivalent locations are merged. (e) The block-
ing property of the ERP location is replaced by a non-deterministic conduction in the path
automaton. (f) Conduction between nodes are replaced by self-activations of the nodes. More
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3

Identifying and Validating the Environment
Model

Physiological models are developed to represent certain clinical conditions
common across a population of patients, or the conditions of a specific pa-
tient. Consequently, the structure of the model and corresponding parame-
ters have to be identified. This information can be obtained from electrogram
data collected during medical procedures and from physiological literature
in which population data has been analyzed and summarized. Due to limited
interactions with the patient (e.g. during a device implantation procedure or
an ablation procedure), currently the quality and quantity of patient-specific
physiological data is sparse as there is generally not enough information
to identify all the parameters in the heart model. A model with the spatio-
temporal structure that is similar to the conduction patterns in the heart helps
simplify the process of identifying the model parameters. A rigorous proce-
dure for the model identification step is an important contributor to the model
validation step. In this chapter, we first aim to answer the following questions:

e What is the importance of model identification for closed-loop simula-
tion and model checking?

e How are models identified from patient data and patient population
parameters?

349
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Figure 3.1: Simulation model of the heart showing the conduction pathways (left) with elec-
trogram signals from different probe locations (right) and an interactive pacing panel (bottom
left). In this case, the heart was paced four times at an interval of 500ms, followed by a pacing
at a shorter (250ms) interval. This EP Testing procedure is employed to trigger conduction
along alternative pathways and check for the existence of a reentry circuit.

In the following section, we briefly discuss our model identification effort
for heart models used in two closed-loop verification applications, and their
corresponding challenges. This is followed by the procedures to validate the
heart models before they are used for closed-loop verification and testing of
the pacemaker.

3.1 Heart Model Identification for Closed-loop Testing

In closed-loop simulation, a deterministic heart model should be identified to
represent a specific patient under a certain heart condition. The constraints
for model parameters can be obtained from patient data with Electrophys-
iological (EP) Testing. During EP testing, the physician delivers electrical
pacing sequences from electrodes placed inside the patient’s heart to insti-
gate responses along fast and slow conduction pathways (Fig. [3.1). The ob-
served patterns and timing of electrical events are used to extract conduction
and propagation properties of different tissue regions across the myocardium.
Since the goal for any EP testing procedure is not to determine all the timing
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parameters for a patient, the number of parameters that can be identified from
the patient data is limited.

Fig.[3.2]illustrates how timing parameters can be extracted during an EP
testing procedure. Fig. [3.2(a) shows a setup with two electrodes placed in the
right atrium and right ventricle of the heart respectively. EGM signals can
be measured from these two electrodes (Fig. [3.2(b)). The physician delivers
a series of long interval pacing sequences followed by one or more short
interval pacing through the electrodes. This may trigger different responses
along primary and alternate conduction pathways from the patient’s heart.
Fig.[3.2(c) shows a heart model structure with unknown parameter values. By
analyzing the timing and pattern of the EGM signals we extract constraints
on the heart model parameters. In EGM sequence 1, the interval between two
intrinsic activations al and a2 in EGM A is 700ms, so we have:

ERP1+ RRP1 + Rest = 700ms
The interval between a1 and v1 is 150ms, so we have:
Tdl 4+ Td2 = 150ms

In EGM sequence 2, the pacing interval from Electrode A is 300ms. By ob-
serving that the interval between pl — v1 is less than the interval between
p2 — v2, we know that p2 arrives during the RRP period of the AV node. So
we have:

FERP1+ RRP1 < 300ms

EGMA SAnode (ERP1=7 RRP1=7 Rest=7)

SA_AV path (Td1 =?)
\ 150ms /

AV node (ERP2=? RRP2=7)
/e 300ms \ | Learn

plB p2 ‘ AV_RV path (Td2 =2
EGMA /
vk )
EGMV —‘—A‘v—/\~ RV node (ERP3=?RRP3=?)
=

150ms ‘180ms Heart Model
(e 250ms \

pl’ ! p2
EGM A

\__ s )
(b)

Physician

Figure 3.2: (a) The illustration of the probe locations. (b) Multiple pacing sequences
with different timing outcomes. (c) The heart model with undecided parameters
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LA RPN M Normal Conduction Intervals in Adults

Laboratory P-A A-H H-V H
Narula (2,5) 25-60 50-120 35-45 25
Damato (1,3,18,28) 24-45 60-140 30-55 10-15
Castellanos (6) 20-50 50-120 25-55

Schuilenburg (23,24) 85-150 35-55

Peuch (4,14) 30-55 45-100 35-55

Bekheit (25,26) 10-50 50-125 35-45 15-25
Rosen (27) 9-45 54-130 31-55

Author 60-125 35-55 10-25

Figure 3.3: Timing intervals measured during clinical studies|[Josephson| [2008]

In EGM sequence 3, the pacing interval is further reduced to 250ms. There
is no v2 corresponding to p2, indicating p2 arrives during the ERP period of
the AV node. So we have:

ERP1 < 250ms

Each experiment provides additional time constraints for model parameters.
By systematically conducting experiments certain model parameters can be
uniquely identified within a relatively tight range. However, even with sim-
plified model structure like the one in the example, not all model parameters
can be uniquely identified due to limited number of electrodes and limited
number of experiments during a real procedure.

3.1.1 Heart Model Identification in Closed-loop Model Checking

In model checking, the heart models have simpler structure and fewer param-
eters due to non-deterministic abstraction. The placement and connectivity
of nodes and paths in the heart models are developed to be consistent with
EP practice. This way, each node and path automata and their timing pa-
rameters have physiological correspondence to parameters found in literature
(Fig. [3.3). The range for non-deterministic parameters directly corresponds
to the range for possible values of the respective physiological parameters.
Therefore, model identification for model checking is much simpler and re-
quires less EP testing data. It is important to note here that model checking
of abstract models of the closed-loop system and testing of the device in the
loop are complementary approaches for validating the safety and efficacy of
the overall system.
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3.2 Validating the Environment Model

Since models are approximations of the actual environment, there are always
discrepancies between the model and the actual patient (group). The chal-
lenge then is to evaluate the confidence in the safety guarantees that model-
based closed-loop verification can provide. The metrics and process to val-
idate the environment model is different for the two applications of heart
modeling: in closed-loop model checking, the model’s coverage on environ-
mental behaviors is more important, while in closed-loop simulation, the ac-
curacy of the model is more important.

