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Abstract

A popular method for selecting the number of clusters is based on sta-

bility arguments: one chooses the number of clusters such that the cor-

responding clustering results are “most stable”. In recent years, a series

of papers has analyzed the behavior of this method from a theoretical

point of view. However, the results are very technical and difficult to

interpret for non-experts. In this paper we give a high-level overview

about the existing literature on clustering stability. In addition to pre-

senting the results in a slightly informal but accessible way, we relate

them to each other and discuss their different implications.
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Introduction

Model selection is a difficult problem in non-parametric clustering. The

obvious reason is that, as opposed to supervised classification, there is

no ground truth against which we could “test” our clustering results.

One of the most pressing questions in practice is how to determine the

number of clusters. Various ad-hoc methods have been suggested in

the literature, but none of them is entirely convincing. These methods

usually suffer from the fact that they implicitly have to define “what a

clustering is” before they can assign different scores to different num-

bers of clusters. In recent years a new method has become increasingly

popular: selecting the number of clusters based on clustering stability.

Instead of defining “what is a clustering”, the basic philosophy is

simply that a clustering should be a structure on the data set that

is “stable”. That is, if applied to several data sets from the same

underlying model or of the same data generating process, a clustering

algorithm should obtain similar results. In this philosophy it is not

so important how the clusters look (this is taken care of by the clus-

tering algorithm), but that they can be constructed in a stable manner.

The basic intuition of why people believe that this is a good principle
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Example: how many clusters? 

Sample 1                          Sample 2

k = 2:

k = 5: 

Fig. 1.1 Idea of clustering stability. Instable clustering solutions if the number of clusters

is too small (first row) or too large (second row). See text for details.

can be described by Figure 1.1. Shown is a data distribution with

four underlying clusters (depicted by the black circles), and different

samples from this distribution (depicted by red diamonds). If we

cluster this data set into K = 2 clusters, there are two reasonable

solutions: a horizontal and a vertical split. If a clustering algorithm

is applied repeatedly to different samples from this distribution, it

might sometimes construct the horizontal and sometimes the vertical

solution. Obviously, these two solutions are very different from each

other, hence the clustering results are instable. Similar effects take

place if we start with K = 5. In this case, we necessarily have to split

an existing cluster into two clusters, and depending on the sample

this could happen to any of the four clusters. Again the clustering

solution is instable. Finally, if we apply the algorithm with the correct

number K = 4, we observe stable results (not shown in the figure): the

clustering algorithm always discovers the correct clusters (maybe up

to a few outlier points). In this example, the stability principle detects

the correct number of clusters.

At first glance, using stability-based principles for model selection

appears to be very attractive. It is elegant as it avoids to define what

a good clustering is. It is a meta-principle that can be applied to any

basic clustering algorithm and does not require a particular clustering
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model. Finally, it sounds “very fundamental” from a philosophy of

inference point of view.

However, the longer one thinks about this principle, the less obvious

it becomes that model selection based on clustering stability “always

works”. What is clear is that solutions that are completely instable

should not be considered at all. However, if there are several stable

solutions, is it always the best choice to select the one corresponding

to the most stable results? One could conjecture that the most stable

parameter always corresponds to the simplest solution, but clearly

there exist situations where the most simple solution is not what we

are looking for. To find out how model selection based on clustering

stability works we need theoretical results.

In this paper we discuss a series of theoretical results on clustering

stability that have been obtained in recent years. In Section 2 we

review different protocols for how clustering stability is computed and

used for model selection. In Section 3 we concentrate on theoretical

results for the K-means algorithm and discuss their various relations.

This is the main section of the paper. Results for more general

clustering algorithms are presented in Section 4.
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Clustering stability: definition and
implementation

A clustering of a data set S = {X1, . . . , Xn} is a function that assigns

labels to all points of S, that is CK : S → {1, . . . ,K}. Here K denotes

the number of clusters. A clustering algorithm is a procedure that takes

a set S of points as input and outputs a clustering of S. The clustering

algorithms considered in this paper take an additional parameter as

input, namely the number K of clusters they are supposed to construct.

We analyze clustering stability in a statistical setup. The data set S is

assumed to consist of n data points X1, . . . , Xn that have been drawn

independently from some unknown underlying distribution P on some

space X . The final goal is to use these sample points to construct a

good partition of the underlying space X . For some theoretical results

it will be easier to ignore sampling effects and directly work on the

underlying space X endowed with the probability distribution P . This

can be considered as the case of having “infinitely many” data points.

We sometimes call this the limit case for n→∞.

Assume we agree on a way to compute distances d(C, C′) between dif-

ferent clusterings C and C′ (see below for details). Then, for a fixed

probability distribution P , a fixed number K of clusters and a fixed

4
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sample size n, the instability of a clustering algorithm is defined as the

expected distance between two clusterings CK(Sn), CK(S′n) on different

data sets Sn, S′n of size n, that is

Instab(K,n) := E
(
d(CK(Sn), CK(S′n))

)
(2.1)

The expectation is taken with respect to the drawing of the two

samples.

In practice, a large variety of methods has been devised to compute

stability scores and use them for model selection. On a very general

level they works as follows:

Given: a set S of data points, a clustering algorithm A that takes

the number k of clusters as input

(1) For k = 2, . . . , kmax

(a) Generate perturbed versions Sb (b = 1, . . . , bmax) of

the original data set (for example by subsampling or

adding noise, see below)

(b) For b = 1, . . . , bmax:

Cluster the data set Sb with algorithm A into k
clusters to obtain clustering Cb

(c) For b, b′ = 1, . . . , bmax:

Compute pairwise distances d(Cb, Cb′) between these

clusterings (using one of the distance functions

described below)

(d) Compute instability as the mean distance between

clusterings Cb:

Înstab(k, n) =
1

b2max

bmax∑
b,b′=1

d(Cb, Cb′)

(2) Choose the parameter k that gives the best stability, in the

simplest case as follows:

K := argmin
k

Înstab(k, n)

(see below for more options).

This scheme gives a very rough overview of how clustering stability

can be used for model selection. In practice, many details have to be

taken into account, and they will be discussed in the next section.
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Finally, we want to mention an approach that is vaguely related to

clustering stability, namely the ensemble method (Strehl and Ghosh,

2002). Here, an ensemble of algorithms is applied to one fixed data

set. Then a final clustering is built from the results of the individual

algorithms. We are not going to discuss this approach in our paper.

Generating perturbed versions of the data set. To be able to

evaluate the stability of a fixed clustering algorithm we need to run

the clustering algorithm several times on slightly different data sets.

To this end we need to generate perturbed versions of the original data

set. In practice, the following schemes have been used:

• Draw a random subsample of the original data set without

replacement (Levine and Domany, 2001, Ben-Hur et al.,

2002, Fridlyand and Dudoit, 2001, Lange et al., 2004).

• Add random noise to the original data points (Bittner et al.,

2000, Möller and Radke, 2006).

