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Abstract

‘Tracking’ is the collection of data about an individual’s activity across
multiple distinct contexts and the retention, use, or sharing of data derived
from that activity outside the context in which it occurred. This paper
aims to introduce tracking on the web, smartphones, and the Internet of
Things, to an audience with little or no previous knowledge. It covers these
topics primarily from the perspective of computer science and human-
computer interaction, but also includes relevant law and policy aspects.
Rather than a systematic literature review, it aims to provide an over-
arching narrative spanning this large research space.

Section 1 introduces the concept of tracking. Section 2 provides a
short history of the major developments of tracking on the web. Section 3
presents research covering the detection, measurement and analysis of web
tracking technologies. Section 4 delves into the countermeasures against
web tracking and mechanisms that have been proposed to allow users to
control and limit tracking, as well as studies into end-user perspectives
on tracking. Section 5 focuses on tracking on ‘smart’ devices including
smartphones and the internet of things. Section 6 covers emerging issues
affecting the future of tracking across these different platforms.
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1 Introduction

A working definition of tracking which aligns with the focus of this paper was
provided by the World Wide Web Consortium (W3C)’s Tracking Protection
Working Group in 2019 [

Tracking is the collection of data regarding a particular user’s ac-
tivity across multiple distinct contexts and the retention, use, or
sharing of data derived from that activity outside the context in
which it occurred. A context is a set of resources that are controlled
by the same party or jointly controlled by a set of parties.

While this definition is proposed within the context of the web, it could
meaningfully be applied to other technologies and platforms such as mobile apps
and other devices connected to the internet (the so-called Internet-of-Things or
IoT). As we shall see later, similar issues arise across all three.

Let us begin by unpacking this definition with an example. Imagine Alice
visits the website of a book shop and browses through their collection of wildlife
books. She then goes to her favourite search engine and to search for articles
about climate change policy. She sees a link to a speech made in Parliament
referring to the climate crisis, which she clicks on and reads. Data about Al-
ice’s activity — browsing the book site, entering search terms, slowly scrolling
through the parliamentary records — can be and almost certainly is being col-
lected in some form by the organisations behind these websites and services.
Such collection would not, by itself, be considered ‘tracking’, so long as data col-
lected within one context stayed within that context. But if an interested party
somehow collates these different data points — e.g. her book shop browsing is
somehow connected to data about her search terms, or what she was looking
at on the parliament website — then this would count as tracking according to
the above definition.

There are many different ways this tracking could be happening; many dif-
ferent parties that might be involved; and many different purposes for doing
so. Alice might be tracked by her own browser, which monitors her browsing
behaviour to personalise web content recommendations to her on the web and
target her on other platforms (e.g. sponsored posts on a social network). She
might be tracked by the search engine, which builds a picture of which search
results Alice actually clicks on, so that the kinds of sites she visits show up
higher in her personalised search results next time. Or she might be tracked
by an advertising technology (adtech) company, whose tracking capabilities are
bundled up in the code embedded by websites to display adverts and generate
revenue. This enables the adtech company, who Alice has probably never heard
of, to target ads to Alice based on her past behaviour on multiple different web-
sites. Some of these vectors for tracking — the browser, the search engine, the
adtech company — might also be owned and operated by the same company,
enabling it to track Alice’s activities in multiple ways.

Ihttps://perma.cc/3HXA-F4TU
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With the advent of smartphones and internet-of-things devices, the vectors
for tracking have increased; now Alice might be tracked in physical space by the
apps (and operating system) accessing the GPS system on her phone, and her
conversations might be listened in on by the smart speaker in her living room.
All of this activity is increasingly tied together across these different devices to
build ever-more detailed and proliferating personal profiles.

The term ‘tracking’ is used to mean different things in a range of contexts,
including state surveillance, public health, policing and elsewhere. This paper
primarily focuses on tracking as a near-ubiquitous commercial practice which
emerged through a symbiotic (or arguably, parasitic) relationship with websites,
mobile apps and other internet-based services. The tracking infrastructure em-
bedded in modern devices provides deep, intimate portraits of our lives which is
already routinely used to persuade and discriminate between consumers[I]. It
goes further than the most intrusive forms of government surveillance that ex-
isted before it, relying not on manual, human listening but rather on automated
data capture or what Roger Clarke calls ‘dataveillance’[2]. Tracking could well
be considered the workhorse of what some have called ‘surveillance capitalism’;
without it, the vast wealth and and power of large digital platforms would not
have been possible [3, [4]. This article focuses primarily on tracking in the Eu-
ropean and north American context, but tracking has developed differently in
different parts of the world|5l [6], and is more or less integrated within systems
of state control and surveillance under different regimes [7], 8, 9] [10].

The remainder of this article is structured as follows. Section 1 introduces
the concept of tracking. Section 2 provides a short history of the major develop-
ments of tracking on the web. Section 3 presents research covering the detection,
measurement and analysis of web tracking technologies. Section 4 delves into
the countermeasures against web tracking and mechanisms that have been pro-
posed to allow users to control and limit tracking, as well as studies into end-user
perspectives on tracking. Section 5 focuses on tracking on ‘smart’ devices includ-
ing smartphones and the internet of things. Section 6 covers emerging issues
affecting the future of tracking across these different platforms.

2 Tracking on the Web

The kind of tracking covered in this article first began on the World Wide Web
(henceforth: the web), and it remains one of the main platforms on which track-
ing occurs. This section provides a brief history and background information
on the development of web tracking.

2.1 Pre-Web Tracking

Early computers had little capability or reason to track users, because users were
generally also programmers, and their input was limited to running programs
from start to finish, as they could not be stored in memory. As systems advanced
and were capable of responding to dynamic user inputs, it became useful to



modify how software behaves in response to what the user had done in the past.
In particular, early work on natural language dialog systems provided a variety
of methods for personalising interactions with users. ‘User modelling’ refers
to the practice of generating a generic data schema in which particular user
profiles can be represented, or ‘the construction and use of an explicit model of
the user’s beliefs, goals and plans’ [I1].

In some cases, this involved inferring what knowledge has already been im-
parted to the user (e.g. KNOME: Modeling What the User Knows [12]), while
in others, it involved the construction of ‘stereotypes’ based on analysing which
user properties most often co-occur [12]. Other approaches allowed more dy-
namic user profiles to be built over time in response to user behaviours [13].
But these examples of user profiling did not involve user tracking as such, be-
cause the profile was only associated with the program in question. As such,
data was only collected within a single context, rather than combined across
multiple contexts, and typically directly served the user’s interests and needs
regarding the operation of the software.

This began to change with the rise of the web. The web was one of several
hypertext systems at the time[I4], but rapidly grew to become the primary
means by which the vast majority of people accessed the internet for the decades
to come. Karly website providers were in a very different position to previous
software providers. Users were no longer interacting with individual pieces of
software, but accessing many different websites over the internet via a single
web browser. The web presented new challenges for user modelling. Since the
early web was designed to exchange static documents, rather than dynamic
code, there was no way for a website to record anything about a user - the
website was retrieved by the user, but information about the user was largely
not collected by the website. Furthermore, even if websites had a way to record
user information, each individual website could only build a limited user profile
based on their activity on that site.

2.2  Surveillance-Based Advertising

As the web developed, technology was invented to support tracking. Web de-
velopers wanted a way to be able to remember users. In 1994 John Montully,
a developer at Netscape, an early web browser, created the ‘cookie’; a way to
store a small amount of information associated with a user [15]. The cookie is
generated by the website and stored on the user’s browser. As the user goes
from one page on the website to another, the browser presents the same cookie
back to the web server, which can then tie the various page visits together into
a coherent user ‘session’. This gave websites the ability to remember their vis-
itors, with all kinds of useful applications; showing the user what has changed
since they last visited, remembering what items are in the user’s shopping cart,
giving the user a tailored experience, and more.

A cookie is a file containing a series of fields, including: a ‘name’ to identify
the cookie; an expiration date after which the cookie should not be sent by
the browser; a domain restricting where the cookie can be sent; a URL ‘path’



restricting where the cookie can be sent within that domain; amongst other
fields. Hosts (whether first or third-parties) send cookies in response to HTTP
requests from browsers, or via Javascript code. Unless the cookie is blocked
by the browser, the browser will store the cookie and add it to any requests it
makes to the domain defined in in the cookie, until the cookie has expired as
per its expiration date.

The original purpose of a cookie — to record a user’s state (e.g. what’s in
their virtual shopping basket, or whether they have visited a linked page already)
— doesn’t necessarily require the user to be identified. A cookie could just
describe something about the user’s state in a simple way. Indeed, cookies were
initially envisioned as simple key-value pairs to record basic state information.
For instance, a cookie designed to enable a user to resume watching a video
where they left off in a previous session might have the format ‘resume = [time}é.
But today, what is actually contained in cookies is often much more complex

The news media soon picked up on this technology, with the first mention
in the press apparently in 1996 [I7]. Around the same time, a new business
model began to develop, on which much of the web still depends: advertisingE
At first, advertising on the web worked like advertising in a newspaper; the
advertiser paid the website operator to display a particular advert on their
page. The same advert would be placed in the same place on a web page, and
seen by all visitors, for however long the advertiser paid. But unlike paper, the
increasingly complex and dynamic technology of the web offered the ability to
make advertising more tailored. First, rather than giving their adverts to first-
party websites to distribute on their behalf directly, advertising agencies could
have the first-party website include a piece of code which would retrieve for the
user the latest version of the advert from the agency’s own server. This way,
the advertising agency had more control over their advert inventory, and could
build in mechanisms to more carefully manage their spending.

To get their money’s worth, advertisers would rather pay a website for each
time their ad is clicked on by a user (or shown to them), rather than a flat fee
for displaying the ad over a particular time period. But even better, they’d
pay more for ‘impressions’ (the term for when an ad is shown on a loaded web
page) shown to users who might actually engage with their advert. If Alice
has never seen an advert before, that impression may be worth more than if
she’s already seen the same advert 10 times before. Furthermore, if Alice is
more interested in ornithology than astronomy, the opportunity to advertise
to her may be more valuable to an advertiser trying to sell binoculars than
to one trying to sell telescopes. To this end, advertising agencies augmented
the code they gave to first-party websites for distributing banner adverts, to

2For instance, rather than generic cookies which do the same thing for different users,
cookies can vary significantly between users and their purpose and behaviour cannot always
be inferred from their name. This makes it harder for browsers and anti-tracking tool makers
to decide which cookies to block and which to allow. A 2017 study of network traffic from
real users examined the contents of cookies, finding it was often quite sophisticated and varied
between users, and in many cases, the Name field differed between users, partly to act as a
unique user identifier [16].

3For details on this early history, see [I8] [19]



allow them to better track who was seeing which ads. An early adopter was
the web advertising technology company DoubleClick, founded in 1995; it went
on to become the biggest ad serving platform, and was acquired by Google
in 2008. In setting up a direct third-party channel to observe user behaviour,
companies like DoubleClick set in motion a trend that would come to dominate
the web. The privacy implications of this were significant, and discussed by web
developers on mailing lists as early as 1995[19]. Further alarms were raised by
privacy scholars and activists [20], but their warnings largely went unheeded
over the following decadel From their inception, cookies were understood to
involve tradeoffs between functionality and surveillance capability[19)].

From the distribution of third-party advertiser code on first-party websites,
it was a small step to the use of ‘third-party’ cookies. First party cookies are
created and set by the website being visited and stored in the browser under the
domain associated with that website. Third party cookies work much the same
as first-party cookies, but are set and read by third-parties via scripts embed-
ded in first-party websites. They allow the third-party adtech firms not only to
measure who sees their adverts on first-party sites, but also track those users
from one site to the next. The privacy threats of third-party cookies did not
go unnoticed. The Internet Engineering Taskforce (IETF) initially proposed to
outright prohibit the use of third-party cookies, or at least have them disabled
by default[ However, they were already in significant use in the wild before
the relevant standard was adopted in 1997 (RFC 2109), and subsequent stan-
dardisation efforts dropped this proposal. Cookies then came to be the primary
technology for tracking users as they browsed the web.

In the 2000s, two things changed the relationship between third-parties and
first-parties: the evolution of new programmatic advertising technology, and the
increasing reliance on third-party services and resources by first-party websites.
These developments are discussed in detail in the following sections.

2.3 Programmatic Advertising

Around 2001, advertising technology intermediaries saw opportunities to make
the matching of buyers and sellers of ad space more dynamic. Rather than ad-
vertisers negotiating with publishers directly to buy ad space, adtech intermedi-
aries could gather together multiple advertisers and publishers and dynamically
match them. This enabled publishers to make money from ‘remnant’ ad space
which had not already been purchased directly by advertisers — i.e. web pages
with otherwise empty space which would be graced with valuable consumer
eyeballs.

But it was hard for advertisers to tell exactly where their ads were appearing
and how valuable the eyeballs on those remnant pages really were. By 2007, a

4As explained by Arvind Narayanan: “Privacy scholars and activists were worried about
surveillance capitalism at least as far back as 1995, when DoubleClick was founded. We
tried to warn the public before it was too late, but mostly failed, at least in the US"
https://perma.cc/Z7YF-EY3C

5See https://perma.cc/Q3X5- J9AX
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new kind of intermediary arrived: the programmatic ad exchange, coupled with
real-time bidding (RTB) and fine-grained personal information about the end
user [21] 22]. Ad exchanges run auctions for the ad space on a web page each
time the page loads; and advertisers bid to buy that impression. This promised
advertisers something quite unique; the ability to bid against each other for the
opportunity to show a particular advert to a particular user based on a profile of
that user. The advertiser’s bidding strategies are all programmed ahead of time
(often with the help of ‘demand-side’ platforms), meaning that the auction can
take place within the milliseconds which elapse between the user requesting the
page and the page loading. Within this tiny window, a surprisingly large number
of actors are involved in a complex, automatically choreographed bidding war,
involving the processing of lots of data from multiple sources.

The precise details of the bidding process differ from one case to another,
however, on the web, there are now two main technical specifications for how
these automated auctions take place. One is controlled by Google, called ‘Au-
thorized buyers’, and the other by the Interactive Advertising Bureau (IAB),
called ‘OpenRTB / AdCom’. Both processes consists of a few broad steps:

1. First, the ad exchange lists the auction, by broadcasting a ‘bid request’,
which contains information including: the URL of the page being visited;
the site category; the user’s device and browser details; one or more user
identifiers that bidders can use to recognise a user from another context;
the ad exchange’s own cookie information about that user, which could
include inferred gender, interests, location (city, or even GPS co-ordinates),
and more.

2. Then, the various competing advertisers’ programmatic bidding strategies
are automatically executed by their respective demand-side platform inter-
mediaries. These bidding strategies are typically informed by further data
about the user they have been able to glean from other tracking sources.
Most advertisers use intermediaries called ‘demand-side platforms’ to plan
and execute bidding strategies on their behalf; they may also use ‘data
management platforms’ which help manage the user data they collect and
associated ad targeting segments.

3. Finally, the highest-bidding advertiser wins the auction, and has an advert
automatically chosen, retrieved from their ad inventory, and loaded on the
page for the user to see and perhaps click on (or perhaps, to ignore or block
- see section [).

This new way of targeting ads led to a flourishing of new intermediaries for
tracking, to meet the demand of advertisers to know more about the users whose
attention they were paying to reach. The more data available to target the ad,
the more the advertiser may be willing to pay to extract the maximum value
from an advertising opportunity. It was therefore in the interests of various
third-parties to gather as much data as they could about individual users, so as
to better inform bidding strategies of advertisers, and for publishers to increase



the value of their ad space when high-value users visit their sites. By building
ever-more detailed profiles of increasing numbers of individuals, intermediaries
could convince advertisers to pay more for the supposedly more accurate tar-
geting opportunities. Of course, the advertisers also wanted to know that their
money was being well spent; this led to the creation of a substantial sector of ad
measurement providers, who assembled complex data supply chains dedicated
to following what people do after seeing an ad, to establish how effective the
targeted advertising actually was in driving sales and other behaviours.

