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Deep learning (DL) has proven to be a highly effective approach for developing models in diverse contexts,
including visual perception, speech recognition, and machine translation. However, the end-to-end process
for applying DL is not trivial. It requires grappling with problem formulation and context understanding, data
engineering, model development, deployment, continuous monitoring and maintenance, and so on. Moreover,
each of these steps typically relies heavily on humans, in terms of both knowledge and interactions, which
impedes the further advancement and democratization of DL. Consequently, in response to these issues, a new
field has emerged over the last few years: automated deep learning (AutoDL). This endeavor seeks to minimize
the need for human involvement and is best known for its achievements in neural architecture search (NAS),
a topic that has been the focus of several surveys. That stated, NAS is not the be-all and end-all of AutoDL.
Accordingly, this review adopts an overarching perspective, examining research efforts into automation across
the entirety of an archetypal DL workflow. In so doing, this work also proposes a comprehensive set of ten
criteria by which to assess existing work in both individual publications and broader research areas. These
criteria are: novelty, solution quality, efficiency, stability, interpretability, reproducibility, engineering quality,
scalability, generalizability, and eco-friendliness. Thus, ultimately, this review provides an evaluative overview
of AutoDL in the early 2020s, identifying where future opportunities for progress may exist.

Additional Key Words and Phrases: Automated Deep Learning (AutoDL), Neural Architecture Search (NAS),
Hyperparameter Optimization (HPO), AutomatedData Engineering, Hardware Search, AutomatedDeployment,
Life-long Learning, Persistent Learning, Adaptation, Automated Machine Learning (AutoML), Autonomous
Machine Learning (AutonoML), Deep Neural Networks, Deep Learning

1 INTRODUCTION
In the quest for artificial intelligence (AI), history may judge the early 2010s as a mental reset, stim-
ulating a new era of research and development with unrivaled intensity. Within those reformative
years, the field of machine learning (ML) witnessed a shifting of priorities and approaches. Two
threads of aspiration stand out:

• Deep Learning (DL) – The idea that multi-layered artificial-neuron networks are central to
pushing the capabilities of ML.

• Automated Machine Learning (AutoML) – The idea that no part of an ML workflow should
necessarily depend on human involvement.

It was inevitable that these two ideologies would eventually converge, fusing into the novel subject
of automated deep learning (AutoDL).
Admittedly, while AutoDL is a “hot topic” in 2021, the foundations underlying this surge of

activity stretch back for decades. The notion of ML itself [187] was established in the 1950s, aiming
to tune mathematical models of desirable functions via automated data-driven algorithms. In
time, by the turn of the 21st century, numerous ML models and algorithms would be in practical
use, with support vector machines and other kernel methods proving particularly popular [114].
However, the concept of a neuron, inextricably linked to human intelligence, always seemed an
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Fig. 1. Schematic of an end-to-end DL workflow, i.e., the processes involved in applying DL to a problem.
Traditionally, human decisions are required for every part of this workflow, such as analyzing a problem context,
defining an ML task, designing a model, manually tuning hyperparameters, selecting training strategy, etc.

obvious basis for ML. Depicted computationally as early as in the 1940s [185], their representational
power in multi-layered arrangements was evident by the late 1960s, exemplified by the proto-
DL “group method of data handling” (GMDH) [125]. Since then, with stutters around AI winters,
numerous types of neural layers and architectural variants have been proposed and adopted. These
include recurrent structures [115, 166], convolutional and downsample layers [86], auto-encoder
hierarchies [15], memory mechanisms [208], and gating structures [112]. As a result, the historical
successes of artificial neural networks (ANNs) are undeniably many, encompassing handwriting
recognition [154], time series prediction [277], video retrieval [131, 297], mitosis detection [48],
and so on. Yet the advantages of deep neural networks (DNNs), including their status as universal
approximators [116], are countered by the unwieldy nature of their complexity. For instance, while
backpropagation was established as reverse automatic differentiation in the 1970s [165], this DNN
training technique did not become generally feasible until relatively recently. Thus, the rising
dominance of DL in the 2010s [153, 237] is as much an outcome of big data infrastructure and
hardware acceleration, specifically graphical processing units (GPUs), as it is the result of any one
theoretical advance.
In contrast, the evolution of AutoML is harder to pin down, primarily because the scope of

automating higher-level ML mechanisms can be made extremely broad. The extended history of
this topic is grappled with elsewhere [140]. Nonetheless, the mainstream interpretation of AutoML
– and even the abbreviation itself – has been forged on the back of advances in ML model/algorithm
selection and the optimization of their user-defined hyperparameters. Accordingly, if the success
of a DNN in the 2012 ImageNet competition [148] heralds the modern DL era, then the release of
Auto-WEKA in 2013 [265] marks the start of the modern AutoML era. Within several years, by
late 2016, these threads would start to entwine within the sub-field of neural architecture search
(NAS) [13, 324]. This was not the first time that AutoML techniques had been applied to neural
networks, but it was the moment that the broader data science community took notice. It was also
opportune; the website Papers-With-Code [75] highlights that, while the number of DL publications
has skyrocketed since 2012, year-by-year performance improvements on many benchmark datasets
have diminished, i.e. those related to vision, text, audio, and speech. There is a sense that, as
state-of-the-art (SoTA) DL models have become highly sophisticated, a reliance on human design is
locking out broader engagement behind steep learning curves, while also hindering further metric
progress. Automation through NAS is a vital step in enabling a broader community to push these
technical limits.
Importantly, while NAS launches the modern AutoDL story, it does not encompass it. Model

selection, i.e. the design of a neural network, is but one stage of a DL workflow. As illustrated in
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Figure 1, there are many other subtasks involved in ML/DL, such as defining a problem of interest,
collecting and organizing data, generating features, deploying and adapting trained models, and so
on. This workflowmay often be sequential in research and development, but real-world applications
are much more agile and will typically reiterate through earlier operations and, in the case of
large-scale systems, these processes may even be asynchronous. In effect, AI based on DL cannot
reach its full potential without considering the entire life cycle of a solution, from its design to the
maintenance phase.
We now bring attention to a previous review [140], which surveyed efforts to automate all

aspects of this workflow in the general context of ML, with additional focus on how the resulting
mechanisms may be integrated into a single architecture. The review touched on NAS and other
elements of DL, but it could not cover the full extent of work in the AutoDL sphere. It did not
need to; on a high level, working with DNNs fits smoothly into the conceptual framework of both
AutoML and its extension, autonomous machine learning (AutonoML). However, on a practical
level, the complexity of DNNs throws up many challenges that have arguably constrained the
breadth of developments in AutoDL as compared to standard AutoML. Instead, what is remarkable
is the depth of research in AutoDL, with numerous innovations brought about by attempts to
surmount these obstacles, all with the aim of making the automation of DL feasible. Certainly, it
would be remiss to trivialize AutoDL as just a subset of AutoML. Likewise, critically evaluating the
limitations of present-day AutoDL is just as worthwhile as highlighting its accomplishments. For
instance, the field of DL is sometimes criticized for a tunnel-vision focus on model-performance
metrics within a limited set of benchmarks, an attitude which, while valid, risks missing the broader
perspective on all that AutoDL may become [59, 91]. In essence, there is a need to consider several
questions more thoroughly:

• As we enter the 2020s, what is the current research landscape of DL?
• What makes a “good” DL model?
• How can automated systems best pursue and support this model “goodness”?
• Is the field of AutoDL even advanced enough for such a meta-analysis?

This work is an extension of the broadly scoped AutonoML review [140] with an in-depth focus
on the newly popularized topic of AutoDL. While there are many surveys in this sphere1 [72, 80,
219, 282, 307], most focus on deep analysis within one or two sub-domains of AutoDL. In contrast,
we examine research along the entirety of DL workflow – if it exists – and try to assess, as of
2021, what the present role of AutoDL is and where its evolution is leading. We first provide an
overview of AutoDL in Section 2, introducing several fundamental concepts. Then, partitioning
major AutoDL research into sections inspired by a DL workflow, as per Figure 2, we explore
automation for: task management (Section 3), data preparation (Section 4), neural architecture
design (Section 5), hyperparameter selection (Section 6), model deployment (Section 7), and online
maintenance (Section 8).

Crucially, a major component of this review is a reaction to the sheer quantity of publications in
the space of AutoDL; we aim to provide summary assessments of surveyed AutoDL algorithms/re-
search in terms of ten carefully designed criteria, not just accuracy alone. These are introduced in
Section 2.4 and form an evaluative framework for overviews within every aforementioned section,
as well as, in Section 9, a final critical discussion around the entire field of AutoDL.

1One of the authors maintains a publicly accessible curated list of AutoDL resources at: https://github.com/D-X-Y/Awesome-
AutoDL

https://github.com/D-X-Y/Awesome-AutoDL
https://github.com/D-X-Y/Awesome-AutoDL
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Fig. 2. Breakdown schematic for research activity in AutoDL, with surveyed publications attributed to different
phases of a DL workflow and then further subcategorized. The pie chart denotes the ratio of publications
across all workflow phases, while the white stacked bars denote ratios within each subcategory. All statistics
are derived from the Awesome-AutoDL project, at: https://github.com/D-X-Y/Awesome-AutoDL

2 AUTODL: AN OVERVIEW
The aim of AutoDL is to support, if not outright replace, the manual operations that data scientists
undertake when applying DL to a problem. Section 2.1 elaborates what such a DL workflow may
entail. Of course, with AutoML having faced these same challenges for simpler ML models/algo-
rithms, there is plenty of overlap between AutoDL and its more generic predecessor. Thus, the
basic concepts of AutoML are introduced in Section 2.2, with a particular focus on an “ML pipeline”.
Many of these notions are almost directly transferable. Even so, the complexity of deep neural
structures forces new challenges and different priorities upon AutoDL, which distinguish it as a
research topic of its own. These are summarized in Section 2.3 and motivate the sections beyond.
Finally, Section 2.4 systematizes the ten criteria by which we propose AutoDL research should be
judged; these will underpin brief evaluative overviews presented throughout this monograph.

2.1 The DL Workflow
A DL task typically starts with defining a problem of interest. This primarily involves translating a
desire conceived by humans into a computer-operable representation, e.g., the search for a predictive
function from pixel maps to categorical classes, where sparse labeling may require semi-supervised
learning techniques. Once the problem is defined, the next step is usually to manage the input space
for a prospective DNN model. With a general assumption that input data should be independent
and identically distributed (i.i.d.), strategies for data collection and organization need to be carefully
considered. Neural networks also train better when raw data is intelligently preprocessed, and
there are many ways this can be done. For example, principal component analysis (PCA) can be
used to change the basis of high-dimensional data, i.e. instances with many features, such that data
variances are maximized along a minimal number of dimensions; a subsequent projection eliminates
the axes beyond these so-called principal components, achieving a dimensionality reduction with
minimal information loss [117, 202]. Preprocessing can also include the encoding of categorical
data as integers or one-hot vectors [4], as well as feature scaling via normalization, standardization,
or power transformation [27].

https://github.com/D-X-Y/Awesome-AutoDL
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Eventually, the time comes to construct a DL model. In standard formulation, this model is a DNN
with multiple layers of neurons and various ways of connecting these layers together, e.g., using full
connectivity, local convolutional connectivity, or even the outright layer skips of a residual neural
network (ResNet) [106]. Accordingly, a selection of a neural architecture and training algorithm is
required; these are associated with what are commonly called “model/architecture hyperparameters”
and “algorithm/training hyperparameters”, respectively. The DL model is then trained on input data,
whereby the weights of this DL model are tuned2 to best represent a desirable function. Historically,
there have been many proposals for how to do this, ranging from GMDH [125] to unsupervised
winner-takes-all methods [35, 85, 151]. However, backpropagation3 has been the dominant training
strategy of modern times for fully connected multi-layer neural networks. With initial derivations
and implementations [165] tracing back to the 1960s and 1970s, respectively, it was popularized
in the 1980s [152, 225, 281] and effectively used for training multi-layer perceptrons (MLPs), even
though it would be decades before advances in hardware would enable ubiquitous usage on large-
scale problems. Notably, the vanilla form of gradient descent through backpropagation has some
drawbacks regarding speed, convergence, generalization, and so on. Numerous upgrades have
been proposed over the decades, such as stochastic gradient descent (SGD), momentum SGD [225],
resilient propagation [221], and adaptive estimation [141]. Neural Architecture Search (NAS) has
also become one of the key research topics in DL model construction; see Section 5.

Once the DL model is selected and trained, there is yet more to do within a typical DL workflow.
In practical applications, a DL model needs to be deployed, sometimes on custom devices and
hardware. For example, MobileNet-V2 [232] is deployed on an Edge Tensor Processing Unit (Edge
TPU) [96] to enable a 400 frames-per-second (FPS) inference speed, CycleGAN [318] targets Nvidia
Graphics Processing Units (GPUs) for efficient execution, and face-recognition algorithms based
on DL have been successfully deployed on smartphones [199]. In most cases, the deployed DL
model is identical to the trained one in both structure and network weights. However, in some
resource-constrained scenarios, the models must be compressed via pruning, quantization, or
sparsity regularization [61, 101, 102, 167], before feeding them into real production. Furthermore,
there is a problem of learning from and adapting to changing environments with continuously
streaming, non-stationary data that must be addressed by AutoDL approaches. While this problem
has been researched in the broader field of ML for a number of years [87, 136, 320], even starting to
be considered and addressed in the context of fully automated and autonomous ML systems [140],
it continues to be a major challenge for DL. As the problem arises in many real-world scenarios
such as stock markets [8, 300] and consumer recommendation systems [107, 220], where DNNs are
routinely deployed, robust adaptive capabilities are required to keep these models up-to-date.

Evidently, the success of a DL solution hinges on much more than model selection and the design
of good neural architecture. That stated, many phases of the DL workflow can still be expressed
in similar ways, i.e., they can often be re-framed as an optimization problem. Table 1 dissects
numerous seminal works in AutoDL according to such an interpretation, and these commonalities
will be expanded upon over the course of this review. Certainly, this representation is convenient,
as a unified perspective across the entire DL workflow makes it arguably easier to build prescribed
automated frameworks that manage a DL problem from end to end. Moreover, this means that there
is always a baseline way to assess mechanized approaches at almost any phase of the workflow.
Specifically, one can ask: what is the efficacy/speed of the search process? Does it maximize DL
model performance? Of course, whether this is a sufficient form of evaluation is another matter,
2We avoid using the word “optimize” for network weights in this manuscript, so as to avoid confusion with the optimization
of architectures, hardware, etc.
3Technically, the term ‘backpropagation’ refers to the computation of an error gradient, but it is often used loosely to also
include a gradient-based optimization method that acts on this value.
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Table 1. AutoDL algorithms dissected as optimization strategies.

Algorithm Search Space Search Strategy Boosts for Candidate Evaluation Application

A
ut
o.
D
at
a
En

gi
ne
er
in
g [180] 2015.02 training data Differential optimal storage of discarded entropy CLS: MNIST

[78] 2018.05 training data selection REINFORCE weight sharing; mini-batch sample CLS: MNIST/CIFAR/IMDB
[218] 2018.03 training data re-weight Differential weight sharing; online approximation CLS: MNIST/CIFAR
[50] 2018.05 transformation in PIL [1] PPO smaller model; reduced dataset CLS: five datasets
[163] 2019.05 transformation in PIL BayesOpt weight sharing CLS: four datasets
[323] 2019.06 transformation in PIL PPO reduced dataset Object DET: VOC/COCO
[196] 2019.09 classical NLP augmentations REINFORCE fewer epochs Dialogue tasks
[51] 2019.09 transformation in PIL Random smaller model; reduced dataset CLS + Object DET
[256] 2019.12 training data Differential weight normalization CLS + Game: CartPole
[161] 2020.03 transformation in PIL Differential reduced dataset CLS + Object DET

N
eu
ra
lA

rc
hi
te
ct
ur
e
Se
ar
ch

[17] 2009.09 cell topology in LSTM Evolution N/A Grammar benchmarks
[135] 2015.07 topology and operation in LSTM Evolution easy-to-hard tasks to filter Music + Language
[324] 2016.11 filter size + connectivity PPO fewer epochs CLS + Language tasks
[13] 2016.11 MetaQNN space Q-learning fewer epochs; early stop CLS: four datasets
[217] 2017.03 unrestricted CNN space Evolution weight inheritance CLS: CIFAR-10/100
[325] 2017.07 NASNet space PPO fewer epochs CLS + Object DET
[29] 2017.08 SMASH space Random weight generation via HyperNet [100] CLS: five datasets
[314] 2017.08 BlockQNN space Q-learning early stop CLS: CIFAR/ImageNet
[212] 2017.10 activation functions PPO smaller model CLS + Translation
[215] 2018.02 NASNet space Evolution smaller model; fewer epochs CLS: CIFAR/ImageNet
[206] 2018.02 RNS REINFORCE weight sharing [206] CLS + Language tasks
[171] 2018.06 RNS Differential weight sharing; smaller model; etc CLS + Language tasks
[33] 2018.06 tree-structure REINFORCE Net2Net [41] CLS: CIFAR/ImageNet
[263] 2018.07 MBS PPO fewer epochs CLS + object DET
[19] 2018.07 modified NASNet space Random weight sharing CLS: CIFAR/ImageNet
[177] 2018.08 RNS Differential weight sharing; neural predictor CLS + language
[34] 2018.12 MBConv-based space Differential weight sharing CLS: CIFAR/ImageNet
[168] 2019.01 RNS + connectivity Differential weight sharing; smaller model SEG: three datasets
[45] 2019.03 ShuffleNetv2-based backbone Evolution weight sharing CLS + object DET
[287] 2019.04 architecture generator space manual fewer epochs CLS + object DET
[92] 2019.04 FPN space PPO smaller model; fewer epochs object DET: COCO
[61] 2019.05 depth + width Differential weight sharing CLS: CIFAR/ImageNet
[79] 2019.06 densely connected search space Differential weight sharing CLS + object DET
[224] 2020.04 architecture generator space BayesOpt fewer epochs CLS: six datasets
[170] 2020.04 normalization+activation Evolution smaller dataset; fewer epochs CLS + SEG + GAN
[270] 2020.04 width + resolution Differential weight sharing CLS: ImageNet

H
yp

er
pa
ra
m
et
er

O
pt
.

[21] 1999.09 a few differentiable HPs Differential N/A Synthetic data
[250] 2012.06 a few HPs BayesOpt modeling costs; parallel Diverse tasks
[180] 2015.02 hundreds of differentiable HPs Differential optimal storage of discarded entropy CLS: MNIST + Omniglot
[159] 2016.03 hundreds of HPs Random (Bandit) adaptive resource allocation Diverse tasks
[175] 2016.04 tens of of HPs CMA-ES [104] limited time budget; parallel CLS: MNIST
[77] 2018.07 tens of of HPs BayesOpt adaptive resource control; parallel Diverse tasks
[118] 2018.02 RL loss Evolution truncated trajectory; parallel Physics: MuJoCo
[174] 2019.11 millions of differentiable HPs Differential Neumann series Diverse problems
[60] 2020.06 MBS + tens of HPs REINFORCE weight sharing CLS: six datasets
[12] 2020.10 LR + WD Differential truncated trajectory Few-shot CLS

A
ut
o.
D
ep
lo
ym

en
t [192] 2017.06 device placement REINFORCE distributed training CLS + translation

[214] 2017.07 CMOS-based space + Arch. + HP BayesOpt N/A CLS: MNIST
[194] 2018.10 FPGA space + Arch. + HP BayesOpt N/A N/A
[200] 2019.06 PUMA space [10] + Arch. + HP BayesOpt N/A CLS: Flower17/CIFAR
[132] 2019.07 FPGA space + MBS PPO fewer epochs; multi-level exploration CLS: CIFAR/ImageNet
[47] 2019.06 Eyeriss space [46] + MBS Differential weight sharing CLS: CIFAR/ImageNet
[296] 2020.02 ASIC space + Arch. REINFORCE N/A CLS: three datasets
[316] 2021.02 edge accelerator space + MBS PPO weight sharing; neural predictor CLS: ImageNet + SEG

A
ut
o.
M
ai
nt
en
an
ce

[257] 1992.07 learning rate Differential N/A Synthetic data
[113] 2001.09 learning algorithm Differential N/A Synthetic data
[280] 2016.07 trace hyperparameter Differential greedy strategy; approximation Synthetic: Ringworld
[272] 2016.11 RL algorithm RL limit maximum trials Markov decision tasks
[82] 2017.03 initialization Differential truncated trajectory Few-shot CLS
[127] 2017.11 HPs Evolution parallelization Game: Atari + StarCraft-II
[293] 2018.05 HPs in return function Differential gradient approximation Game: Atari
[268] 2019.09 auxiliary task as questions Differential truncated trajectory Synthetic + Game: Atari
[66] 2019.06 initialization + LR/WD + stop steps REINFORCE limit maximum steps Recommendation
[143] 2019.10 RL loss scalar Differential truncated trajectory; parallelization Game + Physics
[292] 2020.07 RL target scalar Differential truncated trajectory; single agent Game: Atari

Algorithms are sorted chronologically per phase of a DL workflow. Abbreviations are: “Auto.” for “Automated”, “Opt.” for “Optimization”, “RNS”

for “reduced NASNet space”, “MBS” for “MBConv-based space”, “Arch.” for “architectural search space”, “HP” for “hyperparameters”, “WD” for

“weight decay”, “CLS” for “classification”, “DET” for “detection”, and “SEG” for “segmentation”.
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and we begin such discussion in Section 2.4, but the optimization representation nonetheless serves
to contextualize the historical evolution of AutoML/AutoDL.