In this chapter, we aim to answer the following questions and use our
heart models as examples to demonstrate different validation procedures
which improve the fidelity of the environment model.

o What are the different methods to validate physiological models?

e How much confidence is sufficient from the model validation process?

3.2.1 Validating Models for Closed-loop Simulation

A physiological model is considered valid for closed-loop simulation if (a) it
is capable of generating the same output as the patient, for the same input;
and (b) it is general enough to represent other patients with similar conditions
by adjusting its parameters. The second point is to ensure that the model
successfully captures the underlying mechanism instead of over-fitting the
data. In the following example we validate the capability of our heart models
to represent certain heart conditions according to the mechanisms described
in physiological literature, and output the correct responses across a range of
inputs.

Quantitative Heart Model Validation: During an EP testing procedure, the
physician places catheters inside the patient’s heart to observe local electrical
activity from different locations of the heart. The His bundle catheter (HBE)
is particularly important when evaluating the atria-to-ventricle conduction
path (Fig. [3.4). For each A to V conduction there are 3 impulses which cor-
respond to atrial contraction (A), His bundle activation (H) and ventricular
activation (V). In this case study, two pacing signals al and a2 are delivered
to the heart from the high right atrial catheter (HRA). By gradually decreas-
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Figure 3.4: (a) Probe locations for a general EP testing procedure. (b) EGM signals
measured from the probes at the high right atrial (HRA), His bundle (HBE) and right
ventricular apex (RVA) standard catheter positions

ing the pacing interval in each test, certain tissue along the A-V conduction
path will be activated during its refractory period, thus affecting the conduc-
tion delay further down the conduction path and change the intervals between
the impulses. Fig. shows the relation between pacing interval (al-a2)
and corresponding intervals between A, H and V impulses. On the left side
it shows that interval H; — Hs and V; — V5 decrease but remain equal as
the pacing interval decreases, indicating the tissue with the longest refractory
period along the path is not between the His Bundle and the ventricles. When
the pacing interval decreases to 350ms both intervals increases, indicating
that the RRP of certain tissue has been reached and the tissue is between the
atria and the His bundle. On the right it shows that the As — Hs interval
increases as the pacing interval decreases, which further proves the hypoth-
esis that the AV node, which is between the atria and the His bundle, has
the longest refractory period along the A-V conduction path. We configured
our heart model such that the AV node has the longest refractory period and
performed the same study by decreasing the pacing interval. The heart model
shows the same trend as that of the real patient (Fig. [3.5(b)).
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Figure 3.5: Key interval values when the coupling interval shortens for (a) a real
patient (Josephson|[2008]) and (b) in heart model simulation (Jiang et al.|[2010]).

Validation by comparison to real patients: This heart condition can also
show Wenckebach type A-V nodal response. In this case, a sequence of pac-
ing signals with a short coupling interval (41— As <= AV.Terp+AV.Trrp)
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Figure 3.6: (a) Electrograms of induced Wenckebach block in a patient. (b) Electrograms of
induced Wenckebach block in the heart model with a basic cycle length of 420 msec. The
heart model also displays lengthening in the A-H interval and block in A-V node (Marker 1).
Rows 5 and 6 show the increase in the ERP and conduction delay of the A-V node.

is delivered in the atrium. This results in a gradual increase in the AV nodal
conduction delay and then a dropped beat occurs in the ventricle due to the
increased ERP period of the AV node. The EGMs for a real patient with
Wenckebach type A-V nodal response are shown in Fig. With the
VHM, we observe similar behavior, and the gradually increasing ERP and
conduction delay are visualized in Fig. [3.6(b)|

3.2.2 Validating Models for Closed-loop Model Checking

In model checking, a lot of complex dynamics of the environment are ab-
stracted so that the environment model covers a larger number of environmen-
tal behaviors using non-determinism. The validity of the model is obtained
by a valid initial model and a rigorous abstraction processes. In Jiang et al.
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[2014]], we started with a valid detailed deterministic model (as described
above) and by applying different abstraction steps we were able to generate a
series of non-deterministic heart models. Between each abstraction step, the
heart models satisfy a timed simulation relationship (Yamane| [2006]]) which
is described below. The timed simulation guarantees all behaviors are covered
in the more abstract model.

For two timed automata 71 = (S, S}, 31 X1 inov!, E') and T? =
<S2, Sg, »2, X2 inv?, E2>, a timed simulation relation is a binary relation
sim C Q! x Q2 where Q' and Q? are sets of states of T and 7. We say T?
time simulates 7" (7' <; T?) if the following conditions holds:

e Initial states correspondence: ({(s,0), (s3,0)) € sim

e Timed transition: For every ((s1,v1),(s2,v2)) € sim, if (s1,v1) LN
(s1,v1 + 0), there exists (s2, va + 0) such that (s9, v9) 9, (82,092 + 0)
and
({s1,v1 + ), (s2,v9 + &) € sim.

e Discrete transition: For every ((s1,v1), (s2,v2)) € sim, if (s1,v;) &
(sh,v]), there exists (sh,vh) such that (s9,v9) = (sh,vh) and
({s1,01) , (s, v5)) € sim.

As shown in the later chapters, these validated heart models can then be
used for closed-loop verification of implantable pacemaker. Both the identi-
fication and validation of the heart models can be used to provide more con-
fidence to the verification results, which would be helpful during the medical
device certification process.