• If the original data set is high-dimensional, use different

random projections in low-dimensional spaces, and then

cluster the low-dimensional data sets (Smolkin and Ghosh,

2003).

• If we work in a model-based framework, sample data from

the model (Kerr and Churchill, 2001).

• Draw a random sample of the original data with replace-

ment. This approach has not been reported in the literature

yet, but it avoids the problem of setting the size of the

subsample. For good reasons, this kind of sampling is the

standard in the bootstrap literature (Efron and Tibshirani,

1993) and might also have advantages in the stability

setting. This scheme requires that the algorithm can deal

with weighted data points (because some data points will

occur several times in the sample).
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In all cases, there is a trade-off that has to be treated carefully. If

we change the data set too much (for example, the subsample is too

small, or the noise too large), then we might destroy the structure we

want to discover by clustering. If we change the data set too little,

then the clustering algorithm will always obtain the same results, and

we will observe trivial stability. It is hard to quantify this trade-off in

practice.

Which clusterings to compare? Different protocols are used to

compare the clusterings on the different data sets Sb.

• Compare the clustering of the original data set with the

clusterings obtained on subsamples (Levine and Domany,

2001).

• Compare clusterings of overlapping subsamples on the data

points where both clusterings are defined. (Ben-Hur et al.,

2002).

• Compare clusterings of disjoint subsamples (Fridlyand and

Dudoit, 2001, Lange et al., 2004). Here we first need to

apply an extension operator to extend each clustering to the

domain of the other clustering.

Distances between clusterings. If two clusterings are defined on the

same data points, then it is straightforward to compute a distance score

between these clusterings based on any of the well-known clustering

distances such as the Rand index, Jaccard index, Hamming distance,

minimal matching distance, Variation of Information distance (Meila,

2003). All these distances count, in some way or the other, points or

pairs of points on which the two clusterings agree or disagree. The

most convenient choice from a theoretical point of view is the minimal

matching distance. For two clusterings C, C′ of the same data set of n
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points it is defined as

dMM(C, C′) := min
π

1

n

n∑
i=1

1{C(Xi)6=π(C′(Xi))} (2.2)

where the minimum is taken over all permutations π of the K labels.

Intuitively, the minimal matching distance measures the same quantity

as the 0-1-loss used in supervised classification. For a stability study

involving the adjusted Rand index or an adjusted mutual information

index see Vinh and Epps (2009).

If two clusterings are defined on different data sets one has two choices.

If the two data sets have a big overlap one can use a restriction operator

to restrict the clusterings to the points that are contained in both

data sets. On this restricted set one can then compute a standard

distance between the two clusterings. The other possibility is to use

an extension operator to extend both clusterings from their domain to

the domain of the other clustering. Then one can compute a standard

distance between the two clusterings as they are now both defined

on the joint domain. For center-based clusterings, as constructed by

the K-means algorithm, a natural extension operator exists. Namely,

to a new data point we simply assign the label of the closest cluster

center. A more general scheme to extend an existing clustering to new

data points is to train a classifier on the old data points and use its

predictions as labels on the new data points. However, in the context

of clustering stability it is not obvious what kind of bias we introduce

with this approach.

Stability scores and their normalization. The stability protocol

outlined above results in a set of distance values (d(Cb, Cb′))b,b′=1,...,bmax .

In most approaches, one summarizes these values by taking their mean:

Înstab(k, n) =
1

b2max

bmax∑
b,b′=1

d(Cb, Cb′)

Note that the mean is the simplest summary statistic one can compute

based on the distance values d(Cb, Cb′). A different approach is to use
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Data set: uniform
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1
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stability (normalized)
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0

0.5

1
stability (not normalized)

0 5 10 15
0.4

0.6

0.8
stability on reference distribution

Data set: four Gaussians

0 5 10 15
0

1

2
stability (normalized)

Fig. 2.1 Normalized stability scores. Left plots: data points from a uniform density on

[0, 1]2. Right plots: data points from a mixture of four well-separated Gaussians in R2. The

first row always shows the unnormalized instability Înstab for K = 2, ..., 15. The second row

shows the instability Înstabnorm obtained on a reference distribution (uniform distribution).

The third row shows the normalized stability Înstabnorm.

the area under the cumulative distribution function of the distance

values as the stability score, see Ben-Hur et al. (2002) or Bertoni and

Valentini (2007) for details. In principle one could also come up with

more elaborate statistics based on distance values. To the best of our

knowledge, such concepts have not been used so far.

The simplest way to select the number K of clusters is to minimize the

instability:

K = argmin
k=2,...,kmax

Înstab(k, n).

This approach has been suggested in Levine and Domany (2001). How-

ever, an important fact to note is that Înstab(k, n) trivially scales with

k, regardless of what the underlying data structure is. For example, in

the top left plot in Figure 2.1 we can see that even for a completely un-

clustered data set, Înstab(n, k) increases with k. When using stability

for model selection, one should correct for the trivial scaling of Înstab,

otherwise it might be meaningless to take the minimum afterwards.

There exist several different normalization protocols:
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• Normalization using a reference null distribution (Fridlyand

and Dudoit, 2001, Bertoni and Valentini, 2007). One repeat-

edly samples data sets from some reference null distribution.

Such a distribution is defined on the same domain as the

data points, but does not possess any cluster structure. In

simple cases one can use the uniform distribution on the

data domain as null distribution. A more practical approach

is to scramble the individual dimensions of the existing data

points and use the “scrambled points” as null distribution

(see Fridlyand and Dudoit, 2001, Bertoni and Valentini,

2007 for details). Once we have drawn several data sets from

the null distribution, we cluster them using our clustering

algorithm and compute the corresponding stability score

Înstabnull as above. The normalized stability is then defined

as Înstabnorm := Înstab/Înstabnull.

• Normalization by random labels (Lange et al., 2004). First,

we cluster each of the data sets Sb as in the protocol above

to obtain the clusterings Cb. Then, we randomly permute

these labels. That is, we assign the label to data point

Xi that belonged to Xπ(i), where π is a permutation of

{1, . . . , n}. This leads to a permuted clustering Cb, perm.

We then compute the stability score Înstab as above,

and similarly we compute Înstabperm for the permuted

clusterings. The normalized stability is then defined as

Înstabnorm := Înstab/Înstabperm.

Once we computed the normalized stability scores Înstabnorm we can

choose the number of clusters that has smallest normalized instability,

that is

K = argmin
k=2,...,kmax

Înstabnorm(k, n)

This approach has been taken for example in Ben-Hur et al. (2002),

Lange et al. (2004).
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Selecting K based on statistical tests. A second approach to

select the final number of clusters is to use a statistical test. Similarly

to the normalization considered above, the idea is to compute stability

scores not only on the actual data set, but also on “null data sets”

drawn from some reference null distribution. Then one tests whether,

for a given parameter k, the stability on the actual data is significantly

larger than the one computed on the null data. If there are several

values k for which this is the case, then one selects the one that is most

significant. The most well-known implementation of such a procedure

uses bootstrap methods (Fridlyand and Dudoit, 2001). Other authors

use a χ2-test (Bertoni and Valentini, 2007) or a test based on the

Bernstein inequality (Bertoni and Valentini, 2008).