2.2 Connections to AutoML
The automation of ML aims to minimize the need for human input at all stages of an ML workflow.
There are numerous motivations for this endeavor, both social and technical. On the human
side, expert technicians can turn their attention and energy to other productive areas, while
democratization allows ML techniques to be employed by lay users. However, on the technological
side, automation can also improve the efficiency and speed of finding ML solutions, the quality and
consistency of those ML solutions, the reusability of ML methodologies, and so on. In pragmatic
terms, this involves engineering a high-level AutoML system capable of managing the lower-level
processes within an ML workflow, as schematized within Figure 2 for the DL case.
Now, terminology is key here. We define an ML/DL workflow as the steps that a user must

traditionally be involved in to produce and maintain a performant ML/DL solution; see Section 2.1.
This is distinct from what we introduce as an ML/DL pipeline, which describes the series of
operations that inflow data undergoes in order to be transformed into useful outputs for descriptive,
predictive, and prescriptive analytics. In the ML sphere, such a pipeline can consist of data imputers,
feature engineers, predictors, and ensemblers, among other options [230, 231]. It follows that
the overarching purpose of an ML workflow is to find the best ML pipeline, as judged by some
performance metrics. Consequently, a portion of a modern AutoML system is always dedicated to
what is effectively a direct optimization problem, i.e., selecting and tuning the components of such
a pipeline. However, AutoML can also encompass functionality that supports this goal indirectly,
e.g., a natural-language user interface (UI) or a meta-model designed to analyze dataset similarity.
Thus, it is extremely challenging to distill both AutoML and its dynamical extension, AutonoML,
into a simple engineering principle or a generic ML model development architecture [136, 140].
Here, due to the constrained focus of present-day AutoDL, only the basics of AutoML need

to be introduced. Crucially, the core of every AutoML system is a module for hyperparameter
optimization (HPO). Its job is to explore a search space of configurations that define, for example, a
predictor. Each iteration is usually trained and then evaluated for model quality, e.g. classification
accuracy or detection precision, so as to find an optimal variant of the predictor. If a user wants to
then try other types of predictors and associated training algorithms, this becomes the combined
algorithm selection and hyperparameter optimization (CASH) problem [265]; it is usually handled
by treating the ML model/algorithm as just another high-level hyperparameter in configuration
space. Beyond this, the next level up in model complexity is a full multi-component pipeline search,
which the CASH solvers of many SoTA AutoML packages strive to manage.

Analogizing this search space within AutoDL is not trivial. The early AutoDL community –
prior to the abbreviation being established – have not always been aware of AutoML research.
When the term “NAS” was introduced [13, 324], the focus on neural architecture resembled a multi-
component pipeline search with half the HPO, i.e., an HPO without algorithm hyperparameters.
In fact, inconsistently with AutoML, AutoDL researchers can often refer to HPO as the strict
complement of NAS, i.e., solely an optimization of a training algorithm [60, 80]. We will adopt this
terminology and emphasize these distinctions when needed for clarity. Nonetheless, the analogy
holds. Much like a multi-component CASH-solver, a NAS strategy will often have a pool of possible
components, i.e., layers, to build a DNN from. The final layer of such an architecture is equivalent to
a simple ML predictor, while all other layers can be seen as feature-space transformations. Of course,
that is not to say that DL does all its feature engineeringwithin a DNN; the term “auto-augmentation”
usually refers to optimizing data preprocessors outside of a neural network [50, 51].
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Fig. 3. An illustrative representation of an ML/DL pipeline search space, both concrete and abstract. White
rounded-rectangle nodes denote fixed components within the search space, while blue rectangle nodes denote
optimizable options. After an AutoML/AutoDL search, the resulting pipeline will have three components: a
fixed crop, an optimized rotation, and one of three predictors with optimized hyperparameters.

Given the importance of a search space to ML/DL pipeline optimization, we provide a simple
example of how configurations can be expressed. First, a few diverse examples of hyperparameters
are provided:

• Case1: Learning rate, as sampled from the range of [0.01, 0.1] for each 90-epoch training run
of ResNet.

• Case2: The regularization variable for a Support-Vector Machine (SVM), possibly sampled
from the range of [0.01, 1.0].

• Case3: The penalty for a logistic regression model, selected from {L1, L2}, as considered when
maximizing classification accuracy for the Canadian Institute for Advanced Research (CIFAR)
dataset [147].

• Case4: Maximum rotation degree for a random rotation augmentation policy, as sampled
from [0.01, 0.1] × 360𝑜 for each 90-epoch training run of MobileNet-V2 on CIFAR.

• Case5: Kernel size, selected from {3, 5, 7}, when training MobileNet-V2 variants.

From this, it is clear that hyperparameters can be continuous (Case1, Case2 and Case4), categorical
(Case3), discrete (Case5), and so on. Some will even be conditional, with, for instance, the choice of
a predictor determining which variables are available to optimize. Combining these all together
can thus produce a very complex and high-dimensional configuration space for ML/DL pipelines.
This is exemplified in Figure 3, which depicts the search space covered by four of the above cases in
both explicit and abstract form [204]. Notably, these configurations still only represent a pipeline
of no more than three components, i.e. an image crop, an image rotation, and a monolithic model.

Once a configuration space is defined, there are many ways to search through it. Most solvers of
the HPO/CASH/pipeline problem are black-box optimizers. The simplest ones are based on grid
search or random search, the former being quite standard for manual HPO among ML practitioners.
These strategies make no assumptions about the mapping from configuration space to solution
quality, e.g., its derivatives, and are easy to scale up. However, the evaluation of each candidate
solution can be computationally expensive on its own; traversing a large configuration space can be
extremely costly. Thus, in practice – although random search has proved remarkably efficient [25]
– a principled search strategy is desirable.

Broadly stated there are three types of optimization routines typically employed in AutoML/Au-
toDL:
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• Population-based [93, 175, 217, 229] – These approaches operate on sets of configurations
named populations. Many seek gradual improvements through genetic-based processes
between individuals within the population, e.g. crossover, mutation and selection.

• Bayesian Optimization (BayesOpt) [77, 159, 193] – These approaches use a probabilistic
approximation, also known as a surrogate, for the mapping between configuration space
and ML pipeline quality. They alternate between two steps, the first being the use of an
acquisition function on the surrogate to select the next most promising configuration to
evaluate. The second step is evaluating an ML pipeline with that configuration and then
using the new knowledge to update the fit of the surrogate.

• Distribution-based [171, 174, 180, 239, 258, 281] – These approaches learn a parametric model
of the probability distribution for whether an ML pipeline candidate will have a high metric
score. The parametric models are usually tuned by reinforcement learning (RL) [239, 258, 281]
or gradient methods [171, 174, 180].

These three kinds of approaches can be further mixed into hybrid search strategies. Nonetheless,
even with SoTA optimization routines, the cost of ML/DL pipeline optimization can remain extreme.
There is plenty of ongoing research focused on efficiency gains within both ML and its narrower
DL subset. One way to boost search speed is to rely on low-fidelity approximations for pipeline
evaluations, such as via dataset subsampling for training/testing or early-stopping for training
algorithms. However, there are many other proposed options as well.

Crucially, these are just the basics of AutoML; model selection can be tweaked in various ways.
For instance, there are many investigations into the idea of meta-learning [22, 233, 234, 236], where
the historical application of ML workflows to ML problems may boost the efficiency and quality of
a current solution search. Then there is multi-objective optimization [123, 182], which appreciates
the fact that model validity metrics, e.g., classification accuracy or detection precision, are not
solely responsible for a good model. Some alternative requirements, like short runtimes, can be
aggregated with model accuracy easily [34, 263], but others may be more challenging to evaluate,
let alone Pareto-optimize, such as model interpretability or the convenience of user interactivity.

The field of AutoML has also just started exploring the idea of dynamic environments in earnest,
i.e., inflow data that changes over time to represent different information. Unsurprisingly, the
desire for an AutoML system to respond autonomously has produced developments in managing
multi-pipeline solutions and adapting models. We refer the reader to the AutonoML review for
further information [140]; it is an expansive subject. Here, we will only elaborate topics if existing
AutoDL research warrants it.

2.3 AutoDL Beyond AutoML
As this review will make clear, while boosting search efficiency is important in the field of AutoML,
it is critical to AutoDL. A DL model in the form of a DNN, combined with auto-augmentation, is
far more flexible and complex than a typical ML pipeline. This means that DL pushes the limits of
computational resource usage, hardware provisioning, model search space, and so on.

Given that model construction is so challenging, research in AutoDL has generally focused on a
much narrower scope than AutoML. The bulk of existing surveys assess NAS [72, 219, 282] and
HPO [80, 307]. Similarly, we have examined a spread of AutoDL approaches for model search, as
dissected in Table 1; these will be discussed from various angles in the following sections.

However, AutoDL research has its own notable fringes, occasionally expanding beyond even the
current domain of AutoML. For example, standard AutoML cares moderately about computational
resources, whereas AutoDL needs optimal infrastructures to run SoTA DL models effectively.
Thus, out of necessity, hardware search has become an attractive facet of AutoDL, with certain
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experiments varying these infrastructures [192, 194] while keeping other elements constant, e.g.,
data preparation, the DL model, and the training strategy. Then there is DL pipeline ensembling;
the analog is not unheard of in AutoML/AutonoML [140], but its appeal has arguably driven its
development in AutoDL much more strongly. After all, if a single DL model is so computationally
expensive to construct, would it not be beneficial to keep the completed product around in a pool or
ensemble, so as to leverage whatever lessons it has learned? With benefits in robustness, reusability,
and generalizability, this approach has been adopted several times [32, 36, 210, 287, 308].

The take-away here is that AutoDL is worthy of independent consideration alongside AutoML;
the field has had to embrace various innovations to face the challenges of DL model complexity.

2.4 Assessment Criteria for AutoDL Research
Here lies a central problem: to varying degrees along the workflow, the field of AutoDL has been
flooded with research. It is extremely challenging for a would-be developer of an integrated AutoDL
system to decide which techniques and mechanisms to favor. In fact, we argue that the predominant
focus on end-point accuracy/efficiency is insufficient to assess a piece of AutoDL research, even after
accounting for the shortcomings of current benchmarking practices. Thus, this review uniquely
proposes that AutoDL researchers/developers should pay attention to a more encompassing set of
ten criteria.

Altogether, the ten are listed below.
I. Novelty: How does the AutoDL algorithm distinguish itself from all existing works in AutoDL?
II. Solution Quality: How well does the AutoDL algorithm minimize the error of a target DL
model?
III. Efficiency: Does the AutoDL algorithm achieve its aims with minimal resource expenditure,
especially in terms of time costs? How does it impact the resource costs of a target DL model?
IV. Stability:How consistent is the performance of the AutoDL algorithmwith respect to statistical
variability? How dependent is its performance on the choice of settings?
V. Interpretability: Is the AutoDL algorithm theoretically sound and human-understandable?
How does it impact the explainability of a target DL model?
VI. Reproducibility:Are reported results associatedwith theAutoDL algorithm easily reproduced?
Have they been reproduced?
VII. Engineering Quality: Does the AutoDL algorithm have an implementation? Is this codebase
well managed, documented, accessible, and of a high standard?
VIII. Scalability: Is it feasible for the AutoDL algorithm to scale to a larger model or more data?
IX. Generalizability: Can the AutoDL algorithm be applied to different tasks, datasets, search
spaces, etc.?
X. Eco-friendliness: What is the environmental impact of both the AutoDL algorithm and its
target DL model?
These criteria will form the basis for evaluative assessments in the sections to come. However,

although Section 9.1 discusses relevant questions to ask of individual publications, motivating a
detailed breakdown, most of the overviews in this monograph concern entire threads of AutoDL
research related to individual phases of a DL workflow. Thus, there is more to explain about how
we formulate such assessments, which are necessarily aggregated and mostly qualitative.

First of all, there is an important caveat to acknowledge. An AutoDL algorithm, i.e., a process, is
distinct from an impacted target DL model, i.e., an outcome. Some AutoDL algorithms will directly
construct this model, e.g., NAS mechanisms, and others will simply influence it, e.g., automated
mechanisms for data engineering or maintenance. Now, an issue arises in that, while the notion of
accuracy for an AutoDL algorithm is derived and will always refer to the performance of a target
DL model, both an AutoDL algorithm and a target DL model will have their own distinct qualities



Automated Deep Learning: Neural Architecture Search Is Not the End 11

in terms of efficiency, interpretability, etc. The two need not be aligned either; an efficient NAS
approach may produce an inefficient DNN, and, likewise, an inefficient mechanism can produce an
efficient model. However, in practice, this survey has not found such discrepancies to be particularly
common. If an ethos of efficiency or interpretability drives research in this field, as an example,
then both AutoDL algorithm and target DL model tend to benefit from those improvements. Thus,
from an aggregate perspective, it is safe to make research-trend assessments based on evaluating
the AutoDL process itself.

With that issue addressed, we now elaborate on the upcoming overviews. To begin with, there is
one major divergence for a criterion-based assessment between publications and entire research
trends. Specifically, the novelty (I) of a methodological category is represented by the years in which
seminal works for the approach were published and, accordingly, how long the computer science
community has been aware of its existence. Distinct from novelty for an individual publication,
which should always be significant, novelty for an entire topic is meant to be more informative
than judgemental; older approaches are likely to be more robust and well-explored, while newer
approaches are more likely to leverage SoTA breakthroughs. Also, as a side note, it is very case-
dependent on whether it is more instructional to present these histories in the context of DL or,
more broadly, ML. Associated table captions will clarify which historical context is used.

In all other criteria, assessments for a methodological paradigm are but averages of all surveyed
publications that theoretically/experimentally employ that paradigm. Most (II–V & VIII–X) are
given a rating of low, medium, and high. Designations of mixed and unknown, i.e., “?”, are also
possible.

Solution quality (II) represents the contribution of an AutoDL approach towards the validity of a
resulting DL model, according to self-reported but peer-reviewed claims. For model-development
techniques, this is baseline accuracy (suppose it is a classification task). For maintenance techniques,
this is accuracy integrated over time. For everything else, this is improvement beyond the baseline
accuracy. Next up is efficiency (III), which, with adjustments for memory usage, primarily considers
how quickly an AutoDL algorithm runs, again as self-reported. For model-development techniques,
this includes the training time for the DL model as well. Stability (IV) then follows, acknowledg-
ing how tight self-reported statistical bounds are on the accuracy of an AutoDL approach, as
appropriately defined with respect to a phase of the DL workflow.
Interpretability (V) notes the degree to which either, one, the operation/impact of an AutoDL

algorithm is immediately clear or, two, publications associated with the research trend make the
effort to theoretically elucidate how and why the algorithm works; ablation studies are an example
of a gold standard for this criterion. Scalability (VIII) then assesses how resilient the efficiency of
an AutoDL approach is when handling an increasingly difficult DL problem, as evidenced by self-
reported complexity analyses or similar extrapolations. Naturally, dataset size is a baseline metric
for problem difficulty at all phases of a DL workflow, but model-development and deployment
methodologies are also considered with respect to the size of relevant search spaces, and deployment
and maintenance approaches additionally deal with model size. As for generalizability (IX), this
criterion captures the diversity of DL problems that an AutoDL approach can be applied to as is.
This is often calculated as the inverse of how many context-specific assumptions are present in the
self-reported theoretical foundations of the methodology.
Finally, we turn to the remaining criteria. Notably, the ones already listed can be compiled

directly from researchers reporting their own findings, albeit in an aggregate sense. In contrast,
reproducibility (VI) and engineering quality (VII) rely on secondary benchmarks and implemen-
tations, respectively. It is beyond the scope of this review to grade these with a desirable rigor,
so the associated criteria are simply marked “✓” if there is enough literature to assess relevant
research trends appropriately, and “?” if not. As for eco-friendliness (X), this criterion is stimulated
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by growing environmental concerns and can be graded within the low-to-high scheme but, in
practice, will often be marked as unknown in this review. One can assert that a ranking for an
AutoDL algorithm is likely to correlate with efficiency and scalability, but, except in the most
obvious cases, this review requires a direct analysis of power consumption to support a qualitative
assessment.
With these ten criteria defined and their evaluation explained, we emphasise that such a set

provides a broader assessment framework beyond the useful but limited representation of AutoDL
algorithms in Table 1. Indeed, this kind of consistency and thoroughness is needed to compensate
for the idiosyncrasies at every phase of the DL workflow, and we posit that such an evaluative
framework is a prerequisite to truly identifying promising directions in AutoDL.

3 AUTOMATED PROBLEM FORMULATION
Employing the DL approach for real-world applications spans a wide range of processes, shown in
Figure 1. If an ideal AI system is to one day automate this entire procedure, then, for completeness,
it is worth discussing the formulation of a learning task from a problem context. Put simply, a
problem context conceptualizes broad human-defined goals, such as creating “an undefeatable
computer opponent for the game of Go” or “a car that automatically drives people to their desired
destination”. It also covers the environment in which these goals apply, such as “the rules of Go”
or “the geography and physics of road transportation”. Traditionally, data scientists have had to
manually translate these conceptual contexts into computer-actionable tasks. For instance, one
may decide to frame the design of a Go agent as an RL-based optimization task for a DNN, where
the probability of winning is the objective function and an appropriately constrained input space
represents board positions [245].
This ability to interpret a general problem context and forge a pragmatic pathway to a DL

solution is a challenge; it may ultimately be the final obstacle for pure AutoDL, given how difficult
it is to artificially mimic human creativity. Unsurprisingly, there is no major literature on this
topic currently, with the majority of existing work in both AutoML and AutoDL focusing more on
model-construction aspects. For that same reason, it is difficult to speculate whether AutoDL would
treat task auto-formulation differently from AutoML. Certainly, AutoDL opens up new types of
learning tasks to map problems into, e.g., the development of convolutional long short-termmemory
(LSTM) networks for dynamic image recognition problems, but this is an issue of categorization
rather than a fundamental contrast.
Nonetheless, speculation aside, this space is not untouched. One example is the Libra system4,

which aims to assist – if not automate – the act of declaring ML/DL tasks via natural language
processing (NLP). It enables this by constructing a semantic context around datasets and other
objects, making it possible to interpret requests such as “please model the median number of
households” or “predict the proximity to the ocean”. Likewise, the notion of problem-to-task
translation links closely to scattered but growing research in the area of automated human-AI
interfacing; interested readers are pointed to the section on user interactivity in the AutonoML
review [140]. For now, however, progress in this area remains too sparse to evaluate in terms of the
criteria introduced in Section 2.4.

4 AUTOMATED DATA ENGINEERING
In real-world applications, the path from a raw data source to a model input can be a long one. At
the earliest extreme, raw data can be encoded in numerous ways, e.g., vector versus pixel graphics,
and can possess context-based idiosyncrasies, e.g., asynchronous timestamps for datastreams. Given

4See: https://github.com/Palashio/libra

https://github.com/Palashio/libra
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all the expert knowledge ingrained in these arbitrarily unique formats, data wrangling joins task
formulation as a process that is intensely challenging to automate. Of course, eventually, truly
autonomous learning agents will need to be capable of seeking out problem-relevant data, at least
as well as a human trawling the internet. Perhaps these efforts will be aided by modern innovations
around the “extract, transform, load” (ETL) paradigm, renowned in data engineering. However, to
date, it is rare to find even AutoML-based research/technology that does not assume some level of
convenient formatting for collated data.

Nonetheless, there have been reasonable investigative attempts at automating most other phases
of data engineering. Traditional AutoML often works with relatively simple and quickly trained
ML models, so it is arguably more advanced in this space; see the Automated Feature Engineering
section of the AutonoML review [140]. Even so, AutoDL research has explored data preparation
too, and its focus is driven by the unique demands of DL models. Simply put, a DNN needs a lot
of labeled data5. Its complex nature as a universal approximator affords many representational
benefits, but the numerous (effective) degrees-of-freedom requires a large number of training data
instances to achieve good generalisation and avoid overfitting. This can make it difficult to properly
train, for example, GPT-3 with its 175 billion weights [30]. Thus, most AutoDL research in this
space prioritises one of two approaches: (i) generate more data or (ii) use data in a better way.

4.1 Supplementary Generation
When ground-truth observations are limited, one solution is to artificially generate new instances.
Many sophisticated generators can be employed in this capacity, e.g., deep Generative Adversarial
Networks (GANs) [95], deep Variational Autoencoders (VAEs) [269], or modern physics engines [73].
Abstractly put, the idea is to automatically “paint out” the broader space represented by limited real
data via interpolative or – more riskily – extrapolative procedures. In practice, the assumptions
underlying such estimations can be complex enough to seem arcane, e.g., the function learned
by a GAN discriminator or the chaotic dynamics of complex physical equations. Nonetheless,
the procedure has proven merit, provided that a data generator, e.g., in the form of a neural
network [256], can, via optimization or similar, properly capture the salient characteristics of the
real data.
This is key; automated data generation cannot supply a model with any useful information

beyond its limited observations. It can actually introduce false assumptions that degrades model
performance, made clear once the model is tested on the real data environment. Accordingly,
to pursue a deeper understanding of this issue, several research efforts have examined just how
reductively observed knowledge can be distilled [180, 275]. Indeed, this kind of compression is
the premise behind autoencoding. But it remains an inescapable fact that, if a model requires new
discriminative information, not just data estimates, an AutoDL system will need to seek it out.
For instance, while the system can itself be designed to pick reliable pseudo-labels for unlabeled
data, known as self-training, a common approach is to query an oracle – often a human – for
such annotations. If these instances of data are selected intelligently, this is called active learning,
and even the high-level strategies for active learning have been explored as targets for automated
selection [145].

4.2 Intelligent Exploitation
Even if data is limited, the practicalities of ingesting data and training a DNN can still very much
affect its performance. Batch size is a classic hyperparameter to consider, but even the order of

5Labels encompass manual annotations for supervised learning, pseudo-labels for unsupervised learning, and generated
proxy-task labels for self-supervised learning.
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Table 2. Evaluative assessment for trends in automated data engineering.

Novelty Solution Effic. Stability Interp. Reprod. Engi. Scalability General. Eco.

Supplementary
Generation

data generation ≈ 2 (30) Low Low Low High ? ? ? Low ?

label generation ≈ 2 (40) High Low High Low ? ? High Low ?