4

A Dual Chamber Pacemaker Specification

As part of the model-based design, it is important to have a functional and
formal model of the device software for testing and formal verification re-
spectively. In our study, we focus on the implantable pacemaker since it is
one of the simpler implantable cardiac devices as its functionality is based
only on timing and does not consider signal morphology. This serves as a
good base case to demonstrate the proposed methodology. In this chapter, we
describe the basic specification and formal implementation of a dual cham-
ber pacemaker, as well as a more advanced function on mode switching. The
specifications are based on the algorithm descriptions from Boston Scientific
manuals (Boston Scientific Corporation|[2007b]) and the functional descrip-
tion released as part of the Pacemaker Challenge (Boston Scientific Corpora-
tion| [2007a]]). We aim to answer the following questions here:

e How are the pacemaker’s timers specified to maintain the appropriate

heart rhythm?

e What happens if new functionality is added to the basic model?
The artificial pacemaker is designed for patients with bradycardia (i.e.
slow heart rate). Two leads, one in the right atrium and one in the right ven-

tricle, are inserted into the heart and fixed onto the inner wall of the heart.
These two leads monitors the local activation of the atria and the ventricles,

358
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and generate corresponding sensed events (AS, VS) to its software. The soft-
ware determines the heart condition by measuring time difference between
events and delivers pacing events (AP, VP) to the analog circuit when neces-
sary. The analog circuit then delivers pacing signals to the heart to maintain
heart rate and A-V synchrony. In order to deal with different heart condition,
pacemakers are able to operate in different modes. The modes are labeled us-
ing a three character system (e.g. xyz). The first position describes the pacing
locations, the second location describes the sensing locations, and the third
position describes how the pacemaker software responds to sensing. Here we
introduce the widely used DDD mode pacemaker which is a dual chamber
mode with sensing and pacing in both atrium and ventricle.

4.1 Basic Specifications of a DDD Pacemaker

The DDD pacemaker has five basic timing cycles triggered by exter-
nal and internal events, as shown in Fig. .1l We decomposed our pace-
maker model into five components which correspond to the five timers.
P = LRI|AVI|URI||PVARP|VRP. These components synchronize
with each other using broadcast channels and shared variables (as shown in

Fig.[4.2).

—A—V—_/\ N N
AS [AR] AS AS Atrium

AP |

T

VP VS VP VP
o )
— o] [2] extension
AVI AVI unsensed | AV AVI
PVARP PVARP PVARP | PVARP |
VRP VRP VRP_| VRP |
AEI J LRI LRI |
LRI LRI
URI | URI |
URI URI

reset

Figure 4.1: Basic 5 timing cycles for a dual chamber pacemaker which include the Lower
Rate Interval (LRI), Atrio-Ventricular Interval (AVI), and Upper Rate Interval (URI). Also
included are the blanking intervals, Post Ventricular Atrial Refractory Period (PVARP) and
Ventricular Refractory Period (VRP), to inhabit action by the pacemaker.
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4.1.1 Lower Rate Interval (LRI)

The Lower Rate Interval (LRI) component is shown in Fig.[4.2|(a). This com-
ponent defines the longest interval allowed between two ventricular events,
thus keeping the heart rate above a minimum value. In DDD mode, the
LRI interval is divided into a V-A interval (TLRI-TAVI) and a A-V interval
(TAVI). The LRI component maintains a maximum V-A delay while the AVI
component maintains a maximum A-V delay so together they maintain the
maximum V-V delay. In the LRI component, the clock is reset when a ven-
tricular event (VS, VP) is received. If no atrial event has been sensed (AS),
the component will deliver atrial pacing (AP) after TLRI-TAVI.

4.1.2 Atrio-Ventricular Interval (AVI) and Upper Rate Interval
(URI)

The function of the AVI component defines the longest interval between an
atrial event and a ventricular event. If there is no ventricular event (VS) within
TAVI after an atrial event (AS, AP), and the time since the last ventricular
event (VS, VP) is longer than TURI, the component will deliver ventricular
pacing (VP). The URI limits the ventricular pacing rate by enforcing a lower
bound on the times between consecutive ventricle events. The UPPAAL de-
sign of AVI and URI component is shown in Fig.[d.2(b) and (c).

4.1.3 Post Ventricular Atrial Refractory Period (PVARP) and Post
Ventricular Atrial Blanking (PVAB)

Ventricular events, especially Ventricular Pace (VP) are sometimes so strong
that the atrial lead can sense the activation as well. This signal may be falsely
recognized as an atrial event and disrupt normal pacemaker function. This
scenario is called crosstalk and was discussed in our previous work (Jiang
and Mangharam|[2011])). In order to prevent this undesired behavior, and filter
potential noises, there is a blanking period (PVAB) followed by a refractory
period (PVARP) for the atrial events after each ventricular event (VS, VP).
Atrial events during PVAB are ignored and atrial events during PVARP trig-
ger AR! events which can be used in some advanced diagnostic algorithms.
The UPPAAL design of PVARP component is shown in Fig. .2(d).
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Figure 4.2: Five basic timing cycles for a dual chamber pacemaker, which include the Lower
Rate Interval (LRI), Atrio-Ventricular Interval (AVI), and Upper Rate Interval (URI). Also
included are the blanking intervals, Post Ventricular Atrial Refractory Period (PVARP) and
Ventricular Refractory Period (VRP), to inhabit action by the pacemaker.

4.1.4 Ventricular Refractory Period (VRP)

The VRP follows each ventricular event (VP, VS) to filter noise and early
events in the ventricular channel which could otherwise cause undesired
pacemaker behavior. Fig. #.2(e) shows the UPPAAL design of VRP com-
ponent.

4.2 Mode Switch Operation: Atrial Tachycardia Response

Supraventricular Tachycardia (SVT) is an arrhythmia with an abnormally fast
atrial rate. Typically, in a heart without pacemaker, the AV node, which has a
long refractory period, can filter most of the fast atrial activations during SVT,
thus the ventricular rate remains relatively normal. Fig. [d.3(a)|demonstrates a
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pacemaker event trace during SVT, with a pacemaker in ODO mode, which
just sensing in both channels. As there is no pacing in ODO mode, the heart is
in open-loop with the pacemaker. In this particular case, every 3 atrial events
(AS) correspond to 1 ventricular event (VS) during SVT. As an arrhythmia,
SVT is still considered a safe heart condition since the ventricles operate
under normal rate and still maintain adequate cardiac output.