To summarize, there are many different implementations for selecting

the number K of clusters based on stability scores. Until now,

there does not exist any convincing empirical study that thoroughly

compares all these approaches on a variety of data sets. In my

opinion, even fundamental issues such as the normalization have not

been investigated in enough detail. For example, in my experience

normalization often has no effect whatsoever (but I did not conduct

a thorough study either). To put stability-based model selection on a

firm ground it would be crucial to compare the different approaches

with each other in an extensive case study.
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Stability analysis of the K-means algorithm

The vast majority of papers about clustering stability use the K-means

algorithm as basic clustering algorithm. In this section we discuss the

stability results for the K-means algorithm in depth. Later, in Section

4 we will see how these results can be extended to other clustering

algorithms.

For simpler reference we briefly recapitulate the K-means algorithm

(details can be found in many text books, for example Hastie et al.,

2001). Given a set of n data points X1, . . . , Xn ∈ Rd and a fixed num-

ber K of clusters to construct, the K-means algorithm attempts to

minimize the clustering objective function

Q
(n)
K (c1, . . . , cK) =

1

n

n∑
i=1

min
k=1,..,K

‖Xi − ck‖2 (3.1)

where c1, . . . , cK denote the centers of the K clusters. In the limit

n → ∞, the K-means clustering is the one that minimizes the limit

objective function

Q
(∞)
K (c1, . . . , cK) =

∫
min

k=1,..,K
‖X − ck‖2 dP (X) (3.2)

12



13

where P is the underlying probability distribution.

Given an initial set c<0> = {c<0>
1 , . . . , c<0>

K } of centers, the K-means

algorithm iterates the following two steps until convergence:

(1) Assign data points to closest cluster centers:

∀i = 1, . . . , n : C<t>(Xi) := argmin
k=1,...K

‖Xi − c<t>
k ‖

(2) Re-adjust cluster means:

∀k = 1, . . . ,K : c<t+1>
k :=

1

Nk

∑
{i | C<t>(Xi)=k}

Xi

where Nk denotes the number of points in cluster k.

It is well known that, in general, the K-means algorithm terminates

in a local optimum of Q
(n)
K and does not necessarily find the global

optimum. We study the K-means algorithm in two different scenarios:

The idealized scenario: Here we assume an idealized algorithm that

always finds the global optimum of the K-means objective function

Q
(n)
K . For simplicity, we call this algorithm the idealized K-means

algorithm.

The realistic scenario: Here we analyze the actual K-means

algorithm as described above. In particular, we take into account its

property of getting stuck in local optima. We also take into account

the initialization of the algorithm.

Our theoretical investigations are based on the following simple proto-

col to compute the stability of the K-means algorithm:

(1) We assume to have access to as many samples of size n of

the underlying distribution as we want. That is, we ignore

artifacts introduced by computing stability on artificial per-

turbations of a fixed, given sample.

(2) As distance between two K-means clusterings of two samples

S, S′ we use the minimal matching distance between the

extended clusterings on the domain S ∪ S′.
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(3) We work with the expected minimal matching distance as

in Equation 2.1, that is we analyze Instab rather than the

practically used Înstab. This does not do much harm as in-

stability scores are highly concentrated around their means

anyway.

3.1 The idealized K-means algorithm

In this section we focus on the idealized K-means algorithm, that is the

algorithm that always finds the global optimum c(n) of the K-means

objective function:

c(n) := (c
(n)
1 , . . . , c

(n)
K ) := argmin

c
Q

(n)
K (c).

3.1.1 First convergence result and the role of symmetry

The starting point for the results in this section is the following obser-

vation (Ben-David et al., 2006). Consider the situation in Figure 3.1a.

Here the data contains three clusters, but two of them are closer to

each other than to the third cluster. Assume we run the idealized

K-means algorithm with K = 2 on such a data set. Separating the

left two clusters from the right cluster (solid line) leads to a much

better value of Q
(n)
K than, say, separating the top two clusters from

the bottom one (dashed line). Hence, as soon as we have a reasonable

amount of data, idealized (!) K-means with K = 2 always constructs

the first solution (solid line). Consequently, it is stable in spite of

the fact that K = 2 is the wrong number of clusters. Note that

this would not happen if the data set was symmetric, as depicted in

Figure 3.1b. Here neither the solution depicted by the dashed line nor

the one with the solid line is clearly superior, which leads to instability

if the idealized K-means algorithm is applied to different samples.

Similar examples can be constructed to detect that K is too large, see

Figure 3.1c and d. With K = 3 it is clearly the best solution to split

the big cluster in Figure 3.1c, thus clustering this data set is stable. In

Figure 3.1d, however, due to symmetry reasons neither splitting the

top nor the bottom cluster leads to a clear advantage. Again this leads

to instability.
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a. b. c. d.

Fig. 3.1 If data sets are not symmetric, idealized K-means is stable even if the number K

of clusters is too small (Figure a) or too large (Figure c). Instability of the wrong number
of clusters only occurs in symmetric data sets (Figures b and d).

These informal observations suggest that unless the data set contains

perfect symmetries, the idealized K-means algorithm is stable even if

K is wrong. This can be formalized with the following theorem.

Lemma 1 (Stability and global optima of the objective function).

Let P be a probability distribution on Rd and Q
(∞)
K the limit K-means

objective function as defined in Equation (3.2), for some fixed value

K > 1.

(1) If Q
(∞)
K has a unique global minimum, then the idealized

K-means algorithm is perfectly stable when n→∞, that is

lim
n→∞

Instab(K,n) = 0.

(2) If Q
(∞)
K has several global minima (for example, because the

probability distribution is symmetric), then the idealized K-

means algorithm is instable, that is

lim
n→∞

Instab(K,n) > 0.

This theorem has been proved (in a slightly more general setting) in

Ben-David et al. (2006) and Ben-David et al. (2007).

Proof sketch, Part 1. It is well known that if the objective function

Q
(∞)
K has a unique global minimum, then the centers c(n) constructed
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by the idealized K-means algorithm on a sample of n points almost

surely converge to the true population centers c(∗) as n→∞ (Pollard,

1981). This means that given some ε > 0 we can find some large n such

that c(n) is ε-close to c(∗) with high probability. As a consequence, if

we compare two clusterings on different samples of size n, the centers

of the two clusterings are at most 2ε-close to each other. Finally, one

can show that if the cluster centers of two clusterings are ε-close, then

their minimal matching distance is small as well. Thus, the expected

distance between the clusterings constructed on two samples of size n

becomes arbitrarily small and eventually converges to 0 as n→∞.