Intelligent
Exploitation

data augmentation ≈ 5 (30) High Mixed High Low ? ? High Low ?

data selection ≈ 4 (30) Medium Mixed High High ? ? High High ?

Each row marks an emergent trend in AutoDL, specifically automated data engineering. Each column marks a criterion – see Section 2.4 – by

which the trend is assessed. The evaluations are mostly qualitative, averaged across the most significant works researching the trend. Where a

graded value is not provided, “?” indicates that a rigorous assessment is not achievable without more research works to analyze. Novelty denotes

years since seminal works in DL (ML) were published. Abbreviations are: “Solution” for Solution Quality, “Effic.” for Efficiency, “Interp.” for

Interpretability, “Reprod.” for Reproducibility, “Engi.” for Engineering Quality, “General.” for Generalizability, and “Eco.” for Eco-friendliness.

data ingestion matters [23]. In effect, research here revolves around information content within
data and how to maximally squeeze out its beneficial impact on an ML model. So, as an example
of automating data provision, a neural energy network has been explored as a teacher to select
suitable data for another student network [64]. Elsewhere, a weighting function – represented
later by an MLP [243] – has been used to flexibly control the influence of incoming data on model
training; gradient-based optimization methods have attempted to learn the best values of these
weights, so as to minimize model validation loss [218].

Of course, not all processes of automatically “getting useful data” can be divided so cleanly
between generating new instances and using existing ones better. The complex data types used
by DNNs, such as images and freeform texts, often contain extra information content that can
be pulled out by relatively simple transformations, e.g., image rotations or by replacing text with
synonyms. This concept is known as “augmentation” in the DL community, straddling the line
between generative and transformative, and its use can significantly boost DL performance [50].
Many forms of augmentation have been explored, including normalization, standardization [124],
factor design [300], image augmentation [242], text augmentation [178], etc. However, while most
of these simple transformations are well defined, it can still be difficult to manually choose their
hyperparameters. For trivial instance, without domain knowledge, when do image rotations go
from a better discernment of a handwritten ‘6’ to a misidentification of the digit ‘9’? Thus, a new
thread of research in AutoDL named auto-augmentation aims to take such choices out of human
hands. The original work explores image augmentation policies, seeking to optimize a mix of
transformation types and magnitudes [50]. Subsequent works have tried to improve accuracy,
efficiency, and generalization ability [51, 196].

4.3 Overview
In summary, the current state of automated data engineering in AutoDL – what little of it exists –
is primarily about getting as much data as possible, i.e., data generation and label generation, and
leveraging what exists with maximal efficiency, i.e., data augmentation and data selection. First
to note though, from Table 2, is that many of the related approaches have been developed in the
context of ML over many decades, even if they have only being associated with DL for a handful of
years.

Traditionally, data engineering efforts have been guided with or without model performance in
mind, and these are sometimes called “wrapper” or “filter” methods, respectively; filter methods,
e.g., PCA, often lean on statistical properties of the datasets alone. Although filter methods are
much faster than wrapper methods, especially given that training a DNN for validation is so
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expensive, virtually all AutoDL endeavors in this area have thus far focused on model performance,
i.e., they deal with wrapper methods. Unsurprisingly, this preoccupation challenges the efficiency
of automated data engineering in general, although other factors can of course impact the rating
either way. For instance, data generation often requires the expensive training of generator models,
while, conversely, the computational demands for both data augmentation and data selection can be
ameliorated somewhat by weight sharing – see Section 5.3 – and online approaches, respectively.

Nonetheless, computational cost aside, there is a reason these approaches are employed to begin
with. The information content provided by both label generation and data augmentation has been
showed to markedly improve model accuracy. Data generation and selection both have promise
too, although the latter refines rather than enriches a dataset and thus strains against its own
performance ceiling, i.e., it is limited by what data is available. To be fair, both have also only had
limited exploration in AutoDL thus far, applied only to small datasets, which means there has not
been the same degree of model-improvement claims in the literature.
In fact, data generation in AutoDL can be considered particularly experimental at the current

time, suggesting that approaches do not have the same degree of performance stability as the
other three trends of interest, even if, admittedly, auto-augmentation has only been primarily
tested within the context of vision problems. Additionally, data generation sticks out in terms of
scalability. Specifically, algorithms for the other three AutoDL trends typically scale reasonably
well with respect to the size of a problem dataset, i.e., the yardstick of interest for these approaches,
as they simply involve operations applied to instances of data. In contrast, it is unclear as to how
an interpolating/extrapolating data generation algorithm depends on dataset size, given that some
data instances paint out a far more informative picture of a global features-to-label space than
others. In short, more study is required.

Turning to the remaining criteria in Table 2, the interpretability of data-engineering algorithms
is roughly in opposition to their associated accuracy improvements. It is hard to speculate whether
the anti-correlation is coincidental or not, but it is evident that the practices of data generation
and data selection have been contemplated heavily in the literature, supported by visualization
in the former case, while algorithms for label generation and data augmentation have had very
little theoretical analysis to date. When it comes to whether these approaches generalize though,
data selection is the sole winner, with procedures usually agnostic to data structure and format,
problem formulation, etc. In contrast, the other three AutoDL trends often manifest in algorithmic
implementations that are tied to certain tasks or applications. Finally, it is not possible to comment
on reproducibility or engineering quality, as benchmarks and codebases are in short supply, while
eco-friendliness has not yet been studied. This is to be expected, given that existing research
into automated data engineering within DL still seems mostly proof-of-principle or focused on
theoretical design.
For completeness, it is worth returning to how data engineering differs between ML and DL.

While auto-augmentation in the DL context is often related to generating transformed copies of
existing data, there is a fuzzy overlap with feature engineering, which typically refers to in-place
data transformations. We do not stress the semantics here; auto-augmentation is nascent enough
to be somewhat fluid. Nonetheless, we emphasize that AutoML has often rigidly separated the
task of optimizing preprocessing pipelines, i.e., data engineering, from the CASH problem, i.e.,
model development. In the contrasting case of DL, while augmentation covers network-external
preprocessing, much of the feature engineering is still relegated to the early layers of a DNN as
part of a fuzzy overlap. It is thus understandable why the topic of NAS dominates AutoDL, even if
the field will eventually need to grapple with data preparation more broadly, especially as AutoDL
moves beyond academic research and into real-world application.
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5 NEURAL ARCHITECTURE SEARCH
Flexible neural architecture design is arguably the core advantage/challenge offered up by DNNs.
Thus, unsurprisingly, automating that design has attracted significant attention from the DL
community. Fundamentally, this endeavor revolves around connecting layers of neurons into
an extended architecture, where the full network can be considered as a directed acyclic graph
(DAG). Examples in Figure 4 depict this formulation, with input tensors being transformed into
output tensors via a number of intermediate operations. More precisely, intermediate feature
tensors are produced via the transformation and fusion (with some learnable weights) of existing
feature tensors. The final output, resulting from the last operation and in tensor format, represents
useful information, e.g., classification predictions or discriminative features in supervised and
unsupervised learning, respectively. Given this context, the modern surge in popularity of DL has
been driven by proposals of new and effective forms for such architectures [105, 106, 148, 246, 262],
advances that have significantly boosted the performance of numerous applications. However,
recent years have shown clear diminishing returns; SoTA architectures are just too complex to
invent by hand.

Now, the automation of neural architecture design is not new [17]. However, early works focused
on shallow networks and did not show promising empirical results when compared with manual
designs, especially on large-scale benchmarks. Then, in November of 2016, two concurrent works
[13, 324] were publicly released, showing for the first time that automatically designed DNNs could
be competitive with – if not better than – manually designed SoTA architectures. It was at that time
that the term “Neural Architecture Search” was proposed [324], referring to AutoDL algorithms
specifically engineered to search for neural architectures. Since then, NAS has been cemented as a
core element of AutoDL.

In NAS, researchers mainly focus on three parts: (1) the search space, containing all the possible
candidate neural architectures that can be chosen, (2) the search strategy, defining how to find a good
candidate architecture from the search space, and (3) the evaluation of the candidate architecture,
which generates a performance metric to guide the search strategy. Accordingly, these three aspects
form the basis of comparison for 25+ NAS algorithms in Table 1, and the rest of this section reviews
these concepts in greater depth.

5.1 Search Space
As shown in Figure 4, NAS in the context of DNNs is essentially a search through possible DAG
topologies, with variations in both connectivity and transformative operators. The set of these
possibilities is called a search space, and different NAS algorithms constrain this set in different
ways according to both expert knowledge and domain characteristics.

Size-related Search Spaces: As stressed before, while NAS has been popularized within the
last handful of years, this is not to imply that no previous work has ever tried to optimize the
structure of a neural network [250, 265]. Most attempts, however, have attacked the problem in
a relatively rudimentary manner, focused primarily on network depth and layer width for feed-
forward networks without substantially perturbing their topology. In more recent phases of the DL
era, efforts to automatically control the size of modern architectures were initially associated with
the concept of structured network pruning, complete with learnable pruning ratios and dynamic
networks [58, 81]. These approaches would decide on, for instance, the number of channels to use
per layer, as well as other depth values. Naturally, such work would eventually be recontextualized
as part of NAS [32, 61, 84], yet, despite this unification, the research thread still has its own priorities,
e.g., how to preserve model performance after pruning or how to adjust DNN weights as part of a
dynamic inference procedure [103].



Automated Deep Learning: Neural Architecture Search Is Not the End 17

I

T

Sum

Conv

Identity
T

Sum

Conv

Sum O

DAG Example:
ResNet

I: xt

I: ht−1 O: ht

Linear
Linear

T

Sum

Tanh

Sum

DAG Example:
Elman RNN

I: xt

I: ht−1

O: ct

T

σ(...)

Copy
Copy

Identity

T

σ(...)

Identity

T

tanh(...)

Identity

T

σ(...)

Identity

I: ct−1

T

M
ulti

Identity

Copy

T

M
ulti

Identity

Sum

Sum T

tanh

O: ht

M
ulti

DAG Example:
LSTM

I Input Tensor O Output Tensor T Tensor

Fusion Operation Transform Operation
Lagend

Fig. 4. Illustrative representations of three popular neural architectures in directed acyclic graph (DAG)
format. In each DAG, a node (circle) represents a feature tensor and an edge (arrow) indicates tensor flow.
The blue block ahead of each tensor denotes a fusion operation to combine incoming flows, while the yellow
block behind each tensor denotes a transform operation applied to the outgoing flow.

Convolutional Search Spaces: The eponymous “NAS” work designed a search space for a
convolution neural network (CNN) by allowing the kernel height, the kernel width, the number of
kernels, and the connectivity between different layers to be searchable, while fixing the depth [324].
Concurrently, MetaQNN explored a different convolution search space [13]. The MetaQNN search
space makes the depth searchable, allows the layer type to be selected from a {convolution, pooling,
fully connected} set, and includes the hyperparameters associated with each layer type, such as
the number of kernels for convolution. The automatically discovered architectures within these
two search spaces achieved competitive results on CIFAR compared to the popular ResNet and
DenseNet [120]. In fact the high performance-to-manual-effort ratios of these works can be credited
with the initial pull of researchers to the field of NAS.

However, in the wake of these seminal NAS works [13, 324], which proved more accurate
than several popular deep CNNs on tested benchmarks, it was quickly realized that architectural
search space could rapidly explode beyond feasible use. A pragmatic philosophy arose, founded
in the notion of transferability. In essence, it asked: can good architectures be built by stacking
together reusable cells/blocks, each larger than a single layer? The NASNet algorithm was one
of the first to use this approach, working with a cell-decomposable high-performance network
tuned to CIFAR [325]. Specifically, it hypothesized that stacking more cells on this network would
make it adept at dealing with the larger and higher-resolution ImageNet, while still leveraging
the previously optimized sub-structure of the CIFAR-based architecture. Each type of reusable cell
would be optimized by searching through a set of possible DAG topologies, similar to Figure 4,
with 13 possible options of basic pre-defined transformations for the operators. Subsequent works
have since improved the NASNet search space by removing useless operators [169, 171, 206] or
relaxing topological constraints [65, 303]; we refer to these variants as NASNet-like search spaces.

The concept of reusability forces a dramatic reduction of a search space, although there remains
some debate whether this constraint on DNN solutions is overly limiting [79]. For now, though, the
consensus view is to continue minimizing computational costs. In fact, even NASNet-like search
spaces have been considered too bloated, with resulting networks inducing too many flows from
input to output tensors, negatively impacting inference speed. For instance, when comparing an
architecture from a NASNet-like search space with ResNet, where the two have a similar count of
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floating-point operations (FLOPs) and are trained on ImageNet, ResNet has a far superior GPU-based
inference speed [34]. In an effort to counter this, the MnasNet algorithm has since been proposed
with the aim of discovering DNNs for edge devices [263], such as mobiles, with a search space
inspired by the mobile inverted bottleneck convolution (MBConv) used in MobileNet-V2 [232].
The MnasNet search space still carries over the cell-stacking notion of NASNet, allowing both the
number of cells and convolution kernels to be optimized, while also searching through different
transformation operators. However, the topology of each cell is fixed as an MBConv structure
enhanced by squeeze-and-excitation (SE) principles. Other algorithms like ProxylessNAS [34] and
FBNet [284] have likewise gone down the MBConv route, showing significantly improved inference
latency over models produced via NASNet-like search spaces.
Naturally, not all works in this topic align with NASNet-like and MBConv-based approaches.

Some have experimentedwith representation, e.g., exploring a tree-structured architecture space [33],
while others have designed search spaces with certain outputs in mind, e.g., densely connected
networks [79].

Other Search Spaces: The seminal work that introduced NAS in 2016 simultaneously presented
results for both image-based CNNs and text-based recurrent neural networks (RNNs) [324]. Indeed,
while RNNs have not been as heavily investigated as CNNs in the realm of NAS, possibly because
training topologically complex RNNs to convergence is extremely challenging [63, 171], they do
have a history. Efforts to optimize the topology of a memory cell in an LSTM network [112] have
beenmade as early as in 2009 [17]. Arguably, the 2016work keeps things relatively simple, effectively
fixing cell topology beforehand and only searching through the type of operators involved in this
cell. However, variations in topology would later be included in the search space [206]. Overall,
NAS-discovered RNNs are shown to outperform the vanilla LSTM on some small benchmarks,
but evidence is still lacking to compare against SoTA manual designs at the larger scale [171].
In addition, the complex topological structure of current NAS-generated RNNs makes it difficult
to utilize the parallel-computation advantage of modern accelerators. As a result, the realistic
training/inference speed for these architectures is unexpectedly slow [63, 171]; more research is
required to make NAS a feasible approach for generating high-performance RNNs.

Of course, not all search spaces are designed purely with CNNs or RNNs in mind. For instance,
researchers have developed a normalization-activation search space [170] where basic mathematical
operations are employed in the architectural DAG, such as addition, multiplication, tanh, sigmoid,
sqrt, etc. As another example, attention-based sequence-to-sequence models have recently been
explored [251], drawing inspiration from both a NASNet-like search space and Transformer architec-
tures [267]. In fact, given the popularity of the Transformer, we are currently witnessing a gradual
shift of focus from CNN/RNN-based search spaces to Transformer-based search spaces [40, 252].

Improving Search Space Design: It is becoming apparent that different types of problem/net-
work may benefit from NAS searching on different instances of a search space, at least in terms
of options available for model topology and transformation operators. Accordingly, research at-
tention has recently focused on seeking design principles for compact but encompassing search
spaces, especially for particular classes of network [210], e.g., ResNet-like models. Other attempts
to constrain search spaces continue, e.g., via the use of a network generator [287]. These generators
produce a large but controllable set of DNN candidates to sift through, which is a different approach
from grappling with a complex and expansive multi-dimensional search space. Taking this concept
even further [204, 224, 287], researchers could potentially factorize a huge search space by a small
number of generators, each covering their own subspace. Naturally, whether this is a good idea
in practice remains to be seen; the NAS problem is then effectively elevated to one of “generator
search”. If generators only need to be built once – and once only – to optimally capture the space
for certain classes of problem/network, then this may be an appealing design principle. However,
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if this is not the case, then assessing a subdivision of NAS into two levels depends again on how
compact but encompassing the effective search space becomes.

Ultimately, it is evident that the automation provided by NAS simply shunts manual design into
other processes. For all its benefits, there is still a substantial reliance on human decisions to craft
an effective search space, even if those choices are made at the developer level rather than by the
user. Certainly, several of the works reviewed in this section have worked on automating search
space design [210, 224, 287], but, in practice, hyperparameters need to be selected at whatever
level they are shifted to. The only way to avoid making assumptions is if it is proven that certain
search spaces are ideal for certain classes of network/problem, and this verges on the topic of
meta-knowledge. That stated, one can – with respect to the architectural DAGs exemplified by
Figure 4 – consider a human choice to be (1) a topological constraint [63, 171, 325] or (2) the
inclusion of an advanced operator [171, 263]. Thus, full generalization appears to be a prerequisite
for maximally automating the NAS process, i.e., loosening all constraints and selecting a very basic
set of mathematical operators [170, 216]. However, even with modern computational resources,
NAS without some degree of human search-space design is currently infeasible.

5.2 Search Strategy
Once a set of possible architectures is defined by a searchable and potentially complex space,
it is up to a search strategy to explore this space efficiently and locate an optimal architecture.
Given that each candidate network can be evaluated for performance, typically accuracy, any
black-box optimization method can be used as a search strategy in NAS, such as RL, an evolutionary
algorithm, BayesOpt, etc. Notably, because AutoDL as a field evolved organically to focus on neural
architecture before optimizing hyperparameters more broadly, contrasting the developmental flow
of general AutoML, Section 6 is a more appropriate place to discuss the details of optimization
methods. Here, we mainly focus on how they are tailored for NAS.

RL-based NAS methods typically encode a neural architecture as a series of variables, which
can be interpreted as building instructions for the model. For instance, these variables may index
existing node inputs within a DAG, exemplified in Figure 4, as well as the types/configurations of
operators to attach to the current network. It is then up to a component called a “controller” to
select candidate encodings within this space and have the performance of their represented models
tested, with good outcomes guiding the controller in its continued exploration.
Originally, the eponymous NAS algorithm utilized an LSTM network as this controller [324],

thus ascribing a sequential nature to the encodings; each sequence would represent the way to
progressively grow out a network. More recent efforts have instead simplified the controller to
work with a collection of independent multinomial variables that represent distributions over
the transformative operators available to a candidate DNN [20, 60]. So, whereas an LSTM is one
predictor that progressively predicts an optimal encoding, the simplified controller can be considered
as a set of parallel predictors, each one responsible for one variable in the encoding. Thus, the
upgraded controller can immediately construct an architecture without building in sequence, but
its effectiveness on broader search space still needs investigation.

Importantly, training the controller is orthogonal to both its design and that of the encodings it
searches through. For instance, Proximal Policy Optimization (PPO) [239] is utilized for NASNet [324,
325], REINFORCE [281] is applied by both ENAS [206] and its subsequent works [20, 60], and
Q-learning [276] is employed by MetaQNN [13]. To date, simple RL methods like REINFORCE
appear sufficient for the purposes of NAS [20] in popular NASNet-like and MBConv-based settings,
although the more challenging search spaces discussed in Section 5.1 may eventually require more
advanced RL algorithms.
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Evolutionary NASmethods deal with the same encoding issues – the definition of architectural
genotype – that RL-based strategies do, but they otherwise employ standard procedures for evolving
a population of networks into fit-for-purpose models. Most of the time, researchers only vary two
specific aspects: the mutation strategy for an individual architecture and the evolution process
for the whole population [135, 215, 217, 251, 252]. Given the DAG representation in Figure 4,
mutation typically involves adding/removing edges and nodes, changing transformation operators,
or merging two graphs. Evolution processes can be more varied, although pairwise competition, a
form of tournament selection [93], has currently received a lot of attention [217]. A couple of works
have employed this mechanism, although with an additional age-based mechanism to prioritize
younger individuals, i.e., candidate networks more recently added to a population [215, 251].
A fairly common issue with applying evolution to NAS and other AutoDL sub-areas is the

isomorphism of architectures. Two candidate networks with different DAG representations may be
mathematically identical to each other. For example, the NATS-Bench topology search space [59, 65]
has 15K unique DAG encodings, yet there are only 6.5K unique architectures among them. Unsur-
prisingly, the isomorphism of architectures severely impacts search effectiveness and consequently
causes a significant waste of computational resources. To combat this issue and identify/avoid
isomorphisms, researchers have explored graph hashing [302, 303], customized DAG-to-string algo-
rithms [65], and conjugate matrix ensembles [259]. Among them, hashing seems to be a particularly
promising approach for helping AutoDL algorithms avoid duplicated computation [216].

BayesOpt-based NAS methods are based on, as the name suggests, a Bayesian formalism [138,
250, 279, 315], inheriting the strengths of the strategy applied to HPO in the context of AutoML. In
fact, because BayesOpt was uniquely promoted into the NAS context from a DL-external community,
it is more appropriate to elaborate on the approach when discussing HPO in Section 6.1. However,
with the understanding that BayesOpt relies on an iteratively updated prior probability distribution
to estimate DL model performance, there have been a few adjustments to the approach when
extended from HPO to NAS. These have come in the form of succinctly encoding a candidate
architecture as an input to the prior, as well as occasionally using a high-level neural network
for the prior itself. Additionally, given the cost of evaluating a candidate DNN at each iteration,
custom proxy training recipes are often employed; methods for boosting candidate evaluation are
discussed in Section 5.3.

Differentiable NAS methods distinguish themselves from the aforementioned approaches by
rejecting the limitation of a discrete and non-differentiable search space. The DARTS algorithm is
seminal in this research area [171], seeking a relaxation into a continuous search space, so as to
efficiently search architectures using optimization algorithms based on gradient descent. In a way,
the associated continuous encodings resemble fuzzy sets or quantum superpositions, and they are
eventually defuzzified/collapsed back into a discrete representation.