However, in the closed loop case with the DDD pacemaker, the AVI com-
ponent of a dual chamber pacemaker is equivalent to a virtual pathway in
parallel to the intrinsic conduction pathway between the atria and the ventri-
cles. The pacemaker tries to maintain 1:1 A-V conduction and thus increases
the ventricular rate inappropriately to match the atrial rate. This is known as
Pacemaker Mediated Tachycardia (PMT) as the heart would have been safe
without the pacemaker and its virtual pathway. Fig. .3(b)| shows the pace-
maker trace of the same SVT case with DDD pacemaker. Although half of
the fast atrial events are filtered by the PVARP period ([AR]s), the DDD pace-
maker still drives the closed-loop system into 2:1 A-V conduction with faster
ventricular rate. Maintaining A-V delay is less important than maintaining
an appropriate ventricular rate. The DDD pacemaker violates a higher pri-
ority requirement in order to satisfy a lower priority requirement, which is
inappropriate.

Pacemaker manufacturers have designed algorithms to detect and termi-
nate these behaviors. Intuitively, the mode-switch algorithm first detects SVT.
After confirmed detection, it switches the pacemaker from a dual-chamber
mode to a single-chamber mode. During the single-chamber mode, the A-V
synchrony function of the pacemaker is deactivated thus the ventricular rate is
decoupled from the fast atrial rate. After the algorithm determines the end of
SVT, it will switch the pacemaker back to the dual chamber mode. The mode-
switch algorithm (also known as atrial tachycardia response) specification we
use is similar to the one described in the Boston Scientific pacemakers’ man-
ual (Boston Scientific Corporation|[2007bl]). The algorithm first measures the
interval between atrial events outside the blanking period (AS, AR). The in-
terval is considered as fast if it is above a threshold (Trigger Rate) and slow
otherwise. In our UPPAAL model we model it as INT" (see Fig. (D). A
counter C'N'T increments for fast events and decrements for slow events (see
Fig. .5 (2)). After the counter value reaches the Entry Count, the algorithm
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Figure 4.3: Benign open loop case: SVT without a pacemaker or with a pacemaker in
sense-only mode (ODO) (b) Dangerous closed-loop-case SVT with DDD pacemaker
which tries to match the fast atrial rate with a corresponding (and dangerous) fast
ventricular rate.

will start a Duration (DU R) ,which is a time interval used to confirm the
detection of SVT (see Fig.[4.5](3)). In the Duration, the counter keeps count-
ing. If the counter value is still positive after the Duration, the pacemaker
will switch to the VDI mode (Fallback mode). In the VDI mode, the pace-
maker only senses and paces the ventricle. At any time if the counter reaches
zero, the Duration will terminate and the pacemaker is switched back to DDD
mode. In our UPPAAL model of the mode-switch algorithm, we use nominal
parameter values from the clinical setting. We define trigger rate at 170bpm
(350ms), entry count at 8, duration for 8 ventricular events and fallback mode
as VDL

In order to model both DDD and VDI modes and the switching between
them, we made modifications to the AVI and LRI components. In each
component two copies for both modes are modeled, and switch between
each other when switching events (DDD, VDI) are received. During VDI
mode, VP is delivered by the LRI component instead of the AVI component.
The clock values are shared between both copies in order to preserve
essential intervals even after switching. The modified AVI (AVI") and LRI
(LRI"components are shown in Fig.
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Figure 4.4: (a) After switching to VDI mode, the new LRI component LRI" maintains
a minimum V-V interval; (b) After switching to VDI mode, the new AVI component
AVI’ keeps track of the time after each atrial events.
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Figure 4.5: (1) Component INT: An atrial event (AS,AR) arrives before thresh after
the previous atrial event is regarded as a fast event. Atrial event arrives after thresh
and AP are regarded as slow event; (2) Component CNT: After 8 fast event the
algorithm will start a duration by sending du_beg and will switch to VDI mode
when the duration ends (du_end); (3) Component DUR :The duration length is 8
ventricular events (VS,VP)
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Closed-loop Model Checking

Model checking is a technique in which the state space of the model under in-
vestigation is automatically and exhaustively explored to identify executions
or states that violate specified properties. Violations of the properties are re-
turned by the model checkers as counter-examples, which can be used by
designers to revise the design. In the application of verification of properties
in medical devices like implantable pacemaker, model checking can be used
to identify known and unknown mechanisms for inducing hazards. This is
extended to checking the heart-pacemaker closed-loop models against phys-
iological hazards (e.g. when the pacemaker provides inappropriate therapy
which drives the heart to an unsafe state).

Due to the curse of dimensionality as models get more complex, and
hence the large computational cost, there are usually restrictions on the for-
malism and the complexity of the models under investigation. Using abstract
models of the actual system adds the responsibility of proving the confor-
mance between the abstract model and the real system. Assumptions made
during abstractions may also introduce false-positives and/or false-negatives
into the model checking results. Back in Chapter 2, we introduced a set of
heart models with different abstraction levels, that can be used to cover be-
haviors of physiological conditions using non-determinism. In Chapter 4, we

365
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Figure 5.1: Sample Fault Tree Analysis of the physiological conditions leading to the
lower rate limit and upper rate limits

then modeled a dual chamber pacemaker algorithm using timed-automata
without doing abstractions. In this chapter, we use model checker UPPAAL
to evaluate the pacemaker model against safety properties under different
heart conditions captured by the heart models. Techniques to eliminate false-
positives by refining the heart models are also discussed. We will try to an-
swer the following questions:

e How do model checking results fit into the regulation framework?

e How do we find the appropriate abstraction level of the environment
model for each physiological requirement?

e How do we interpret abstract counter-examples returned by model
checker?

5.1 Risk Analysis for Implantable Pacemaker

Implantable pacemakers are designed to treat bradycardia by increasing the
heart rate with external pacing. Therefore the heart rate should not only be in-
creased to the minimum physiological need, but also should not be increased
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Figure 5.2: (a) Monitor for LRL: Interval between two ventricular events should be less than
TLRI, (b) Monitor for URL: Interval between a ventricular event and a VP should be longer
than TURI

beyond physiological need. Fig. [5.1] demonstrates two Fault Tree Analysis
(FTA) for these two top level hazards. In the remaining chapter we first spec-
ify hazards as properties, and use model checking to evaluate whether these
hazards have been mitigated by the pacemaker. Then for one of the mitigation
algorithm, we examine the mitigation effectiveness and the residue hazard.