2.4 Third-party Services

The other key development through the 2000s was the increasing reliance on
third-party services and resources in web development. This came in part be-
cause the web was moving from a largely read-only web of documents, to a web
of interactive applications. This meant web developers were no longer just for-
matting documents in HTML, they were now using increasingly complex code
to design interactive applications in Javascript. Rather than creating all func-
tionality of a website from scratch, it is far easier to take existing snippets
from other websites and incorporate them into your own. In itself, such copy-
ing was not novel; from the very beginning of the web, developers have always
liberally copied from each other (indeed, it is one of the factors which allowed
the web to grow and attract users who also produced new content|23]). How-
ever, traditionally, when web developers copied some code from elsewhere, they
would still host it from their own domain, so that when a user connects to
example.com, all the HTML pages, images, Javascript files and so on, would be
served viaexample.conl as a first-party. As a result, whoever wrote the original
code copied by lexample.com would not have any direct connection to the user’s
browser. As such, use of third-party code didn’t facilitate third-party tracking.

However, web development increasingly came to rely on third-parties not just
for code and content itself, but also for its distribution; this allowed first-parties
to not worry about maintaining and hosting it all themselves. This included
everything from widgets for embedding and serving video content, user analytics,
the loading of special fonts, comment functions below news articles, buttons
which allowed content to be shared via the user’s account on a social network,
anti-spam measures which separate bots from genuine human users, and much
else besides. These services are typically made available through Application
Programming Interfaces (APIs), which are intermediary pieces of software which
allow two applications to work together. Web development moved away from
first-parties bringing together all the resources for a website and hosting them
themselves via their own domain and server, towards first-parties being merely
the co-ordinators of increasingly complex tapestries of third-party code and
content woven together and served from their respective third-party APIs [24].
Referencing externally hosted third-party resources had several advantages for
first parties over hosting such resources themselves, in addition to saving them
upfront effort and cost. These include latency (users can retrieve the third-party
resource more quickly from an optimally located server), better caching (if many
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first-parties use the same third-party resource, users may have it cached in their
browser already), and less work for the first-party to update and secure a variety
of different elements.

However, while providing such benefits to first parties, third party resources
amassed a significant amount of power to ingest data [25]. Every function out-
sourced to a third party opened up another network connection between the
user and a third-party server, giving the third-parties the opportunity — and in
some cases a seemingly legitimate excuse — to gather behavioural data about
the user. With a venture-capital driven charge for the mass collection of per-
sonal data, these third-party services increasingly took up that opportunity. As
a result, users were not only being tracked directly via the third-party scripts
belonging to advertising technology providers, but also by other third-parties
who were providing other, non-advertising services to first-party websites. But
before long, those other third-parties also took up the opportunity to become
enmeshed in the digital advertising industry too, for instance by operating as
data management platforms, supplementing demand-side platforms with addi-
tional personal data about individuals to better inform ad targeting and bidding
strategies. Third-parties shared some of the profits of this data monetisation
with the first-parties on whom they depended, and soon the dependency was
reversed; many websites came to rely on these third-parties not only for func-
tionality (analytics, content distribution, interactive elements), but also as their
main revenue source.

Among the third-party resources commonly referenced by first-parties are
those belonging to the largest web giants, the likes of Google, Amazon, Facebook,
Twitter, and Microsoft. This means that users of their services can be tracked
as they move around the web, often even when not logged in to the respective
service. This has further enriched the already rich profiles these platforms had
built on their users activities beyond their walled gardens. As a result, a social
network might be able to infer sensitive private information about a user not
because of what they do on that social network, but as a result of the websites
they visit outside of it. These trackers are sometimes called ‘personal trackers’
because while they are ‘third-parties’ in a technical sense, the user may also have
a personal account with them because they also operate as user-facing first-party
services like Google or Facebook [26]. Whether the average user would ezpect
or consent to be tracked beyond each respective service in this way is another
matter. Even those without an account on a social network might still have
their activity on the web tracked via its third-party tracking network; the term
‘shadow profile’ refers to the profiles of individuals who have never created an
account on a social network but nonetheless have their activities monitored
and collated by them [27]. The same is true for all the other web giants with
significant third-party prevalence on websites.

Another complicating factor is that some third-party services may not ini-
tially be designed for tracking, but can over time become trackers. For instance,
a third-party analytics service might initially be used in a way that only com-
bines user data within a session, or within a single website. The analytics
provider’s code might set a cookie via the first-party’s domain. But at some

10



point, the analytics code might be updated to enable multi-domain tracking
— either by owner of the first-party domain linking together behaviour from
multiple different websites, or by the third-party looking to build user profiles
themselves. Google Analytics, the most popular web analytics service, gives
website operators the option of linking together user behaviour across multiple
domains they own. At any point, website operators could use this to track
users across their sites, and Google Analytics itself can also do the same thing,
across all the websites who embed their analytics code (estimated around 56%
of websites as of 2021@). As such, web users may find that their web browsing
activities are being tracked via Google Analytics and incorporated into a profile
about them, potentially even if they have never had an actual Google account,
and even if they don’t use Chrome (Google’s web browser)E

A study of the development of third-party trackers between 1996-2016 pro-
vides a useful historical overview of how this phenomenon has evolved. The
study found that the number of third-party trackers rapidly increased on web-
sites during this period [26]. In the early 2000s, no single tracker was present on
more than 10% of top sites; but by 2016, [google-analytics.com was present
on nearly a third of top sites. As mentioned above, it is now present on a major-
ity of websites. By 2016, 300 out of the 500 top websites were making calls to at
least four different APIs which could be used for tracking without cookies, up
from less than 50 in 2005 [26]. Another study of the development of third-party
web tracking from 2005-2014 found a five fold increase in the number of external
requests|28]. There are some silver linings for the privacy-concerned, however,
as some early forms of third-party tracking had already diminished or died out
by 2016. For instance, ‘forced trackers’, which use automatic popup windows,
peaked in the early 2000s, before browsers began automatically blocking such
popups by default around 2004 [26].

Such firms became a significant part of the US and other economies [29].
Internet-related advertising revenue was estimated at $326 billion during 2020,
up from $294 billion in 20198 A large share of this revenue is accrued by
third-party trackers [30].

2.5 Cookies in Detail

The following sections detail several important developments in the use of cook-
ies, including cookie syncing, disguising and hijacking, and non-HTTP cookies.
2.5.1 Cookie Syncing, Disguising, and Hijacking

While third-party cookies were not prohibited or disabled by default as the
IETF had initially proposed, one control that was in place to limit their risks

6 As estimated by W3techs https://perma.cc/QG6H- J4FY

"In response to an ongoing anti-trust / competition investigation by the UK Competition
and Markets Authority (CMA) in 2021, Google committed to restrict the use of Chrome
browsing history and Analytics data to track users for targeting and measurement of ads on
Google or non-Google websites (https://perma.cc/Z5ZA-G6SN))

8 What does 2020 hold for ad markets?” WPP https://perma.cc/6GIB-WZSK
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was the ‘SameOrigin’ policy. This is a policy enforced by browsers, which limits
access to cookies to the entity which set them. In this context, entities are
distinguished by the domain that set them — for instance, a cookie set by
firstparty.com cannot be accessed by [thirdparty.com and vice-versa — but
also by the protocol they use (e.g. HTTP vs HTTPS) and the network port from
which the server is operating. This means that a cookie set by thirdparty.com
via HTTPS on port 80, could not be read by a host from the same domain
thirdparty.com operating over HT'TP on port 81, and vice-versa [31], because
while the domain matches, the network protocol and port differ.

The SameOrigin policy places a barrier on third-party trackers, because in
order to track a user across multiple sites, a tracker needs to be able to both
set and read cookies on each of those sites, which means each of the first-parties
must include code enabling the third-party to initiate a network connection. The
SameOQrigin policy is intended to make it impossible for third-parties to read
the cookies set by first-parties or other third-parties. So third-parties should
therefore only be able to track individuals within the networks of first-party
sites on which they are present.

However, SameOrigin can be circumvented by multiple trackers working to-
gether, using a technique called ‘cookie syncing’ or ‘cookie matching’. If tracker
A is onlabc.com, and tracker B is on xyz.com, they can collaborate together to
track a user across both sites. The trick is that tracker A’s code, which has been
embedded by labc. com, forces the user’s browser to make a network request to
tracker B. This network request includes a query parameter at the end of the
URL, which contains the ID of the cookie that tracker A set. For instance, the
request might look something like trackerB.com/cookieid?=12345. Tracker A
therefore causes the browser to reveal itself to tracker B, by leaking an identifier
(12345) in a request to tracker B that tracker A set. Then, tracker A and tracker
B can set up a back channel through which they combine what personal data
they have about the individual by matching up their respective cookie identifiers
for that individual. In this way, multiple trackers can work together to expand
their reach and collaboratively build more detailed profiles of users.

Cookie syncing is one of the increasingly complex behaviours exhibited by
trackers in recent years [26]. Empirical studies of visible cookie matching tech-
niques by 53 firms suggest that such techniques are present in over 91% of the
pages a user visits [32]. An in-depth study of cookie syncing in the wild, using
a year-long weblog from 850 web users, found that 97% of them are exposed to
cookie syncing, mostly within 1 week of web browsing [33]. The user ID gets
leaked on average to 3.5 different domains. They also estimate that a user is
tracked by 6.75 times more domains as a result of cookie syncing activity than
they would if third-parties were unable to collude in this way. Other studies
have utilised machine learning models to uncover forms of cookie synching which
are not directly observable from the client side, by observing the adverts a user
recieves [34] (such studies raise interesting methodological questions which are
addressed in more detail in section B:2)).

Another way the SameOrigin policy and other tracking protections are cir-
cumvented is by third-parties convincing first-parties to allow them to deliver
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cookies through the first-party’s domain, through the use of domain redirection.
This is often achieved through the configuration of CNAME records, which al-
low external access to a domain name space [35]. This way, the third-party is
disguised; from the browser’s perspective it appears to be the first-party. As a
result, third-parties can track users via different first-party domains, without vi-
olating SameOQrigin, while being inconspicuous in the network traffic. However,
this also means the third-party may be able to access the first-party’s cookies
as well — including those used for login and other functionality — raising secu-
rity risks for the first-party as well as privacy risks for the user. More broadly,
disguising third-party cookies as first-party cookies means that users, browser
makers, and researchers, can’t as easily tell who is really ‘behind’ a cookie just
by looking at the domain that set it.

Even if first-parties don’t grant third-parties access to users via domain
redirection, there are other ways in which cookies can inadvertently give away
sensitive information to third-parties. Until recently, many websites did not
use HTTPS, the secure version of the regular network protocol for the web, for
setting and reading cookies. In some cases, only some parts of a website would be
loaded over HTTPS, while other parts deemed less sensitive might be loaded over
HTTP (e.g. loading custom fonts). However, many websites also used HTTP
for setting and reading cookies used for user personalisation. For websites using
multiple cookies for different purposes and functionality, with complex inter-
dependencies, and unclear or imprecise access-control mechanisms, it was easy
to inadvertently expose cookies containing sensitive information over HTTP.
A study in 2016 found that an attacker exploiting this could obtain a user’s
home and work address and web browsing history from Google; Bing and Baidu
exposed the user’s search history; and Yahoo even allowed an attacker to send
an email from the user’s account [36]. Ad networks like Doubleclick were also
found to be inadvertently revealing the user’s browsing history.

2.5.2 Non-HTTP Cookies

So far, we have primarily focused on HTTP(S) cookies. However, the basic
concept of a cookie has been extended to other parts of the web. They all have
the common function of setting and retrieving data about a user on their device,
whether that happens over HT'TP or some other protocol. These alternatives
arose in part because as browsers clamped down on HTTP cookies, trackers
moved their operations into less well-policed parts of the browser that still gave
them the basic ability to write and read data.

Some methods relied on the fact that browsers often use ‘caching’ — keeping
a local copy of various data from websites in order to not have to load it fresh
every time — to track users. By hiding a unique identifier within the data that
the user is caching, it becomes possible for the host to reidentify the user next
time they visit by querying some of the contents in the cache, a method first
documented in 2003 and examined in detail in 2006 [37]E Another method, also

9nttps://perma.cc/GIZU-HGD5
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first documented in 2006, was to use Flash, a now largely defunct video software
platform, to store cookie-like objects. Regular cookies, set using HTTP, could
be easily deleted in the browser. Flash cookies, by contrast, could be set by
a first or third-party, on the user’s Flash player software (which was for many
years the default means of watching video on the web), and remained there even
if the user were to switch to a different browser [38].

These non-HTTP cookies were often used to defeat attempts by users to
purge cookies from their browsers. If a HT'TP cookie was deleted, a backup
could be retrieved (either through the local caching or Flash methods described
above), a practice called ‘respawning’. A study in 2009 found 281 Flash cook-
ies across 54 of the top 100 websites [39]. However, the use of Flash cookies
declined following the publication of this research; a follow up research article
by the same authors in 2011 found just 100 Flash cookies on 37 of the top 100
sites [40]. However, newer methods of achieving the same goal of reconstruct-
ing deleted cookies were also found, including the use of HTML5 local storage
and ETags. Increasingly sophisticated techniques were developed to enable the
reconstruction of cookies from any traces left behind by the original, deleted
cookie. Cookies that were ‘virtually irrevocable persistent’ were dubbed ‘ev-
ercookies’ by a researcher who uncovered a particularly devious example [41].
The discovery of such mechanisms eventually lead to a lawsuit and $500,000
settlement by one of the companies deploying them, KISSmetrics, in 2013[42].
However, large scale studies in the following years revealed the practice was still
rampant [43].

2.6 Fingerprinting

The methods of tracking described above all involve tying together a user, based
on identifiers stored on the browser, using HT'TP cookies and related technolo-
gies. However, this is inherently less reliable because the user might delete the
cookies stored on their device. While the various respawning methods discussed
above might allow the identifier to be re-established, any form of browser-side
storage would still result in a cat-and-mouse game between trackers trying to
place cookies somewhere on the device and make them stick, and anti-tracking
tools trying to find and remove them. From a tracker’s perspective, rather than
having to set and read an explicit identifier on a browser, it would be far more
effective to be able to just tell one browser from another based on their inher-
ent differences. This is where fingerprinting and other ‘implicit’ methods of
tracking come in [44]. While the term fingerprinting is the preferred term
of researchers, privacy advocates, policy makers and others, the fingerprinting
industry prefers to use a host of alternative terms, like ‘Unique User Identifiers’
(UUIDs), ‘Pseudo-identifiers’, and ‘Cookieless signals’. Presumably, these are
chosen to sound less scary, and more obfuscatory, than ‘fingerprinting’.

Unlike cookies and other methods which involve creating a unique identifier
and storing it on the user’s device so they can be identified later on, finger-

10For an overview of browser fingerprinting methods, see [45]
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printing aims to identify a user based on their inherent features that might
uniquely pick them out of the ‘crowd’ of other web users (‘probabilistic iden-
tification’). By analogy, it’s like the difference between a car’s number plate
(an explicit, unique identifier assigned to the vehicle), versus a description of
its brand, model, colour, scratches, and other distinguishing features. Even if
the owner changes the number plate, one might still recognise it because of the
brand, model, colour scheme, particular shape of a dent in the bonnet, hub caps,
etc. Unlike cookie-based tracking, which involves interfering with the way the
browser operates, and by necessity leaves a trace by placing a cookie, finger-
printing happens more opaquely in the background, on the server-side, and so is
harder to detect. Other terminology often used to make the distinction between
cookie-based and fingerprint-based tracking is ‘stateful’ vs. ‘stateless’ (e.g. [46]).
Cookies are classed as ‘stateful” because they record the ‘state’ of a user (e.g.
their previous activity on or off the site) and make that state available to a first
or third party; by contrast, fingerprint-based tracking is ‘stateless’ in that it ap-
proaches each user fresh each time, and attempts to use identifying features to
tie their current session to a previously identified user. Such terminology can be
misleading though, in the sense that both approaches are capable of maintaining
state; the difference being whether state is maintained via a cookie stored on the
browser, or via a server-side database against which people are matched based
on their browser fingerprints.