Notably, while DARTS popularized differentiable optimization in NAS, many issues in the original
work were left unaddressed, such as the accuracy of gradients with respect to architectural encoding,
the inconsistency between continuous and discrete search spaces, the implicit assumption behind
linearly weighted sums for evaluating superposed networks, the bias of operator weights, etc.
These issues have gradually been addressed by subsequent investigations [61, 63, 288, 291, 309]. For
example, sophisticated differentiable HPO methods have been used to more accurately calculate
gradients with respect to architecture [174]. A relationship has also been established between the
performance of a DARTS-produced architecture and the eigenvalues for the Hessian matrix of
validation loss, again calculated with respect to architectural encoding [309]; this was used as a
regularization factor in early-stopping a search. Elsewhere, the Gumbel-softmax distribution [129]
has been applied when discretizing architectural encodings [288], so as to alleviate the inconsistency
between continuous and discrete search space.
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Differentiable NAS remains popular, primarily due to three reasons: (1) it requires significantly
decreased computational resources over alternative approaches; (2) the codebase for DARTS is
open-source and easy to use; (3) DARTS is easily extendable. However, it does have two main
drawbacks. First, the accuracy of architectures discovered by differentiable NAS is worse than
those found via the RL-based procedures and evolutionary methods that currently claim the SoTA
label for NAS [215, 264]. Second, the most appropriate representation/evaluation of superposed
candidate networks in a continuous search space is still an open question.

5.3 Efficient Candidate Evaluation
Regardless of the black-box search strategy employed by a NAS algorithm, evaluating the accuracy
of an architecture requires fully training it from scratch to convergence. This may cost several GPU
days for a modern DNN on a large-scale dataset [106, 215]. Hence, it is computationally expensive
to train/test even a single architecture, let alone the thousands of search-space samplings that may
be needed to find an optimum, local or otherwise.

A straightforward and intuitive way to counter this cost is via a low-fidelity approximation,
which is usually designed heuristically. As shown in Table 1, many works scale down the model [171,
324], sub-sample the dataset [63], reduce the number of training epochs [324, 325], set a constrained
time budget [77, 175], early-stop the training [13], or explore different generalizable metrics [260].
These proxy strategies will decrease model accuracy as compared with a full training. However, by
assuming models maintain proportionality in their relative performance, a comparative ranking of
architectures can be estimated. Of course, the validity of low-fidelity approximations depends on
whether this assumption holds true.

An alternative to low-fidelity approximation is the use of a neural performance predictor [52,
278]. This is a regression model that operates on architectural encodings [52, 278], a learning
curve [39, 56], or both [14], to predict performance, e.g. final validation accuracy or latency [34].
The regression model can be non-DL-based [14], a simple MLP [52], or even something as advanced
as a graph convolutional network [278]. After this predictor is optimized, it can be employed
to boost the evaluation of candidate architectures in many ways, such as by replacing a low-
fidelity approximation strategy [278] or augmenting it via early-stopping [14]. Naturally, training a
regression model can still take numerous network evaluations, which is a nontrivial computational
cost. Thus, these approaches are usually applied for NAS benchmarks [59, 65, 244, 303] and are
still considered expensive for large-scale datasets.

Weight generation andweight inheritance are more efficient solutions for NAS. The SMASH
algorithm [29] exemplifies the former approach by training a hypernetwork [100, 235] simultane-
ously with the search process, with the description of an architecture as input and its tuned weights
as the target. The idea here is that a model generator in a NAS process should eventually, with
support from the hypernetwork, be able to immediately flesh out any candidate architecture with
its “correct” weights, no training required. Its effectiveness is only evaluated on a small-scale search
space. When the search space becomes more complex and larger, training such hypernetwork
would become evidently hard. Weight inheritance provides an alternative shortcut, where, for
NAS procedures that employ mutations, a new candidate network can adopt some of the weights
from a former candidate [33, 217, 299]. This strategy does not do away with retraining entirely,
but there is an obvious speedup due to fewer model parameters that need to be tuned. In fact,
weight inheritance can be taken to a further extreme in the notion of weight sharing [206], where
all assessed candidates are sub-networks of – and thus share their weights with – a single giant
“super-network”. In this way, the cost of training millions of candidate architectures is amortized.
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Weight sharing in particular has attracted much attention due to its simplicity and effi-
ciency [206]. As shown in Table 1, it has become standard for efficient NAS. However, unsur-
prisingly, the efficiency of weight sharing has a drawback: search effectiveness [59, 65, 311]. As
the weights of the super-network are tuned for itself, there is no guarantee that any candidate
model among its immense number of sub-networks shares the same optimality of performance. It
is certainly not clear how consistent/predictable performance degradation from weight sharing
is, which, in turn, decreases the accuracy of relative rankings for all candidates. Of course, many
works have tried to improve upon this technique by, for example, reducing the correlation between
super-network and sub-network via path dropout [19], stabilizing model training via computing
batch statistics on the fly [19], accelerating super-network training in differentiable NAS via the use
of a straight-through Gumbel-softmax estimator [63], alleviating co-adaptation of shared weights
via uniform sampling [62, 99], reducing inconsistent statistics between different candidates via
switchable normalization [305], etc. While these strategies have improved the empirical perfor-
mance of weight sharing, the issues mentioned above are still unsolved and lack theoretical analysis.
Nonetheless, on the balance of efficiency versus effectiveness, weight sharing remains popular.
Indeed, for as long as DL wrestles with a paucity of computational resources, NAS research

into shortcuts for both training and evaluating a candidate is expected to continue, and the most
aggressive forms of evaluation are ones that avoid training entirely. For instance, appearing on
arXiv in June 2020 [186], a publication proposed that, for any architecture, a model quality score
could be computed by analyzing the activation map between different batch samples of data. This
method showed competitive performance on both NAS-Bench-101 [303] and NAS-Bench-201 [65],
but the results on the large-scale dataset are missing. Similarly, five metrics borrowed from the
network pruning community have also been explored as potential performance estimators [2], with
the analysis on more NAS benchmarks. Elsewhere, two metrics, neural tangent kernel [126] and
the number of linear regions for a CNN [289], have both been considered for ranking architectures,
likewise without training [43].
Ultimately, it is currently difficult to assess the right balance between search efficiency and

search effectiveness. Some recent investigations report that applying NAS without wasting time on
training weights has produced comparable – sometimes even better – DL models than previous
SoTA NAS techniques [43]. But a general lack of comprehensive and diverse benchmarking in the
field means that such a contentious debate is unlikely to be settled soon.

5.4 Overview
To assess the state of NAS research at the current time, consider first the search-space approaches
evaluated in Table 3. As is evident, there have been numerous exotic propositions in this area and,
overarchingly, it is hard to conclude anything about them beyond the fact that they rarely generalize
well, often being customized for specific applications and downstream tasks. However, it is a little
more straightforward to evaluate the mainstream approaches. Size-related search spaces make
for a good baseline in this comparison, as they are simple and stably optimized, thus being easily
engineered, reproduced, scaled up, and applied wherever. However, they do not lend themselves to
particularly efficient searches, and their limitations preclude the discovery of high-accuracy neural
networks.

For problems well handled by CNNs, NASNet-like search spaces were the first in the modern era
of AutoDL to be employed. Their main selling point is accuracy, enabling novel SoTA topologies
for DNNs to be found. On the other hand, as is to be expected for new experimental forays, this has
come with a set of trade-offs that have not been entirely managed yet. Traversing these complex
spaces remains relatively slow and inefficient, and the strong coupling between sequential choices
in the search process makes it difficult for the algorithm to stably converge and scale up. There are
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Table 3. Evaluative assessment for trends in NAS.

Novelty Solution Effic. Stability Interp. Reprod. Engi. Scalability General. Eco.

Se
ar
ch

Sp
ac
e

Size-related ≈20 Medium Medium High ? ✓ ✓ High High ?
Conv: NASNet-like ≈4 High Low Medium ? ✓ ? Medium High ?
Conv: MBConv-based ≈3 High Mixed High ? ? ✓ High High ?
Others ≈10 Mixed Mixed Mixed ? ? ? Mixed Low ?

Se
ar
ch

St
ra
te
gy

RL-based ≈5 High Mixed ? Medium ✓ ✓ High High ?
Evolutionary ≈10 High Mixed ? Medium ✓ ✓ High High Mixed
BayesOpt-based ≈9 High Mixed ? Medium ✓ ✓ Medium High ?
Differentiable ≈3 Medium High ? Medium ✓ ? High High ?

Ca
nd

id
at
e

Ev
al
ua
tio

n
Bo

os
ts

Heuristic low-fidelity approx. ≈10 High Low Mixed ? ✓ ? Low High ?
Neural predictor ≈6 Medium Low Mixed ? ✓ ? Low High ?
Weight generation/inheritance ≈6 Medium Medium Medium ? ? ? Medium Medium ?
Weight sharing ≈3 Medium Medium Low ? ? ? High Medium ?
NAS without training ≈1 Low High ? ? ? ? Mixed ? ?

Each row marks an emergent trend in AutoDL, specifically NAS. Each column marks a criterion – see Section 2.4 – by which the trend is

assessed. The evaluations are mostly qualitative, averaged across the most significant works researching the trend. Where a graded value is not

provided, “✓” indicates a rigorous assessment is possible with analysis beyond the scope of this review, while “?” indicates that not even this is

achievable without more research works to analyze. Novelty denotes years since seminal works in DL were published. Abbreviations are:

“Solution” for Solution Quality, “Effic.” for Efficiency, “Interp.” for Interpretability, “Reprod.” for Reproducibility, “Engi.” for Engineering Quality,

“General.” for Generalizability, and “Eco.” for Eco-friendliness.

also no popular libraries available that are suited to handling the graph representation required
by NASNet-like search spaces, making it difficult to comment on engineering quality, although
there has been interest in the trend for sufficiently long enough that research results have been
benchmarked to a degree [65, 244, 294, 303].

Search spaces that are MBConv-based are a slightly more recent proposal, partially reacting to the
inefficiencies present with NASNet-like spaces. Arguably, their effectiveness still relies on secondary
factors, such as whether MBConv-based searches leverage weight-sharing or rely on multiple trials.
Nonetheless, the representation of a candidate architecture in an MBConv-based space is not as
complicated or tightly coupled, meaning that, with configurations expressed in list format, it is
relatively easy to slot in well-engineered NAS/HPO libraries. This ease of network representation
also pays dividends in terms of scalability and the stability of optimization convergence. However,
research incorporating MBConv-based search spaces has still not been benchmarked heavily, and –
this is an issue across the board – there have been no strong theoretical analyses of search spaces,
meaning that it is not perfectly clear why certain arrangements produce better DL models than
others.
The onus of attaining good DL performance ultimately falls on search strategies though, and

all four trends in Table 3 are ranked as strong contributors to model accuracy. Certainly, they
are far more robust than manual searches, although the debate about random search and its own
effectiveness remains [160]. However, reflecting the challenges of training complex DNNs, the
efficiencies of most are rated as mixed, strongly dependent on candidate evaluation boosts. In fact,
applied in standard fashion or even with low-fidelity approximations, these search strategies are
considered slow and resource-intensive in the literature, with only weight-sharing and related
techniques managing to increase the efficiency score. The one relatively speedy exception is
differentiable NAS, which tries to relax search spaces so that gradient descent is a valid procedure;
this experimental technique results in model-accuracy claims that are slightly less impressive,
although these may improve as the youngest trend acquires more research focus.
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Overall, search strategies in NAS are often treated as generalizable black-box optimization
methods, i.e., very high-level, that may as well have coincidentally been employed in the search
for accurate DNNs. They are thus subject to standard limitations that do not depend on the NAS
context, such as BayesOpt struggling to scale well in search spaces with extremely high dimensions.
Moreover, there are also many good software libraries available for the four approaches, with the
possible exception of differentiable NAS. This general applicability also means that the strategies
are regularly benchmarked, opening themselves up to reproducibility assessments, and, likewise, a
moderate level of theoretical analysis exists. The assertions made by these investigations, however,
are limited by a reliance on conditions that may not hold in practice, especially once approximations
and proxies are included in NAS. To date, they also have little to say about the convergence stability
of the studied search methods, at least with respect to NAS.

Moving down to a lower level, much more variation exists when assessing the diversity of options
for boosting efficiencies in candidate evaluation. As Table 3 suggests, the passage of time has
witnessed progressively more dramatic attempts to speed DL up, from low-fidelity approximations
to the recent NAS-without-training proposal. The assumptions underlying each new trend become
seemingly looser and more radical, which lessens accuracy guarantees on the final DNN that NAS
produces. Conversely, as intended, the speed of NAS is substantially accelerated, especially after
the introduction of weight generation, where candidate evaluations are no longer necessitated.
Given the number of years over which low-fidelity approximations and neural-predictor esti-

mations have been researched in the context of DL, there already exists some commentary on
the results and reproducibility of both the former [70] and the latter [294]. The stability of both
methods is very dependent on multiple factors, e.g., the proxy task used, and they scale linearly
with respect to the size of a search space. They are also usually agnostic to architectural design and
are thus very generally applicable. In contrast, weight generation and sharing need customization
for specific architectures and search spaces, with low guarantees on stable convergence. However,
the assumptions involved mean that, while the approaches do still need extra evaluations as a
search space increases to provide optimal benefit, the scaling relation is attractively sublinear.
In terms of eco-friendliness, first impressions suggest that NAS has quite a problem [255], and,

certainly, minimizing power usage remains a significant challenge. However, it remains contentious
within the DL community as to how dire the impact truly is. As expected, intelligent use of efficiency
boosts can substantially reduce carbon emissions when searching through a large space for an
optimal architecture [201]. The debate has been further confounded by an assertion in early research
work [255] that NAS algorithms must be run from scratch every time a model is freshly trained. In
contrast, other publications [156, 201] argue that, in practice, NAS is only ever performed once
per combination of problem domain and architectural search space. They also claim that other
discounts in carbon emissions are often overlooked, especially when considering the billions of
inferences that could have otherwise been made with an inefficient manually constructed DNN. In
truth, this debate is unlikely to be settled without many more extensive investigations.
For now, throughout Table 3, a lot of unknowns remain. The more novel a trend is, the less it

has been rigorously studied. Indeed, it is challenging to comment on reproducibility for weight
generation and sharing due to a dearth of benchmarking. In the case of NAS without training,
which is effectively a brand new proposition, the stability and generalizability of the approach
are entirely uncertain at the current time. Nonetheless, even accounting for the passage of time,
broader gaps in theory and practice remain. For instance, how exactly these techniques relate to
performance is not presently interpretable, beyond the common-sense understanding that making
shortcut assumptions results in increased speed. Likewise, the methods have not been implemented
yet in any notable libraries. So, for all the attention that NAS has received from the DL community,
there is plenty more progress to make, even within this core aspect of AutoDL.
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6 HYPERPARAMETER OPTIMIZATION
The definition of a hyperparameter is blurred in the literature. In the broadest sense, they are
traditionally human-chosen parameters – model-based and algorithm-based – that control a process
of learning; they are not determined by that learning process. However, for various historical reasons,
the full implication of this definition has often gone unrecognized. This is why the decision to
treat ML model type as a hyperparameter was itself considered a surprising innovation of AutoML,
allowing model selection to be repackaged into a broader CASH problem [265].

Now, granted, some DL researchers have considered architectural structure to be a set of hyper-
parameters [55], but early-NAS effectively developed without strong awareness of the AutoML
community. This siloed approach would eventually be rebuked, with a publication stating that,
“while the NAS literature casts the architecture search problem as very different from hyperparame-
ter optimization, ... most NAS search spaces can be written as hyperparameter optimization search
spaces” [310]. The paper would go on to challenge the then-predominant approach of running
NAS first and then optimizing (the remaining) hyperparameters as an independent post-hoc step.
However, this distinction between two processes has stuck, and it is currently a convention in
AutoDL that the word ‘hyperparameter’ often relates solely to the training algorithm [60], e.g.,
representing learning rate, weight decay, dropout rate, etc. We maintain this convention in this
review.
Within such a context, HPO in AutoDL has certain unique differences from HPO in AutoML,

and they are not purely semantic. For one thing, AutoML works with a diversity of model types
and training algorithms that discourages an optimizer from making assumptions ahead of time. In
contrast, because all DNNs are based on the same universal approximator in the form of an artificial
neuron, training algorithms are fewer in number; it is possible to have a favorite choice without
neglecting outright better performers. It follows that, while the type of training algorithm can still
be made searchable [52, 60], a parameter like learning rate may be more efficiently optimized [16] if
the selected training algorithm is known to be SGD [225] or Adam [141]. We thus classify AutoDL
HPO algorithms by how much they need to know about the training algorithm applied to a base
model: black-box, gray-box, and white-box.

6.1 Black-box HPO Approaches
Black-box HPO approaches have a long-standing history [49, 250]. In the context of HPO in AutoDL,
they assume that a training procedure defined by a candidate set of hyperparameters can only
be evaluated by the end result of the process, e.g., the accuracy of a DNN that is trained. Thus,
they are exceedingly general; the underlying search techniques have presence in AutoML, and
they can be directly applied to other optimization problems in AutoDL, including Automated
Data Engineering, NAS, and Automated Deployment. Broadly speaking, there are three popular
categories in AutoDL-based HPO: RL [239], evolutionary approaches [93], and BayesOpt [250].

Reinforcement Learning:As with NAS in Section 5.2, RL-based HPO can be enacted by design-
ing/extending a controller to sample candidate hyperparameters. Every time these hyperparameters
are selected, a corresponding training procedure is instantiated to train a DL model, which may
itself have been selected by a controller. Evaluation metrics, such as accuracy on a validation set, are
used to judge both the candidate DNN and training procedure in tandem. These metrics represent
a reward, and RL algorithms work to maximize this reward [6, 239, 276, 281], thus teaching the
controller to sample better candidates in the future, whether or not architectural choices are rolled
into that search space.
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An open challenge for RL-based HPO is how best to reformulate hyperparameter search into an
RL problem. This optimization has previously been treated as a sequential selection of hyperparam-
eters [134] but, recently, it has also been simplified into a single-step decision-making problem [60].
There are many design choices to be made with RL strategies, and broader discussions can be found
elsewhere [258].

Evolution: To apply evolutionary algorithms [54, 93, 229, 234], a population is created by
randomly sampling candidates from a hyperparameter search space. In this population, each
candidate is represented as an encoding, treated analogously to a string of Deoxyribonucleic Acid
(DNA). Typical evolutionary algorithms will iteratively (1) alter candidate encodings within the
population, (2) train and evaluate a DL model subject to each set of candidate hyperparameters,
obtaining validation accuracy as a fitness metric, and (3) remove low-fitness candidates from
the population, replacing them with higher-fitness encodings [93]. In this way, the population is
progressively improved and, at some stopping point, the highest-fitness candidate is selected as an
optimal set of hyperparameters. Of course, there are many ways to alter/replace encodings, e.g., via
mutation or crossover, so there are many variants of evolutionary algorithms in existence [217].

BayesOpt: Despite the sophistication of RL and evolution-based techniques, random search is
also a common option, and it can be surprisingly effective in practice [25, 160, 306]. In general,
though, it is assumed that principled search methods can navigate to optima more efficiently. With
all the potential “messiness” of hyperparameter space, from discontinuities to conditional variables,
BayesOpt methods have proven particularly popular and effective [24, 130, 250, 310]. These consist
of two components: a Bayesian-based surrogate model for estimating how a candidate set of
hyperparameters maps to a performance metric, based on evaluations already made, as well as an
acquisition function that decides where to sample next, so as to iteratively rein in the performance
estimates of the surrogate.

While RL and evolutionary algorithms have been around for awhile, the development of BayesOpt
is what propelled AutoML into a broader spotlight within the early 2010s [121, 122]. However, all
three types of techniques have representation in AutoDL. For now, it remains an open question as
to whether one approach is better than another, and in which problem settings. Some preliminary
works have benchmarked different HPO algorithms on small datasets and search spaces [69, 144],
but more investigation is required to generalize these conclusions to large-scale scenarios, especially
to bolster confidence in any comparative rankings.

6.2 Gray-box HPO Approaches
Black-box optimization is flexible, but if one can be confident in assumptions/knowledge about what
lies “inside the box”, it is often possible to search through a space of solutions far more efficiently.
This is often unofficially referred to as gray-box optimization. By definition, its applicability is very
dependent on the search problem of interest, and associated methods are often just upgraded forms
of the generic black-box techniques described in Section 6.1.
Within HPO specifically, multi-fidelity optimization is among the most popular gray-box ap-

proaches [77, 83, 128, 137, 139, 159], where variably cheap and accurate proxies/estimates of model
performance are leveraged to aid the search. For instance, if one is able to train models on small
amounts of data, i.e., low-fidelity approximations, it is possible to quickly extrapolate these per-
formances into a full learning curve [39, 56, 261]. This predictive curve can provide advice on
many matters, e.g., whether to continue training, whether to add more computational resources, or
whether to ‘early-stop’ an unpromising set of hyperparameters. The strategy of successive halv-
ing is another technique that similarly starts with low-fidelity approximations [139]. It evaluates
candidates trained on minimal data/time, throws away the worst half, evaluates the remnants on
an increasing amount of data and computational budget, throws away the worst half, and so on;
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eventually one high-fidelity evaluation is left. This process has since been refined into an algorithm
named Hyperband by hedging its aggressiveness [159], and Hyperband has subsequently been
fused with BayesOpt techniques into BOHB [77], which has proven itself a highly efficient and
effective HPO strategy for certain “well-behaved” datasets [65, 144, 295, 311]. Why then are these
approaches considered gray-box? Their performance depends on the extrapolation of low-fidelity
approximations to be predictable and well-behaved, which benefits from some understanding of –
or confidence in – hyperparameter space.
There are other gray-box search approaches that likewise make assumptions on the behavior

of DNN training algorithms when hyperparameters are varied. For instance, certain shortcuts
can be made if a DNN is assumed to be trained via gradient-based means [127]. Elsewhere, there
has been a study of what happens when intelligently decomposing a black-box objective into
composite functions, one of which is cheap to evaluate [11]. Of course, if a hyperparameter space
is reasonably familiar or well-understood, HPO methods can also be warm-started with good
hyperparameter candidates. This has been done for both an RL controller [60] and evolutionary
algorithms [155, 251].