Part 2. For simplicity, consider the symmetric situation in Fig-

ure 3.1a. Here the probability distribution has three axes of symmetry.

For K = 2 the objective function Q
(∞)
2 has three global minima

c(∗1), c(∗2), c(∗3) corresponding to the three symmetric solutions. In

such a situation, the idealized K-means algorithm on a sample of

n points gets arbitrarily close to one of the global optima, that is

mini=1,...,3 d(c(n), c(∗i))→ 0 (Lember, 2003). In particular, the sequence

(c(n))n of empirical centers has three convergent subsequences, each

of which converge to one of the global solutions. One can easily

conclude that if we compare two clusterings on random samples, with

probability 1/3 they belong to “the same subsequence” and thus their

distance will become arbitrarily small. With probability 2/3 they

“belong to different subsequences”, and thus their distance remains

larger than a constant a > 0. From the latter we can conclude that

Instab(K,n) is always larger than 2a/3. ,

The interpretation of this theorem is distressing. The stability or

instability of parameter K does not depend on whether K is “correct”

or “wrong”, but only on whether the K-means objective function for

this particular value K has one or several global minima. However,

the number of global minima is usually not related to the number

of clusters, but rather to the fact that the underlying probability

distribution has symmetries. In particular, if we consider “natural”

data distributions, such distributions are rarely perfectly symmetric.

Consequently, the corresponding functions Q
(∞)
K usually only have

one global minimum, for any value of K. In practice this means
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that for a large sample size n, the idealized K-means algorithm is

stable for any value of K. This seems to suggest that model selection

based on clustering stability does not work. However, we will see later

in Section 3.3 that this result is essentially an artifact of the ide-

alized clustering setting and does not carry over to the realistic setting.

3.1.2 Refined convergence results for the case of a unique
global minimum

Above we have seen that if, for a particular distribution P and a

particular value K, the objective function Q
(∞)
K has a unique global

minimum, then the idealized K-means algorithm is stable in the sense

that limn→∞ Instab(K,n) = 0. At first glance, this seems to suggest

that stability cannot distinguish between different values k1 and k2 (at

least for large n). However, this point of view is too simplistic. It can

happen that even though both Instab(k1, n) and Instab(k2, n) converge

to 0 as n → ∞, this happens “faster” for k1 than for k2. If measured

relative to the absolute values of Instab(k1, n) and Instab(k2, n), the

difference between Instab(k1, n) and Instab(k2, n) can still be large

enough to be “significant”.

The key in verifying this intuition is to study the limit process more

closely. This line of work has been established by Shamir and Tishby in

a series of papers (Shamir and Tishby, 2008a,b, 2009). The main idea

is that instead of studying the convergence of Instab(k, n) one needs to

consider the rescaled instability
√
n · Instab(k, n). One can prove that

the rescaled instability converges in distribution, and the limit distri-

bution depends on k. In particular, the means of the limit distributions

are different for different values of k. This can be formalized as follows.

Lemma 2 (Convergence of rescaled stability). Assume that the

probability distribution P has a density p. Consider a fixed parameter

K, and assume that the corresponding limit objective function Q
(∞)
K

has a unique global minimum c(∗) = (c
(∗)
1 , . . . , c

(∗)
K ). The boundary be-

tween clusters i and j is denoted by Bij . Let m ∈ N, and Sn,1, . . . , Sn,2m
be samples of size n drawn independently from P . Let CK(Sn,i) be the
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result of the idealized K-means clustering on sample Sn,i. Compute

the instability as mean distance between clusterings of disjoint pairs of

samples, that is

Instab(K,n) :=
1

m

m∑
i=1

dMM

(
CK(Sn,2i−1), CK(Sn,2i)

)
. (3.3)

Then, as n→∞ and m→∞, the rescaled instability
√
n ·Instab(K,n)

converges in probability to

RInstab(K) :=
∑

1≤i<j≤K

∫
Bij

Vij

‖c(∗)
i − c

(∗)
j ‖

p(x)dx, (3.4)

where Vij stands for a term describing the asymptotics of the random

fluctuations of the cluster boundary between cluster i and cluster j

(exact formula given in Shamir and Tishby, 2008a, 2009).

Note that even though the definition of instability in Equation (3.3)

differs slightly from the definition in Equation (2.1), intuitively it

measures the same quantity. The definition in Equation (3.3) just has

the technical advantage that all pairs of samples are independent from

one another.

Proof sketch. It is well known that if Q
(∞)
K has a unique global

minimum, then the centers constructed by the idealized K-means

algorithm on a finite sample satisfy a central limit theorem (Pollard,

1982). That is, if we rescale the distances between the sample-based

centers and the true centers with the factor
√
n, these rescaled

distances converges to a normal distribution as n → ∞. When the

cluster centers converge, the same can be said about the cluster

boundaries. In this case, instability essentially counts how many points

change side when the cluster boundaries move by some small amount.

The points that potentially change side are the points close to the

boundary of the true limit clustering. Counting these points is what

the integrals
∫
Bij

...p(x)dx in the definition of RInstab take care of.

The exact characterization of how the cluster boundaries “jitter” can

be derived from the central limit theorem. This leads to the term
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distribution of d(C, C′) distribution of
√
n · d(C, C′)

k fixed
n = 102:

0 1
X

scale with
√
n=10−−−−−−−−−−−→

0
X

n = 104:

0
X

1

scale with
√
n=100−−−−−−−−−−−−→

0
X

↓ ↓ ↓

n =∞:

0 1 0
X

Fig. 3.2 Different convergence processes. The left column shows the convergence studied

in Theorem 1. As the sample size n → ∞, the distribution of distances dMM(C, C′) is
degenerate, all mass is concentrated on 0. The right column shows the convergence studied

in Theorem 2. The rescaled distances converge to a non-trivial distribution, and its mean

(depicted by the cross) is positive. To go from the left to the right side one has to rescale
by
√
n.

Vij/‖c(∗)
i − c

(∗)
j ‖ in the integral. Vij characterizes how the cluster

centers themselves “jitter”. The normalization ‖c(∗)
i −c

(∗)
j ‖ is needed to

transform jittering of cluster centers to jittering of cluster boundaries:

if two cluster centers are very far apart from each other, the cluster

boundary only jitters by a small amount if the centers move by ε,

say. However, if the centers are very close to each other (say, they

have distance 3ε), then moving the centers by ε has a large impact

on the cluster boundary. The details of this proof are very techni-

cal, we refer the interested reader to Shamir and Tishby 2008a, 2009. ,

Let us briefly explain how the result in Theorem 2 is compatible with

the result in Theorem 1. On a high level, the difference between both

results resembles the difference between the law of large numbers

and the central limit theorem in probability theory. The LLN studies
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the convergence of the mean of a sum of random variables to its

expectation (note that Instab has the form of a sum of random vari-

ables). The CLT is concerned with the same expression, but rescaled

with a factor
√
n. For the rescaled sum, the CLT then gives results

on the convergence in distribution. Note that in the particular case

of instability, the distribution of distances lives on the non-negative

numbers only. This is why the rescaled instability in Theorem 2 is

positive and not 0 as in the limit of Instab in Theorem 1. A toy figure

explaining the different convergence processes can be seen in Figure 3.2.