5.2 Mitigating Top-level Hazards

The most essential function for the pacemaker is to treat bradycardia by main-
taining the ventricular rate above a certain threshold. We define the region
where the ventricular rate is slow, as unsafe. The monitor PLRI_test is
designed to measure intervals between ventricular events and is shown in

Fig. For property
wrrr =A[] (PLRI_test.secV imply PLRI_test.t<TLRI)

we have a closed-loop system with heart model ; (described in at the end
of Chapter 2):
Hy||P||PLRI_test = ¢RI

The pacemaker is not designed to treat tachycardia so it can only pace
the heart to increase its rate and cannot slow it down. To mitigate the hazard
that the pacemaker may increase the heart rate above physiological need, an
Upper Rate Interval (URI) is specified such that the pacemaker can increase
the ventricular rate up to this limit.

We require that a ventricle pace (VP) can only occur at least T'U R after
a ventricle event (VS, VP). The monitor PURI_test is shown in Fig.
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For the property
wurr =A[] (PURI_test.secV imply PURI_test.t>TURI)

we have:
HdHPHPUR[_test ): QURI

5.3 Evaluate the Mitigation

As described in Chapter {.2] the mode switch algorithm has been designed
to mitigate the hazard that the A-V synchrony function of DDD pacemaker
extends fast atrial rate to the ventricle. It is important to ensure the effective-
ness of the algorithm without inducing other top-level hazards. In this section
we first show the existence of the hazard in a pacemaker without the mode-
switch algorithm. If the algorithm if effective the hazard will not exist after
introducing the algorithm.

5.3.1 Existence of Pacemaker Mediated Tachycardia during SVT

The monitor Pv_v is designed to show existence of PMT during SVT. It goes
to the error state if the ventricular rate drops below the Upper Rate Limit
(Fig.[5.3).
We specify ¢prs = E||(notPu_v.err)

which verifies the existence of PMT. The heart model H. in Fig. 2.9]is not
suitable for this property since the non-deterministic conduction of compo-
nent P3 does not capture the blocking property of the AV node, which is the
key in PMT. We use a more refined model H; which has AV node modeled.
To identify the PMT scenario, we first set H;. N L Trest_min < 100 so that
the atrial rate can be high and Hy.N2.Trest_min > TURI so that the in-
trinsic heart rate is less than TURI. The property is first verified on pacemaker

vs? t:Owaltfzndvs? two_v

t>TURI &2
O 900
=0

t<=TURI t=0

Figure 5.3: Monitor Pv_v for SVT: There exists an endless sequence in which interval
between ventricular events is at most TURI



5.3. Evaluate the Mitigation 369

without the mode-switch algorithm. We have Hy||P||Pv_v = pas and the
evidence returned by the model checker illustrates the PMT scenario.

5.3.2 \Verification against fundamental safety properties

For a pacemaker with the mode switch algorithm:
P,=LRI’||AVI'|JURI||PVARP||VRP||INT|[CNT]||DUR,
we verify the same fundamental safety properties on the pacemaker
model with mode-switch algorithm. We have:

Hy||P:||PURI _test = purr

HdHPQHPLRI_tGSt l# CLRI

The Upper Rate Limit property still holds, but the Lower Rate Limit property
is violated. The counterexample is proved to be valid after checking the trace
of more refined heart models. By analyzing the trace we found that when
the pacemaker is switching from VDI mode to DDD mode, the responsibility
to deliver VP switched from LRI component to AVI component. Since the
clock reference is different (Ventricular events in LRI component and Atrial
events in AVI component), the clock value for delivering the next VP is not
preserved. As a result, if an atrial event which triggered the mode-switch
from VDI to DDD happens within [TLRI-TAVI, TLRI) after the last ventric-
ular event, the next ventricular pacing will be delayed by at most TAVI time,
which violates the Lower Rate Limit property (Fig.[5.4(a)).

5.3.3 Verification of the Mode-Switch Algorithm

After implementing the mode-switch algorithm, we verified the model against
the same existence property. We expect the violation of this property, since
during VDI mode the ventricular rate of the heart model is less than the Up-
per Rate Limit and will not trigger ventricular pacing. However, this prop-
erty is still satisfied, indicating the mode-switch algorithm failed to eliminate
the PMT scenario. The evidence trace returned by UPPAAL shows that a
subset of atrial events fall into the blanking period after a ventricular event
(see Fig. [5.4(b)). As a result, two fast events are reduced to one slow event
and mode switch may never happen. This scenario does exist in all our re-
fined heart models, we conclude that the trace is physiologically feasible.
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Figure 5.4: (a) Safety Violation: VP is delayed due to the reset of timer during mode-switch,
(b) Correctness Violation: The blocking period may block some atrial events, turning two Fast
events to one Slow event (Jiang et al.[[2012b]

)
The mode-switch algorithm in our pacemaker model can not terminate all
PMT behaviors as specified as certain mild PMT events are admissible.

5.4 Abstraction Tree for Environment Modeling

In the previous two sections, abstractions and selections of the heart models
are performed manually, which require knowledge of both electrophysiology
and model checking. Counter-examples returned from abstract models can be
difficult to interpret by domain experts. One abstract counter-example could
be produced by multiple physiologically valid conditions, which causes am-
biguity. Thus, a rigorous framework is necessary to balance the need to cover
a wide range of environmental conditions and the need to provide counter-
examples to the physicians within their physiological context. The framework
must also allow non-domain experts to perform verification, and establish
‘hand-off” points where the results of verification can be handed back to the
experts for interpretation.

In this section, we use a set of domain-specific abstraction rules based on
physiological knowledge to ensure the physiological relevance of the behav-
iors introduced into the abstract models. The rules are applied to an initial
set of physiological models to obtain an abstraction tree, which will be used
for closed-loop model checking of the pacemaker. A straightforward search
procedure is then used to conduct model checking using suitable heart mod-
els and return the most concrete and unambiguous counter-examples to the
physicians for analysis. In this framework, physiological knowledge is only



5.4. Abstraction Tree for Environment Modeling 371

needed when constructing the initial model set and when analyzing counter-
examples. The application of the physiological abstraction rules and the ver-
ification procedure can be automated. The proposed method can potentially
be generalized to other domains in which the device operates in a large va-
riety of environmental conditions. More information regarding this research
can be found in Jiang et al.| [20135].