Fingerprinting methods all depend on the possibility that a tracker might be
able to uniquely identify a browser based on what they reveal about themselves
naturally. In some cases, this includes almost-unique identifiers that a browser
emits for functional purposes, such as the Internet Protocol address from which
the request is being made. Often, an IP address will be unique to a single user.
But even without an IP address, there is other information that browsers may
give away. For instance, the particular operating system version, the combina-
tion of plug-ins installed, the screen resolution, the selection of fonts that the
browser has already installed, and so on. Such information is routinely shared
with websites by browsers for a variety of reasons. For instance, knowing the
screen resolution allows the website to adapt its layout to fit the dimensions of
the user’s screen. Knowing which fonts the user already has installed means
the website doesn’t need to waste bandwidth sending fonts to users who already
have them installed. However, all those useful characteristics in combination
may be enough to uniquely distinguish one browser from another. Tools like
the Electronic Frontier Foundation’s ‘Panopticlick’, or ‘AmIUnique’ allow users
to see how unique their browser’s fingerprint is [44].

Even without access to all those browser characteristics, there are other ways
to track people. An early theoretical fingerprinting attack from Felten et. al [20],
was based on measuring the time it takes for browsers to perform an operation
with or without certain cached information. Since browser performance depends
partly on what information it has already cached from its history, the speed of
certain operations gives away clues as to what sites have previously been visited.
That inferred history is privacy-compromising in itself, and might be enough to
uniquely identify an individual browser. In the years since, such sophisticated
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attacks are unnecessary; there are far more readily available characteristics for
fingerprinting, and fingerprint data is compact (around a dozen kilobytes) so
can be collected within seconds[47].

Some methods of fingerprinting make use of the ‘Canvas’ element, which was
part of the fifth generation of the web markup language HTML, released in 2014.
The canvas element was designed to allow for the dynamic rendering of shapes
and images. It can be exploited by fingerprinting scripts, which use the element
to draw some text with a particular combination of font, size, and background
colour. The text isn’t actually shown to the user, but since different computers
will render the text in slightly different ways — due to different image processing
engines, compression, speed, etc. — the fingerprinter can distinguish between
different browsers by observing how they perform this operation. It then creates
a cryptographic hash of this information, and stores it so the same user can be
identified later on using the same method [43]. While canvas fingerprints are not
always totally unique, they do enable identification in combination with other
data [48], with a 2015 study finding such methods enabled unique identification
of 34% of participants in a study of 1,000 web browsers [49].

Unlike the ‘deterministic’ tracking enabled by assigned identifiers, finger-
printing is probabilistic in the sense that the tracker might not be 100% certain
that the browser they see in one context is the same as the browser they see in
another context. They consider a wide variety of characteristics that a browser
might reveal about itself, in combination with each other, in order to single
an individual browser out from the crowd. This generally works because most
browsers have a unique set of characteristics that allow them to be distinguished
from others. In this sense, browsers are much like the characters in the board
game Guess Who?; many share many common features with each other, but
any two browsers can almost always be distinguished from each other based on
at least one feature.

How (in)distinguishable your browser is from all the others is typically mea-
sured in terms of the concept of entropy as used in information theory[s0]. A
system with high entropy is one where you would need to ask many questions
in order to provide a complete description of its state; whereas a low entropy
system is one whose state could be determined by asking only relatively few
questions. A high level of entropy (measured in bits) means a browser is hard
to distinguish from other browsers, while low entropy means it is easy to pick it
out from the crowd. Each individual browser characteristic that is revealed to
a tracker will detract from the browser’s overall entropy, although some charac-
teristics are more revealing than others [44]. Another concept sometimes used
in this context is that of wnicity, which is defined in terms of the proportion
of individuals in a set (in this case, the proportion of browsers exposed to a
tracker) that are unique [511 [47].

While fingerprinting is harder to detect than cookie-based tracking, it is pos-
sible by either focusing on the presence of third-parties who are independently
known to engage in it (e.g. through the fact that they publicly advertise their
services), or by looking for the tell-tale signs of fingerprint-related behaviour.
An example of the first, is a major study of three known commercial fingerprint-
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ing providers in 2013. It showed that they were already using a wide variety
of fingerprinting methods, allowing them to track users without needing any
client-side identifiers (e.g. cookies) [52]. An example of the second, in an early
large-scale study of fingerprinting, involved detecting when third-parties were
trying to obtain a list of all the fonts the browser had installed in a suspicious
manner strongly indicating an attempt to fingerprint [53]. Later versions of
HTML also provided many new opportunities for fingerprinting, with APIs that
allowed access to information like a device’s battery status; while it might be
useful to adapt a website so as to not use up too much power on a device with
an already-low battery, this information can also be abused by fingerprinters
[54].

A study from 2020 revealed that fingerprinting has only increased in the years
after these initial large scale studies [55]. Browser fingerprinting is now present
on more than 10% of the top 100,000 websites, and over a quarter of the top
10,000 websites. Fingerprinting can also be used to re-establish explicit tracking
methods like cookies. Similar to cookie respawning via storing identifiers in other
parts of the browser, fingerprinting can be used to restore a deleted cookie. If
a user deletes a cookie, trackers can use fingerprinting to pick them up again
when they show up on another site, and re-link them back to the profile they
had earlier associated with the individual.

2.7 Email-based Tracking

While email is not a web technology, predating the web by many years, in
recent decades email has come to use many of the same technologies as the web,
including HTML and Javascript frameworks for formatting and making email
experiences more interactive. This has a lot to with the popularity of web-based
email clients, but even non-web based email clients have for many years had the
capacity to interpret HTML and run embedded Javascript in emails, making
email almost a subset of the web. Therefore it should come as no surprise that
tracking is also very common within emails. The original purpose for email
tracking was so that senders could tell whether and when their emails were
opened by the recipient. This was acheived by embedding a 1x1 pixel image.
Upon the recipient opening the email, this would trigger a request over the
network to load the image so it could be rendered. That request could be
taken as a signal that the email had been opened. This behavioural datapoint
is typically combined with other behavioural data and third-party cookies, to
link together the user’s email reading with their web browsing. A 2018 paper
[56] found hundreds of different third-parties which track email recipients using
such methods. When users click on links within emails, further information
about them is leaked via the URL query string (using a method similar to that
involved in cookie syncing).
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3 Tracking the Trackers

Many of the studies mentioned above involve detecting trackers in the wild,
at scale. There are distinct methodological challenges involved in such studies.
As these methods have evolved, they have shaped the development of research
into trackers. They have also helped inform the efforts of browser and anti-
tracking tool developers to identify and block tracking. This section discusses
the main methodological approaches to detecting trackers; for a more compre-
hensive overview, see [57].

3.1 Network Traffic Analysis

The typical methodology for web tracking detection involves capturing network
traffic from the browser (typically, HTTP and HTTPS requests and responses),
during a browser session. In some cases, the browser session is driven by a real
human user, and in others it is simulated by a bot which automatically loads and
interacts with a web page. Web tracking studies have grown in scale massively.
Seminal studies in this space, starting in 2006, typicaly focused on the top 100
or 1,000 websites (e.g. [68, [39]). But larger scale measurements have become
possible with new approaches. For simulated user studies, there are frameworks
for crawling like OpenWPM and webXray which can easily scale to millions of
websites [46, 59] and billions of individual pages [60]. Other studies leverage
data from hundreds of thousands of real users who have opted to take part in
studies (e.g. users of the tracker-blocking plugin Ghostery [61]).

In either case, this network traffic is then typically separated into first-party
and third-parties based on domains. At this point, the collected traffic logs can
be inspected. Specific types of personal information - e.g. email addresses, zip
codes, telephone numbers, and other data types - can be searched for within
the network ‘payloads’ (the actual contents of the data packets being exchanged
over the network). In the case of HTTP traffic, such payloads can be read in
the clear, and in previous times this was sufficient to monitor the majority of
web traffic. Until 2011, studies of web tracking were able to mostly rely on
inspection of HTTP traffic [62]. The fact that so many third-party trackers did
not use the more secure HT'TPS protocol with transport layer encryption, meant
that their cookies could be observed by any passive observer with access to the
network, e.g. internet service providers, mobile broadband network operators,
and national intelligence agencies. A study from 2015 examined how a passive
observer would be able to link browsing activity even as a user moved from
one IP address to another, by inspecting HTTP cookies transmitted over the
network[63]. They estimate that such an attacker can reconstruct 62—73% of
a typical user’s browsing history in this way.

However, HTTP has gradually been replaced by HTTPS, which encrypts
every request and response between the client and server. To observe tracking
behaviour over HTTPS, decryption is therefore required using a man-in-the-
middle proxy. This involves dynamically generating and installing a certificate
for each hostname (e.g. thirdparty.com). The browser is configured to trust
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the certificate, even though it is not the correct certificate for thirdparty. com,
allowing the encrypted HTTPS traffic data to be decrypted. Then the traffic
can be inspected for evidence of personal information and identifiers used for
tracking.

Inspecting network traffic (whether HT'TP or HTTPS) in this way for every
request and response, provides important evidence to help determine whether
tracking is taking place. However, it may be too fine-grained, potentially miss-
ing certain forms of tracking; for instance, it may not be easy to tell whether
the data sent contains a fingerprint, because it is not possible to search for
fingerprints in the same way one could search for an email address or similar.
The payload might have another layer of encryption in addition to HTTPS, or
it might be encoded in a way which evades simple detection methods. Finally,
traffic inspection may not scale well, as some tracking may only be triggered in
certain circumstances, or in response to specific user behaviours which might
be missed during the data collection (especially if the study uses a simulated
user rather than a real human participant). However, in many circumstances it
is reasonable to infer tracking is taking place even without such evidence. For
instance, the presence of a known third-party tracking domain within network
traffic would strongly suggest some kind of tracking is present on the site. For
these reasons, rather than examining each individual network request, some
studies simply detect the presence of a known tracker, based on a reference to
a known tracker host (i.e. a particular domain name, or IP address).

A major challenge with this host-based approach to tracking the trackers
is how to compile a list of known trackers. Identifying a tracker is not as
simple as looking at the domain it operates under. This might work for large,
well known trackers who operate under a single domain. But there are many
different trackers out there. Ideally, there would be a comprehensive list of
all domains, with a definitive answer as to whether they are ‘trackers’ or not.
Researchers, browser vendors and anti-tracking tool providers have been working
towards such lists. One important resource has been the Domain Name System’s
WHOIS register. This is not a single list, but rather a protocol which is used
to create an interlinked system of different domain name registration databases.
In theory, and in reality in the early days of the web, one could look up who
owns any domain, and see some basic information about them. However over
the last decade or so, increasing numbers of domain owners hide behind domain
name registrar privacy services which hide their details [64]. Another factor is
that publicly listing all domain name owner’s details — which often constitute
personal data — is not compliant with EU data protection law. In the lead
up to the enforcement of the GDPR in 2018, EU data protection regulators, in
their capacity under the Article 29 Working Party (now re-constituted as the
European Data Protection Board), instructed ICANN (Internet Corporation
for Assigned Names and Numbers, the organisation responsible for co-ordinating
DNS) to make such WHOIS information private by default. While ICANN have
been attempting to develop an alternative access system for years, which would
protect privacy whilst also making WHOIS information available to those with
a lawful basis for processing it, the implementation of such tiered access systems
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by individual domain name registrars has been uneven [65]. These factors make
it hard to compile tracker lists based on WHOIS data.

Despite these difficulties, several projects have compiled tracking protec-
tion lists. Such lists have been compiled by open-source anti-tracking projects,
tracker-blocking tools, and researchers. Such lists include those from Ghosteryl,
Adbloc, Disconnec, Adblock Plus’s Easylis, the WebXray Domain Owner
lis, the Exodus tracker databse (focused on mobile trackers)JE and oth-
ers. This enables researchers to scale detection of web tracking, by narrowing
down to count only those hosts which have been identified as trackers (see e.g.
[66, 67, [68]. Entries on such lists may be identified manually, which should
result in high precision. However, these lists may not be fully representative
of the trackers in existence. They may be oriented towards the particular cir-
cumstances of the organisations and user groups who compiled them (such as
geography, sites of interest, etc.). They may also have different definitions
of tracking; sometimes they are advertising-oriented rather than tracking in
general, and some lists make exemptions for trackers who sign up to codes of
conduct[§ Finally, such lists may miss important trackers which use less vis-
ible tracking methods, like fingerprinting; one study of tracking ‘pixels’ used
for fingerprinting found that popular tracker lists missed between 25-30% of
fingerprinting-based trackers[70].

Another methodological difficulty for web tracking research is that third-
party behaviours can be quite dynamic. The presence of a script from one
third-party in a web page doesn’t necessarily only indicate tracking by that
single party. Once the script is run, it might trigger other third-party depen-
dencies, who in turn might trigger further connections (for instance, to facili-
tate cookie syncing between third-party trackers). Furthermore, this behaviour
might change from one visit to the next, leading to inconsistent results be-
tween measurements in studies which only visit / crawl each page once. Various
researchers have modelled such dynamic behaviour. Gomer et al. construct
Referrer graphs, where nodes represent first and third-parties, and edges rep-
resent HTTP(S) references between them|[71]. Another way of modelling these
networks of third-parties is via ‘third-party trees’, which measure the inclusion
relationships between domains by recording the exact provenance of HTTP(S)
requests[72]. Using this approach, Urban et al. found that a single third-party
can lead to subsequent requests by eight additional third-party services, and
half of these additional third-parties change between repeated visits to the first-
party. They also found that crawling only the landing page of a website may
give an under-estimate of the third-parties that a user would be exposed to if
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they browsed around the site; deeper website crawls resulted in 36% more third
parties.

3.2 Inferring Tracker Data Flows from Ads Served

It is hard to know how trackers work behind the scenes, especially where they use
techniques like fingerprinting or cookie syncing which aren’t observable by just
inspecting the cookies applied to a browser, or where the contents of cookies
are unobservable. This presents a difficult problem for researchers who want
to understand what data may have been collected and how it may be used.
However, where those trackers are playing a part in the behavioural targeted
advertising supply chain, it may be possible to infer what they are doing by
observing their downstream effects, e.g. the ads that are eventually targeted to
a user.

Studies have used this approach - attempting to infer what data trackers
collect from what ads are eventually shown - since at least 2012 73] [74]. This
method can also be used to detect cookie syncing. If cookie syncing is hap-
pening, then one should expect to be able to indirectly observe its effects as
trackers behave differently when they know additional information about a user
that they couldn’t have gleaned from their own tracking network. This has
been exploited in one study of cookie syncing [34]. By setting up fake per-
sonas which automatically browse the web, exposing themselves to different
ad network trackers, and then observing the bids that those networks place in
programmatic ad exchange auctions, the authors were able to guess which ad
networks were colluding with each other behind the scenes. For instance, say
tracker A observes a web user visiting an automotive dealer website, and then
subsequently tracker B — despite never having directly observed that persona
interacting with automative-related content — wants to bid more to target a car
advertisement to that user. We might then reasonably infer that tracker A and
B have a back-channel where they combine their respective cookie information
to inform their bidding strategies. The authors developed a machine learning
model to infer these relationships, finding evidence suggesting several instances
of cookie syncing that would not be observable directly from the client-side.