Theorem 2 tells us that different parameters k usually lead to different

rescaled stabilities in the limit for n → ∞. Thus we can hope that if

the sample size n is large enough we can distinguish between different

values of k based on the stability of the corresponding clusterings. An

important question is now which values of k lead to stable and which

ones lead to instable results, for a given distribution P .

3.1.3 Characterizing stable clusterings

It is a straightforward consequence of Theorem 2 that if we consider

different values k1 and k2 and the clustering objective functions Q
(∞)
k1

and Q
(∞)
k2

have unique global minima, then the rescaled stability values

RInstab(k1) and RInstab(k2) can differ from each other. Now we want

to investigate which values of k lead to high stability and which ones

lead to low stability.

Conclusion 3 (Instable clusterings). Assume that Q
(∞)
K has a

unique global optimum. If Instab(K,n) is large, the idealized K-means

clustering tends to have cluster boundaries in high density regions of

the space.

There exist two different derivations of this conclusion, which have

been obtained independently from each other by completely different

methods (Ben-David and von Luxburg, 2008, Shamir and Tishby,
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2008b). On a high level, the reason why the conclusion tends to hold is

that if cluster boundaries jitter in a region of high density, then more

points “change side” than if the boundaries jitter in a region of low

density.

First derivation, informal, based on Shamir and Tishby (2008b, 2009).

Assume that n is large enough such that we are already in the

asymptotic regime (that is, the solution c(n) constructed on the finite

sample is close to the true population solution c(∗)). Then the rescaled

instability computed on the sample is close to the expression given

in Equation (3.4). If the cluster boundaries Bij lie in a high density

region of the space, then the integral in Equation (3.4) is large —

compared to a situation where the cluster boundaries lie in low density

regions of the space. From a high level point of view, this justifies the

conclusion above. However, note that it is difficult to identify how

exactly the quantities p, Bij and Vij influence RInstab, as they are not

independent of each other.

Second derivation, more formal, based on Ben-David and von Luxburg

(2008). A formal way to prove the conclusion is as follows. We introduce

a new distance dboundary between two clusterings. This distance mea-

sures how far the cluster boundaries of two clusterings are apart from

each other. One can prove that the K-means quality function Q
(∞)
K is

continuous with respect to this distance function. This means that if

two clusterings C, C′ are close with respect to dboundary, then they have

similar quality values. Moreover, if Q
(∞)
K has a unique global optimum,

we can invert this argument and show that if a clustering C is close

to the optimal limit clustering C∗, then the distance dboundary(C, C∗) is

small. Now consider the clustering C(n) based on a sample of size n.

One can prove the following key statement. If C(n) converges uniformly

(over the space of all probability distributions) in the sense that with

probability at least 1− δ we have dboundary(Cn, C) ≤ γ, then

Instab(K,n) ≤ 2δ + P (Tγ(B)). (3.5)

Here P (Tγ(B)) denotes the probability mass of a tube of width γ

around the cluster boundaries B of C. Results in Ben-David (2007)
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establish the uniform convergence of the idealized K-means algorithm.

This proves the conjecture: Equation (3.5) shows that if Instab is high,

then there is a lot of mass around the cluster boundaries, namely the

cluster boundaries are in a region of high density.

For stable clusterings, the situation is not as simple. It is tempting to

make the following conjecture.

Conjecture 4 (Stable clusterings). Assume that Q
(∞)
K has a

unique global optimum. If Instab(K,n) is “small”, the idealized

K-means clustering tends to have cluster boundaries in low density

regions of the space.

Argument in favor of the conjecture: As in the first approach above,

considering the limit expression of RInstab reveals that if the cluster

boundary lies in a low density area of the space, then the integral

in RInstab tends to have a low value. In the extreme case where the

cluster boundaries go through a region of zero density, the rescaled

instability is even 0.

Argument against the conjecture: counter-examples! One can construct

artificial examples where clusterings are stable although their decision

boundary lies in a high density region of the space (Ben-David and

von Luxburg, 2008). The way to construct such examples is to ensure

that the variations of the cluster centers happen in parallel to cluster

boundaries and not orthogonal to cluster boundaries. In this case, the

sampling variation does not lead to jittering of the cluster boundary,

hence the result is rather stable.

These counter-examples show that Conjecture 4 cannot be true in

general. However, my personal opinion is that the counter-examples are

rather artificial, and that similar situations will rarely be encountered

in practice. I believe that the conjecture “tends to hold” in practice.

It might be possible to formalize this intuition by proving that the

statement of the conjecture holds on a subset of “nice” and “natural”
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probability distributions.

The important consequence of Conclusion 3 and Conjecture 4 (if true)

is the following.

Conclusion 5. (Stability of idealized K-means detects whether

K is too large) Assume that the underlying distribution P has K well-

separated clusters, and assume that these clusters can be represented

by a center-based clustering model. Then the following statements tend

to hold for the idealized K-means algorithm.

(1) If K is too large, then the clusterings obtained by the ideal-

ized K-means algorithm tend to be instable.

(2) If K is correct or too small, then the clusterings obtained by

the idealized K-means algorithm tend to be stable (unless

the objective function has several global minima, for example

due to symmetries).

Given Conclusion 3 and Conjecture 4 it is easy to see why Conclu-

sion 5 is true. If K is larger than the correct number of clusters, one

necessarily has to split a true cluster into several smaller clusters. The

corresponding boundary goes through a region of high density (the

cluster which is being split). According to Conclusion 3 this leads to

instability. If K is correct, then the idealized (!) K-means algorithm

discovers the correct clustering and thus has decision boundaries

between the true clusters, that is in low density regions of the space.

If K is too small, then the K-means algorithm has to group clusters

together. In this situation, the cluster boundaries are still between

true clusters, hence in a low density region of the space.

3.2 The actual K-means algorithm

In this section we want to study the actual K-means algorithm. In

particular, we want to investigate when and how it gets stuck in

different local optima. The general insight is that even though, from an
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a. b.

Fig. 3.3 Different initial configurations and the corresponding outcomes of the K-means
algorithm. Figure a: the two boxes in the top row depict a data set with three clusters and

four initial centers. Both boxes show different realizations of the same initial configuration.

As can be seen in the bottom, both initializations lead to the same K-means clustering.
Figure b: here the initial configuration is different from the one in Figure a, which leads to

a different K-means clustering.

algorithmic point of view, it is an annoying property of the K-means

algorithm that it can get stuck in different local optima, this property

might actually help us for the purpose of model selection. We now

want to focus on the effect of the random initialization of the K-means

algorithm. For simplicity, we ignore sampling artifacts and assume

that we always work with “infinitely many” data points; that is, we

work on the underlying distribution directly.