Step 1: Abstraction Tree construction

A set of heart models corresponding to different heart conditions are first de-
veloped. The list can be expanded as new heart conditions are discovered.
Because we start from a set of initial models, and each one may be abstracted
using a number of abstraction rules, we have a choice of which rules to ap-
ply to which models, and the order in which to apply them. Depending on
which rule is applied when, we end up with different abstract models. Thus
an abstraction tree Ty for the heart is created, as shown in Fig. @

Step 2: Requirement encoding

The following requirement is designed to prevent the pacemaker from pacing
too fast: “If the intervals between self-activations of the atria are between
300ms to 1000ms (60bpm - 200bpm), the intervals between ventricular paces
should be no shorter than 500ms.” Self-activation of the atria can be expressed
using the location and clock of node automaton N 4. The requirement can be
formalized using the monitor Mg, ,(V P, 500, 00):

Reql : Ny.loc = Rest A Ny.t € [300,1000] = —~Mgipng.loc == Err

Step 3: Choosing appropriate heart models for the requirement

To verify the closed-loop system with pacemaker model PM and abstraction
tree Trrar (Fig. [5.5) against requirement Regl, the most abstract appropri-
ate models are selected from the tree. The single event monitor Mg, from
Fig. [5.6(a) with variables Var(Ming) = {Mging-t, Ming-loc} is used for
this requirement. Model checking is performed on the closed-loop system in-
cluding the heart model Mz, the pacemaker model M p, and the monitor M.
The requirement ¢ p can be then represented with TCTL formula:
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Figure 5.5: Heart Model Abstraction Tree with arrows showing the direction of the
abstraction process starting from detailed models of different heart conditions. Model
refinement is in the opposite direction.

A[] (not M.Err)

The variables in the requirement are:

Var(Reql) = {Na.t, Na.loc, Mpng.loc}

At the root of the tree Hy,j;, we have {Na.t, Na.loc} ¢ Var(Hyy) U

Var(

Mging). So Hygy is not appropriate for Reql. All the children of Hy:
. tm>thresh_max . Check tm<thresh_min
Init £yent? Event? || tm<thresh_min ~ Err Init pyent1? Event2? || tm>thresh_max EfT

O

tm<=thresh_max
&& tm>=thresh_min

tm=0

tm>=thresh_min
&& tm<=thresh_max
Event1?
o O

(a) (b)

Figure 5.6: (a) M ;4 for single event; (b) Mgy, for two events
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Figure 5.7: Model refinement: Finding the most concrete counter-examples using the
abstraction tree

H/',H!' H are appropriate for Reql, thus these three heart models are

output as the most abstract models that are appropriate for Reql.
Step 4: Return the most concrete counter-examples

After the appropriate models for Reql are selected, we have the initial set
HM = {H/ H!!' H}. By model checking on all three initial models in

at

UPPAAL we have:
H,)||PM £ Reql; H,y'||PM = Reql; Hyj||PM [~ Reql

The abstraction tree is then further explored. The heart models with counter-
examples are illustrated in Fig.[5.7] and the most refined heart models with
counter-examples are: H.,; Hyye; Hopy Haon Hepip.

Step 5: Analysis of the counter-examples

The counter-examples are then shared with physicians for analysis. In Fig.[5.7]
we highlight three counter-examples. In the first counter-example, the intrin-
sic heart signals over time with up arrows as atrial activations and down ar-
rows as ventricular activations. The signal for the second counter-example
shows the pacemaker outputs with up arrows as atrial pacing and down ar-
rows as ventricular pacing.
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Counter-example C'E,, is returned by H,, and none of its children models
violate the requirement. By careful analysis we found that C'E,, features the
combination of fast intrinsic atrial rate and prolonged A-V conduction de-
lay, which is the combination of heart conditions Hg; and H,,,. This scenario
shows that the abstraction rules can introduce physiological heart conditions
that were not explicitly modeled in the initial model set. The pacemaker im-
proved the open-loop heart condition by pacing the ventricles AV I after each
atrial event, which is a correct operation of the pacemaker despite the require-
ment violation.

Counter-example C'Ej,,,. has a very similar execution to C'E,,. However,
the activations of the atrial node are triggered by retrograde conduction from
ventricle to the atrium initialized by ventricular paces (marker cond). The
atrial activations trigger another ventricular pace after AV I, which will trig-
ger another retrograde conduction. In this case, the heart rate is inappropri-
ately high, which corresponds to a dangerous closed-loop behavior referred
to as Endless Loop Tachycardia.

In counter-example C'E , the atrial rate is very high, which is also a sub-
optimal but not dangerous heart condition. However, the ventricular rate can
stay normal due to the blocking property of the AV node. Despite the filters in
the pacemaker, the pacemaker still paces the ventricle for every 3 atrial acti-
vations, which extends fast atrial rate to more dangerous fast ventricular rate.
This scenario is referred to as Atrial Tachycardia Response of a pacemaker.

From the analysis, pacemaker operations in C'E,. and CE,y must be
revised. However, the revision should not affect the behavior in C'E,,. This
example demonstrates that counter-examples from refined models provide
more physiological context of the requirement violations, and distinguish the
physiological conditions that can trigger the violations. The information is
helpful for debugging and improving the algorithm. The physicians can also
improve the physiological requirement so that these heart conditions can be
then considered case by case.