Further works are listed in the HPO row of Table 1, where the column of “Boosts for Candidate
Evaluation” indicates the shortcuts being employed; these imply which inside-the-box assumptions
about search space/strategy are being made. Importantly, while gray-box approaches have been
very successful in trading off generality for efficiency, they still require some level of sampling, i.e.,
fully training/evaluating a candidate model, and this computational expenditure is not negligible.
Thus, in practice, black-box and gray-box methods can both be infeasible for large DL models.

6.3 White-box HPO Approaches
What if we fully open up the black box? Unlike AutoML, which often juggles many disparate ML
models/algorithms, a significant portion of DL involves feed-forward neural networks that all
share the same fundamental principles. Many of these principles relate to the layered nature of a
DNN. Chief among them is that, via the chain rule, one can calculate how a change in any weight
parameter corresponds to a change in network performance, i.e., an error gradient. Indeed, while
this notion of backpropagation has been explored in AutoML [189], with parallels between ML
pipelines and DNNs discussed in Section 2.2, it remains particularly appropriate for DL due to the
mathematics involved.
So then, can error gradients with respect to hyperparameters – hypergradients – also be com-

puted/leveraged? After all, if training a model gradually tunes model parameters, then why not
hyperparameters too? Sure enough, researchers have pursued this thread from before the 2000s. For
instance, the gradient of cross-validation error with respect to weight decay has previously been
calculated within a simple single-layer network, and this hypergradient was used to adjust weight
decay during network training [150]. Other contemporary work made computing hypergradients
somewhat simpler by developing a relation between hyperparameters and network weights, then
leveraging this via the implicit function theorem [21]. Since then, hypergradient descent methods
have continued to see strong attention, with, for instance, an algorithm being proposed to update hy-
perparameters by computing reverse-mode derivatives across truncated gradient descent steps [57].
A subsequent effort would upgrade this approach via the computation of exact hypergradients,
additionally wrestling with the substantial memory-based storage costs of the procedure [180].
Notably, many early attempts focus on calculating “exact” hypergradients, which is computa-

tionally expensive for a DL model. Thus, to improve scalability and generalizability, researchers
have recently developed different approaches involving approximate hypergradients. Some have
considered gradually tightening the accuracy of such an approximation during the course of train-
ing, i.e., via an exponentially decreasing tolerance sequence [203]. Others have analyzed truncated
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Table 4. Evaluative assessment for trends in HPO.

Novelty Solution Effic. Stability Interp. Reprod. Engi. Scalability General. Eco.

Black-box HPO ≈ 30 High Low High High ✓ ✓ Low High Low
Gray-box HPO ≈ 30 Medium Medium Medium Medium ✓ ✓ Low High Medium
White-box HPO ≈ 21 Medium High Low Medium ? ? High Low High

Each row marks an emergent trend in AutoDL, specifically HPO. Each column marks a criterion – see Section 2.4 – by which the trend is

assessed. The evaluations are mostly qualitative, averaged across the most significant works researching the trend. Where a graded value is not

provided, “✓” indicates a rigorous assessment is possible with analysis beyond the scope of this review, while “?” indicates that not even this is

achievable without more research works to analyze. Novelty denotes years since seminal works in ML were published. Abbreviations are:

“Solution” for Solution Quality, “Effic.” for Efficiency, “Interp.” for Interpretability, “Reprod.” for Reproducibility, “Engi.” for Engineering Quality,

“General.” for Generalizability, and “Eco.” for Eco-friendliness.

backpropagation for use in approximating the gradients of weight parameters with respect to
hyperparameters [241]. Another lingering issue is that hypergradient calculations often rely on
the expensive computation of an (inverse) Hessian, i.e., the second-derivatives of model error,
which is infeasible for large-scale networks and/or a large number of hyperparameters. Efforts to
surmount this challenge include approximating the Hessian matrix by an identity matrix [176] and
approximating the inverse Hessian matrix by a Neumann series [174].

In summary, it is clear that white-boxHPO can be far more efficient than black-box/gray-boxHPO;
hyperparameter updates can be applied per forward/backward pass during model training rather
than after the model is evaluated. In effect, white-box approaches roll HPO into the process of model
training. However, hypergradient methods rely on mathematical equations that embody several
assumptions, e.g., the continuity and differentiability of model loss with respect to hyperparameters,
and, based on HPO setup, these do not always hold true.

6.4 Limitations in Applicability
Many aforementioned HPO methods and upgrades are grounded in strong theoretical bases. None,
to date, stand out exclusively among the rest. This is no surprise, as the no-free-lunch theorems
apply to optimizers at any level [283]. That does not mean that certain sets of hyperparameter
spaces do not have an optimal HPO strategy; this has been explored by optimizing a hyperparameter
optimizer in the form of an RNN [9, 44, 158]6. But the point stands: the applicability of AutoDL-based
HPO mechanisms must be carefully considered when choosing one for a real-world problem.

Crucially, this section has shown that HPO methods contend with a trade-off between generality
and efficiency. Any principled strategies beyond purely random search need to leverage some degree
of knowledge/assumptions about a search space, and, in return for quicker/better searches, these
requirements become more restrictive along the spectrum from black-box to white-box. Granted,
hyperparameter space can already be significantly complex and messy, even with the AutoDL
limitation to model training procedures. For instance, black-box BayesOpt has long grappled with
surrogates for dimensions that can be continuous, categorical, or conditional [121, 122]; research
continues in this area almost a decade later [53, 223]. However, white-box hypergradient-based
HPO methods rely on differentiability, and this efficiency extreme can thus only be applied to
certain selections of continuous hyperparameters [174, 176, 203], such as learning rate [16] or
continuous regularization [176].
Nonetheless, while the generality-efficiency trade-off will likely always remain, HPO research

continues to push the boundary. For example, population-based training (PBT) proposes to train

6We have no official stance on whether “hyperhyperparameter” should be introduced into the AutoDL lexicon.
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a group of models together under different sets of hyperparameters, where those individual sets
are tuned depending on how the rest of the population is faring [127]. This is a joint optimiza-
tion of parameters and hyperparameters that does not involve hypergradients, discarding their
differentiability restrictions. It is thus fast, but the computational cost now depends on the scale of
parallel training involved. Elsewhere, a bilevel optimization procedure has introduced so-called
“best-response functions” as trainable mappings between the values of hyperparameters and cor-
responding optimal network parameters [179]. This work likewise avoids hypergradients and
their limitations, allowing the training-simultaneous tuning of discrete hyperparameters, data
augmentation hyperparameters, and dropout probabilities. Also of note is another recent effort
that aims to maintain general applicability to hyperparameters, encapsulating the procedure of
applying hyperparameters to model weights as a black box [60].
The take-away from this discussion is that, as with NAS, HPO in AutoDL continues to see a

flurry of research, with numerous novel techniques being frequently proposed. However, also as
with NAS, HPO in AutoDL is still arguably in a nascent stage. Systematic benchmarking is limited,
making consensus comparisons difficult. The technical reason behind this is clear, namely the
computational expense of running NAS and HPO. This is why, as summarized in Table 1, existing
HPO methods have mainly experimented on small-scale models, e.g., linear models or shallow
networks, as well as datasets that are either small or synthetic. Nonetheless, there have been recent
HPO investigations on larger-scale datasets, such as the CIFAR-style AlexNet [174] and the vision
dataset ImageNet [52, 60]. It is simply a matter of time. As computational resources increase and
the demand for NAS/HPO in real-world applications grows, circumstances will eventually drive
more rigorous assessments of applicability.

6.5 Overview
Black-box optimization methods, gray-box shortcuts and even the fundamentals behind white-box
approaches [21] were all introduced to the ML community several decades ago, as noted within
Table 4. In general, black-box methods rely on thorough optimizations with complete evaluations
of candidate networks and are thus most accurate and stable. They are slow, however, and the
assumptions underlying gray-box and white-box approaches – every shortcut used arguably
weakens the interpretability of the method – sacrifice accuracy for progressive improvements
in search efficiency. In this case, it is also reasonable to associate the efficiencies with a reduced
reliance on computational resources and, accordingly, a better ranking for eco-friendliness.

Crucially, gray-box HPO can be considered as black-box HPO with efficiency boosts, while white-
box HPO relies on intrinsically different optimization methodologies, leveraging implicit/explicit
assumptions that are particular to neural networks. This means that the accuracy trade-off for
white-box HPO, fine-tuned for DNNs, is not as severe as might be expected. The efficiencies of
white-box HPO, a result of dodging multiple candidate evaluations, also makes related approaches
highly scalable. However, this close tie-in to DNN formalism does mean that white-box HPO is
heavily dependent on problem context and search space, while black-box and gray-box HPO are
relatively generalizable. Accordingly, black-box HPO, whether modified to be gray or not, has
been benchmarked heavily and implemented within many software packages; future in-depth
surveys may comment further on reproducibility or engineering quality. White-box HPO needs
more experimentation and analysis.

7 AUTOMATED DEPLOYMENT
The topic of deploying an ML model into a production environment is an immense one, straddling
theoretical principles and real-world practicalities. Generalized commentary is further complicated
by just how many ways an ML model may be used. Will it serve as the predictive back-end of a
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queriable web app? Will it be hooked into a robotic framework as a prescriptive system? Will it
interface with a high-fidelity “digital twin” of physical reality [89]? The field of AutoML has barely
begun grappling with the notion of automated deployment, and much of this discussion occurs
beyond academia, with best practices for machine learning operations (MLOps) being hashed out
by commercial entities [183].
Nonetheless, when it comes to DL specifically, particular trends of research stand out, driven

primarily by resource concerns; DNNs are heavyweight models in terms of both storage and
inference. Given that deployment settings can range from edge devices to the cloud, AutoDL strives
to answer two mirrored questions:

(1) Can a DL model be optimized for a specific production environment?
(2) Can a production environment be optimized for a specific DL model?

7.1 Deployment-aware AutoDL
Many DL projects have rigid deployment constraints; the onus is on the model to accommodate
these requirements. Thus, while maximal predictive accuracy is still a primary objective, secondary
objectives may involve inference latency, memory footprint, and energy cost. In AutoDL-related
literature, model-construction efforts that focus on these considerations are given differing names.
For example, there is “platform-aware NAS” for accommodating mobile devices [263, 299], “energy-
aware pruning” for constraining network connectivity [298], and other research published as
latency-aware [34] or resource-aware [290]. Accordingly, we generalize such approaches under the
banner of deployment-aware AutoDL.

There are several common approaches to dealing with multiple objectives [123, 182]. One of the
simplest is constrained optimization, where a target metric such as inference latency is given an
upper bound, and any architectures that do not operate within the tolerable range are discarded or,
if possible, adjusted back into that range [298, 299]. However, if the constraints are poorly behaved,
i.e., highly nonlinear, too many unsatisfactory candidates may be constructed during exploration,
which is inefficient. In addition, sampling fully constructed models to evaluate other objective
functions negates the innovative shortcuts behind white-box HPO.

Other options for multi-objective optimization via NAS and HPO are also available. A common
alternative is to bundle all target metrics into a single one, using this combined objective function
to guide AutoDL search algorithms. Such efforts often focus on network latency, although these
values must usually be estimated; efficient AutoDL algorithms cannot spend time evaluating every
candidate architecture within an actual production environment. A typical estimation process then
is to (1) pre-compute the latency for hundreds of candidates, (2) train a small DNN on these values
to predict latency in general, and (3) use this predictor to approximate the latency of candidate
architectures during the AutoDL process [20, 34, 316]. Consequently, previous investigations have
explored algebraic combinations of model accuracy and latency, including a re-scaled multiplica-
tion [263] and an addition [34]. The latter of these used the metric for differentiable NAS [34], but
latency has also been factored into a reward function for RL-based NAS [20]. Other examples of
combined metrics also exist, e.g., applying a piece-wise function for the secondary objective [61] or
an absolute function for the re-scaled secondary objective [20].

Sometimes the demands of a production environment can be a little more niche, such as when a
device does not support full-precision computing; this can be desirable when aiming for cheap and
fast DL applications. The Infineon XC800 family of microcontrollers exemplifies this, operating in
8-bit. So, to convert a model trained on a higher-precision processor, the typical solution is to use
the so-called quantization technique [102], which approximates the original network by another
one with low-bit weights. However, it is highly possible that, even for the same DL task, the optimal
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architectures on two platforms with different computing precision may be structured/connected
completely differently [274, 301]. Ideally, NAS should be undertaken with quantization already in
mind, and several works have explored this angle [31, 273, 274, 285].
Ultimately, it is an inescapable fact that numerous different deployment environments exist

in the real world, each possibly having its own requirements in terms of latency, energy, etc.
Thus, while there are many approaches for building bespoke DL models, it becomes infeasible
to constantly reconstruct models for any applications that are designed with broad release in
mind. Unsurprisingly, a cross-platform ethos has been embraced by certain investigative works.
For instance, one attempt proposes designing a once-for-all (OFA) network that supports diverse
architectural settings, such that any supported environment works well with a unique sub-network
of the OFA model, no further training required [32]. There are other efforts that likewise seek
to obtain multiple models for target environments with but one search [304]. Naturally, while
these shortcuts boost search efficiency, the accuracy of each sub-network cannot be guaranteed.
Thus, these methods often utilize techniques of knowledge distillation [110] to transfer knowledge
between super-networks and sub-networks. Nonetheless, further research is required to compensate
for the accuracy drawbacks of OFA approaches. For now, it appears that planning a DL project
cannot remain agnostic with respect to its eventual deployment environment.

7.2 Hardware Search
What if the opportunity arose to mold a deployment environment around a DL model? Such a
circumstance would seem relatively rare at the current time, due to the typical rigidity of hardware
constraints, but some commercial/industrial entities have both the capacity and will to be flexible
in how they provision resources.

This becomes, as with the majority of research into automation along the DL workflow, an opti-
mization problem. Indeed, all discussions about black-box/gray-box optimizers in Section 6 remain
relevant here, but the search space now includes hardware. For instance, multi-objective BayesOpt
has been used to co-design both a neural network and an associated energy-efficient AI accelerator,
with the latter using Complementary Metal–Oxide–Semiconductor (CMOS) technology [214]. This
effort explored a 14-dimensional search space with one NAS variable, eight (training-based) HPO
variables, and five hardware variables, e.g., bit-length and memory bandwidth.

In fact, this co-design approach is fairly typical in the field, and it is not the only investigation
that has leveraged multi-objective BayesOpt. The search technique has been applied to accelerators
built from a Field-Programmable Gate Array (FPGA) [194], while a variant of BayesOpt has also
optimized Programmable Ultra-efficient Memristor-based Accelerators (PUMAs) alongside DNNs
trained on AlexNet/VGG [200]; the architecture configurations here were relatively simple, covering
kernel size, width, and depth. Of course, other search techniques have been applied too, with RL
being used to co-optimize an FPGA-based accelerator and an MBConv-based architecture [132].
Likewise, RL has been employed in producing chip floorplans for the next generation of Google-
designed AI accelerators [191]. Additionally, given that black-box methods can be computationally
expensive, white-box methods have also seen their share of usage [47, 316], e.g., one effort [47]
applies differentiable NAS/HPO to optimize accelerators based on Eyeriss [46] while searching for
MBConv-based architectures [263].
Importantly, while hardware search presently appears to be a promising research direction

for AutoDL, especially with its comparative novelty versus NAS, long-term impact is arguably
weakened by the current lack of consensus about AI accelerators. Basically, AI acceleration is an
emerging technology with no dominant design, and research associated with a particular format
relies heavily on the success and uptake of that format. Hence, there is ongoing debate around
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Table 5. Evaluative assessment for trends in automated deployment.

Novelty Solution Effic. Stability Interp. Reprod. Engi. Scalability General. Eco.

Deployment-aware AutoDL ≈ 4 High Mixed Medium High ✓ ? Mixed Mixed Mixed
Hardware Search ≈ 5 High Low ? Low ? ? Low Low ?

Each row marks an emergent trend in AutoDL, specifically automated deployment. Each column marks a criterion – see Section 2.4 – by which

the trend is assessed. The evaluations are mostly qualitative, averaged across the most significant works researching the trend. Where a graded

value is not provided, “✓” indicates a rigorous assessment is possible with analysis beyond the scope of this review, while “?” indicates that not

even this is achievable without more research works to analyze. Novelty denotes years since seminal works in DL were published. Abbreviations

are: “Solution” for Solution Quality, “Effic.” for Efficiency, “Interp.” for Interpretability, “Reprod.” for Reproducibility, “Engi.” for Engineering

Quality, “General.” for Generalizability, and “Eco.” for Eco-friendliness.

what type of systems to focus on. For instance, one work disregards FPGAs in favor of an “industry-
standard” edge accelerator [316], while another explores co-optimization for Application-Specific
Integrated Circuits (ASICs) [296], which are flexibly designed and thus powerful but often tricky to
standardize. Simply put, the evolution of this research sub-field will depend on how the standards
of computational hardware themselves evolve.

Beyond training/inference acceleration, the management of hardware resources is also a potential
target of automation, explored as early as in the 1990s [313]. This broad topic has many particular
incarnations in AutoDL, e.g., how to delegate pipelined DL operations among various devices [3,
190, 192], how to effectively administer different DL jobs within a computing cluster [205], how
to schedule execution for a DL compiler [42], etc. In essence, optimization algorithms here are
challenged by the extremely distributed nature of a production environment, potentially managed
at different levels and operating in distinct ways, e.g., online versus offline. These sorts of issues
may become more and more important as time goes on and new principles of computing become
mainstream.

As a final assessment, the endeavor of automating hardware search is a promising extension of
AutoDL beyond the theoretical focus of NAS to the practicalities of production environments. It is
not a dramatic change in perspective, with many of the works discussed above and summarized in
Table 1 reusing existing NAS/HPO algorithms; this bodes well for the future design of autonomous
AutoDL systems that aim to integrate all DL workflow processes under one umbrella. However, the
real world is messy and definitely not standardized. While it is reasonable to expect a data scientist
to have familiarity with the fundamentals of DL, many of the reviewed works require specialized
expert knowledge of hardware accelerators, distribution systems, and so on [190–192, 214, 316]. For
instance, domain knowledge is required when deciding how to avert any undue impact on search
efficiency caused by the simulation cost of a hardware accelerator [191, 316]. In effect, this means
that there is a high barrier to entry for research and development around this form of automated
deployment, simply in terms of hardware-related expert knowledge, computational resources, and
software infrastructure. Hopefully, this will be ameliorated in time, as existing automation work
has already proved itself very valuable to ML-focused engineering and the next generation of AI
accelerators [191].

7.3 Overview
The two trends in automated deployment focus on optimizations in opposing directions. Put
simplistically, one adjusts software for the sake of hardware and one adjusts hardware for the sake
of software. Thus, despite these endeavors entering the domain of DL at roughly the same time,
it is not surprising that hardware manipulation currently scores much worse over a broad range
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of assessment criteria, as listed in Table 5. Research in both trends is of course equally valuable,
each demonstrating that model performance and thus accuracy is maximized when production
and deployment environments are considered together. Nonetheless, progress in hardware search
is stymied by the great variety of physical architectures that exist; the proponents of any novel
procedure will also need to promote a particular system to the rest of the DL community.

Accordingly, research in the sub-field of hardware search remains more scattered and exploratory.
A lack of benchmarking and standardized implementation makes it difficult to comment about
the reproducibility of results and their stability, let alone how complicated proposed techniques
are to engineer. The presence of multiple layers between physical systems and abstracted DL
algorithms also affects interpretability, obscuring how exactly hardware manipulations contribute
to positive DL outcomes. Moreover, because physical environments can typically only be optimized
via gray-box procedures at best, efficiency boosts are limited and associated search procedures do
not scale well with the complexity of hardware systems.
In contrast, research in deployment-aware AutoDL is a little more unified, enough for some

initial analysis of both stability and reproducibility [157]. Admittedly, there are only a limited
number of software libraries that currently implement related techniques, but the fundamentals
underpinning the adjustment of DL models for deployment environments are fairly well understood,
at least in contrast to hardware search. Beyond that, the efficiency, scalability and generalizability
of deployment-aware AutoDL cannot be simply summarized, as these criteria depend far too much
on the specifics of the algorithm in question. The assessments in Table 4 are informative in this
case; white-box optimization methods will be efficient and scalable, but not generalizable, while
black-box and gray-box methods will reverse those qualities.

8 AUTOMATED MAINTENANCE
The future of AutoML, at least in the short to medium term, is continuous learning; this is what
a previous review identified and argued [140]. In fact, there is currently a disconnect between
how the majority of ML models are designed/used – “one-and-done” – and what the growing
demands of real-world applications are. Recent global events have shown that models built on static
assumptions can be very fragile7, highlighting a dire need, depending on industry and problem
context, for continuousmonitoring andmaintenance.We label systems that are able to automatically
provide this support as AutonoML frameworks, with the understanding that true autonomy is
impossible without the capacity for persistent automated management of models. For now, there is
no archetypal AutonoML package that we can highlight, but many vendors have listed adaptation
capability on their development roadmaps, researchers have published prototypes of adaptive ML
systems even before the modern wave of AutoML [136, 228], and there is a growing number of
academic research efforts in this direction [37, 181]. Evidence shows that initial steps are being
taken in the evolution from AutoML to AutonoML.
So, what about “AutonoDL”? Does such a research parallel exist? The answer to this is very

nuanced. At zeroth order, it is reasonable to assert that continuous learning is not currently a
major priority in the DL community. This is understandable, as the major selling point of DL
is in fact its representational power. Manageably complex models are great for approximating
complicated input-output mappings. The corresponding downside though is that training a DNN
well often relies on the repeated presentation of concepts in data. These models are not agile, at
least traditionally, and they fare poorly with conceptual instability [184]. Nonetheless, although
continuous learning may not currently be practical, a lot of recent effort has gone into making

7https://www.dominodatalab.com/blog/how-covid-19-has-infected-ai-models

https://www.dominodatalab.com/blog/how-covid-19-has-infected-ai-models
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repeat model development as flexible as possible, designed to accommodate changes in both data
and task.
Therefore, after briefly considering the ideal of online learning in Section 8.1, and why it is

difficult, we discuss relying on continuous monitoring instead in Section 8.2, covering possible
data-environment dynamics to watch out for, before reviewing popular paradigms for automatic
model maintenance in Section 8.3.