As Bashir et al. point out, an advantage of this approach is that it is not
necessary to establish the exact method by which the data used to target the
ad was collected and shared|74]. Instead, it relies on the semantics of how
exchanges serve ads, rather than the specific matching mechanism. Since such
methods are essentially attempts at causal inference, they could also borrow
from information flow tracking methods and more generally from experimental
science and statistical analysis, as explained in [75]. Along similar lines, Lecuyer
et al. propose XRay, a generic system for reverse-engineering which data is being
used to drive profile-based targeting using ‘differential correlation’ [76].
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3.3 Cross-border Tracking Comparisons

Various research has aimed to study the international distribution of trackers.
While many tracking companies are based in the US, there are also many others
located elsewhere. The cross-border dimensions of tracking invite some basic
questions. Where in the world are trackers located? Are web users in some parts
of the world tracked more than others? The geographical spread of trackers that
a web user is exposed to will be highly dependent on what sites they visit, and
where in the world they are located. This has interesting legal consequences.
For instance, data about an individual in one jurisdiction might be protected
to a greater or lesser extent than the jurisdiction in which the tracker is based.
Relatedly, the extent to which third-party trackers can be used as surveillance
infrastructure by passive network traffic observers also depends on where they
are located within the global flow of internet traffic. For a national intelligence
agency, the effectiveness of attempts to piggyback on tracking infrastructure
depends in part on where in the world the wiretap is located.

According to a 2013 study of trackers on the most popular websites used
around the world, the most common location for a tracker is the US [53]. Even in
China, the majority of trackers were found to be US-based, despite China having
a significant third-party tracking industry of its own. The only country with
more local trackers than US-based trackers was Russia. Variations in tracking
between jurisdictions was studied by Fruchter et al. [5], who studied cookies and
HTTP requests from browsing sessions originating in different countries, finding
significant differences between them. A study by Hu et al. in 2020 found that
users in China tend to be tracked by fewer trackers, less often, than users in the
US [77]. Regarding the use of third-party trackers as surveillance infrastructure
by national intelligence agencies, Englehardt et al. [63] note that given the
concentration of third-party trackers in the US, the US National Security Agency
(NSA) is particularly well placed to catch foreign users in a dragnet surveillance
effort incorporating them.

3.4 Measuring Legal Compliance and Regulatory Effects

A number of studies of web tracking combine large-scale measurement of track-
ing, with heuristic rules to automatically detect possible unlawful behaviour
by trackers. For instance, several studies implement tools to check whether
a website sets non-essential cookies without asking for consent in a valid way
(in violation of the EU ePrivacy Directive) [78] [79, 80, [8I]. Other studies look
at whether first-parties disclose the existence of third-parties in their privacy
policies as required by various laws (e.g. data protection and US sectoral /
state laws)[82]. Libert et al. propose and demonstrate a general purpose search
engine for collecting court-admissible forensic evidence of non-compliance by
trackers[83].

Other studies attempt to measure the impact of regulation on web track-
ing, e.g. whether new regulations result in changes in tracker distribution and
behaviour. For instance, Urban et al. study the effect of the GDPR on web
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tracking [84]. They conclude that while the structure of entities engaging in
cookie syncing has not changed, the number of third-party connections appears
to have shrunk by around 40% since the GDPR came into force [

4 Tracking Countermeasures and End-User Per-
spectives

This section aims to cover some of the main approaches that have been pro-
posed (and in some cases, adopted) to limit or prevent tracking on the web, and
research into end-user perspectives on tracking. Where alternative countermea-
sures for smartphones and IoT exist, they will be discussed in their respective
sections below.

4.1 Tools for Notice and Consent

The original response to address unwanted tracking was to transplant the US
‘notice and consent’ model of privacy regulation to the web [86, [87]. A user,
confronted with a website that wants to facilitate tracking by third-parties, is
given notice of who these third-parties are, what data they will use, for what
purposes, and can then make a choice whether to use the website or not. Given
the large number of websites and even larger number of third-parties, this may
not be practical. A 2008 study estimated [88] that the US national opportunity
cost for reading privacy policies was $781 billion. Moreover, even given time,
privacy policies are difficult to read [89, [90] and even contradictory[91]. Finally,
the end-user privacy settings that are available are often difficult to use, and
their effects are difficult for users to understand and manage [92, ©93]. As a
result, numerous efforts have been made to automate the process of conveying
tracking preferences.

4.1.1 Tracking Preference Standards (P3P & DNT)

These included standardisation efforts from the likes of the W3C, with standards
like the Platform for Privacy Preferences (P3P), and Do Not Track (DNT).
These mechanisms aimed to enable users to control the data flows between their
browsers and websites and third-parties. The premise was that by giving users
a way to signal to websites their preferences regarding tracking, websites could
respond accordingly. Early proposals included the idea of intelligent user agents
— software running in the web browser — which could record users’ preferences
regarding tracking and automatically mediate or even negotiate between them
and the interests of first and third-parties who want to track them [94]. The
hope was that:

‘Architectures like P3P make possible machine to machine commu-
nication ... machines can bear the cost of this negotiation [and] be

9For similar work comparing pre- and post-GDPR. tracking in mobile apps, see [85].

23



our agents for protecting our privacy’ [95]

The P3P standard was developed at the W3C in the late 1990s, and some
websites began publishing machine-readable privacy policies in the P3P format
around the turn of the century. Researchers and engineers at AT&T labs devel-
oped and tested early prototype P3P agents, but their usefulness was limited
by the fact that very few websites had adopted the standard [96]. Browsers
attempted to encourage websites to format their privacy policies using P3P, but
these efforts backfired when websites realised they could simply provide a tech-
nically valid policy which contained no actual content [97]. P3P was dropped
by most browsers in the mid-2000s, with Microsoft Internet Explorer and Edge
maintaining support until Windows 10 in 2015.

A later effort to standardise a method of communicating user’s preferences
regarding tracking was the Do Not Track standard in 2011 [98]. This was much
more blunt than P3P: it simply recorded whether the user did or did not want
to be ‘tracked’ and communicated this to servers with three states: 1 to in-
dicate the user did not want to be tracked; 0 if they did want to be tracked,
and null if the user had not yet expressed a preference either way. This was
intended to be configured once per browser, for the whole web, not on a website-
by-website basis. It was hoped that this lightweight technical protocol would
be complemented by a legal and policy infrastructure that would both define
what constitutes ‘tracking’, and put in place governance mechanisms to ensure
that trackers obeyed the signalled instructions. According to a 2012 survey of
US consumers, DNT was popular [99]. But it was declared a failure as early as
the following year [100]. Browsers eventually dropped support for DNT around
2016. The policymaking process came to a halt in large part due to disagree-
ments between browser vendors, users, digital rights advocates, first-parties, and
trackers about how to define tracking, reflecting their different interests. Indeed,
the online behavioural advertising industry appears to object to the very term
‘tracking’, as evidenced by the Interactive Advertising Board using the term in
scare quotes in a comment on a campaign by privacy activists against tracking
(described as ‘a facile and indiscriminate condemnation of “tracking”’)

A fresh attempt to create a global technical standard for privacy preference
setting is the Global Privacy Control (GPC) Like P3P and Do Not Track, this
is a browser-configured global opt-out signal; proponents argue that websites are
obliged to respect GPC signals under the California Consumer Protection Act
(CCPA) and the GDPR. It remains to be seen whether this latest incarnation of
a global privacy preference standard will be successful, but it has been backed
by the California Attorney General. Some might question whether a user in-
teraction which indicates consent to tracking (e.g. by clicking ‘accept’ on a
consent dialogue box) should take precedence over a global browser-defined set-
ting, since it is an affirmative action; however, the fact that such dialogue boxes

20°Digital AdvertisingIndustry Warns Against Misguided EU Regulation - IAB FEu-
rope’ https://iabeurope.eu/all-news/digital-advertising-industry-warns-against-misguided-eu-
regulation/

2lhttps://perma.cc/26BK-N6S8
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often use dark patterns to coerce acceptance [79, [I01] might lend the global
browser setting more authority. Finally, another recent proposal in a similar
vein is the ‘Advanced Data Protection Control’ standard, proposed by NOYB,
a European data rights organisation; this aims to provide for more fine-grained
and flexible browser consent signals particularly suited to E.U. data protection
law. Whether these new initiatives can succeed where previous ones have failed
remains to be seen. One thing counting in their favour this time are explicit le-
gal provisions for their use; e.g. for those users wishing to exercise their right to
object under the GDPR, Article 21(5) ensures that ‘the data subject may exer-
cise his or her right to object by automated means using technical specifications’
(such as browser settings).

4.1.2 Privacy Policy Languages

Despite the failure of previous attempts to standardise protocols for communi-
cating privacy and tracking preferences, researchers and others have nonetheless
pursued various kinds of formal languages for describing privacy and tracking-
related policies. These have a variety of uses, from summarising policies on
behalf of users, to analysing and auditing the stated practices of trackers.

Some projects, like TOS-DR (‘Terms of Service; Didn’t Read’) crowdsource
the annotation and highlighting of key clauses in terms of service and privacy
policies|[I02]. This approach has also been explored in research, where crowd-
sourced classifications of policies could be used as training data to train a ma-
chine learning classifier to recognise the content of previously unclassified pri-
vacy policies, enabling them to be summarised and made more comprehensible
[103] 104].

The widespread adoption of standardised or semi-standardised privacy pol-
icy formats would not only be useful for end-user consent tools. It could also
enable large scale automated evaluation of different websites, which could pro-
vide insights into trends and practices, automatically identify outliers, and other
kinds of analysis (such possibilities are explored in other contexts where stan-
dardised privacy notices were adopted, e.g. financial institutions [I05]). Even
when privacy policies are not standardised in this way, natural language pro-
cessing techniques can be used to identify disclosures of tracking practices, e.g.
[82, 106l [107]. Various projects aim to define formal semantic languages to
represent privacy-related information; for an overview, see [I08], and a recent
example, modelled around data protection regulation, see [I09].

4.2 First-party Limitations on Tracking

While first-parties are often to a large extent dependent on third-parties for
parts of the functionality of their websites, as well as for their revenue via
advertising, there are still ways in which they can limit third-party tracking
without necessarily hurting their operation and bottom line. At the very least,
first-parties can audit their own websites to ensure that any user data extracted
by third-parties is in line with their expectations and policies. There are several
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methods for monitoring data flows at runtime and ensuring they are secure
[110]. An early overview of such techniques and a review of the enforcement
of privacy and security policies by web developers is provided in [I1I]. More
straightforwardly, many of the functions that are currently outsourced to third-
parties could potentially be hosted by first-parties themselves, to protect the
privacy of users, for example using self-hosted analytics rather than third-party
analytics[112, [TT3].

In the last decade, numerous companies have emerged which offer tools for
first-parties to audit their own sites to identify and manage the third-party
resources they use2] Some use these audits to automatically generate privacy
policies for the first party, which describe the third party trackers. More recently,
many have offered so-called ‘consent management platforms’; pop-up consent
boxes designed to facilitate consent interactions from the user on behalf of the
first party. Whether these privacy policy-generators and consent management
platforms actually meet the legal standard for consent under EU data protection
law is questionable [79]; it is also unclear whether they or the first party are
ultimately responsible for ensuring such compliance [I14]. However, given that
existing web infrastructure and web development practices are so heavily tilted
towards third-parties, there is a clear need for better tools to enable first-parties
to limit and manage such issues.

4.3 Tracker Blocking and Obfuscation

Both tools for notice and consent, and first party limitations on tracking, rely on
first parties to take action against the interests of third parties. But given that
first parties are often dependent on third party services for their revenue, such
action is often lacking. As a result, unilateral methods of preventing tracking,
which block trackers at a technical level via the browser, have instead proven
popular.

Tracker blockers have been implemented both by specialist browser plugins
like Ghostery, Disconnect, Adblock, Adblock Plus, Privacy Badger, and others,
as well as in-built controls within the browsers themselves2d Users of specialist
tracker-blocking software are more privacy-motivated and digitally literate than
average [I15], although they do not always have good mental models of how
these extensions actually work [I16]. Regardless, tracker-blockers do provide
meaningful protection with very little effort on the part of users, with users
reporting only occasionally encountering websites which do not work when the
tracker-blocker is enabled|IT16]. Where specialist browser plugins have ventured
to offer new, more aggressive means of tracker-blocking, browser providers have
largely followed; Safari and Firefox block third party cookies by default, and
Chrome has announced it will follow suit in 2022 (although similar commitments
in the past have not been upheld).

22Gee e.g. QuantCast, OneTrust, TrustArc, Cookiebot, and Crownpeak.
23There are also other unilateral methods which prevent tracking at the local network level;
see section
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Dedicated tracker blocker tools can work in a variety of ways. Some block
network traffic at the operating system level, so they work beyond a specific
browser2d  An advantage of this is that trackers can be blocked regardless
which browser or other application is being used; this could, for instance, help
stop the kind of email tracking discussed above if the user were to be using
a native email client. The disadvantage is that they block entire domains or
subdomains, rather than specific URIs: e.g. [thirdparty.com would also block
thirdparty.com/privacypolicy.

However most tracker blocking is browser-based. Initially, it was not tracker-
blocking but ad-blocking plugins that were popular. Ad blockers like AdBlock
Plus block the loading of programmatic web ads so users don’t see them on the
page. This doesn’t necessarily mean they prevent tracking. Adtech platforms
which both distribute ads and track users to enable ad targeting, might still
collect the data even if the ad blocker blocks it from showing ads. However,
tracker blockers, like Ghostery, Privacy Badger, and Disconnect, display trackers
that are present on a page and allow users to block them.

There are different approaches taken by different tracker blockers to deter-
mine what constitutes tracking, and how they detect trackers. As explained in
section 3.1 above, there are large and relatively comprehensive lists of tracking
hosts which have been built by tracker-blocking projects and researchers. An
8-year study of EasyList, one of the most popular curated lists, found that there
were often errors in the list (e.g. non-tracking sites which were wrongly iden-
tified as trackers, and vice-versa) which took substantial time to be corrected
despite the list owners being notified [I17]. Community-curated lists also of-
ten contain idiosyncratic rules that are ill-defined and documented by a small
number of contributors, which can lead to outdated, ineffective or superfluous
tracker-blocking behaviour [IT§].

In addition to community/company derived rules, there are also algorith-
mic approaches, which use statistical and machine learning methods to identify
trackers[I19, [120]. For instance, Privacy Badger and Ghostery both rely on an
algorithmic approach, which automatically classifies trackers based on detect-
ing similar patterns of high-entropy strings being sent by multiple first-parties
to a single third-party [67]. A study of tracker blocking in 2017 found that
(some of) the rule-based trackers performed better than the algorithmic ones;
that trackers with a smaller footprint (i.e. present on fewer sites) were more
likely to evade tracker blockers; and that all had blind spots when it came to
identifying and blocking fingerprint-based tracking, and tracking by third-party
content delivery networks [121].

While earlier studies suggested that the algorithmic approach to tracker iden-
tification might be less successful than manually-curated tracker lists, more re-
cent research and real-world deployments have used machine learning to identify
trackers at scale. For instance, Igbal et al. use a graph-based machine learning
approach [122]. They represent the HTML, network requests and javascript

24E.g. MVPS, “Blocking unwanted connections with a hosts file,”
2015, |https://perma.cc/NM8U-T3T6, and P. Lowe, “Yoyo hosts file,” 2015,
https://perma.cc/4TR6-SVX4.
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behaviour of a webpage as a graph, and use this in combination with existing
manually curated lists of trackers as ground truth to train an ML model that
classifies trackers. Others have explored machine vision to detect adverts as vi-
sual elements on a page and block them|[I123]; however, this only blocks adverts,
rather than blocking tracking infrastructure in general. Apple’s Safari browser
has begun to deploy statistical and machine learning approaches to detect track-
ers, an approach it calls ‘Intelligent Tracking Prevention’ (ITP). Using statistics
on resource loads, user interactions, and other data, it infers whether a host is a
tracker or not. Cookies from hosts deemed to be trackers are then blocked from
third-party use after one day since the user interacted with the website, and
then automatically deleted entirely after 30 days. ITP has had a real impact
on trackers’ bottom line. The CEO of Criteo, an adtech firm heavily reliant on
third-party tracking, attributed the firms loss of over 20m revenue to ITPH.