Discussion:

Model checking is not widely use in industry, in part, due to scalability issues
and also because domain expertise must be a skill possessed by the verifica-
tion engineer. However, with rigorous abstraction of the system and its envi-
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ronment, model checking can be used to identify known and even unknown
mechanisms to induce hazards. In this chapter, we use a model of a dual
chamber pacemaker as an example to demonstrate the use of model checking
during risk analysis. During the process we identified the need to refine the
heart models to eliminate false-positives introduced during the abstraction,
and demonstrated the difficulty to do so manually. The abstraction tree ap-
proach is then proposed to reduce the effort needed for both the developers
and the domain experts, which makes model checking a viable approach for
providing safety and effectiveness evidence.
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Closed-loop Model Simulation and Testing

Model checking is performed on abstract models of the system, which is at
an early stage in the development process. The verified system model during
model checking is then translated into a Stateflow model, which is a step to-
wards simulation-based testing and subsequently to code generation. Closed-
loop simulation/testing are performed on more refined deterministic models,
and on the actual system, complement model checking in terms of resolving
ambiguities within abstract counterexamples. We aim to answer the following
questions here:

e How are abstract models translated to deterministic models for
simulation-based testing?

e What system level issues are best tested at the platform level?

In this chapter, we first describe an approach to automatically translate
formal models that are verified in UPPAAL to Stateflow charts for simulation-
based testing, and then code generated to run on an embedded platform. Fol-
lowing this, we demonstrate two examples that cannot be explicitly modeled
using abstract semantics and must be tested.

376
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6.1 UPPAAL to Stateflow Automated Model Translation

A model translation tool, UPP2SF (Pajic et al.|[2014]]) was developed to trans-
late UPPAAL models to Stateflow (see Fig. [6.1(a)). Consider an UPPAAL
model with automata P, ..., P,,. After UPP2SF translation, a two-level State-
flow chart is generated as in Fig. The chart consists of parallel states
P, ..., P, (referred to as the parent states) derived from the automata, paral-
lel states Gc_x1, ..., Ge_xqy, (referred to as clock states) that model all global
clocks z, ..., z,, from the UPPAAL model, and the state E'ng that is used
as the chart’s control execution engine. Moreover, the chart has predefined
global data variables (and constants) with appropriate ranges and initial val-
ues derived from the UPPAAL model. Since all automata in UPPAAL are
active simultaneously, the obtained Stateflow chart is a collection of paral-
lel states with unique execution orders. Also, in every UPPAAL automaton
exactly one location is active at a time. Thus, each of the parent states is a
collection of exclusive states, extracted from locations in the corresponding
UPPAAL automaton.

In Pajic et al.|[2014]], we showed that for a large class of UPPAAL mod-
els, the generated Stateflow models generated by UPP2SF preserve behaviors
of the initial UPPAAL models. The translation tool can be used to estimate
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Figure 6.1: (a) Model Driven Design framework: From UPPAAL to Stateflow to generated
code — covering model verification, simulation-based testing and platform testing. (b) Struc-
ture of Stateflow charts of the pacemaker’s five basic timing cycles (from Fig.[4.2) derived by
the UPP2SF model translator. Parent states P, ..., P,, are derived from automata, while the
clock states Gc_x1, ..., Ge_xm, model all global clocks x4, ..., ., from the UPPAAL model.
The state E'ng is used to control execution of the chart.
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the worst case execution time (WCET) during modeling and model checking
stage in UPPAAL, and facilitates development of modular code from timed-
automata based models.

Fig. [6.2] demonstrates the Stateflow chart generated from the UPPAAL
model of the DDD pacemaker model in Fig. 4.2 using the UPP2SF tool. We
generated C code from the pacemaker Stateflow chart using the Simulink
Coder. The code structure is shown in Fig. The code was generated for
the general embedded real-time target and as a result we obtained the main
procedure, rt_OneStep, which processes the three input events, VinB,
AinB and clk. To ensure that the model semantics are preserved (modulo the
execution time), clk input events should be created every 1ms, followed by
the procedure’s activation. This makes it suitable for implementation on top
of a real-time operating system (RTOS).

The pacemaker code generated by the Simulink Real-Time Workshop’s
Embedded Coder was executed on nanoRK (Nano-RK! [2007]]), a fixed-
priority preemptive RTOS that runs on a variety of resource constrained plat-
forms. We tested the implementation on the TI MSP-EXP430F5438 Experi-
menter Board interfaced with a signal generator that provides inputs for the
pacemaker code (Fig. [6.4). More details regarding UPP2SF translation and
platform testing can be found in |Pajic et al.|[2014].

6.2 Pacemaker Oversensing and Crosstalk

Oversensing is a general term for inappropriate sensing caused by noise or
far-field signals. It’s very common among pacemaker malfunctions and it
may result in failure to pace (Beaumont et al.|[1995], |[Fuertes and Toquero
[2003[]), competitive pacing and inappropriate therapy. Crosstalk is a spe-
cial case for oversensing which occurs when the pacemaker stimulus in one
chamber is sensed in the other chamber. It happens when two leads are close
to each other or pacing signal in the other chamber is too strong. It is com-
mon that the ventricular lead is placed in the right ventricle outflow tract,
which is close to the atrium (Saxonhouse et al| [2005])). Fig. [6.5[a) shows
simulated EGMs from a patient with bradycardia and complete heart block.
During atrial pacing (AP), the pacing signal is sensed by the ventricular lead
53 ms after the AP. (Marker 1) It is treated as ventricular sense (VS) signal
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6.2. Pacemaker Oversensing and Crosstalk
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Closed-loop Model Simulation and Testing

(" Listing 1. bitsForTIDO definition
struct{
uint_T is_AVI:3;
uint_T is_LRI:2;
uint_T is_PVARP:2;
uint_T is_VRP:2;
uint_T is_URI:2;
uint_T is_active_AVI:1;
uint_T is_active_LRI:1;
uint_T is_active_PVARP:1;
uint_T is_active_VRP:1;
uint_T is_active_URI:1;
uint_T is_active_Eng:1;

d

( Listing 2. Rt_OneStep procedure \

for each of the input events {

}

}
update the outputs;
@date the input events states;

etect active inputs;

if EventName is active {
sf_previousEvent = _sfEvent_;
_sfEvent_ = EventName;

¢c1_ChariName
_SIEVENT_ = si_previousEvent;

J

uint_T is_Eng:1;
uint_ T URI_ex:1;
\} bitsForTIDO;

J

(Listing 3.lcl_ChartName() procedure\
increase counters for _sfEvent_;

for each parallel state {
\{

[Listing 5. broadcast_tt() procedure )
static void broadcast_tt(void) {
int16_T sf_previousEvent;

sf_previousEvent = _sfEvent_;
sfEvent = event_tf;
_sfEvent_ = sf_previousEvent;