8.1 The Challenges of Online Learning
Learning within dynamic data environments is not a new topic. Over several decades, many bespoke
ML models/algorithms have been proposed with the aim of operating on streams of data, e.g.,
incremental decision trees [209]. In the ideal case, these ML models should continue to develop
their structures and tune their parameters and all associated pre-processing or data transformation
steps [322] while they are deployed, either on delayed training data or on some feedback to query-
based model responses, e.g., from a user, a digital-twin simulation, a robotic system, etc. So, why not
simply mimic this approach and leave a DNN in training mode during deployment? Unfortunately,
all the challenges of standard DL training immediately apply, but now in an environment that is
difficult to control. For instance, in the case of backpropagation, deciding on batch size is already a
challenge [247], as it determines how much a single instance of data affects a model. Unsurprisingly,
it is even more difficult to curate an informative batch of queries and feedback-derived labels on
the fly, especially one that provides sufficient repeat presentation of any important but infrequently
observed concept.
Even then, best practices of training aside, the fundamental obstacle that typical DL models

face is catastrophic interference/forgetting [184, 266]. Neither network depth nor connectivity,
despite other benefits, helps isolate learned concepts; the latter actively competes with information
localization. Thus, when an input-output mapping is approximated by a monolithic model, new
concepts can easily overwrite old ones. This can be highly undesirable for a sequential learner, e.g.,
if an NLP text generator encounters low-quality writing after training on a high-quality corpus.
Simply put, monolithic models are particularly susceptible to experiencing “garbage in, garbage
out” (GIGO).

Admittedly, there has been plenty of contemplation around how neural networks may operate in
a persistent manner, engaging in lifelong learning while carefully managing the stability-plasticity
dilemma [198]. Some attempts to address this draw inspiration from neuroscience, even if the
associated adaptive mechanisms are often better suited to models built from more biologically
realistic neurons, e.g., spiking neural networks [68]. All the same, there are several strategies for
standard artificial neurons that recur throughout the literature. For instance, one approach relies on
regularization [142, 162], seeking to avoid catastrophic interference by controlling network weight
updates with constraints. This might be a quadratic penalty scaled to the difference between old and
new parameters, which slows down how quickly previously learned information is overwritten [142].
Alternatively, one can try to force information locality via some form of ensembling, often employed
for data stream analysis [146], or even fully dynamic architectures [227], which grow out new
sub-networks as required. There are yet other efforts that attempt to codify dual memories [111],
first proposed early on [111], so as to have one set of weights maintain certain concepts in long-
term storage and have another set of weights adapt to changing data dynamics. Nonetheless, with
few exceptions, such strategies for lifelong learning remain relatively unknown within the DL
community, given that managing a standard DNN is already computationally expensive enough as
it is.



Automated Deep Learning: Neural Architecture Search Is Not the End 35
Table 6. Scenarios in a dynamic data envi-
ronment.

Scenario Changes
(S1 → S2)

The i.i.d. Assumption None
Covariate Shift 𝑃 (𝑥)
Prior Shift 𝑃 (𝑦)
Concept Drift 𝑃 (𝑦 |𝑥)
Task Redefinition X and/or Y
Set S𝑖 is defined here as a collection of
data that samples an input-output dis-
tribution of interest to a DL model, i.e., a
domain indexed by 𝑖 . Input 𝑥 and output
label 𝑦 belong to input and output spaces
X and Y, respectively, while 𝑃 denotes
a probability with respect to sampling
representation.

In short, for many theoretical and practical reasons,
continuous model updates are not presently feasible in
the field of AutoDL, yet the need to respond to dynamic
data environments remains. Thus, rather than online de-
velopment, the focus turns to a more relaxed form of
continuous learning: updates as required. The challenge
of catastrophic interference never disappears, but it can
now be faced with deliberate intention. However, as a
consequence of this approach, the process of adaptation
now splits into two, namely continuous monitoring and
maintenance, or “when do I do it?” and “what do I do?”,
respectively.

8.2 Scenarios for Continuous Monitoring
Many scenarios are possible in a dynamic data environ-
ment. To ground this discussion, we define “domain” to be
some distribution of input-output data that is desirable for
learning, possibly a ground truth. Under this definition,
the fundamental notion underlying ML is that any ML
model can only observe and learn from an 𝑛𝑖 -sized sample of a domain indexed by 𝑖 , i.e., (𝑥𝑘 , 𝑦𝑘 )𝑛𝑖𝑘=1,
although whether the outputs are accessible to the model depends on training or deployment.
Additionally, given a specific task, an input 𝑥 and an output 𝑦 drawn from this domain exist within
prescribed spaces X and Y, respectively. Now, DL typically relies on the i.i.d. assumption, where
the joint probability distribution of sampling (𝑥𝑘 , 𝑦𝑘 ) is static, i.e., the samples arise from the same
memoryless generative process. In essence, this is what makes an inductive model trained on
sample S1 applicable to sample S2; it is hoped that their corresponding domains, indexed by 1
and 2, are identical. Of course, the i.i.d. assumption may be flawed to begin with [108, 317], but,
regardless, any significant deviation from these statistics can challenge the validity of a trained
model. We emphasize the adjective “significant” here, as anomaly detection is its own topic of
research [38].

Naturally, the stationary assumption can be broken in many ways, which have been surveyed ex-
tensively elsewhere [87]. The Bayes theorem suggests a few possibilities, especially when written as:

𝑃 (𝑥 ∩ 𝑦) = 𝑃 (𝑥 |𝑦)𝑃 (𝑦) = 𝑃 (𝑦 |𝑥)𝑃 (𝑥), (1)

and these are listed in Table 6. Prior and covariate shift – variations in 𝑃 (𝑦) and 𝑃 (𝑥), respectively,
between domain samplesS1 andS2 – are types of data drift relating to sampling representation. This
can be a problem, given that predictive DL models strive to determine the conditional probability
𝑃 (𝑦 |𝑥) for all 𝑥 ∈ X and𝑦 ∈ Y; the accuracy of such an estimate suffers for subspaces inX andY that
have not previously been encountered with sufficient frequency. Nonetheless, on its own, these kind
of changes in a data environment do not negate the utility of an S1-trained model deployed on S2.
Sometimes, they simply suggest concept-space interpolations/extrapolations need to be tightened. In
essence, the two domains may still be identical. On the other hand, concept drift is a scenario where
𝑃 (𝑦 |𝑥) itself changes between domain samples S1 and S2, e.g., in the form of changing classification
boundaries. Sometimes concept drift even overlaps with the notion of task redefinition, where the
label space Y may change. In such a case, extensive model retraining appears almost inevitable.
For all such scenarios, it is the responsibility of a prospective AutoDL monitoring mechanism

to identify when model performance may suffer, so as to trigger a maintenance procedure. The
monitoring may be directly reactive, assessing the degradation of a loss metric, or be indirectly
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Table 7. The most common approaches underlying adaptive strategies for AutoDL.

Maintenance Approach
Domain
Constraints
(S1 → S2)

Data Availability
for Maintenance
(S2)

Notes

Continuous Learning None Any Constantly processes a data stream.
Can combine with other approaches.

Domain Adaptation Y1 = Y2 𝑥 : ✓, 𝑦: ✗

Often generalizes more than one domain.
Prioritizes minimal sampling of S2.

Domain Generalization Y1 = Y2 𝑥 : ✗, 𝑦: ✗

Few-shot Learning Y1 ≠ Y2 𝑥 : ✓, 𝑦: ✓

Zero-shot Learning Y1 ≠ Y2 𝑥 : ✗, 𝑦: ✓

Sample S𝑖 represents a domain indexed by 𝑖 , where Y𝑖 is its corresponding output/label space. The inputs and output labels
within sample data are represented by 𝑥 and 𝑦, respectively. Domain adaptation/generalization is well-suited for statistical
shifts and concept drifts, given a fixed task, while low-shot learning quickly adapts to new classes, a consequence of task

redefinition. Note that there are proposed variants to these approaches, e.g., differing degrees of label-based supervision from S2.

preemptive, examining non-stationary statistics of data. In fact, there are many drift detection
mechanisms and strategies in existence, some of which have already been used in the context of
adaptive AutoML [37, 140]. We do not discuss these in depth, as, for now, the field of AutoDL has not
yet embraced the idea of agile monitoring. However, as a compromise, there have been several past
efforts to acknowledge diverse domains and fold their identification into a DL model. For example,
the simplest form of the long-established adaptive resonance theory (ART) [97] dynamically sizes
a layer of “recognition neurons” to cluster encountered data into distinct categories. Far more
recently, research efforts have merged a domain classifier into a DNN [88] and have explored
domain encodings via a so-called Memory-based Parameter Adaptation (MbPA) method [254].
While the reactive potential is limited in both these modern examples to the memory space reserved
for domains, at least data drifts between those domains can easily be adapted to.

8.3 The Current Paradigms of Maintenance
The vast majority of DLmodels are monolithic and do not contain specialized domain-memorization
structures. Thus, in most cases, the standard form of maintenance is simply retraining on a newly
encountered domain. Doing so from scratch, however, is not ideal, especially in the computation-
ally expensive context of DL. Consequently, there has been an increasing focus on developing
efficient maintenance strategies for various scenarios. The most common principles underlying
such approaches are listed out in Table 7.
First of all, if domains represented by S1 and S2 differ in statistics but not in Y, the topics of

domain adaptation and domain generalization apply [18, 271]. An example of this is extending
an image classifier of birds trained on sketches and cartoons to a more photorealistic domain.
In the case of domain adaptation, maintenance occurs reactively, with the model able to learn
from newly encountered data that is possibly even labeled. Domain generalization covers more
preemptive strategies, improving model adaptability without encountering what it will have
to adapt to. Elsewhere in the DL field, low-shot learning attempts to deal with more dramatic
task redefinitions, i.e., where label space Y changes. In the extreme, these endeavors may form
a prerequisite towards eventual general intelligence, but, in current practice, the tasks applied
to differing domains sampled by S1 and S2 are closely related, e.g., both are image recognition
problems using CNNs. For few-shot learning [82, 173, 213, 249], maintenance mechanisms do have
access to limited data from the new domain, including for unseen classes, and adapt accordingly. For
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zero-shot learning [172, 222, 286], an AutoDL system does not expect to encounter any examples
of unseen classes, although auxiliary information about these classes is leveraged instead, e.g.,
information based on attributes or embedding similarity.
In any case, for many reasons described earlier, these updating strategies are often triggered

manually and applied offline. However, should the priority focus of the DL community move to
AutonoDL, these approaches are well-suited to being appropriated for online adaptation. Thus, it is
still worth highlighting the most common paradigm that underpins DL efforts in this space: the
meta-model.
Meta-learning [22, 233, 234, 236] in the context of AutoML has been reviewed elsewhere [140],

but, in AutoDL, it refers to identifying some similarity, often in terms of “meta-features”, between a
new domain/task and an old one; this allows previous knowledge to be leveraged while optimizing
a DL model for a new environment, not too unlike transfer learning. A meta-model can then be
seen as but a high-level context-aware recommendation system. This idea dates back to the year
1987 [234], although, at that time, the application was relatively simple and small-scale. In modern
times, it is often a DNN of its own, thus being optimizable via gradient descent [9, 293], RL [158],
evolutionary approaches [118, 127], etc. These meta-models are usually trained in offline mode,
experiencing many domains/tasks – debate endures around just how much is needed [7, 90] – and
they ideally learn which recommendations are optimal for training a base model in each setting.
They can also be developed in online mode, alternating in updates with a base DL model [292, 293],
but this compounds the risks of learning-based instability.
Importantly, meta-models are highly varied in their usage. For instance, there is a strand of

DL research popularly known as “learning to learn” [113, 238], which is motivated by certain
questions: when is Adam better than standard SGD? What is the quickest way to train a model
for sparse data? And so on. In such a scenario, the meta-model – typically an RNN such as an
LSTM – learns correlations between diverse operating contexts and best values for select variables
relating strictly to optimization procedures [66], i.e., algorithmic hyperparameters, that can then
boost model development in new domains. Of course, meta-model input-output details vary widely
across research efforts, whether the approach is applied to standard optimizers [9] or deep RL [67].

Notably, if there is one area of DL that does focus heavily on online operations and adapting to
new domains/tasks, it is in fact deep RL. This approach is heavily favored in the AI sub-field of
“general game playing”, and many related research works are tested in diverse contexts, such as on
collections of Atari 2600 video games [268, 293]. As an example of meta-learning for deep RL, one
publication [118] focuses on the fact that, in RL, there is often no intrinsic relation between a task
objective and a loss/reward function. It thus applies a context-aware temporal CNN to optimize
this loss function so that an RL agent, the base DL model, is able to learn a task with maximal
efficiency. In this particular approach, the meta-model is closely integrated with the base model,
influencing it via backpropagation. Elsewhere, adaptation of the return function has similarly
been explored with a gradient-based meta-learning algorithm, tuning hyperparameters, such as
discount factor and a bootstrapping parameter, in online fashion [293]. This particular approach,
using “meta-gradients”, has partially inspired subsequent work, such as an effort to have RL agents
seek out useful questions, in general value function (GVF) format, that, when answered, optimally
support their learning process [268].

It is now clear that, should an AutoDL monitoring system throw an alert that a DL model needs to
be updated, prior experience can definitely accelerate model adaptation. However, it is often difficult
to assess the quality of proposed meta-models and meta-learning algorithms. Many works are
based on handcrafted update rules targeting select hyperparameters, such SGD learning rate [257],
SGD weight decay [66], the decay factor in RL [293], etc. Others gradually move further and further
to full automation, leveraging neural networks to simulate the loss function [118, 143], the target
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Table 8. Evaluative assessment for trends in automated maintenance.

Novelty Solution Effic. Stability Interp. Reprod. Engi. Scalability General. Eco.

Domain Adaptation 3 (≈30) ? High ? ? ? ? High Mixed ?
Low-shot Learning 3 (≈29) ? High ? ? ? ? High Mixed ?
Continuous Learning 5 (≈30) ? High ? ? ? ? High Mixed ?

Each row marks an emergent trend in AutoDL, specifically automated maintenance. Each column marks a criterion – see Section 2.4 – by

which the trend is assessed. The evaluations are mostly qualitative, averaged across the most significant works researching the trend. Where a

graded value is not provided, “?” indicates that a rigorous assessment is not achievable without more research works to analyze. Novelty denotes

years since seminal works in DL (ML) were published. Abbreviations are: “Solution” for Solution Quality, “Effic.” for Efficiency, “Interp.” for

Interpretability, “Reprod.” for Reproducibility, “Engi.” for Engineering Quality, “General.” for Generalizability, and “Eco.” for Eco-friendliness.

value to maximize in RL [292], the delta of weights [9, 67], etc. So, how much of meta-model
design should rely on humans, producing limited but decent strategies? How much should be fully
automated, producing generic but potentially unwieldy mechanisms? These are open questions, as
is whether and in which cases meta-learning is actually effective [7, 90, 195].
Ultimately, we emphasize that meta-learning is not the same thing as continuous learning, the

latter of which is a fundamental requirement of AutonoDL. Meta-learning is a principle that can
be applied across the entire DL workflow in Figure 1, so as to leverage previous experience in
speeding up the development/deployment process. Similarly, there are ways to react intelligently
to new domains that have nothing to do with typical notions of prior knowledge. Nonetheless, this
is where AutoDL presently sits on the automated-maintenance front; it is a nascent exploratory
topic with little benchmarking beyond an assessment of dynamic hyperparameter control [71].

8.4 Overview
Given how adaptive ML, namely AutonoML, has only just become an emerging thread of re-
search [140], it is of no surprise that there is little consolidated focus in the literature on automated
mechanisms for the maintenance of DL models, let alone an AutonoDL field. Indeed, Section 8 has
instead discussed the most promising approaches, as listed in Table 8, that are likely to inform
adaptation practices in the future. This connection is immediate in the case of continuous learning,
and the paucity of research in this area merely reflects the challenges of constantly updating a
DNN, but domain adaptation and low-shot learning are often not considered by the DL community
in terms of fully automated model maintenance, instead being associated with tackling new DL
problems; related publications often miss or ignore the automation aspect in their commentaries.
Accordingly, the evaluative assessment in Table 8 is necessarily replete with unknowns. This is the
case even though the theoretical foundations for the listed trends stretch back far beyond the DL
era, e.g., low-shot learning being considered in the 1990s [235]. Ultimately, it is just not possible
at this time to gauge how effectively an approach counters diminishing model accuracy, let alone
whether such claims are reproducible over a representative benchmark of dynamic DL problems.

So, if theoretical analyses are limited, making it difficult to comment on stability, and there are no
widely adopted implementations of such mechanisms, restricting any eco-friendliness assessment,
can anything be surmised about automated maintenance in AutoDL? Well, the most common
methodologies employed for domain adaptation, together with low-shot learning and continuous
learning, are gradient-based, which means that such approaches can be considered relatively
efficient ways to adapt a model. Likewise, they are highly scalable. As for generalizability, this
depends on the specific methods used for each form of maintenance. Some are specifically designed
for updating a specific network component such as a model head, i.e., the classification layer, and
thus may struggle when applied to novel search spaces. Beyond this, one must reserve judgment as
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to how the automated maintenance endeavor will evolve. There are certainly promising research
directions, but serious consideration of AutonoDL as a field will likely be contingent on further
advances in computational hardware.

9 CRITICAL DISCUSSION AND FUTURE DIRECTIONS
It is undeniable that, at present, the topic of DL continues to attract an unparalleled degree of
attention within computer science communities, and its successes have spilled over into the sub-
field of AutoDL. This monograph has attempted to take a sample of that research, representing the
most significant trends in the area, and categorically systematize it with respect to the simple but
encompassing DL workflow depicted in Figure 1. However, this has not been a trivial task; the sheer
quantity of publications in AutoDL and related sub-fields can be considered daunting. Certainly,
popularity has positives, as a critical mass of attention is required to drive progress in a topic, but
the negatives are just as evident, risking both a mob-mentality ‘clumping’ around certain trends
– these endeavors may or may not have been exhausted of promise – and a level of low-quality
publication ‘noise’ that obscures possible leads for future advancement.

To combat the counterproductive dangers of research oversaturation, this work has emphasized
the need to examine AutoDL research holistically, suggesting a broad set of criteria in Section 2.4
that may be used for evaluation. Granted, this review can only provide a limited assessment under
such a framework, or similar, without broader adoption and contemplation by the DL community.
Thus, Section 9.1 promotes a practical questionnaire for AutoDL researchers to use, based on
the same criteria, when evaluating how their proposed methodologies/experiments fit within
the broader context. It is not intended as a rigid document, serving more as a kick-starter for
conversation around the topic.
Finally, still guided by the assessment criteria, we consolidate all the assessments within the

previous sections, each related to a single stage of a DL workflow, into an overarching overview
of the AutoDL field, presented in Section 9.2. This high-level perspective enables subsequent
commentary in Section 9.3 on what this review finds the most significant challenges and greatest
opportunities to be in terms of future directions.

9.1 A ProposedQuestionnaire for Self-assessment
While the full scope of AutoDL research is expansive, especially beyond the bulk of work that
exists within the topic of NAS, there are clear commonalities across the field. Each investigation,
whether theoretical or experimental, typically seeks to develop a high-level mechanized process
that efficiently contributes to the existence of a “good”, ideally persistent, DL model. Accordingly,
as Table 1 indicated, these attempts can often be characterized as optimizations, regardless of the
phase of a DL workflow in which they operate. This also means that it is possible to construct a
shared baseline framework by which all AutoDL research can be assessed, which is the purpose of
the ten criteria introduced in Section 2.4.

Naturally, a unified assessment framework is appealing for several reasons:

• It helps researchers/developers to be comprehensive in understanding the strengths and
limitations of their approach, which can then lead to subsequent improvements.

• It simplifies peer review, supporting the accelerated provision of accurate feedback.
• It enables the contextualization of an individual algorithm within the entirety of AutoDL,
promoting informative high-level perspectives of the field.

Granted, critics may claim that a one-size-fits-all framework does not appreciate nuances, and
this is a reasonable concern, but, given the state of mass publications in the field, it is arguably a
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higher priority of consideration to encourage improved rigor through standardization, at least at
the current time.
So, how would a researcher go about engaging with the criteria listed in this monograph? To

answer this, we provide an example form in Table 9 and Table 10, filling out a series of questions as
if they were asked of two seminal publications, NASNet [325] and DARTS [171], which we stress
have been selected for their importance to AutoDL, not for any perceived deficiency.

Now, crucially, because this form represents a deeper dive than the quantitative research-trend
overviews described in Section 2.4, there are certain nuances to consider. For instance, one significant
difference alluded to in the earlier section is that a detailed assessment should capture the quality
of both an AutoDL process and the target DL model that it impacts. Accordingly, several criteria in
the example form split their questions in such a manner. As to the rationale behind listed questions,
this matter is elaborated on in the following discussion.