Tracker blocking has of course not gone unnoticed by trackers themselves,
who have developed a range of counter-countermeasures to address it. Some
attempt to detect when a user is using an ad or tracker blocker, and thus enable
the first-party to refuse to serve the page content until the user disables their
blocker [124]. Others attempt to circumvent blockers. For instance, a bug in
the Chrome browser meant that ad blockers could not intervene on connections
opened up over WebSocket (a low-overhead alternative to standard HTTP/S);
a study found that a small but persistent group of trackers exploited this bug by
routing their traffic through web sockets, until the bug was fixed [125]. Taking
the arms-race to another level, Zhu et al. aim to detect attempts by trackers to
detect tracker-blockers by using ‘differential execution analysis’[126]. By com-
paring the behaviour of a webpage when visited with and without an adblocker,
the counter-countermeasures used to detect ad blockers can be isolated, and
thus counter-counter-countermeasures can be developed.

Tracker blockers have traditionally been designed to work against cookies,
and as a result have struggled to grapple with cookie-less tracking techniques (i.e.
fingerprinting). Even worse, the fact that a user has installed a tracker blocker
plugin might even be used by a fingerprinter as an additional identifying feature,
as observed by Nikiforakis et al. [52].

In addition to tracker-blocking tools which prevent the flow of data to track-
ers, some have proposed an alternative approach of introducing deliberately false
data into the tracking ecosystem, a practice known as obfuscation [127]. The
AdNauseum project aims to do this in the context of behavioural advertising
[128]. It is a browser plugin that automatically randomly clicks on ads in the
background while a user is web browsing, to pollute their inferred interest pro-
files with things they aren’t actually interested in. Another study of obfuscation,
focusing on the tracker BlueKai (owned by Oracle), found that injecting just 5%
fake traffic in addition to real traffic is enough to meaningfully alter the interest
profile a tracker compiles about a user [129]. While such deceptive practices
may appear malicious, Van Kleek et al. argue that there are many potentially
beneficial uses of what they call computationally mediated pro-social deception

25https://perma.cc/G694-YNVQ
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[130]; tricking the trackers might therefore be considered within the category of
‘benevolent deception’.

4.4 Privacy-preserving Alternatives

One of the most commonly-cited objections to tracking is that it is highly
privacy-invasive. But what if the underlying ends of tracking could be effec-
tively achieved, in less privacy-invasive ways? Several proposals aim to do this
using ‘privacy-preserving’ techniques; they enable some of the same functions
— targeting adverts, differentiating between users, enabling aggregate insights
— but without a third-party (or even first-party) ‘seeing’ an individual’s data.

Privacy-preserving ad targeting aims to enable adverts and content to be
targeted at individuals based on their behaviour and interests, without such
data actually being revealed to any adtech intermediaries or advertisers. For
instance, Hadadi et al. propose a system wherein a user interest profile is created
locally, on their own device, and a range of possible ads are selected from locally
based on that profile [I31]. Davidson et al. similarly propose local models for
personalisation based on user personas on the Windows mobile operating system
[132]. Other proposals use techniques like private information retrieval[133],
a cryptographic protocol which allows items to be retrieved from a database
without revealing to the database owner what those items are[I34]. There may
even be ways to achieve ad conversion measurement in ways which don’t reveal
any individual user data (see e.g. [I135] and Apple’s ‘Privacy Preserving Ad
Click Attribution For the Web™).

Whether these approaches really address the ethical concerns with tracking
is questionable. If the issue with the surveillance-based web is that it enables
behavioural data to be associated with an explicit, identifiable individual —
the ‘privacy as confidentiality’ paradigm — then these approaches represent a
promising alternative. But if the issue is instead that it enables corporations,
governments and other, even less accountable actors to manipulate and misin-
form the public, or to discriminate against groups (even if they don’t know which
individuals are in those groups), or more broadly to shape the information envi-
ronments and choice architectures of billions of people, then arguably it doesn’t
matter whether they can access personal data while doing so. As such, these
privacy-preserving approaches may not be the answer to the broader political
concerns that tracking raises [136] 137, [138].

4.5 End-User Perceptions, Expectations, and Choices

A motivating assumption for much of the research into the detection and mit-
igation of tracking is that it presents risks to those tracked. But further in-
vestigation into how the subjects of tracking understand, perceive, feel and re-
spond to tracking is important to help ground empirical research, the design
of countermeasures, and regulatory responses. Substantial research in this vein

26https://perma.cc/Q33U-VRCH
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has been undertaken within human-computer interaction (HCI) research over
recent decades [139, 140, [141].

Privacy concerns appear to vary internationally [I42], by age cohort [143],
and between 10S and Android users[I44]. Attitudes towards data flows are
also influenced by the context(s) from which the data are drawn, as well as
the type of data being disclosed, perceived norms around disclosures, indi-
viduals’ relationships with the data recipient(s), and the purposes of disclo-
sure [145] 146, 147, (148, (149, 150, 151]. When their expectations are violated,
e.g. by data being sent to opaque third-party trackers in unanticipated ways,
people feel ‘creeped out’, and when people become accustomed to the reality of
such unwanted data flows, such feelings transform into helplessness and resig-
nation [I52] [153]. Attitudes to tracking are typically placed within the broader
theoretical frameworks of privacy. These include conceptualisations of privacy
as control over information about oneself or ‘informational self-determination’
[154, [155], and ‘contextual integrity’ [I56], according to which privacy norms
regulate the transmission of information between various contexts, between ac-
tors, concerning certain attributes, according to certain transmission principles
appropriate to those contexts [I57, 158, 159].

Early research into privacy attitudes suggested that people may divide into
a small set of distinct privacy ‘types’ [I60] [161], including ‘privacy fundamen-
talists’ who avoid disclosing their information at all costs, ‘pragmatists’ who
make calculated tradeoffs between privacy and benefit, and ‘unconcerned’ who
are willing to give away their personal information for little or no benefit. One
might expect these broad categories to predict people’s (intended or actual) be-
haviours in specific situations; however, later research has found no significant
correlations between the two [162]. Furthermore, the relationship between pref-
erences, intentions, and behaviour is complicated and fraught, especially in the
context of the ubiquitous and opaque tracking described above. Some studies
purport to show discrepancies between people’s stated preferences and their be-
haviour, such that someone who claims to care about privacy might later behave
in a way which suggests they don’t. Various attempts have been made to explain
(and explain away) these differences [163] 164} [165], with some concluding that
researching privacy in experimental isolation is unhelpful [166], and that privacy
attitudes are relatively unpredictable across different scenarios [162, [167]. While
people appear unwilling to pay tangible economic costs for privacy, as evidenced
by the popularity of free over paid services (and experimental results [168]), it is
also not clear that paid alternatives are actually more privacy-protective[169)].

While it might seem obvious that targeted advertisements are preferable to
non-targeted ones (and some research supports this[I70} [I71]), this needs to be
weighed against the reality of the tracking infrastructure that comes along with
targeted advertisement which may be less desirable. A survey commissioned
by the UK data protection regulator found that 63% of participants found dig-
ital advertising acceptable to fund free content, but after explanation of how
real-time bidding works, this fell to 36% [I72]. This illustrates how privacy
preferences, intentions and behaviours that we observe in people need to be in-
terpreted alongside the level of awareness, understanding, competing pressures,
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incentives and choice architectures that people face in real-world contexts[I73].
Stated privacy attitudes and preferences may not predict behaviour because
people may lack an adequate understanding and awareness of privacy risks as-
sociated with certain technology use. Various studies demonstrate how even
technically savvy users may lack a complete understanding of all the ways their
data is being transmitted and used, whether via the Web, through smartphone
platforms and apps, or connected devices in the home [I74] [I75]. Given the
complex nature of online behavioural advertising, it is no surprise that users
lack accurate and complete mental models of how it works[I76, [177].

One of the reasons people don’t take further action against privacy-violating
tracking is the infeasibility or unavailability of alternatives [I78]. Without aware-
ness of privacy controls, and more importantly, belief in their efficacy, peo-
ple are unlikely to take action (a conclusion also found in relation to security
behaviours[I79, [180]). However, people’s level of concern about and desire to
limit data flows can change once they are made apparent in a form that users
can understand. Several studies develop privacy awareness tools, which visu-
alise data flows involved in web and mobile tracking and reflect back to people
how their data is used[I81], [IT5] 182, 183 184, 185]. Given these tools, study
participants were able to articulate more specific and actionable privacy prefer-
ences [I8T] [IT5] [182], as well as views on ethical, economic (business models),
and political dimensions of the data economy [183, [184].

Parents and children face particular challenges to understanding and re-
sponding to tracking. Various work seeks to understand how parents and chil-
dren communicate and develop privacy preferences, with important differences
between teens [I86] and younger children [I87, I88]. Educating children about
privacy risks and improving their literacy can be effective in changing their
online disclosure behaviour[189], although the aforementioned lack of tools to
easily control tracking may ultimately hamper effective action.

5 Tracking on ‘Smart’ Devices

The web is where the practices of third-party tracking first arose, but a similar
model has been deployed beyond. On smartphones, there are large app ecosys-
tems which have their own extensive array of trackers. The advent of the ‘smart
home’ and ‘Internet-of-Things’ devices also present new prospects for ubiquitous
tracking. This section addresses tracking on these various non-web platforms
and devices.

5.1 Smartphones and Apps

While tracking on smartphone apps has much in common and shares similar
infrastructure to web-based tracking, there are some important differences.
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5.1.1 Apps vs Browsers

The main difference between smartphones and the web is that on smartphones,
the web browser is just one app amongst many. Web tracking therefore co-exists
alongside app tracking on smartphones. Web tracking on mobile browsers is
largely the same as on other devices, but there are some differences. Early stud-
ies of mobile web tracking from 2013, when smartphones were just beginning to
overtake their ‘dumb’ predecessors in rich countries, confirmed that web users
were being tracked similarly regardless whether they used a mobile or desktop
browser. Notable differences at the time were the comparatively smaller num-
ber of mobile-specific third-party trackers, and the (then mostly theoretical)
possibility of being able to access more data from the smartphone that would
otherwise be unavailable (e.g. location) [190].

In the years since, the availability of smartphone sensor APIs including mo-
tion (via accelerometers), position (via magnetometers), and environmental fea-
tures (air temperature, humidity, light, etc), have presented an additional set
of vectors for tracking mobile web users. A study of mobile web tracking found
that 63% of the scripts that access sensor APIs — while often for a legitimate
purpose - also engage in fingerprinting using those sensor readings [I91]. These
add additional bits of entropy which enhance the ability of web-based tracking
on mobile web browsers.

However, the bigger difference in tracking on mobile devices is the tracking
involved in native mobile applications, which have access to the aforementioned
sensor data and much more. These are built on top of the Android or iOS
platforms and interact with profiling technologies in different ways. While mo-
bile apps are sometimes developed using web technologies, they are more often
developed in OS-specific development environments and languages (e.g. Swift
for i0S and Java for Android), rather than the standards and programming
languages of the web (e.g. Javascript, HTML and CSS). The main ways in
which tracking on apps differs to web tracking are: the types of data available;
the app distribution model; the operating system configurability; and the use
of advertising identifiers rather than cookies.

The types of data available on a mobile present different opportunities for
trackers. Mobile devices frequently move around in physical space, so location
and sensor data as described above provide valuable data for tracking purposes
- both as a means of singling out an individual user, and to infer behaviours
and interests to add to a profile for targeting purposes. Other information that
might be read from a phone by an app include a list of the user’s contacts in
their phone book, the handset model and other device information, and a list
of the other apps that the user has installed. The latter may sound innocuous
but the list of apps someone uses can often uniquely identify them, making it
an effective fingerprint in its own right [192].

The mobile app distribution model is also substantially different from the
web. On the web, a web application hosted anywhere can (by and large) be
accessed by anyone, largely without interference from gatekeepers. But mobile
apps need to be packaged up by developers, distributed somehow, and installed
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by users. In theory, this could be done without going through the main official
app stores run by Apple and Google; for instance, the alternative F-Droid app
store for Android distributes apps not approved by Google on the official Play
Store and users can ’side-load’ app files directly. But the vast majority of
apps are installed via app stores. And in most parts of the world (outside
of China, where most users use multiple app stores [193]), most smartphone
users have only one app store from which to download apps: the official app
store of their chosen OS. As a result, Apple and Google have the ability to
act as gatekeepers [I94]. Providers have the power to effectively exclude apps
based on their practices. Early studies demonstrated that this gatekeeping role
was not being used to prevent apps leaking personal data[I95]. But iOS and
Android do limit what developers can do in various ways, and have increasingly
built in greater privacy controls for end users and restrictions on app developers
with respect to tracking. These controls operate at both a technical level - by
restricting the ways that OS-level APIs can be utilised by apps - and at an
infrastructural / contractual level by deciding which apps are allowed to appear
on the iOS app store and Google Play store.

Another major difference is the increased ability of app developers to utilise
the functionality of the mobile operating system compared to the web. Web
browsers and web standards determine how resources are rendered, what scripts
are run in what order, and so on (like the SameOrigin policy). Equivalent lim-
its are not placed on mobile apps, which have tended to have more power to
control a user’s device than websites. While apps are ‘sandboxed’ from each
other to prevent apps from reading / writing between each other without per-
mission, within their own sandbox apps can generally run whatever code and
allow whatever network connections the app developer builds into their app,
given the permissions the developer has requested

At the same time, users themselves have very little ability to modify their
own device, including in ways which might limit tracking by apps. User ac-
cess to lower-level operating system functions generally requires an additional,
non-standard layer of permission. This is known as being ‘rooted’ (Android) or
‘jail-broken’ (10S). The process is not straightforward, and may void the device
warranty. Many apps attempt to detect whether a device is rooted, and will
not run on it if so. As a result of this, the available tracker-blocking tools on
smartphones are far behind the equivalent plugins available for web browsers, al-
though some exist through their app store policies. The ability to block tracking
is directly limited by OS providers themselves in some cases. TrackerControl,
an app which reveals trackers on mobile apps, illustrates this point It has
two versions. One version is available on Google Play, and can show the user
what trackers are present on different apps. The other version has the ability to

27See https://perma.cc/Z6Q8-KYMT

28 Although, developers can and frequently do circumvent the permission model, through
side-channels (where one app obtains data that it does not have permission for) and covert
channels (where an app obtains data via another app which does have permission for such
data); see [196]

29nttps://perma.cc/73TX-SKCW
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also block trackers, but has to be loaded from the alternative Android app mar-
ketplace ‘F-Droid’ as the Google Play store refuses to allow apps which enable
such blocking.