S

/ Listing 4.[processState( Iprocedure\
if (MDWork.bitsForTIDO.is_active_ NAME !=0) {
switch (tDWork.bitsForTID0.is_ NAME) {
case SubStateName1:
I* the loop below is - checkTrans();*/
for all transitions in ex. order {
if transition enabled {
execution transition actions;
reset corresponding temporal counters;
update ntDWork.bitsForTIDO0.is_ NAME;

break for

ol
break;
case SubStateName2:
checkTrans();
break;

\J

Figure 6.3: Structure of the pacemaker

Fig.[6.2]

:i;efault:
rtDWork.bitsForTIDO0.is_ NAME=NoActiveChild;

break;
}}
\_ /

code obtained from the Stateflow chart shown in

heart block this will cause dangerous ventricular asystole, meaning a long

time without ventricular events.

Increasing the sensing threshold of the ventricular channel can prevent
false sensing. In Fig.[6.5(b), the small signals in ventricular EGM are ignored
and ventricular pacing are successfully delivered.
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Figure 6.4: (a) Structure of the pacemaker model in UPPAAL and Stateflow, including the
interaction between the pacemaker and heart, and the monitors used for verification. (b) Hard-
ware setup with MSP430F5438 experimenters board.

6.3 Lead Displacement

Lead displacement affects many patients and can result in inappropriate or in-
effective therapy. Fig.[6.6] (b) shows the simulation result for the pacemaker
function when the leads are in their designated location. From the figure we
can observe: 1) Each P-wave is initialized by an Atrial Pace signal. 2) Each
QRS complex is initiated by a ventricular pacing signal. 3) The interval be-
tween AP and VP is 150 ms, which matches the programed AVI period.

One common case for lead dislodge is shown in Fig. [6.6](a), where the
atrial lead has fallen into the right ventricle outflow tract. In this case the
atrial lead senses from the ventricle rather than atrium and atrial pacing will
initiate a ventricular event. Fig. @(c) shows the simulated EGMs in this
case. The figure reveals several facts: 1) No P wave is sensed or tracked
(Marker 1). 2) Atrial Pace initiates an abnormal, wide QRS which is then
sensed by the ventricle lead (Marker 2). 3) Intermittent appearance of VP on
QRS 110 ms after the AP. The ventricular lead can receive signal from: 1)
pacing signal sent from the atrial lead, 2) the intrinsic A-V conduction path.
The two paths are shown in Fig. [6.6](a) and form a timing race condition.
When the signal from the atrial lead arrives the ventricular lead first, it
will trigger VS. If the intrinsic signal arrives the ventricular lead during
the VSP sensing window (defined in previous section), it will trigger VSP.
Although the pacing is ’safe’ because the pacing is early enough to avoid the
vulnerable refractory period, the damage caused by pacing on depolarized
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Figure 6.5: Crosstalk between pacemaker leads with high sensitivity in the ventricle, adjusted
sensitivity and ventricular safety pacing

tissue is currently a matter of much investigation.

6.3.1 Summary:

In this chapter, we first introduced a model translation method from UPPAAL
timed automata models to Stateflow charts. Combined with Simulink coder,
the tool chain provides rigorous evidence of traceability from physiological
requirements to the C code implementation. Oversensing, crosstalk and lead
displacement are three examples in which the cause of the problem is not
modeled in the abstract interface in the timed-automata model. In such cases,
closed-loop testing with the more refined heart models and EGM interface
can be used to provide safety evidence.
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Discussion and Open Challenges

Closed-loop medical devices like implantable cardiac devices have both diag-
nostic and therapeutic capabilities and interact with the patient autonomously
in closed-loop. Their autonomy makes them among the highest risk devices
which require the most stringent regulation. Currently, clinical trials are the
primary means to identify risks associated with the closed-loop interaction
between the devices and the patient. While such clinical trials are a necessity
they are expensive and ineffective for verification of the safety and efficacy
of medical device software.

Model-based design can potentially enable closed-loop evaluation earlier
in the design process. This approach requires validated physiological models
that represents the closed-loop interaction of different physiological condi-
tions from the device’s perspective. In this effort, we use an implantable pace-
maker as an example to demonstrate the application of model-based design
in providing safety and effectiveness towards “regulatory grade evidence" of
the device and describe how these activities align into the regulatory process.

We developed heart models that capture the electrical behaviors across
a range of heart conditions, and tailored the heart models for closed-loop
model checking and closed-loop testing, which have different requirements.
In closed-loop model checking, an abstract model of the pacemaker was val-
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idated against physiological requirements. We identified the need for heart
models at different abstraction levels and demonstrated an automated ap-
proach to select the most appropriate heart model for specific safety require-
ments. The abstract model of the pacemaker was then automatically trans-
lated to Stateflow chart using a model translation tool and then generated into
C code implementation. With this model-driven design, we are able to retain
the safety properties of the modeled device from verified models to verified
code. In closed-loop testing, we use more refined heart models to capture
mechanisms that were not captured in the abstract heart models and evalu-
ated pacemaker algorithms.

Eventually we aim to conduct Model-based Clinical Trials with auto-
mated approaches to capture and tune patient-specific electrophysiological
heart models using data acquired from ablation procedures. By applying para-
metric and sensitivity analysis to a small sampling of real patient heart mod-
els, across a select set of cardiac conditions, to derive a statistically signifi-
cant, and physiologically relevant, population of patient models. This allows
us to explore a wider range of heart behaviors and expose more corner cases
to isolate software safety issues prior to an actual clinical trial. Using certi-
fied heart models, a model-based clinical trial provides additional confidence
in the closed-loop safety and efficacy of medical devices prior to random-
ized controlled clinical trials. Model-based clinical trials for medical device
software have the potential to complement the current regulatory approach
by reducing the cost, scope and probability of failure of a traditional clinical
trials. The area of Medical Cyber-Physical Systems is in its early days with
several exciting and urgent fundamental challenges in modeling, control, ver-
ification and testing for higher confidence life-critical systems.
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