I. Novelty is a crucial prerequisite for the publication of any research in academia. For the most
part then, this criterion does not need to be spelled out explicitly, as a strong peer-review systemwill
control for its quality automatically. That stated, a recurring grievance in data science and beyond is
that authors will often promote the novelty of their work, as justified within a narrow scope, without
awareness of what exists across related disciplines or further back in academic history [248]. This
limited perspective can be even more extreme. For example, a gradient-based method employed in
NASmay solely be compared against other gradient-based NASmethodologies without appreciating
the possible existence of associated studies in HPO. So, whereas an author may argue that the
methodology is entirely new, the novelty may technically be its application to a search space of
network architecture rather than a search space of training-algorithm hyperparameters. Of course,
it would be ideal for AutoDL researchers to review parallel work in the space of AutoML/AutonoML
and even further afield, but, given the eventual goal of developing an integrated end-to-end AutoDL
system, one should at least be cognizant of similar approaches across all phases of the DL workflow
in Figure 1. The questions in Table 9 reflect this bare minimum.

II. Solution quality refers primarily to the “correctness” of a DL model, which is traditionally
the predominant focus of academic research; it is the obvious criterion to include and needs no
in-depth justification. However, it must be noted that there are many different metrics by which
this quality may be gauged, often depending on the DL problem that the model attempts to solve.
For instance, accuracy often refers to classification tasks, mean average precision (mAP) is used for
object detection, and so on. Even for the same type of task, a change in context may prioritize a
different objective function. For example, maximizing top-1 accuracy may be required for high-
stakes predictive analytics, e.g., skin disease classification, while top-n accuracy for 𝑛 ≠ 1 may be
fine for other recommendation systems, e.g., preference prediction involving musical genres.
So, while the matter of supporting future comparisons, i.e., reproducibility, will be addressed

shortly, researchers are still advised to be diligent when making their own comparisons with
previous SoTA approaches. Indeed, the notion of “ceteris paribus”, i.e., all other things being equal,
is the ideal when assessing model correctness resulting from two competing AutoDL algorithms. Of
course, some forms of equivalence, or lack thereof, are trivially clear; AutoDL algorithms intended
for different phases of a DL workflow will have different aims. For instance, NAS and HPO works
construct DL models from scratch and thus focus on their baseline quality, while data-engineering
and deployment methods are best judged on how they modify the correctness of existing models.
Similarly, although automated maintenance is complicated by a time dimension that makes it
difficult to pick a representative solution-quality metric, related works still have the common aim
of minimizing model deterioration.

Regardless, where obvious and not-so-obvious, the questions in Table 9 urge AutoDL researchers
to make model-correctness claims with an eye to both equivalence and fairness, detailing evaluation
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Table 9. [Part-1/2] An example self-assessment questionnaire for AutoDL algorithms.

Question Example response for NASNet [325] Example response for DARTS [171]

I:
N
ov
el
ty

Is there significant innovation in this work? Yes; the first cell-based search space in
NAS.

Yes; the first differentiable search algo-
rithm in NAS.

Is this work completely distinct from existing re-
search in Automated Data Engineering?

Yes; within reasonable scope. Yes; within reasonable scope.

Is this work completely distinct from existing re-
search in NAS?

No, but without issue; reuses the search
space in [325].

No, but without issue; reuses the search
method in [324].

Is this work completely distinct from existing re-
search in HPO?

No, but without issue; the search method
has been studied in HPO.

No, but without issue; the search method
has been studied in HPO.

Is this work completely distinct from existing re-
search in Automated Deployment?

Yes; within reasonable scope. Yes; within reasonable scope.

Is this work completely distinct from existing re-
search in Automated Maintenance?

Yes; within reasonable scope. Yes; within reasonable scope.

II:
So
lu
tio

n
Q
ua
lit
y

Does the contribution of this AutoDL method to
model accuracy (or similar metric) significantly
improve upon equivalent SoTA approaches?

No, but without issue; the largest NAS-
Net model (of the time) achieves 82.7%
top-1 accuracy on ImageNet, which is
similar to previous SoTA model but with
40% reduction in FLOPs.

No; the best DARTS model achieves
2.76% error on CIFAR-10 with 3.3 million
parameters, which is slightly worse than
previous SoTA models.

Is the reported contribution to accuracy (or simi-
lar metric) fairly representative?

Yes, decently; reported for CIFAR-10, Im-
ageNet, COCO.

Yes, decently; reported for CIFAR-10, Im-
ageNet, PTB, WikiText-2.

III
:E

ffi
ci
en
cy

Does this AutoDL method converge with signifi-
cant speed?

No; 2000 NVidia P100-hours to complete
NAS on CIFAR-10.

Yes; 4 NVIDIA GTX 1080Ti GPU-days to
complete NAS on CIFAR-10.

Does the contribution of this AutoDL method
to model efficiency (i.e., minimization of
computational-resource usage) significantly
improve upon equivalent SoTA approaches?

Yes; this NAS method can produce a
model with 3.3 million parameters that
achieves 2.65% error on CIFAR-10, but la-
tency is not evaluated.

Yes; this NAS method can produce a
model with 3.3 million parameters that
achieves 2.76% error on CIFAR-10, but la-
tency is not evaluated.

Are the theoretical/practical efficiencies fairly an-
alyzed?

Yes, mostly; the number of model param-
eters and FLOPs are analyzed, although
there is no comment on practical speed.

Yes, mostly; the number of model param-
eters and FLOPs are analyzed, although
there is no comment on practical speed.

IV
:S
ta
bi
lit
y

Do repeated runs of this AutoDLmethod produce
results (e.g., in terms of accuracy metric) with
minimal variance?

Unknown; analysis does not exist. Yes, moderately; the results of four search
runs are reported.

Do repeated runs of this AutoDL method impact
model structure (if applicable) in the same way?

Unknown; although NAS methods in-
trinsically influence model structure by
virtue of construction, analysis does not
exist.

Yes; different search runs may produce
different models structures.

Is the AutoDL method stable (i.e., not sensi-
tive) for certain values of AutoDL-method hyper-
parameters?

Unknown; only brief mention that a
learning rate of 3.5e-4 is relatively stable.

Unknown; analysis does not exist.

V:
In
te
rp
re
-

ta
bi
lit
y Is this AutoDL method explainable in how it im-

pacts the target model?
Unknown; analysis does not exist. Yes, decently; analyzed under the dif-

ferentiable bi-level optimization frame-
work.

Are the results produced by the target model (af-
ter the AutoDL method takes effect) explainable?

Unknown; analysis does not exist. Unknown; analysis does not exist.

Ideally, AutoDL algorithms should be evaluated w.r.t. all ten criteria. If a publication answers with a high quantity of thorough “yes” and

justified “no” responses, it can be considered high-quality research with comprehensive consideration of all relevant issues in AutoDL. Seminal

NAS works, NASNet [325] and DARTS [171], are used to exemplify usage of this questionnaire. All comparisons are made against the available

literature of the time, i.e., July 2017 and June 2018. We note that the questions are neither exhaustive nor final.

contexts in depth. Far too often, incremental improvements are claimed as SoTA – onemay speculate
as to the reasons – without strong justification. Alternatively, superior model accuracies may not
be adequately accompanied by an emphasis on the trade-offs involved. In actuality, it is not a great
weakness for an AutoDL algorithm to lack accuracy improvements over SoTA models if the benefits
of the technique are to be found elsewhere. The NASNet publication exemplifies this in Table 9,
proving far more impressive in reaching similar-to-SoTA accuracy values via the construction of
much smaller DNNs than contemporary hand-crafted models.
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Table 10. [Part-2/2] An example self-assessment questionnaire for AutoDL algorithms.

Question Example response for NASNet [325] Example response for DARTS [171]

VI
:R

ep
ro
du

ci
bi
lit
y Is all relevant experimental code involving this

AutoDL method publicly available?
No. Yes; links can be found in the paper.

Is all relevant experimental code involving the
models resulting from this AutoDL method pub-
licly available?

Partially; the model definition and pre-
trained weights can be found, but lack in-
structions on how to reproduce them.

Yes; at github.com/quark0/darts.

Are all relevant experimental information for
AutoDL-method and resulting models (e.g., hy-
perparameters, random seed, hardware, or plat-
form) reported in the paper/code?

Yes, decently; most hyperparameters are
mentioned, and hardware and platform
are mentioned.

Yes; most information can be found in ei-
ther paper or the released code.

VI
I:
En

gi
ne
er
in
g

Q
ua
lit
y

Is this AutoDL method implemented for public
use (e.g., off-the-shelf scripts)?

Minimally; there are only two template
scripts for evaluation usage.

Yes; the search, training, evaluation
scripts can be found.

Is the implementation code commented? Partially. Rarely.
Is the implementation code tested? Yes, mostly; however, there is a lack of

detailed test reports.
No; lacks unit tests.

Is the implementation code documented? Partially; model evaluation is docu-
mented.

No.

Is the implementation code modular, reusable,
and extendable?

Yes; different config files can instantiate
different versions of NASNet.

Yes; the minimal search cell can be
reused.

VI
II:

Sc
al
ab
ili
ty

Are the theoretical/practical computational costs
of this AutoDL method analyzed?

Yes, partially; empirical costs are ana-
lyzed, theoretical costs are not.

Yes, partially; empirical costs are ana-
lyzed, theoretical costs are not.

Is it feasible to scale up to large-scale datasets? No, but issue considered; sub-networks
(i.e., cells) discovered for small-scale
datasets can be transferred to large-scale
datasets.

Unknown; the AutoDL method is effi-
cient and is ideally able to scale up to Im-
ageNet, but analysis does not exist.

Is it feasible to scale up to large-scale models? Unknown; analysis does not exist. Unknown; the AutoDL method is effi-
cient and is ideally able to scale up to
ImageNet-scalemodels, but analysis does
not exist.

Is it feasible to scale up to large-scale search
spaces?

Unknown; analysis does not exist. Unknown; analysis does not exist.

IX
:G

en
er
al
iz
-

ab
ili
ty

Can this AutoDL method generalize well to un-
seen datasets?

Yes; from CIFAR to ImageNet and COCO. Yes; from CIFAR to ImageNet, and from
PTB to WikiText-2.

Can this AutoDL method generalize well to dif-
ferent target models?

Yes; can generalize to different macro
structures.

Yes; can generalize to different macro
structures.

Can this AutoDL method generalize well to dif-
ferent kinds of search spaces?

No, but without issue; the proposed NAS-
Net search space is intrinsic to the NAS
algorithm.

Unknown; analysis does not exist.

X
:E

co
-fr

ie
nd

-
lin

es
s

Is the energy consumption minimal for this Au-
toDL method?

Unknown; analysis does not exist. Unknown; analysis does not exist.

Is the energy consumption minimal for the target
model when actively employed?

Unknown; analysis does not exist. Unknown; analysis does not exist.

Is the potential environmental impact of this Au-
toDL method (e.g., converted to carbon emis-
sions) minimized?

Unknown; analysis does not exist. Unknown; analysis does not exist.

Ideally, AutoDL algorithms should be evaluated w.r.t. all ten criteria. Please follow the same notation as Table 9 to read this table.

III. Efficiency is arguably the next highest priority for the AutoDL community after model
correctness, emphasizing how most SoTA DNNs can be considered resource heavyweights, even
in the current era of hardware. Generally, there are two primary considerations in this category:
speed and memory. In the case of an AutoDL algorithm, these two issues are represented in how
long an AutoDL algorithm takes to converge upon its solution, how much run-time memory is
used, how many accelerators are required, and so on. Model training time and memory footprint
are included in this assessment if part of an AutoDL process, e.g., for NAS, HPO, deployment-
aware AutoDL, and certain forms of automated maintenance. However, some AutoDL algorithms
are also responsible for inducing efficiency in a DL model, whether constructed from scratch or
already in existence. In the latter case, this may not even involve any modifications to the direct
structure of a DNN; intelligent exploitation in the category of automated data engineering can
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boost inference speed by optimally managing datastreams. Whatever the case, the questionnaire in
Table 9 motivates assessing the efficiency of both the AutoDL process and, where applicable, the
DL outcome. Researchers will note that the speed and compactness of a DL solution often relates to
(1) its number of parameters, (2) the memory footprint related to its activations, (3) its theoretical
FLOPs usage, and (4) its practical inference speed.

Finally, we reiterate what was stated when discussing the correctness of a DL model; equivalence
is key. Hardware and development/deployment environments should be diligently detailed to make
any SoTA efficiency claims. For the same consideration, theoretical analyses and practical reporting
are both beneficial. Only with a fair assessment does it become clear where, in relation to both
correctness and efficiency, the Pareto front for AutoDL algorithms exists.

IV. Stability, predominantly of model correctness but also of any efficiency metric, is the first
criterion that, as of the early 2020s, is usually overlooked by the AutoDL community. This is
not simply due to negligence either, at least when granted the benefit of the doubt. Given how
computationally expensive it is for even a single AutoDL run, it can often seem infeasible to apply
the bare minimum commonly required for a stability assessment, i.e., a statistical sampling of
performance followed by a report on associated variances. Nonetheless, the field of AutoDL suffers
from this lack of statistical rigor, so much so that conclusions on SoTA performance have been
challenged [160]. Metric-based analysis is thus recommended, where possible, to provide confidence
in the reporting of any results. In the same vein, there are other more advanced analyses that can
further inspire trust in published research. For instance, AutoDL algorithms that impact model
structure, e.g., those related to NAS, may produce dramatically different networks. Stability in this
case becomes even more complex to assess if those models are associated with indistinguishable
performances, sometimes called “the Rashomon effect” [28]. In such a scenario, it is worth knowing
whether the AutoDL algorithm in question is truly effective at optimization or whether the DL
problem it is employed upon is similarly solvable for any network

Finally, the questionnaire in Table 9 also includes a higher-level question related to the hyperpa-
rameters of an AutoDL approach, although we avoid that terminology so as to avoid confusion with
HPO. The point here is that the stability of an AutoDL algorithm may depend on both stochastic or
deterministic elements, and it is worth assessing how sensitive the approach is to the latter, namely
the settings selected for AutoML-method parameters.

V. Interpretability is one of the newer criteria that the AutoDL community has had to consider,
reflecting the permeation of DL into broader society. It is no longer seen as acceptable in a variety of
high-stakes settings for a DL model to hide its decision-making process within the complexity of its
network, even if that complexity has often been associated with the performative strengths of DNNs.
Admittedly, enforcing interpretability within a model is much more complex than acknowledging
its value, and the topic is thus relatively nascent in DL [98]. Nonetheless, these requirements and
associated efforts to address them have similarly diffused into AutoDL [26]. Thus, for this criterion,
researchers should question whether the impact of an AutoDL algorithm and, if relevant, the DL
model that it targets are both explainable. Certain theoretical analyses can also bolster associated
commentary, such as the provision of ablation studies.

VI. Reproducibility is a core principle underlying the scientific method. Its inconsistent treat-
ment has been a common concern in general ML for a while [207], and these concerns have likewise
been mirrored in the field of AutoDL [160]. After all, claims that an AutoDL algorithm is accurate
or efficient are pragmatically useless if they can never be replicated. Granted, while the criterion
of solution quality requires a researcher to be diligent in comparing their method to those that
have come before, and the criterion of stability arguably relates to assessing repeatability within
the confines of the same experiment, the onus of confirming reproducibility belongs to the works
that come after. Nonetheless, there are plenty of ways that a publication can support an ethos of
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reproducibility, and most of these come down to a sufficient provision of details. Accordingly, the
questions in Table 10 are motivated by considerations discussed elsewhere [164]. They essentially
urge a researcher to consider whether they have provided comprehensive parameter values and
ideally code for any presented experiments. This goes for both the AutoDL process and the DL
model that it targets. So, while the NASNet publication assessed as an example does reasonably
well, the lack of publicly available scripts around the operation of the NAS process is a weakness,
even though it is understandable for a proof-of-principle work to focus on the end-product DL
model as evidence of a well-performing AutoDL algorithm. In any case, researchers should also
consider detailing the development/deployment environments that the experiments are run within.

VII. Engineering quality is a criterion that reflects the translation of AutoDL algorithms from
theory to application. While reproducibility concerns code that can be used to verify the validity of
certain claims, this criterion considers whether code exists that is usable beyond the contexts that
were explored. Of course, if some form of implementation exists, experts with enough skill may
eventually be able to hack it for their purposes after expending enough time and energy. However,
given that the field of AutoDL is a proponent of automation, the worthiness of an algorithm
can be judged, along one axis, by how accessible its implementation is to non-experts. How this
human-computer interaction (HCI) should be managed and whether it should be allowed at all in
certain contexts are topics for a separate discussion. Here, published codebases score well if they
are informative, both internally via comments and externally via documentation, e.g., user guides.
The codebase should also be robust and reliable, i.e., well-tested, and, ideally, there should be some
degree of modularity that facilitates plug-and-play extension. After all, if a long-term goal of the
AutoDL field is to have a fully integrated end-to-end system, the standard approach for achieving
this is by fashioning together distinct pre-existing mechanisms that focus on different phases of a
DL workflow.

VIII. Scalability is the first measure of extensibility promoted by this monograph, denoting
how versatile an AutoDL approach is for standard variations of its default usage. Certainly, for
proof-of-principle research, it is usually fine to test the operation of an algorithm on a small dataset,
a small target DL model, and a small search space. However, real-world scenarios can face numerous
datastreams to process, an extreme depth of network to capture all relevant features, a multitude
of adaptive mechanisms to select from, and so on. Thus, it is worth asking whether an AutoDL
mechanism is realistically suitable for scaling up in terms of data, model, and search space. Given
that this is generally a matter of efficiency, Table 10 questions whether computational costs have
been analyzed, e.g., formalized in “Big O” notation.

IX. Generalizability is the second measure of extensibility promoted by this monograph,
denoting how versatile an AutoDL approach is for non-standard variations of its default usage. It
mostly mirrors the criterion of scalability in that the focus is on dataset, target model, and the search
space relevant to the algorithm. However, this time the proposed questions are more open-ended,
gauging across these three aspects how broadly applicable a proposed approach is. There is of
course no issue with an AutoDL method being specialized, e.g., the NASNet example in Table 10 is
intrinsically wedded to a particular search space. Nonetheless, this criterion acknowledges that
there is always value in general-purpose mechanisms, assuming the trade-offs, usually efficiency,
are reasonable.

X. Eco-friendliness, as the final criterion suggested in this review, is a very new topic within
data science, let alone AutoDL [201], that reflects the current concerns of global society. While
traditionally ignored for the most part, the evolution of computational hardware has made this a
much more pressing consideration; greater processing capabilities have not been able to dissociate
from greater energy expenditures. Certainly, this is a problem as of the early 2020s due to the
world relying heavily on non-renewable resources for power generation. Unnecessary energy usage
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exacerbates the current global warming crisis via carbon emissions. Moreover, these effects are
argued to become non-negligible once large-scale SoTA models are being trained and operated
across extensive computer clusters by many developers and users, respectively. However, to be
fair, a genuine assessment of this criterion is complex and comes down to trade-offs. Any negative
evaluation of a target DL model should also not be doubled up for the AutoDL process, and vice
versa. While we elaborate on this discussion in Section 9.2, it is sufficient here to recommend
that researchers attempt separate power-usage records for the AutoDL algorithm and the target
DL model. Estimating environmental impact is also worthwhile, even if simply applying a quick
power-to-emission conversion based on a cited source.

In summary, this section has discussed the rationale behind ten criteria and associated example
questions, in Table 9 and Table 10, that are designed to foster a comprehensive evaluation of an
AutoDL algorithm, especially when considering its place within the field.

As a final point, the criteria have been ordered to reflect the mental process a reader may have
when newly encountering an AutoDL publication. Such a sequence of thoughts may be as follows:
“Have I seen this stuff in the abstract before? No? Ok, I will skim the paper. Does the proposed
approach do a good job? Yes? Well, does it take forever to run? No? Ok, I will read further. Does it
do its job consistently? Yes? Well, can I understand how the job is being done? Still yes? Seems
too good to be true. I would not mind testing the results myself. Can I do this easily? Yes? I am
impressed. Well, is there an implementation that I can use for my own applications? Yes? Can I
scale it up? Yes? Can I use it for something else? Yes? My power bill (and the world) will survive
this, right? Yes? Wow. This truly is an amazing AutoDL algorithm.”

9.2 An Overarching Evaluation of AutoDL
Having dived deep into the criteria that form the basis of the assessment framework within this
review, this section now zooms out once more for a final high-level perspective of AutoDL as of
the early 2020s. Many of the following discussion points, again sorted by criterion, arise when
considering all the overviews within the previous sections in an aggregate manner.
But first, it is worth a reminder that, with respect to the workflow-based reconceptualization

of AutoDL in Figure 2, around three-quarters of surveyed work relates to model development,
and the majority of this concerns NAS specifically. In essence, and as with AutoML [140], there
certainly are intensifying conversations around just what the scope and long-term goals of AutoDL
are, given its organic and unplanned evolution, but it must be acknowledged that the field is still
dominated by a single sub-category. The AutoDL story is primarily a NAS story. At the same time,
it is arguable that, because the other phases of the DL workflow are less well-explored, they may
be more fertile for ongoing progress. With that context addressed, we now assess AutoDL through
the lenses of particular criteria.

I. Novelty. An obvious take-away from Table 1, which lists seminal works in AutoDL, is that,
excluding outliers, the field only truly became consolidated within the mid-to-late 2010s. Addition-
ally, although the scattering of research makes conclusions difficult, it is reasonable to claim that
NAS and DL-related HPO started up in about 2016, while the extension of the automation ethos
into the data-engineering and deployment phases followed in around 2017/2018. As for automated
maintenance, there has definitely been adaptation experimentation performed in parallel, but
this research thread is not necessarily as advanced as the others; we are not aware of any DL
model-adaptation mechanism that has the same standard of applicability.
Unsurprisingly though, elements of all AutoDL research are often inspired by previous work,

some of it even external to the field. This is most obvious when the automated approaches in Table 1
are treated as computationally processed optimization problems, dissected into search space, search
strategy, and boosting method for candidate evaluation. It follows that the foundations of all search
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strategies are well established, having been utilized for decades with the broader ML sphere, as
indicated by Table 4. This means that, details aside, there is a convenient familiarity when working
with, for example, gradient-based methods in both NAS [63, 171] and DL-based HPO.