The following observation is the key to our analysis. Assume we are

given a data set with Ktrue well-separated clusters, and assume that

we initialize the K-means algorithm with Kinit ≥ Ktrue initial centers.

The key observation is that if there is at least one initial center in each

of the underlying clusters, then the initial centers tend to stay in the

clusters they had been placed in. This means that during the course of

the K-means algorithm, cluster centers are only re-adjusted within the

underlying clusters and do not move between them. If this property is

true, then the final clustering result is essentially determined by the

number of initial centers in each of the true clusters. In particular, if we

call the number of initial centers per cluster the initial configuration,

one can say that each initial configuration leads to a unique clustering,

and different configurations lead to different clusterings; see Figure 3.3
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for an illustration. Thus, if the initialization method used in K-means

regularly leads to different initial configurations, then we observe

instability.

In Bubeck et al. (2009), the first results in this direction were proved.

They are still preliminary in the sense that so far, proofs only exist for

a simple setting. However, we believe that the results also hold in a

more general context.

Lemma 6 (Stability of the actual K-means algorithm).

Assume that the underlying distribution P is a mixture of two

well-separated Gaussians on R. Denote the means of the Gaussians by

µ1 and µ2.

(1) Assume that we run the K-means algorithm with K = 2 and

that we use an initialization scheme that places one initial

center in each of the true clusters (with high probability).

Then the K-means algorithm is stable in the sense that with

high probability, it terminates in a solution with one center

close to µ1 and one center close to µ2.

(2) Assume that we run the K-means algorithm with K = 3 and

that we use an initialization scheme that places at least one

of the initial centers in each of the true clusters (with high

probability). Then the K-means algorithm is instable in the

sense that with probability close to 0.5 it terminates in a

solution that considers the first Gaussian as cluster, but splits

the second Gaussian into two clusters; and with probability

close to 0.5 it does it the other way round.

Proof idea. The idea of this proof is best described with Figure 3.4.

In the case of Kinit = 2 one has to prove that if the one center lies

in a large region around µ1 and the second center in a similar region

around µ2, then the next step of K-means does not move the centers

out of their regions (in Figure 3.4, these regions are indicated by the

black bars). If this is true, and if we know that there is one initial
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center in each of the regions, the same is true when the algorithm

stops. Similarly, in the case of Kinit = 3, one proves that if there are

two initial centers in the first region and one initial center in the

second region, then all centers stay in their regions in one step of

K-means. ,

All that is left to do now is to find an initialization scheme that satisfies

the conditions in Theorem 6. Luckily, we can adapt a scheme that has

already been used in Dasgupta and Schulman (2007). For simplicity,

assume that all clusters have similar weights (for the general case see

Bubeck et al., 2009), and that we want to select K initial centers for

the K-means algorithm. Then the following initialization should be

used:

Initialization (I):

(1) Select L preliminary centers uniformly at random from the

given data set, where L ≈ K log(K).

(2) Run one step of K-means, that is assign the data points to

the preliminary centers and re-adjust the centers once.

(3) Remove all centers for which the mass of the assigned data

points is smaller than p0 ≈ 1/L.

(4) Among the remaining centers, select K centers by the

following procedure:

(a) Choose the first center uniformly at random.

(b) Repeat until K centers are selected: Select the next

center as the one that maximizes the minimum distance

to the centers already selected.

One can prove that this initialization scheme satisfies the conditions

needed in Theorem 6 (for exact details see Bubeck et al., 2009).

Lemma 7 (Initialization). Assume we are given a mixture of Ktrue

well-separated Gaussians in R, and denote the centers of the Gaussians

by µi. If we use the Initialization (I) to select Kinit centers, then there

exist Ktrue disjoint regions Ak with µk ∈ Ak, so that all Kinit centers

are contained in one of the Ak and

• if Kinit = Ktrue, each Ak contains exactly one center,
• if Kinit < Ktrue, each Ak contains at most one center,
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Fig. 3.4 Stable regions used in the proof of Theorem 6. See text for details.

• if Kinit > Ktrue, each Ak contains at least one center.

Proof sketch. The following statements can be proved to hold with

high probability. By selecting Ktrue log(Ktrue) preliminary centers, each

of the Gaussians receives at least one of these centers. By running one

step of K-means and removing the centers with too small mass, one

removes all preliminary centers that sit on outliers. Moreover, one can

prove that “ambiguous centers” (that is, centers that sit between two

clusters) attract only few data points and will be removed as well. Next

one shows that centers that are “unambiguous” are reasonably close to

a true cluster center µk. Consequently, the method for selecting the fi-

nal center from the remaining preliminary ones “cycles though different

Gaussians” before visiting a particular Gaussian for the second time. ,

When combined, the results of Theorems 6 and 7 show that if the

data set contains Ktrue well-separated clusters, then the K-means

algorithm is stable if it is started with the true number of clusters,

and instable if the number of clusters is too large. Unfortunately, in

the case where K is too small one cannot make any useful statement

about stability because the aforementioned configuration argument

does not hold any more. In particular, initial cluster centers do not

stay inside their initial clusters, but move out of the clusters. Often,

the final centers constructed by the K-means algorithm lie in between

several true clusters, and it is very hard to predict the final positions

of the centers from the initial ones. This can be seen with the example

shown in Figure 3.5. We consider two data sets from a mixture of three

Gaussians. The only difference between the two data sets is that in the

left plot all mixture components have the same weight, while in the
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Fig. 3.5 Illustration for the case where K is too small. We consider two data sets that have

been drawn from a mixture of three Gaussians with means µ1 = (−5,−7), µ2 = (−5, 7),
µ3 = (5, 7) and unit variances. In the left figure, all clusters have the same weight 1/3,

whereas in the right figure the top right cluster has larger weight 0.6 than the other two

clusters with weights 0.2 each. If we run K-means with K = 2, we can verify experimentally
that the algorithm is pretty stable if applied to points from the distribution in the left

figure. It nearly always merges the top two clusters. On the distribution shown in the right

figure, however, the algorithm is instable. Sometimes the top two clusters are merged, and
sometimes the left two clusters.

right plot the top right component has a larger weight than the other

two components. One can verify experimentally that if initialized with

Kinit = 2, the K-means algorithm is rather stable in the left figure

(it always merges the top two clusters). But it is instable in the right

figure (sometimes it merges the top clusters, sometimes the left two

clusters). This example illustrates that if the number of clusters is too

small, subtle differences in the distribution can decide on stability or

instability of the actual K-means algorithm.

In general, we expect that the following statements hold (but they

have not yet been proved in a context more general than in Theorems 6

and 7).

Conjecture 8 (Stability of the actual K-means algorithm).