5.1.2 Mobile Advertising Identifiers

Perhaps the biggest difference in smartphone tracking is the use of specialised,
OS-defined advertising identifiers instead of cookies. The first generation of mo-
bile third-party trackers would typically extract all manner of identifiers that
are permanently associated with the smartphone device. These included the
International Mobile Equipment Identity (IMEI) number associated with the
device itself, the International Mobile Subscriber Identity (IMSI) number asso-
ciated with the SIM card issued by the cellular network, the phone number, the
device identifier, the MAC address used for connecting to WiFi networks, and
others (see [197] for how third-parties are able to access these identifiers). The
use of these different identifiers is highly problematic, since they often cannot
be re-set and are strongly associated with the user and their accounts (e.g. with
their cellular network account). To address this problem, both iOS and An-
droid introduced separate ‘advertising identifiers’ (on Android, the Android Ad
ID (AAID); on iOS, the Identifier for Advertisers (IDFA)) for the purposes of
third-party tracking. At the same time, they have made efforts to block off ac-
cess to the other identifiers both at a technical level and through educating and
warning developers against such practices, and enforcing their policies through
their app stores. These Ad IDs can be re-set by the user; re-setting has the
intended effect of breaking a tracker’s ability to link between the user’s previous
and future activity.

In addition, both platforms created settings where users can limit access to
the Ad ID. On iPhones, the ‘Limit Ad Tracking’ option prevented app developers
from being able to request access to the user’s Ad ID. This has since been
replaced by a new mechanism on iOS. From iOS version 14, under the Apple
Tracking Transparency (ATT) framework, app developers are required by Apple
to request explicit consent from users for tracking. iOS users are faced with a
permission screen asking them to ‘allow f[the app] to track your activity across
other companies’ apps and websites’. The user can either click ‘Ask App Not
To Track’ or ‘Allow’, and both options are equally prominent on the screen.
When a user selects the first option, access to the IDFA commonly used by
trackers is denied (initial estimates suggest between 60 and 95% choose this
option [198, 199, [200]). The move proved highly controversial with third-party
trackers; prominent critics included Facebook, who paid for a series of adverts in
(non-targeted, paper) newspapers extolling the importance of its tracking-based
targeted advertisements for small businesses through the Covid-19 pandemic.
Initial reports suggest the third-party tracking industry is right to be concerned;
Facebook’s own figures suggest 80% of their users will choose to not be tracked.
While circumvention is possible through alternative forms of tracking which
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don’t rely on the IDFA (e.g. ﬁngerprintinﬂ), cutting off access to the IDFA
will likely significantly disrupt current tracking practices.

Google have tended to lag behind Apple on such measures, but have grad-
ually implemented some similar options. The Google Play Store states that
the Ad ID should be used for ‘advertising purposes’, and like the previous iOS
approach, Android gives users the ability to set a preference to ‘opt out of per-
sonalisation’. However, the function of this setting was historically somewhat
ambiguous. Developers are still technically able to access the Ad ID if the user
has opted out of personalisation, but are required as a matter of Google Play
Store policy to not use the Ad ID for personalised advertising purposes if this
opt-out had been set by the user. However, developers could still use the Ad
ID for other purposes, such as analytics, fraud detection, and potentially other
kinds of tracking, provided they have a privacy policy covering such uses.

This rather vague and difficult-to-enforce policy on Android offered less reas-
surance than the technical measures deployed by Apple which cut off access to
the IDFA entirely for users who opted out. Starting in 2021, Google announced
that they will no longer be relying on developers honouring the Play Store terms,
and instead be blocking access to the Ad ID at the API level P Developers will
be required not to connect data to a previously obtained Ad ID if the user has
now removed the Ad ID from their device (although it is unclear how this will
be enforced). Google also announced that they will provide alternative app-set
permanent identifiers for ‘essential’ non-advertising purposes like analytics and
fraud-detection to smooth the transition away from reliance on the Ad ID. New
measures will be put in place to prevent remote code being loaded during run-
time that could be used to circumvent Play Store policies. From April 2022,
Google will require developers to provide accurate information on the personal
and sensitive data they collect. It remains to be seen how much control users
will have over these alternative permanent identifiers and how closely their use
will be monitored and how effectively the purpose limitations will be enforced.

The ready availability of these identifiers has meant that tracking of mobile
users across apps is in many ways a much simpler affair than tracking users
across the web. Cookies are unnecessary, because devices have readily give
up unique identifiers across different apps, with no need for a third-party to
set their own unique identifier. Fingerprinting of mobile devices is also largely
unnecessary for the same reason, although some trackers do now offer mobile
fingerprinting services and make use of mobile sensor data as described above.
Such services may become more common as more users decide to make use
of the protection mechanisms available to them (i.e. making use of the ATT
options on iOS, or re-setting their Ad ID on Android). Fingerprinting mobile
devices may in some ways be harder than fingerprinting desktop devices, due to
the fact that at the device level, mobile devices have less variety and are more
standardised, but they are still ultimately eminently fingerprint-able [201].

30See e.g. https://perma.cc/46QY-PIMX
31https://support.google.com /googleplay /android-developer /answer /6048248 # zippy =%2Ctargeting-
devices-without-an-advertising-id%2Cpersistent-identifiers-including-android-id
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5.1.3 Third-party Mobile SDKs

In much the same way that third-party tracking on the web relies on first-party
developers embedding third-party code in their websites (or remotely loading
it during a session), third-party tracking in mobile apps relies on developers
embedding third-party code in the form of ‘libraries’ and ‘Software Development
Kits’ (SDKs) [202]. Many of these SDKs are set up so that by default they
connect to a third-party server and start sending personal data to it. This is
made easier by the fact that permissions in Android are given on a per-app basis,
rather than per-third-party tracker. As such, there is no way for users to grant
permission to a first-party app developer but withhold permission for a third-
party tracker embedded on that first-party app. Additionally, apps typically
ratchet up the privacy-risking permissions they request over the lifetime of their
installation, making additional requests on average every three months [203].
This means that even if a user were to carefully consider whether they would
grant requested permissions to an app before installing it, they cannot easily
prevent onward use of such permissions by third-parties and are likely to be
subjected to further sensitive requests after installation anyway.

Third-party trackers have taken advantage of such favourable conditions on
mobile apps. Large-scale measurement studies of tracking on mobile apps have
revealed a rich and varied third-party tracking ecosystem [204]. Many of these
have been used to facilitate location-based ad targeting[205]. A study of the use
of the Facebook SDK in Android apps, by Privacy International [206], found that
61% of apps with the Facebook SDK automatically transfer data to Facebook
the moment a user opens the app. This is regardless of whether they are logged
into Facebook and even if they don’t have a Facebook account. This means
that Facebook knows immediately that a user has installed a particular app,
even before any other data is transferred. Given the sensitivity of certain apps
observed in this study - including a Muslim prayer app, a menstruation logging
app, and apps aimed at young children - this alone could be quite revealing. The
Android Ad ID was typically also automatically transferred, and many apps also
send highly detailed and sensitive data to Facebook without asking the user. A
more recent study of the same phenomenon found apps contact 4.7 trackers on
average upon launching, without any user interaction [207].

5.1.4 Mobile Tracking Detection Methodology

As with large-scale web privacy measurement, a variety of methods exist for
detecting third-party trackers in apps. One approach, which is similar to web
tracking measurement methods, involves ‘dynamic’ network traffic monitoring.
This involves setting up a real or virtual mobile OS, inspecting network traffic
from the device and identifying any third-party destinations that relate to track-
ing. This can be achieved in different ways. One common approach has been
OS-level instrumentation, with tools like TaintDroid [208], and AppTrace [209].
An alternative is to analyse all communications traffic transmitted by an app
whilst it is in use [2I0]. In either case, apps must be used in order to trigger
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the tracking behaviour of interest. This can be acheived through simulated in-
teractions via Ul ‘monkeys’ - bots programmed to interact with the app like a
real user would [211], 212] - or through real user interactions with network traffic
routed via a VPN [213, 197, 214].

An alternative approach is to use ‘static’ methods. These involve unpacking
an application’s source code (on Android systems, this comes as an Android
application package(APK)) and detecting the use of third-party tracking within
the source code [215], 216, 195, 217]. Methods for detection vary, from simply
searching for known tracker-associated hostnames to more complex machine
learning approaches. The static methodologies can scale more easily as apps
do not need to be actually run and interacted with in order to detect the use
of third-party trackers. This means that analysis can be completed on an app
within seconds rather than the minutes required for a real or simulated user
session in the dynamic approach.

However, both methods are likely to over and under-state the presence of
certain trackers. Dynamic approaches may miss third-party trackers that are
embedded in the app if they fail to trigger the relevant user interactions or do not
run for long enough. Static approaches may fail to identify trackers which are
dynamically loaded from a remote server during run-time and therefore do not
appear in the static code analysis. Furthermore, static approaches may struggle
to detect the presence of third-party tracking libraries where the developer has
obfuscated the app code. Some methods attempt to defeat such obfuscation
attempts, e.g. using machine learning [218].

To understand the relative strengths and weaknesses of these two approaches,
Binns et al. directly compared dynamic and static approaches on a set of 200
apps|212]. They measured the extent of overlap between the two approaches,
and how many trackers are left out by each approach. They found that on
average, dynamic methods yielded 2.26 trackers which the static methods did not
detect. Static methods yielded an average of 4.85 trackers which the dynamic
methods did not detect. The average size of the intersection of mobile and web
trackers found by each method was 2.9. While the static method had a higher
positive rate, it is not possible to conclude that one method is better than the
other without ground truth on the proportions of true positives detected by
either method. Nevertheless, it gives some indication of the results that can be
expected by either method.

5.1.5 Distribution of App Trackers

Both dynamic and static methods have been deployed to study the distribution
of third-party tracking on mobile apps [212] 197, 219]. A consistent finding is
that, like the web, there are a few companies which have very large prevalence
across first-party apps. Alphabet / Google is consistently identified as the most
prevalent and prominent on both platforms. Recent studies estimate that over
85% of Android apps communicate with Google / Alphabet services [220)] 221],
with Facebook a distant but comfortable second. The dominance of these two
trackers on Android has been well established and confirmed in multiple large
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scale studies of the Google Play Store, beginning in 2014 [222].

Large scale studies of the distribution of trackers tend to focus more on
Android, in part because of the difficulties in studying iOS apps due to the
locked-down nature of the iOS system. However, some such studies exist. A
2011 study applied static analysis methods to iOS apps, finding more than half
collected unique device identifers and 55% contained advertising or analytics
libraries[223]. A 2013 study of 226,000 iOS apps found that many apps access
device identifiers, location and contacts [224]; subsequent iOS releases imple-
mented permission requests to make such access conditional on user consent.
Further studies have compared both mobile OS ecosystems against each other
(e.g. [225] 226, 221]). While Kollnig et al. found that the number of third
party trackers present in iOS apps was somewhat lower than Android, neither
platform was a clear ‘winner’ on any of the facets of privacy studied [221].

5.1.6 Comparing App Tracking Against Web Tracking

One finding of large scale third-party tracking studies is that the distribution of
trackers differs between the web and mobile. There are some trackers which are
unique to mobile apps, and others which are unique to the web [212] 197, [219].
This means that existing web-focused lists of trackers have good coverage of
the tracking ecosystem on the web, but have low coverage for trackers in the
mobile tracking ecosystem [219]. As with the web, mobile trackers are used
for different purposes, from targeted advertising, to analytics, to security and
more. Inferring the purposes of different trackers can be challenging, although it
is often possible to infer their purpose from the way developers name functions
and create URL paths, and metadata e.g. about the domain name. Several
proposals aim to automatically infer such purposes from such information using
machine learning [21T], [227].

Some studies have compared the extent of third-party tracking between web
and mobile [68] 228]. While neither platform is clearly better or worse than
the other, there are meaningful differences between them. A comparison of
50 websites and their app equivalents found that while the website version of
a service connected to more third-party domains, more device identifiers were
leaked by apps [228]. For certain services, the app or the website offered a
less privacy-invasive option, but there was no clear winner. A comparison of
300 services with both web and app versions found similar numbers of trackers
between platforms, but quite different trackers were used|212].

5.1.7 App Tracking and the Law

Several studies have examined app tracking behaviours in light of regulatory
requirements on app developers and third-parties. Reyes et al. found that a
majority of the most popular free children’s apps in the US are likely in vio-
lation of federal privacy law (Children’s Online Privacy Protection Act 1998
(COPPA))|229]. The violation is due to third-party SDKs which, while capable
of being configured in a COPPA-compliant way, are typically configured by chil-
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dren’s app developers in ways which enable unlawful tracking and behavioural
targeting of children. The researchers also found that 19% of these apps use
SDKs whose own terms of service outright prohibit their use on apps targeted
at children.

In the context of EU data protection law, several studies have raised alarms
around potential non-compliance by apps, trackers and platforms. Several stud-
ies suggests that many apps share data with trackers based in jurisdictions
outside the EU, which are not deemed ‘adequate’ by the European Commission
in their protection of personal data and apparently without necessary legal pro-
tections in place [230, 197]. Apps aimed at children are often those with the
highest numbers of trackers[230], despite the European Data Protection Board
advising that profiling of children for marketing purposes should be avoided 2
Finally, many apps which are required under GDPR and the ePrivacy Directive
to seek consent before accessing data on a user’s device, access such data with-
out seeking consent and immediately share it with multiple third-party trackers
(as found in studies mentioned above[206, 207]). Despite hopes that the in-
troduction of the GDPR in 2018 would reduce the extent and distribution of
third party trackers, a large-scale comparison of the Google Play Store before
(2017) and after (2020) found very little change in their distribution on Android

apps[85].

5.1.8 App Developer Incentives

While end users have some power to change tracking practices, by refusing to use
services with unwanted tracking, user pressure is ultimately unlikely to result in
meaningful change given the rampant level of tracking across most first-parties
and the practical necessity of using certain services to engage with essential
services. As such, first-parties, and specifically the developers who make design
choices about which third-party trackers to include, may have more influence
over the extent of tracking in practice. Privacy researchers seeking an alternative
point of leverage for addressing the negative externalities of third-party tracking
have therefore sought to understand developer’s reasons for integrating third-
party trackers, their understanding of the privacy implications for their users,
and the usability challenges they might face in adopting more privacy-preserving
alternatives [232]. This is part of a broader effort to study developer perspectives
as they are increasingly recognised as being key to better security and privacy
[233] 234].

In the first major study of smartphone app developers in 2014, Balebako
found that while third-party tracking SDKs were ubiquitous and heavily used,
developers often were not even aware of the data collected by these tools [232].
More recent studies suggest that while developers are now more aware that by
using third-party SDKs they are subjecting their users to potentially sensitive
and invasive data flows, they see no other way to monetize their apps|233], [236].
They are resigned to the existing business models, and typically do not alter

32¢Because children represent a more vulnerable group of society, organisations should, in
general, refrain from profiling them for marketing purposes’ [231]
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the tracker SDKs default, privacy-violating configurations. Even in the more
sensitive context of children’s apps, while developers do respect children’s rights,
they often feel they have no other viable business model than monetising user
data through third-party SDKs [236]. Furthermore, the guidance provided by
third-parties to developers is often lacking in detail and appears deliberately
vague on how they are expected to implement the third-party tracking technol-
ogy in legally compliant ways; one study of popular Android tracking SDKs
found very limited and inadequate guidance on how developers were supposed
to handle consent in compliance with EU data protection law[207].

The changes to the i0S and (to a lesser extent) Google Play stores ecosystem
(as described in section[5.1.2), may ultimately have the biggest effect on develop-
ers’ relationships with third party trackers. In addition to the ATT framework,
under iOS version 14, developers must provide standardised privacy information
which is displayed in the App store in the form of app privacy ‘labels’ (similar to
those proposed in HCI research, e.g. [237]). Both measures may provide greater
incentives for app developers to assess their relationships with third-parties, po-
tentially cutting off those which provide little value to them, especially where
they are worried about the effect of the new transparency measures and easy
tracker-blocking options available to users.