Assume that the underlying distribution has Ktrue well-separated

clusters, and that these clusters can be represented by a center-based

clustering model. Then, if one uses Initialization (I) to construct Kinit

initial centers, the following statements hold:

• If Kinit = Ktrue, we have one center per cluster, with high proba-

bility. The clustering results are stable.
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• If Kinit > Ktrue, different initial configurations occur. By the above

argument, different configurations lead to different clusterings, so we

observe instability.

• If Kinit < Ktrue, then depending on subtle differences in the

underlying distribution we can have either stability or instability.

3.3 Relationships between the results

In this section we discuss conceptual aspects of the results and relate

them to each other.

3.3.1 Jittering versus jumping

There are two main effects that lead to instability of the K-means

algorithm. Both effects are visualized in Figure 3.6.

Jittering of the cluster boundaries. Consider a fixed local (or global)

optimum of Q
(∞)
K and the corresponding clustering on different random

samples. Due to the fact that different samples lead to slightly different

positions of the cluster centers, the cluster boundaries “jitter”. That

is, the cluster boundaries corresponding to different samples are

slightly shifted with respect to one another. We call this behavior the

“jittering” of a particular clustering solution. For the special case of

the global optimum, this jittering has been investigated in Sections

3.1.2 and 3.1.3. It has been established that different parameters K

lead to different amounts of jittering (measured in terms of rescaled

instability). The jittering is larger if the cluster boundaries are in a

high density region and smaller if the cluster boundaries are in low

density regions of the space. The main “source” of jittering is the

sampling variation.

Jumping between different local optima. By “jumping” we refer to the

fact that an algorithm terminates in different local optima. Investigat-

ing jumping has been the major goal in Section 3.2. The main source

of jumping is the random initialization. If we initialize the K-means
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Fig. 3.6 The x-axis depicts the space of all clusterings for a fixed distribution P and for

a fixed parameter K (this is an abstract sketch only). The y-axis shows the value of the
objective function of the different solutions. The solid line corresponds to the true limit

objective function Q
(∞)
K , the dotted lines show the sample-based function Q

(∞)
K on different

samples. The idealized K-means algorithm only studies the jittering of the global optimum,
that is how far the global optimum varies due to the sampling process. The jumping between

different local optima is induced by different random initializations, as investigated for the

actual K-means algorithm.

algorithm in different configurations, we end in different local optima.

The key point in favor of clustering stability is that one can relate the

number of local optima of Q
(∞)
K to whether the number K of clusters

is correct or too large (this has happened implicitly in Section 3.2).

3.3.2 Discussion of the main theorems

Theorem 1 works in the idealized setting. In Part 1 it shows that if

the underlying distribution is not symmetric, the idealized clustering

results are stable in the sense that different samples always lead to

the same clustering. That is, no jumping between different solutions

takes place. In hindsight, this result can be considered as an artifact

of the idealized clustering scenario. The idealized K-means algorithm

artificially excludes the possibility of ending in different local optima.

Unless there exist several global optima, jumping between different

solutions cannot happen. In particular, the conclusion that clustering

results are stable for all values of K does not carry over to the realistic

K-means algorithm (as can be seen from the results in Section 3.2).

Put plainly, even though the idealized K-means algorithm with K = 2

is stable in the example of Figure 3.1a, the actual K-means algorithm
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is instable.

Part 2 of Theorem 1 states that if the objective function has several

global optima, for example due to symmetry, then jumping takes place

even for the idealized K-means algorithm and results in instability. In

the setting of the theorem, the jumping is merely induced by having

different random samples. However, a similar result can be shown to

hold for the actual K-means algorithm, where it is induced due to ran-

dom initialization. Namely, if the underlying distribution is perfectly

symmetric, then “symmetric initializations” lead to the different local

optima corresponding to the different symmetric solutions.

To summarize, Theorem 1 investigates whether jumping between

different solutions takes place due to the random sampling process.

The negative connotation of Part 1 is an artifact of the idealized

setting that does not carry over to the actual K-means algorithm,

whereas the positive connotation of Part 2 does carry over.

Theorem 2 studies how different samples affect the jittering of a

unique solution of the idealized K-means algorithm. In general, one

can expect that similar jittering takes place for the actual K-means

algorithm as well. In this sense, we believe that the results of this

theorem can be carried over to the actual K-means algorithm.

However, if we reconsider the intuition stated in the introduction

and depicted in Figure 1.1, we realize that jittering was not really

what we had been looking for. The main intuition in the beginning

was that the algorithm might jump between different solutions, and

that such jumping shows that the underlying parameter K is wrong.

In practice, stability is usually computed for the actual K-means

algorithm with random initialization and on different samples. Here

both effects (jittering and jumping) and both random processes

(random samples and random initialization) play a role. We suspect

that the effect of jumping to different local optima due to differ-

ent initialization has higher impact on stability than the jittering

of a particular solution due to sampling variation. Our reason to

believe so is that the distance between two clusterings is usually

higher if the two clusterings correspond to different local optima than
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if they correspond to the same solution with a slightly shifted boundary.

To summarize, Theorem 2 describes the jittering behavior of an

individual solution of the idealized K-means algorithm. We believe

that similar effects take place for the actual K-means algorithm.

However, we also believe that the influence of jittering on stability

plays a minor role compared to the one of jumping.

Theorem 6 investigates the jumping behavior of the actual K-means

algorithm. As the source of jumping, it considers the random initial-

ization only. It does not take into account variations due to random

samples (this is hidden in the proof, which works on the underlying

distribution rather than with finitely many sample points). However,

we believe that the results of this theorem also hold for finite samples.

Theorem 6 is not yet as general as we would like it to be. But we

believe that studying the jumping behavior of the actual K-means

algorithm is the key to understanding the stability of the K-means

algorithm used in practice, and Theorem 6 points in the right direction.

Altogether, the results obtained in the idealized and realistic setting

perfectly complement each other and describe two sides of the same

coin. The idealized setting mainly studies what influence the different

samples can have on the stability of one particular solution. The

realistic setting focuses on how the random initialization makes the

algorithm jump between different local optima. In both settings,

stability “pushes” in the same direction: If the number of clusters

is too large, results tend to be instable. If the number of clusters is

correct, results tend to be stable. If the number of clusters is too

small, both stability and instability can occur, depending on subtle

properties of the underlying distribution.
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Beyond K-means

Most of the theoretical results in the literature on clustering stability

have been proved with the K-means algorithm in mind. However,

some of them hold for more general clustering algorithms. This is

mainly the case for the idealized clustering setting.

Assume a general clustering objective function Q and an ideal clus-

tering algorithm that globally minimizes this objective function. If

this clustering algorithm is consistent in the sense that the optimal

clustering on the finite sample converges to the optimal clustering of

the underlying space, then the results of Theorem 1 can be carried over

to this general objective function (Ben-David et al., 2006). Namely,

if the objective function has a unique global optimum, the clustering

algorithm is stable, and it is instable if the algorithm has several

global minima (for example due to symmetry). It is not too surprising

that one can extend the stability results of the K-means algorithm to

more general vector-quantization-type algorithms. However, the setup

of this theorem is so general that it also holds for completely different

algorithms such as spectral clustering. The consistency requirement

sounds like a rather strong assumption. But note that clustering

33
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algorithms that are not consistent are completely unreliable and

should not be used anyway.