5.2 Internet-of-Things and Smart Homes

Tracking and various other forms of surveillance existed before the web and mo-
bile apps, and continue to operate outside them. However, the kind of tracking
that was developed on the web and mobile, has provided a technical and com-
mercial blueprint for tracking via devices outside those specific platforms. In
recent years, a set of much-hyped and partially adopted technologies, grouped
under the ‘Internet-of-Things’ moniker (and in the domestic context, the ‘smart
home’), have presented a novel frontier for the extension of third-party track-
ing. What makes an object ‘smart’ is of course vague and nebulous [238], but
one of the commonly cited criteria is that a smart device is internet-connected
[239]. This ability to make network connections has allowed smart IoT devices
to mimic or even embrace wholesale the same tracking infrastructures as already
established in web and mobile-based tracking. Often, the very same companies
providing web tracking technology are offering the same models for IoT [240].
These different smart devices raise different privacy implications owing to
their distinct locations, types of data collected, and modalities for interaction|241].
For instance, several automobile manufacturers including Volvo and Audi, have
adopted Android Automobile, an automobile-focused version of Android, devel-
oped by Google. This uses the same app distribution model as the standard
Android Play Store. This means that users must log in with their Google ac-
count, and developers creating apps for these vehicles are able to embed the full
range of third-party trackers that are used in mobile apps, but have access to
more data about another dimension of the user’s life (i.e. their car journeys).
Various research has investigated the extent of tracking on IoT and smart
devices, including smart toys [242] [243], smart TVs [244] [245] [246], robotic home
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assistants [247], smart energy grid technology [248] and smart meter agents [249,
250]. As with web and mobile, a picture of the extent of third-party tracking
can be gained from studying the network traffic from IoT devices. A 2019 study
found that 57.45% of the overall destinations contacted by US IoT devices are
third or support parties (50.27% for UK devices)[251].

The privacy implications of ‘smart’ speakers and voice assistants like Ama-
zon’s Echo and Google Home, have also been the subject of multiple studies
[252] 253]. Voice assistants placed in the home may be interacted with by mul-
tiple different users, providing insights not only to a single user’s habits and
interests but also those of their family, friends, and potentially any visitor to
their home[254] 255]. Even if they only ‘listen’ when addressed by their ‘wake
word’, they may end up responding accidentally when the wake word is said ac-
cidentally or the speaker makes a false positive error[256]. While Amazon and
Google at present deny using data from the Amazon Echo and Google Home
smart speakers within their ad targeting services, third-party apps that are de-
livered via smart speakers, like the music streaming service Pandora, advertise
the ability to target smart speaker users. Furthermore, existing adtech tracking
companies advertise the ability to identify which consumers own smart speakers
(which can be detected when their mobile devices pair with the smart speaker),
so that they can be targeted for relevant services

‘Smart TV’ platforms like Roku and Amazon Fire, so-called ‘over-the-top’
services delivered via devices that plug into a TV or monitor, have their own ‘app
store’ ecosystems with channels or apps. These apps also have trackers embed-
ded in them. Many of the companies behind them are already known from their
presence in the web and mobile tracking ecosystems, but there are also some
Smart TV-specific trackers. A study of the smart TV platform ecosystem and
found hundreds of smart TV apps which exfiltrate personal data to third-parties
and platform domains|246]. Another study found that 69% of Roku channels
and 89% of Amazon Fire TV channels sent traffic to known tracker domains
[245]. They also found that the platform-provided controls to limit tracking
were practically ineffective, finding that having ‘limit ad tracking’ setting on
actually increased the number of tracker servers contacted.

Approaches to identifying tracking in IoT and smart devices are similar in
some ways to those deployed on web and mobile devices; static and dynamic
analyses are possible (see e.g. [243] for a study of children’s toys utilising both
methods). However, each approach may require additional efforts in the IoT
context. Static analysis requires access to the smart device’s binary code. Un-
like a website or app, the binary code is likely only accessible by physically
prising open the device, locating and connecting to the flash chip and extract-
ing the device firmware (for a systematic review of such techniques, see [257]).
As a result, dynamic analysis may be preferable method for measurement of
trackers. Some types of dynamic analysis used on web and mobile traffic may
be equally applicable to IoT devices, where the analysis only observes network
traffic source, destination, frequency, etc., but doesn’t require decryption of the

33https://perma.cc/24H9-J3JU
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payloads. However, inspecting the content of such traffic is difficult, because
unlike a web browser or mobile device, IoT devices generally cannot be config-
ured to trust a self-generated SSL certificate that would enable decryption of
intercepted traffic.

The potential for tracker identification and blocking of tracker-related con-
nections from IoT devices has been explored in multiple studies. Typically,
these approaches are designed to be deployed at the router level, since most
IoT devices, at least in a domestic setting, connect via the router. Various
tools have been developed to provide analysis capability. Device fingerprinting
tools like ToTSense [258] and IoTSentinel [259] allow for the reliable identifica-
tion of devices based on their network traffic. Classifying behaviours of devices
themselves is also possible with tools like HomeSnitch [260], Peek-a-Boo [261],
PingPong [262], and HoMonit [263]. These can be used to infer why a de-
vice is sending data to a particular destination at a particular time. When
tracker-related traffic is detected, it can potentially be blocked at the router
level, using systems like piHole[264], a ‘Linux network-level advertisement and
Internet tracker blocking application which acts as a DNS sinkhole and option-
ally a DHCP server, intended for use on a private network’. However these
require some specialist technical expertise and so are effectively only an option
for the rare few skilled and motivated users. An additional challenge here is
blocking tracking without interfering with the useful and desired functionality
of the device; Mandalari et al. propose IoTrimmer, a tool to automatically clas-
sify critical vs non-critical traffic and block the latter[265], enabling the smart
devices to continue working but without the tracking.

These router-level tools for tracker identification and control are typically
research tools or targeted at users with higher technical skill. Some research
has explored the potential for smart home privacy tools for non-expert users
to better understand and exercise control over the flows of data from their de-
vices. Seymour et al. developed a prototype privacy assistant, called Aretha,
which combines a network disaggregator (to show smart device network flows),
a personal tutor (to help users understand their significance), and a firewall (to
selectively block unwanted traffic).[266] Through a longitudinal study, where
Aretha was installed in households over six weeks, they found that while most
users did not engage with the firewall capability, when provided with the right
kind of educational scaffolding, people were able to formulate their own informed
attitudes and strategies to address tracking in the smart home. Through inter-
views with users, Colnago et al. found that a balance needs to be struck between
empowering users with controls, whilst not overwhelming them with informa-
tion [267]. Crabtree et al. argue that in order to make the IoT accountable
to users, and compliant with the GDPR, data processing should be moved to
the ‘edge’ rather than being shared with first and third-parties, and propose the
‘Databox’ as an edge device controlled by the user|268].
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5.3 Cross-device Tracking and ‘De-Anonymised’ Identifiers

Having covered how tracking works on the web, mobile apps, and other ‘smart’
devices, we can now turn to how tracking operates across and between these
different devices. Even if tracking on each platform works with slightly differ-
ent mechanisms, these can be and are joined up behind the scenes [269]. For
instance, fingerprinting is used for identifying a user as they move between an
app and the mobile web, as a way to link together the cookie-based web tracking
ecosystem with the Ad ID-based mobile tracking ecosystem [270].

To paint a picture of how this all fits together, recall our example of Al-
ice. Her web browsing activity from multiple websites was collated to form a
profile; inferring that she may have an interest in ornithology, which could be
used to target her via a web-based targeted advertisement. This profile, col-
lated through cookies in her web browser, exists in a back-end database of a
web-focused tracking service. Now, imagine Alice downloads an app on her An-
droid device; as a result, her Android advertising ID is sent to multiple trackers,
alongside various other personal data including her location, email address, and
device details (handset model, OS version, network, etc.). One of those trackers
has a commercial relationship with the web-focused tracking service, and the
two parties seek to automatically match up their records. Their system finds
a high-probability match based on Alice’s location, email address and device
details. Now Alice’s cookie ID has been matched to her Android AdID and
both trackers now know how to find Alice on either platform. This process is
called ‘probabilistic’ cross-device identification because the matching process is
not guaranteed to be correct but rather has degrees of confidence depending
on how many data points are available to narrow down Alice’s identity. By
contrast, ‘deterministic’ cross-device identification involves an explicit identifier
being passed from a service on one device or platform to another service. For
instance, a web link in an app might allow the app to pass the Android adver-
tising ID in the URL query string. When Alice clicks the link in the app, the
URL |example. com/ad_ID?7=12345 passes Alice’s ad ID to [example. com, where
it can be associated with a cookie. Similar probabilistic and deterministic mech-
anisms may allow cross-device tracking between Alice’s smart home devices and
her web and mobile presence.

A large data broker industry exists for the purposes of linking mobile de-
vice identifiers, real names, physical addresses, phone numbers, email addresses,
and IP addresses together While many maintain the pretence that mo-
bile advertising identifiers are ‘anonymous’, the widespread practices of the
adtech sector ensure that they are in practice highly identifiable to a wide
variety of actors. Such identifiers are routinely broadcast to hundreds of com-
panies participating in the programmatic adtech real-time-bidding ecosystem
as soon as an app is installed and run. Additional so-called ‘anonymisation’
measures are applied by many tracking companies, which consist of convert-
ing personal data into a supposedly less easily identifiable pseudonymous form.
This is often acheived by running the personal data through a hash function,

34https://perma.cc/F8S8-5FNY
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example.com/ad_ID?=12345
example.com

which maps input data of an arbitrary size to a seemingly random fixed out-
put (e.g. under the SHA-256 hash algorithm, ‘user123@example.com’ becomes
‘865c4dd20427a134c6a6637{1d2¢905077b7d7380cd8e029c4a358¢222f91b43’). How-
ever, anyone with knowledge of the hashing method can check if a given identifier
results in a matching hash. So if a tracker shares a hash of ‘user123’ with a data
broker, then the broker (or anyone else they share it with) can attempt to match
the hash against the hashes of all the user identifiers they already have. Any
matches then allow further enrichment of a user profile associated with that
hash. Effectively, a hash of an identifier can become every bit as effective as the
identifier itself, acting as a key to match up lots of different information about a
person from various sources, all under the pretence of ‘anonymity’. Standard in-
dustry approaches to hashing identifiers make such matching processes trivially
easy [271].

Many companies may be participating in real-time-bidding not because they
actually want to bid on the available auctions, but simply for the opportunity
to receive personal data through the bid stream and monetise it in various
ways. Examples of how such data can be easily bought abound B In J uly 2021,
Catholic news outlet The Pillar published a report detailing the private romantic
life of a high-ranking Roman Catholic official, who subsequently resigned. The
report was based on data purchased from a data broker, which had originally
been obtained via a third-party tracker present on the gay dating app Grindr.
This dataset featured personal data of Grindr users, including GPS location
data, which enabled the official to be identified P4 This is just one of a large
number of companies offering such de-anonymization services, who use terms
like ‘identity resolution’ to describe their services. Ultimately, the disparate
tracking infrastructures embedded in platforms can often be tied together to
form individual profiles of identifiable individuals, by firms who sell their services
to a range of customers with seemingly little scrutiny. These profiles are likely
to contain all kinds of personal data: an individual’s purchase history; medical
concerns and hospital visits; apps installed; media subscriptions and loyalty
programs; places of work and socialising; political views and religious beliefs;
debts and loan status; tastes in food and diet; interactions with call centres; bills
and invoices; survey responses; attitude and lifestyle; and much else besides.

6 Whither Tracking?

Previous sections covered the history of tracking and some major strands of re-
search from computer science and related disciplines. This section takes a more
policy-oriented and speculative perspective, briefly introducing and discussing
some of the contemporary issues and trends — economic, legal, and technical
— which appear likely to influence the long term trajectory of tracking.

35https://perma.cc/FUY9-3UGG
36https://perma.cc/3A67-K5SE
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6.1 An Adtech Market Crash?

One factor which may have significant effects on the future of tracking is the pos-
sibility of a major downturn in the advertising technology industry. Some of the
factors that might potentially drive this outcome have already been mentioned
in passing above, including: widespread opposition by end-users; increasing use
of tracker blocking tools and tracker-hostile measures by browsers and smart-
phone OS providers; efforts by developers to ditch privacy-invasive third-party
tools; and the adoption of privacy-preserving alternatives to advertising and an-
alytics, which potentially remove the demand for intermediaries in their current
form. Several other factors can be added to these.

First, while the adtech industry is now estimated to be worth around $455
billion, it is often unclear how much value the intermediaries in the middle
provide to advertisers and whether they pass a fair cut on to the first-party
publishers whose audiences’ attention they monetise. It is particularly hard to
measure the returns on digital advertising with any confidence; a study involving
25 field experiments was only able to estimate returns with a 100 percentage-
points-wide confidence interval [272]. Tt is also unclear how much value is added
by tracking individual users, compared to targeting adverts based on the context
(e.g. targeting adverts based on the content of the page rather than information
about the user visiting it). A 2019 study found that use of tracking cookie data
to target ads only yielded a 4% increase in revenue for publishers compared
to contextual targeting alone ﬁ273], and results of limited experiments from
publishers are also promising.

Furthermore, first-parties who sell ad space appear to receive a surprisingly
small portion of the amount spent by advertisers, with the rest going to vari-
ous adtech intermediaries. A report from the Incorporated Society of British
Advertisers (ISBA) estimated that for every dollar spent on adtech, about half
(51 cents) goes to the first-party website who displays the ad, a third is taken
by the adtech intermediaries, and a final average of 15 cents was impossible
to account for; as Gizmodo reporter Shoshana Wodinsky described, this is ‘a
Bermuda triangle at the center of the web where these billions of dollars just...
vanished. 4

Another factor is the widespread and extensive levels of fraud [274]. Digital
advertising fraud typically involves a fraudster creating fake ad traffic using
automated robots or ‘bots’ which mimic the interactions of human users. These
generate ad impressions which inflate the advertising campaign metrics, despite
no human ever seeing the ad itself. Bot-operators, in cahoots with first or third-
parties, then charge advertisers for these wasted ad impressions. According to
one recent estimate, ad fraud causes economic losses of 35 billion US dollars per
year. Some research exists demonstrating ad fraud in Android applications
[275, 276], but the full extent is uncertain.

The lack of clarity about the value actually provided within the adtech in-
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dustry, and the apparently high levels of ad fraud, has lead some to question
whether adtech vendors may soon lose the confidence of their customers and
investors. Drawing parallels to the 2008 financial crash, Tim Hwang has argued
that this could trigger a ‘sub-prime attention crisis’[277]. While some may relish
the prospect of a collapse of adtech, the fallout might precipitate more worrying
developments. Investors in tracking companies will demand a return on their in-
vestment; if adtech revenue collapses, these companies will look to other ways to
turn a profit from the large amounts of highly sensitive data they have amassed,
which might be cause even greater harm. To avoid such outcomes, the collapse
of adtech revenues would need to go hand in hand with a dismantling of their
underlying surveillance infrastructure.

Furthermore, while problematic, adtech currently provides revenue for an
industry with an important societal function: the news media [278, 279]. An
adtech crash could therefore undermine the ‘fourth estate’. That said, one could
argue that the function of the press as a check on power is already undermined
by widespread tracking [280, [281], because readers need to be able to read ma-
terial critical of the state or other powerful actors without the fear of being
watched by them [282] 283, [284] 285 [286] (what Neil Richards calls ‘intellectual
privacy’ [287]). Alternative sources of funding for news media may therefore be
important to establish whether or not adtech survives in its current form. Some
alternatives include subscriptions, more consensual and privacy-respecting tar-
geting within the first-party context, and ‘contextual’ advertising as explained
above.

6.2 Data protection and privacy law

Laws around the collection and use of personal data emerged in many countries
in the 1970’s [288]. These were based in part on the Fair Information Practice
Principles (FIPPS) developed in a 1973 report by the US Department of Health,
Education and Welfare [289, 290]. Various European countries enacted proto-
data protection instruments, starting with the Swedish Data Act in 1973. In
the EU, data protection law aims to protect fundamental rights and freedoms
in relation to the processing of personal data.

Some firms engaged in the tracking industry have claimed that data pro-
tection law does not apply to them because data they process is not ‘personal
data’; instead, they claim, it is ‘anonymous’ and cannot be used to identify an
individual. However, such claims are based on an erroneously narrow under-
standing of personal data as ‘personally identifying information’ (a term used
in US law), typically meaning a legal name, email address, social security num-
ber, etc. This is much narrower than the definition of personal data in EU and
other jurisdictions, which includes any information that could be used, alone
or in combination with other data, to identify an individual or single them out.
On this broader definition, a large portion of the data collected by third-party
trackers is personal data, either because it is a unique identifier, or because
it alone or combined with other data suffices to single out an individual. So
a cookie with a user’s unique identifier which serves to distinguish them from
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other users is personal data, even if it doesn’t include their name or email ad-
dress. But also, a set of browser configuration settings or series of location
co-ordinates, if they enable data controller to single that user out, could be per-
sonal data[291]. Furthermore, so-called ‘anonymisation’ as practiced by many
tracking companies (as described in section [5.3)) is actually only ‘pseudonymi-
sation’ under data protection law; converting personal data into a less easily
identifiable, but still identifiable, pseudonymous form. As a result, much of this
data would be personal data under the GDPR.

E.U. case law has clarified that what counts as ‘personal data’ is contex-
tual; an Internet Protocol (IP) address may be personal data if it is typically
associated with an individual (e.g. if it is associated with their home internet
connection), but may not if used by multiple different people (e.g. for a public
WiF1i hotspot) [292]. Based on analysis of such case law and the guidance issued
by data protection authorities, Purtova has argued that ‘identification’ in data
protection law extends also to instances of ‘personalisation’; where data is used
to personalise a service to someone by relatively uniquely characterising them
by mapping them ‘in relation to multiple dimensions within a multidimensional
space’[293]. Whether this expansive interpretation of the scope of personal data
holds up in future judgements remains to be seen, but even a less expansive in-
terpretation would arguably still capture the vast majority of tracking practices
described above.

Another area of controversy in the application of data protection to tracking
is around the concepts of controller and processor. First-party services are typ-
ically data controllers, because they decide the purposes of processing personal
data of their users. Third-party trackers may be either controllers or processors,
depending on whether they operate under the instruction of first-parties. For
instance, a third-party analytics provider might process personal data on behalf
of the first-party according to the first-party’s instructions, and thus be a proces-
sor. Alternatively, were that third-party analytics provider to use the personal
data from the first-party to create additional services outside of their instruc-
tions from the first-party, e.g. to develop services or improve their ATl models,
they would likely become a controller, with a greater level of responsibility.

Many third-parties therefore attempt to minimise their compliance burden
by claiming to be mere processors; by presenting take-it-or-leave-it contractual
terms, according to which the first-party agrees to ‘instruct’ the third-party
to undertake the processing the third-party wanted to do anyway, but without
taking on responsibility as controller [294]. The resulting situation is that pow-
erful third-party trackers, who in reality decide on the purposes and means of
processing and therefore ought to be classed as controllers, claim to be mere
processors acting on instruction of first-parties; a kind of ‘puppet controllership’
where they exercise power without the regulatory compliance burden, which is
pushed onto the first-party. However, recent case law of the Court of Justice of
the European Union affirms that the bar may indeed be low enough to qualify
many third-parties as controllers (or joint controllers where they jointly decide
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on the purposes and means of processing) Relatedly, third party consent
management platforms are also likely to be considered controllers under data
protection law [I14], which could lead to difficulties regarding legal liability in
the context of non-compliant tracking facilitated by first and third parties.

Finally, the real-time bidding architecture deployed by the adtech industry,
discussed in section 2.3 is argued to be in violation of the transparency and
security requirements of data protection law ] These arguments focus on three
main ways in which real-time bidding (RTB) violates data protection law, all
arising from the way that personal data is routinely broadcast in the process
of an RTB auction to hundreds of competing bidders [295]. First, intermedi-
aries in the RTB ecosystem typically require consent but are unable to gain
it validly because data subjects cannot meaningfully consent to the processing
of their data by thousands of potential bidders; second, even if they could use
some lawful basis other than consent, they would fail to meet the transparency
requirements that would still apply, for the same reason; third, it is impractical
to vet each recipient and ensure the security of such data, but failure to do so
arguably violates the security principle of the GDPR.

Compared to EU data protection law, US privacy law is a patchwork of fed-
eral and sectoral laws, and state-level instruments. Existing federal privacy laws
include the Health Insurance Portability and Accountability Act of 1996, Chil-
dren’s Online Privacy Protection Act of 1998, and 1999 Gramm-Leach Bliley
Act. However, for many years, the web advertising technology industry has in-
tensively lobbied against regulation and in favour of self-regulation [296] 297],
and largely escaped the former at least during the 2000’s [298] and early 2010’s.
This approach was largely supported by regulators who endorsed self-regulatory
principles [297]. Industry-led intiatives were proposed to limit the effects of
tracking, such as the ‘ad choices’ button attached to online advertising [299],
which allowed users to decide what ads they wanted to see (but not to actu-
ally limit the underlying third-party tracking). This exclusively self-regulatory
approach was widely regarded as a failure by privacy advocates [300].

Federal privacy law applies to government use of data, and web profiling
is a private enterprise. However, national security agencies utilise this private
infrastructure, either through warrants or hacking [301], while law enforcement
are known to purchase data from data brokers [302]. Private sector use of data
has been addressed in some cases by the Federal Trade Commission (FTC),
under their remit to regulate unfair and deceptive practices. For instance, in
the context of tracking, practices which trick users into giving up their data or
buying services by mistake [I16], might be addressed within this doctrine. In
2013, the FTC investigated the data broker industry, driven by media reports
of practices including the sale of lists of people with specific health conditions,

408ee e.g. Case C-49/17 Fashion ID, 2019 ECLI:EU:C:2019:629, finding that when a
website embeds a Facebook ‘Like’ button, which facilitates third-party tracking, it is a joint
controller with Facebook; and Case C-210/16, Unabhdngiges Landeszentrum fiir Datenschutz
Schleswig-Holstein v. Wirtschaftsakademie Schleswig-Holstein GmbH, where the operator of
a Facebook Fanpage operator was deemed a joint controller.
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victims of particular crimes, and more [303, [304].

In recent years, states have passed more comprehensive data privacy laws
which, while more limited than the data protection regimes of the EU and many
other countries, do contain meaningful constraints on personal data processing.
For instance, the California Consumer Privacy Act (CCPA) which became ef-
fective on January 1st 2020, contains a set of individual rights and obligations
on firms which mirror some of those found in the GDPR. It is regarded as ‘the
strictest data privacy law in the US’F2 In the wake of such state-level laws, there
is momentum for a federal consumer privacy law which would harmonise laws
between states. It remains to be seen whether such a federal law will be passed,
and if so, whether it would constitute a levelling-up to the high standards of
the CCPA, or a lowering of the bar across the US.

In 2021, China adopted a new comprehensive data protection law, the ‘Per-
sonal Information Protection Law’ [305], which could have significant conse-
quences for online tracking, both for domestic Chinese companies, and for
foreign companies operating in China. Users have the legal right to block
algorithmically-curated information and personalised ads. Companies have to
get affirmative user consent to serve ads based on personal information that has
a ‘major influence on individual rights and interests’ (Article 27). Enforcement
under the new law has already been taken against various apps for privacy viola-
tions; after a warning the previous month, in December 106 apps were removed
from a variety of app stores[H

6.3 Competition and Antitrust

Large tech firms have been the focus of recent attention by antitrust and com-
petition regulators, in part due to their control over key parts of the tracking
infrastructure. The ability to track people across the web and other platforms
is concentrated in a few powerful players, especially Google with its Chrome
Browser and Android OS. Competition regulators in multiple jurisdictions have
responded by launching investigations into mergers and acquisitions, consider-
ing the effects of consolidation of tracking capability on the market power of
firms.

In some cases, these have been precipitated by proposals by large tech firms
which purportedly aim to improve privacy. Specifically, Google’s stated inten-
tion to phase out the use of third party cookies (following the lead of other major
web browsers) has raised concerns about the potentially anti-competitive effects
on rival adtech vendors who rely on third party cookies to facilitate tracking
and targeting of advertising. In response, the EU Commission, UK Competi-
tion and Markets Authority (CMA), and Australian Competition and Consumer
Commission, among others, initiated investigations into the move [306]. That
the proposed move away from third party cookies was ostensibly motivated by
privacy concerns has caused some to pit data protection and competition pol-
icy against each other. However, the apparent conflict between data protection
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and competition needs to be set against a broader view of their fundamental
aims. Arguably, both data protection and competition policy are concerned
with constraining the power of corporations, and ensuring the public get the
benefits of technology. Within this evolving policy debate, many now recognise
that these two areas of regulation are more mutually supportive than they are
conflicting[307, B0T, B08].

Still, some of the traditional approaches, concepts and tools of each regu-
latory domain may need revising in order to realise this mutually supportive
relationship. One issue is the way in which competition law has traditionally
measured market power, which is used to determine whether and how to inter-
vene with respect to certain market actors. Traditional market share calcula-
tions will likely fail to capture the kind of power exercised by firms engaging
in the collection of personal data; as the European Data Protection Supervi-
sor noted in 2014, power over personal data “cannot easily be calculated by
reference to data on traditional sales or volume” [309]. Alternative market con-
centration measures and merger and acquisition review processes may be needed
which take account of privacy as an aspect of quality [310]; and measure the
combinations of data and computational infrastructure that could arise from
the consolidated entity and what effects that could have on the structure of
the market and potential harms to individuals[3TI]. In recent years regulators
have begun to consider potential privacy harms arising from the consolidation
of tracking capabilities and the effects on privacy within in competition and
antitrust activity [312].

The possibility for abuse of dominance and vertical integration is palpable
in the case of a firm like Google / Alphabet. Not only does it run the most
prominent third-party tracker network on Android, it also controls the app mar-
ketplace, the operating system and its standard applications. Meanwhile, on
the web it also controls the most popular browser, search engine and third-party
advertising and analytics services. These activities cannot be considered in iso-
lation [313]; dominance in tracking might easily spill over into other spheres
of business, and vice-versa [314]. Viewing large dominant firms with the power
to shape markets as an inherent problem, regardless of their immediate impact
on prices, is characteristic of a new wave of US antitrust academics and policy-
makers known as the ‘Neo-Brandeisians’ (a revival of an earlier era of antitrust
developed by Justice Brandeis) [315] 316 [317].

The ultimate outcome of competition and antitrust regulation is uncertain.
One possibility is structural separation of dominant tech firms, including sep-
aration of their tracking infrastructure from other parts of the business. For
instance, Google might be forced to divide its third-party advertising and ana-
lytics networks from each other and its wider services. Other remedies might
involve the forced sharing of data and / or infrastructure with competitors via in-
teroperability measures defined by open protocols [318]. Where dominant firms
have services which are ostensibly ‘on the side of the user’, such as web browsers
and mobile operating systems, specific statutory regulation and contractual mea-
sures could be created to address conflicts of interest arising from their other
service offerings. Some have even suggested such ‘user agents’ should be bound
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by fiduciary duties, providing structural leverage to correct the balance of power
between individuals and tech companies|[3T9).

6.4 ‘Privacy-Preserving’ Tracking?

In 2020, Google announced a set of proposals for a post-cookie, purpotedly
privacy-respecting future for the web called the ‘Privacy Sandbox’[*q There are
various proposals within the Sandbox, but one in particular raises important
technical, legal and conceptual questions about the possible future of tracking.
Called ‘Federated Learning of Cohorts’ (FLoC)[320] 321], it aims to replace
current arrangements with third-party cookies, but still allow insights about a
user to be inferred based on their membership in a group of similar users.

As covered in section [£.4] various alternatives to tracking have already been
proposed which aim to enable targeting of content and ads, without the user’s
data leaving their browser. In such proposals, the browser application itself
creates and stores a profile of the user’s interests, and selects from a range of
selected ads, revealing nothing to first and third parties about the user. Some
browser vendors are exploring or beginning to implement such systems; for
instance, the Brave browser is implementing a privacy-preserving decentralised
ad platform called THEMIS [322]. FLoC would be something of a halfway house
between entirely local and private targeting, and the ‘broadcast’ model currently
used by real-time bidding adtech systems. It would use an in-browser classifier
to detect, based on web page content, the categories of websites that a browser
visits. These classifications would then be used to group web browsers together
based on how similar the categories of websites they’ve visited are. When a user
visits a website, instead of allowing third-party cookies being set and read, the
user’s FLoC cohort would be shared with third-parties. This would not allow
them to uniquely identify the user (at least not on its own), but would allow
them to target advertisements and tailor content to the user based on their
membership in a FLoC cohort.

Such targeting would require first and third-party services to derive insights
about those FLoCs, e.g. their demographics and what products they might be
interested in (using auxiliary data, analytics, and machine learning). Through
such processes, FLoC groups would become associated with categories of inter-
est to advertisers, as well as potentially other commercial or state actors; e.g.
health conditions, political opinions, or sexual orientation. This system might
technically preserve privacy in the narrow sense that you can’t be distinguished
from others in your FLoC cohort; but the information, opportunities, and influ-
ences you are exposed to would be altered and shaped according to what can
be inferred about you based on your FLoC cohort.

Trials of FLoC began with a select group of Chrome browser users in Spring
2021, but the initial response from privacy groups, researchers, and competing
browser makers has been largely hostile. At the time of writing, it appears
that other alternatives are being considered. A simpler system where instead
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of broadcasting a single numerical cohort ID (which adtech intermediaries and
advertisers would have to infer the meaning of for themselves), the browser
broadcasts topic IDs (e.g. ‘performing arts’ or ‘fitness’), which would provide
a simpler approach for targeting It remains to be seen whether this move is
acceptable from a user perspective; while many might appreciate no longer hav-
ing individual identifiers spread around the real-time bidding ecosystem, they
might still be concerned that their algorithmically-derived interests are routinely
broadcast to third parties. Furthermore, it is unlikely that FLoC would wholly
replace the existing targeting systems; it is likely that both the old and new
systems would operate side-by-side. In which case, both individual identifiers
and FLoC cohorts / interest categories would be broadcast to websites and
into the real-time bidding process; rather than improving privacy, FLoC could
merely add additional data points to existing tracking processes. Other mecha-
nisms would therefore still likely be needed to provide effective protection from
fingerprint-based tracking.

6.5 Concluding Remarks

This article has aimed to provide an overview of a widespread and complex
phenomenon, which — despite decades of research, increasing coverage in the
media, and attention by regulators — remains under-examined given its societal
importance. Many areas have not been touched on here in detail, from how
tracking operates outside of the commonly-studied contexts of North America,
Europe, and China, to the political economy of tracking infrastructure[323],
and the use of tracking in sensitive areas like health[324] and credit[325]. There
are many differing and equally fascinating ways in which tracking on the web,
mobile and IoT intersect with modern economic, social and political realities
which this overview could not include. However, it hopefully provides sufficient
background for a reader aiming to pursue more detailed research.

For all the technical complexity of the third-party tracking ecosystem, the
countermeasures deployed by browsers and smartphone platforms, and the ex-
otic new ‘privacy-preserving’ alternatives, the underlying problems of tracking
are political [326], 327, [328]. Who (if anyone), should have the power to target,
to segment, to sort and persuade populations through the shaping of their online
environments at scale? How should such power be constrained, re-distributed,
or abolished? How might the infrastructure, resources, and expertise currently
serving the tracking industry be diverted or transformed to serve alternative
needs and ends?
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