Similarly as above, one can also generalize the characterization

of instable clusterings stated in Conclusion 3, cf. Ben-David and

von Luxburg (2008). Again we are dealing with algorithms that mini-

mize an objective function. The consistency requirements are slightly

stronger in that we need uniform consistency over the space (or a

subspace) of probability distributions. Once such uniform consistency

holds, the characterization that instable clusterings tend to have their

boundary in high density regions of the space can be established.

While the two results mentioned above can be carried over to a

huge bulk of clustering algorithms, it is not as simple for the refined

convergence analysis of Theorem 2. Here we need to make one crucial

additional assumption, namely the existence of a central limit type

result. This is a rather strong assumption which is not satisfied for

many clustering objective functions. However, a few results can be

established (Shamir and Tishby, 2009): in addition to the traditional

K-means objective function, a central limit theorem can be proved

for other variants of K-means such as kernel K-means (a kernelized

version of the traditional K-means algorithm) or Bregman divergence

clustering (where one selects a set of centroids such that the average

divergence between points and centroids is minimized). Moreover,

central limit theorems are known for maximum likelihood estimators,

which leads to stability results for certain types of model-based

clusterings using maximum likelihood estimators. Still the results

of Theorem 2 are limited to a small number of clustering objective

functions, and one cannot expect to be able to extend them to a wide

range of clustering algorithms.

Even stronger limitations hold for the results about the actual K-

means algorithm. The methods used in Section 3.2 were particularly

designed for the K-means algorithm. It might be possible to extend

them to more general centroid-based algorithms, but it is not obvious

how to advance further. In spite of this shortcoming, we believe that
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these results hold in a much more general context of randomized

clustering algorithms. From a high level point of view, the actual

K-means algorithm is a randomized algorithm due to its random

initialization. The randomization is used to explore different local

optima of the objective function. There were two key insights in our

stability analysis of the actual K-means algorithm: First, we could

describe the “regions of attraction” of different local minima, that

is we could prove which initial centers lead to which solution in the

end (this was the configurations idea). Second, we could relate the

“size” of the regions of attraction to the number of clusters. Namely,

if the number of clusters is correct, the global minimum will have a

huge region of attraction in the sense that it is very likely that we will

end in the global minimum. If the number of clusters is too large, we

could show that there exist several local optima with large regions of

attraction. This leads to a significant likelihood of ending in different

local optima and observing instability.

We believe that similar arguments can be used to investigate stability

of other kinds of randomized clustering algorithms. However, such an

analysis always has to be adapted to the particular algorithm under

consideration. In particular, it is not obvious whether the number

of clusters can always be related to the number of large regions of

attraction. Hence it is an open question whether results similar to

the ones for the actual K-means algorithm also hold for completely

different randomized clustering algorithms.
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Outlook

Based on the results presented above one can draw a cautiously opti-

mistic picture about model selection based on clustering stability for

the K-means algorithm. Stability can discriminate between different

values of K, and the values of K that lead to stable results have

desirable properties. If the data set contains a few well-separated

clusters that can be represented by a center-based clustering, then

stability has the potential to discover the correct number of clusters.

An important point to stress is that stability-based model selection

for the K-means algorithm can only lead to convincing results if the

underlying distribution can be represented by center-based clusters.

If the clusters are very elongated or have complicated shapes, the

K-means algorithm cannot find a good representation of this data

set, regardless what number K one uses. In this case, stability-based

model selection breaks down, too. It is a legitimate question what

implications this has in practice. We usually do not know whether

a given data set can be represented by center-based clusterings, and

often the K-means algorithm is used anyway. In my opinion, however,

the question of selecting the “correct” number of clusters is not so

36
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important in this case. The only way in which complicated structure

can be represented using K-means is to break each true cluster in

several small, spherical clusters and either live with the fact that the

true clusters are split in pieces, or use some mechanism to join these

pieces afterwards to form a bigger cluster of general shape. In such

a scenario it is not so important what number of clusters we use

in the K-means step: it does not really matter whether we split an

underlying cluster into, say, 5 or 7 pieces.

There are a few technical questions that deserve further consideration.

Obviously, the results in Section 3.2 are still somewhat preliminary

and should be worked out in more generality. The results in Section 3.1

are large sample results. It is not clear what “large sample size” means

in practice, and one can construct examples where the sample size

has to be arbitrarily large to make valid statements (Ben-David and

von Luxburg, 2008). However, such examples can either be countered

by introducing assumptions on the underlying probability distribution,

or one can state that the sample size has to be large enough to ensure

that the cluster structure is well-represented in the data and that we

don’t miss any clusters.

There is yet another limitation that is more severe, namely the number

of clusters to which the results apply. The conclusions in Section 3.1

as well as the results in Section 3.2 only hold if the true number of

clusters is relatively small (say, on the order of 10 rather than on the

order of 100), and if the parameter K used by K-means is in the same

order of magnitude. Let us briefly explain why this is the case. In the

idealized setting, the limit results in Theorems 1 and 2 of course hold

regardless of what the true number of clusters is. But the subsequent

interpretation regarding cluster boundaries in high and low density

areas breaks down if the number of clusters is too large. The reason

is that the influence of one tiny bit of cluster boundary between two

clusters is negligible compared to the rest of the cluster boundary if

there are many clusters, such that other factors might dominate the

behavior of clustering stability. In the realistic setting of Section 3.2,

we use an initialization scheme which, with high probability, places
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centers in different clusters before placing them into the same cluster.

The procedure works well if the number of clusters is small. However,

the larger the number of clusters, the higher the likelihood to fail with

this scheme. Similarly problematic is the situation where the true

number of clusters is small, but the K-means algorithm is run with a

very large K. Finally, note that similar limitations hold for all model

selection criteria. It is simply a very difficult (and pretty useless)

question whether a data set contains 100 or 105 clusters, say.

While stability is relatively well-studied for the K-means algorithm,

there does not exist much work on the stability of completely different

clustering mechanisms. We have seen in Section 4 that some of the

results for the idealized K-means algorithm also hold in a more general

context. However, this is not the case for the results about the actual

K-means algorithm. We consider the results about the actual K-means

algorithm as the strongest evidence in favor of stability-based model

selection for K-means. Whether this principle can be proved to work

well for algorithms very different from K-means is an open question.

An important point we have not discussed in depth is how clustering

stability should be implemented in practice. As we have outlined in

Section 2 there exist many different protocols for computing stability

scores. It would be very important to compare and evaluate all these

approaches in practice, in particular as there are several unresolved

issues (such as the normalization). Unfortunately, a thorough study

that compares all different protocols in practice does not exist.
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