Search spaces, on the other hand, are far more diverse, differing even in the abstract between
various phases of a DL workflow, if not sub-categories. For instance, automated data augmentation
may sample sets of transformations, hardware searchmight optimize against series of programmable
gates, and setting up low-shot learning for quick automated adaptation might have a search space of
parameter-update rules. Given the importance of good search space design for optimal performance,
with the possible exception of strategy-focused HPO, a lot of innovations often arise in this facet
of AutoDL research. Granted, in research threads that have sufficient publication density, certain
seminal works set the standards for such design, e.g., NASNet-like spaces [325], etc. These are
usually tweaked by subsequent proposals rather than entirely replaced. Nonetheless, there is plenty
of experimentation in the aspect of search spaces, even for NAS, and breakthroughs that improve
the quality of AutoDL algorithms are possible.

Tactics for managing candidate evaluations are also a prime target for innovation, almost entirely
driven by a focus on efficiency. Indeed, search spaces may differ across numerous scenarios, but
almost every type of AutoDL algorithm needs to evaluate its target DL model after modifying the
DL process in whatever way it does, otherwise there is no objective function to improve against.
The obvious exception to this rule is filter-type data engineering, where features are transformed
to optimize inherent properties of a dataset without involving the model in any way. However, in
general, the point stands; training a DNN per iteration of an optimization is computationally heavy,
and many novel techniques are regularly proposed to mitigate this. Nonetheless, as with search
spaces, there are recurring types of approaches. Low-fidelity approximations, which may involve
trimming some amount of data or reducing the training-time budget, are perhaps the oldest. Weight
sharing is an alternative that is much more preferred for the modern DL model, especially given
its scalability, which is ranked high in Table 3. It is very popular in NAS [206] despite its recent
entrance into the field. Yet, once again, one could argue that weight sharing is not particularly
novel, having been implicitly utilized within the gradient-based HPO method introduced at least as
early as in the 1990s [149].
In truth, AutoDL is often both a reappropriation and customization of existing concepts and

methodologies, frequently applied with ingenuity, and thus novelty should always be assessed in
that light.

II. Solution quality. Current benchmarks for DL-model accuracy and related metrics are domi-
nated by NAS, often in combination with other techniques. It is clear that automatically searching
for DNNs can regularly outperform purely handcrafted networks, even if these differences become
less compelling for DL tasks where the limits of model correctness are already approached. In such
cases, the utility of an AutoDL algorithm becomes more reliant on whether the high accuracy is
consistent or cherry-picked; this is a matter of stability. But the point remains that AutoDL has
proven value in producing SoTA models.
There is, however, a broader discussion to be had on how solution quality is benchmarked.

A common notion is to partake in a comprehensive leaderboard for a popular dataset, such as
ImageNet for vision [226], SQuAD for NLP [211], and LibriSpeech for speech recognition [197].
This does allow for direct comparisons between the outcomes of competing AutoDL algorithms.
However, such datasets may be amenable to certain characteristics of an algorithm that are useless
or detrimental for other datasets, particularly in real-world applications. Unfortunately, there is
no good solution here at the current time, given that benchmarking is an arduous process for
large-scale AutoDL. It is simply worth highlighting that portions of the DL community put excessive
weight on certain evaluations that may not be fairly representative of general solution quality.
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In the other extreme, and with supporting evidence, there does exist skepticism around the
performance of many NAS algorithms, e.g., whether they are better than random search [306].
While this concern relates to issues of reproducibility, it does perhaps support another assertion that
this survey makes: the most important contributor in NAS to model accuracy is search space design,
not search strategy. In saying this, it should also not be lost on the reader that the current search
spaces yielding best accuracy are derived heavily from popular architectures that are manually
designed. It is unclear whether there are better options out there, but this does suggest that, while
humans cannot typically beat a NAS algorithm in selecting an optimal candidate DNN, their expert
knowledge on general structure is not entirely worthless.
At this current stage, it is not clear whether these emergent principles are the same for other

phases of a DL workflow, e.g., whether constraining a subset of FPGA configurations is more
worthwhile than applying a different optimization method to hardware search. Admittedly, the
reason expert knowledge is so useful in NAS may simply be because the appropriate search space
has been arrived at after plenty of human exploration; the benefit of expert knowledge may not
be available in other non-NAS contexts. Regardless, while AutoDL research is generally more
rudimentary along the rest of the DL workflow, it has been shown that distinct mechanisms can
work in concert to push solution quality even further. For example, a recent work achieved 87.3%
accuracy on the challenging ImageNet dataset by combining, with the aid of manually designed
hyperparameters, automated data engineering with NAS [264]. This reaffirms the value of pursuing
an integrated end-to-end AutoDL system, even if no such empirically sound framework currently
exists.

III. Efficiency. While accuracy is always an important goal for any form of ML, the ethos of
efficiency is particularly compelling for AutoDL as opposed to AutoML, given the computational
expense that arises from embracing the complexity of a DNN. Thus the drive for speed and, where
applicable, compactness has traditionally come second only to solution correctness within AutoDL
literature. In fact, the priorities may have even swapped over the last couple of years due to,
one, diminishing communal interest in incremental accuracy improvements and, two, a shift in
requirements as AutoML and AutoDL are progressively translated from academia to industry. The
broader implications of this translation are worth discussing elsewhere.

As aforementioned, the push for efficiency applies to both the target DL model and the AutoDL
process. Given that the latter is usually responsible for training and retraining a DNN, model-
development efficiency is usually bundled in as part of the AutoDL processing time. However, the
impact of the AutoDL process often outlives its operation and still needs to be accounted for, e.g.,
a deployment-aware model tuner has good value if, one, it works fast and, two, if the resulting
model generates its predictions on a deployment environment in a timely manner. In effect, AutoDL
research aims to account for theoretical/realistic inference speed and memory footprint as well.
Regardless, simply in terms of AutoDL algorithms, the field has steadily made progress, at least
in terms of preferred strategies. For instance, NAS has shifted from low-fidelity approximations
to weight sharing, HPO has done the same but into hyper-gradient approximations, automated
deployment prefers neural predictors over deployment simulation, and so on. These transitions do
not guarantee their benefits though, as efficiency boosts of any form often come with trade-offs,
usually in the form of assumptions weakening solution quality. It is thus a current focus within the
AutoDL field to work out not just how to shift along a Pareto front but to push it out further.

IV. Stability. The impressive achievements of AutoDL in terms of both solution quality and
model-specific efficiency have been tempered by a lack of trust in the results. This cynicism is
partially driven by deficiencies in published scientific practice that go beyond the scope of this
monograph, but certain limitations are also somewhat understandable in the context of DL due
to the computational resources required. The limitation specific to this criterion is that many
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works do not go to the extra effort of establishing a statistical analysis for presented results, which
makes it difficult to grapple with the stochastic nature of an AutoDL algorithm. That stated, many
publications are presently appealing for the reporting culture to be improved [65, 160, 164, 303],
and an evaluation of stability is starting to be seen within an increasing amount of AutoDL works.

V. Interpretability. There is not much to say on this matter in AutoDL, given how the broader
DL community is itself debating how best to instill some form of transparency in the DL process.
However, the absence of substantial focus in this area will likely need some serious consideration
at some point. Unlike AutoML, which is able to operate with explainable ML models, AutoDL is
wedded to inherently complex connectionist structures. Given that the automation of any process
is often associated with another layer of black-boxing, AutoDL may struggle for democratization if
it does not somehow avert undue technical obscuration.

VI. Reproducibility. Ensuring that anAutoDL algorithm is repeatable faces the same computational-
resource challenges as stability, only this time the onus is on peer review to confirm it. Thus, if
a proposed method is to make a splash within the community, the proposer would be advised to
facilitate such tests. Unfortunately, this is another widespread deficiency in AutoDL research. For
instance, a recent investigation evaluated 12 NAS algorithms and found that most did not report
enough details to fully reproduce the original results [160]. This concern has been echoed by many
other researchers [65, 164]. In fact, some have proposed potential solutions within the scope of
NAS, such as comprehensively filling out a questionnaire [164] or enabling the approach to be
easily benchmarked [65, 303]. Early signs indicate that such appeals may be fruitful, with a steadily
increasing proportion of new NAS papers providing both code and details.

Repeatability issues are unsurprisingly mimicked in other phases of a DL workflow, not just NAS.
In general, they are somewhat alleviated by benchmarking suites [69, 71, 144]. However, while
these works encourage good practice in researchers, many do focus on small-scale models and
datasets. It thus remains an open question as to how the reproducibility of large-scale experiments,
especially those requiring advanced hardware systems [215, 216], can also be guaranteed. Indeed,
given their associated requirements for computational resources, there may be only two or three
groups in the world that have the capability to do such experiments, and this does not even consider
other limitations such as business restrictions or the availability of human expertise.

VII. Engineering quality. The upper echelons of DL experimentation are only accessible to
entities with substantial computational resources, such as universities or, often more so, large
corporations. Nonetheless, DL has permeated into broader society and, just as AutoML has been
embraced by hobbyists and commercial vendors, AutoDL is likely to follow suit over time. There is,
however, many differences between code scripted in academic settings and software written for
real-world usage. Technical debt is not too much of an issue for one-off experiments, but it can
cause substantial problems for real-world AI systems [240]. Moreover, the risks are an order of
magnitude greater for AutoDL than DL, simply due to its complex higher-level nature; the former
needs more advanced software/library supports.
Granted, as discussed earlier, certain features of AutoDL algorithms may be well-established,

such as black-box/gray-box optimization libraries, which have a long history of developmental
improvements [5, 94, 253]. In contrast, if AutoDL algorithms rely on more novel concepts, such
as recent popular white-box optimization methods, the support may not be there. Fortunately,
given the size of the AutoDL community, there is a good possibility of an implementation arising
sooner or later. For instance, recent works have started to look into this issue for white-box AutoDL
algorithms, providing examples as well [74, 312].

There are a number of new questions to ask once computational theory crosses over into software.
Two of them are as follows: can AutoDL algorithms already implemented in these libraries be easily
maintained, and can these libraries easily support the implementation of future AutoDL algorithms?
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Certain researchers doubt it, concerned about the practical modularity of such algorithms [204, 216].
Worse yet, some high-level AutoDL libraries are tightly coupled with their associated low-level
DL library [133, 319], and this constrains their utility. To address these issues, the development
of newer libraries has started to explore the use of symbolic programming to keep dependencies
minimal [76, 204].
In short, there is currently an impressive amount of activity in the AutoDL community on the

engineering side. However, to date, no AutoDL packages have cemented themselves in popular use,
e.g., in the same vein as PyTorch or Tensorflow for DL. It is also not clear how best to quantitatively
compare AutoDL libraries beyond the minimum requirements proposed in Table 10.

VIII. Scalability. Given that this matter relates to efficiency, the ideal case for usability is if the
time and space complexity of an AutoDL algorithm is linear, logarithmic, or constant with respect to
the size/quantity of data used, the size of the target DL model, and the relevant search space. Now, at
a baseline, the model-evaluation element of an AutoDL process is well controlled, as model training,
if relevant, will often involve linear factors in time and/or memory with respect to data inputs and
number of model layers. However, it is the search element of the process, whatever that may be
according to the phase and sub-category of a DL workflow, that can easily blow out. For instance,
for auto-augmentation, the decision to search for an 𝑛-length pipeline of data transformations can
exponentiate processing time by 𝑛. Similarly, NAS can likewise face this exponentiation by simply
increasing the depth of a target DNN to construct. Thus, either with conscious or subconscious
focus on scalability, AutoDL research does often grapple with how to make search manageable, e.g.,
by using repeatable NAS cells, even it remains a point of debate whether such constraints block
out better solutions [119]. Whatever the case, this issue will remain a challenge for AutoDL, and
rigorous analysis of scalability must be done on a case-by-case basis.

IX. Generalizability. Like interpretability, this is a concept about which there is currently little
to say within AutoDL as it is rarely rigorously considered. This is perhaps because the field of
AutoDL is currently preoccupied with making algorithms work well in an intended context, rather
than extending them to work in other contexts. This means that most AutoDL algorithms rely
heavily on context-dependent assertions, especially white-box methods, which are preferable for
their superior efficiency. The downside is that these are then difficult to transfer from one task to
another, e.g., visual classification to speech recognition, let alone from one phase of a DL workflow
to another, e.g., from NAS to searching for adaptive mechanisms. Granted, certain elements are
more reusable than others, such as modular black-box optimization methods, but the state of
computational hardware is not at a level where, on the whole, generalizability trumps efficiency.

X. Eco-friendliness. This notion has quickly attracted increasing attention within the DL
community, even if the associated body of published literature currently remains small [156, 201]
and many debates exist. When contemplating this matter, in the most general and ideal sense, it is
advisable to consider what level of energy usage is most appropriate for a computational task. For
instance, the diminishing returns and increasing power required to farm bitcoins is occasionally
debated in the media, often accompanied by a dim view of the related profit-driven intent. On the
other hand, DL tasks with broad social benefits, e.g., improved health outcomes, would generally
be considered worthy of a higher resource expenditure. So, there is a baseline level for the energy
value of every computational process, even if this is considerably difficult to quantify and highly
subjective. Then perhaps the key to considering whether AutoDL is eco-friendly should be based
on counterfactual considerations: what would happen if the same process was not automated?

Most AutoDL processes are done once, whereas their resulting impact on a target DL model can
be felt for the duration of its deployment. If the kilowatt-hour cost of the algorithm is 𝑦 and this
reduces the cost of executing a model prediction by 𝑥 , to be done 𝑘 times over, then the eco-benefit
of AutoDL is felt for 𝑘 > 𝑦/𝑥 . Admittedly, the rules change for a persistent AutoDL process, such as
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continuous monitoring and maintenance. In such a case, the costs of adaptation must be weighed
up more carefully [321]. Regardless, analysis in this area is made challenging by how many levels of
indirection exist between a line of code and a carbon emission. Different platforms are optimized in
different ways, every hardware system appears to have its own unique setup, and checking power
usage at a socket is complicated when AutoDL operations are done remotely or in a decentralized
manner. Politics may obscure matters further, especially for corporations that are most likely to
have the resources to cause significant impact, and even national grids vary in their proportion
of renewable energy. So, while there is an increasing drive towards eco-friendly solutions in the
community, it is unlikely an associated metric will be benchmarked widely any time soon.

9.3 Challenges and Opportunities
While the previous section emphasized that the AutoDL story has, up to this point, primarily been
a NAS story, it does not have to remain that way. In fact, the abbreviation of AutoDL exists to
make that distinction, acknowledging that automating high-level operations for DL does not end at
constructing a neural network, even if NAS will always remain a core facet of the endeavor. Thus,
given how nascent the entirety of the field is, the AutoDL community, however it continues to
self-assemble, faces an arguably exciting opportunity to decide what matters most to it within the
coming years.

Here, we briefly summarize the five most likely driving forces for future research, as extrapolated
from the outcomes of this review. They are: (1) democratized AutoDL, (2) large-scale AutoDL, (3)
persistent AutoDL, (4) integrated AutoDL, and (5) self-assembling AutoDL. The listing is in order
of least-to-most challenging, although any such forecast is naturally subjective.

Democratized AutoDL. This is the path towards usability. It relies on making AutoDL ap-
proaches as accessible to the general public as possible. In principle, it is also the easiest path to
progress along, as most of the challenges here are organizational, related to engineering quality,
rather than fundamental. Certainly, there are already several AutoDL-related libraries in existence
that have high-quality codebases [74, 188, 204, 319]. However, implementations are usually scat-
tered and ad hoc; there is currently no automatic way to evaluate AutoDL code, even though this
review has motivated several pertinent questions in Table 10. There is also a challenge to define
protocols that can appropriately support AutoDL experiments and maintain related codebases. It
does not serve the community well if every new AutoDL algorithm is released in an isolated library
that is abandoned after a year. In short, as is progressively being shown for AutoML, there is plenty
of interest in industry to leverage the capabilities of AutoDL, and plenty of real-world impact that
can be achieved, if only AutoDL was easier to use.

Large-scale AutoDL. This is the path towards capability. It relies on finding ways to make
AutoDL algorithms more powerful, capable of grappling with larger datasets, target models, and
search spaces. The driving impetus here is as for democratization, specifically the potential for broad
real-world usage beyond academia. However, while this path does not directly concern itself with
who is employing AutoDL, it is concerned with what AutoDL will be employed upon, namely DL
problems that do not hold back in scale. Granted, the automation of data preparation, architecture
design, and deployment has already shown some good progress on large-scale classification datasets,
and this is why such a direction is not profoundly challenging. Nonetheless, it is an ongoing process
to push the power of AutoDL further without relying on computational resources to evolve in the
background. Simply put, intelligent search space design and other cost-cutting tricks will need to
be developed even further to extend the capability of AutoDL.

Persistent AutoDL. This is the path towards autonomy. It relies on developing robust AutonoDL
mechanisms that can adapt DL models, in the absence of human control and oversight, to time-
dependent performance deterioration. We stress that this is a weak form of autonomy, in that
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the AutonoDL system is still performing the DL task that a human requires of it, but the system
is nonetheless autonomously improving and maintaining its predictive/prescriptive ability. Of
course, as this review has shown, the AutoDL community has not, by and large, put their focus on
dynamic data environments; learning well in static environments is challenging enough. This is
clear from the computational resources required for regular updates, as well as the fundamental
challenges associated with connectionist structures, e.g., catastrophic interference. However, it is a
major shortcoming to ignore this endeavor in the long run, especially as current global events have
shown how detrimental it is to rely on fragile static models. On the plus side, research activity
into adaptive learning, both recent and historical, has been both intensive and extensive, despite
its scattered nature. Present efforts in topics such as domain adaptation and low-shot learning
facilitate speedier model retraining for new contexts, and many proposals exist on how to elevate
DL into a state of lifelong learning [198]. It will naturally take a concerted effort by sections of the
AutoDL community to push forward an AutonoDL agenda, but the theoretical foundations are
there to mitigate inherent challenges.

Integrated AutoDL. This is the path towards consolidation. It relies on researching and de-
veloping effective frameworks that are able to automate the entire DL workflow in Figure 1. It is
a significant step up from existing works that usually only focus on one phase of the workflow,
typically model development, even though it is becoming clear that, in terms of both usability and
even performance, combining multiple mechanisms can be optimal [264]. Of course, the challenges
of designing integrated architectures are numerous and have been discussed at length in the context
of AutonoML [140]. Admittedly, ensuring that the constituent mechanisms are sufficiently general
is a novel one to AutoDL. Perhaps, the design of an overarching framework should contain a
switching capability that activates white-box algorithms for when DL problems are amenable, and
black-box/gray-box algorithms for where white-box assumptions fail. Whatever the case, installing
and using a single monolithic AutoDL system, rather than haphazardly cobbling together poorly
interoperable mechanisms, remains an appealing goal within the field.

Self-assembling AutoDL. This is the path towards emergence. It relies on reassessing the
handcrafted nature of AutoDL approaches themselves, seeking alternative ways to evolve better
methods from scratch. As of such, it is the most speculative pathway on account of being a paradigm
shift in the way that AutoDL is researched. Nonetheless, it is not a whimsical notion; many self-
assembly algorithms are very robust, as they typically do not internalize assumptions about a
solution space, i.e., in this case, what an AutoDL method should look like. Of these mechanisms,
many researchers are most familiar with evolutionary procedures, typically involving population-
based mechanics to evolve solutions, but there are also alternative forms of “algorithmic growth”
that are based on iteratively unfolding complexity to meet the demands of a task. These latter
processes have been discussed in the context of biological brain development [109]. Whatever the
mechanism, the idea is that, constrained primarily by the primitives involved, e.g., basic functions,
self-assembling AutoDL will gravitate towards whatever works well.
Now, there are obvious reasons why self-assembling AutoDL is considered the most difficult

goal of the five listed in this section. A major prohibiting factor is computational complexity, made
strongly evident when a DL model-optimizer is itself optimized. It is also largely unnecessary to
consider holistic self-assembly when AutoDL is still focused on individual mechanisms, rather than
how best to mesh them together [140]. Nonetheless, existing works have explored this direction in
limited domains [170, 216], and the idea is attractive. While human expertise can prove beneficial, in
that prescribed algorithms and search spaces are often speedy warm-starts towards good solutions,
there is no guarantee that human biases do not obscure the very best solutions. Indeed, perhaps
superior NAS algorithms combine unusual optimization methods with bizarre search spaces and
unpredictably delegated model-evaluation boosts. A human would likely never consider this, but a
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suitable self-assembling process may well stumble upon an emergent design pattern that is both
novel and effective. So, although there are many more pressing aims for the field of AutoDL, such
as consistently decent functionality, it would be remiss to not acknowledge that the high-level
algorithms may themselves turn out even better if sought out by an automated process.

10 CONCLUSIONS
In this monograph, we have surveyed a vast body of literature, mostly recent, aiming to automate DL
at a high level. Rather than focus solely on NAS, which is often treated as the be-all and end-all of this
endeavor, we have emulated a previous review on AutonoML [140] by taking a broader perspective
of AutoDL research and examining it with respect to an encompassing conceptual framework: a
DL workflow. In the process of doing so, we have also noted deficiencies in the field stemming
from both publication oversaturation and, more often than not, a lack of theoretical/experimental
treatment that is both rigorous and holistic. We have thus also proposed an extensive set of criteria
by which, within this work, assessments of algorithm-focused trends in AutoDL are made; we
hope to stimulate further contemplation within the DL community as to how a clearer picture of
progress can be better supported.

All the foundations for this review were established in Section 2, which not only discussed how
the fields of AutoML and AutoDL relate and differ – key considerations included the structure
of ML/DL solutions and the computational cost of training – but also elaborated the following
notions:

• The DLworkflow, which covers the phases of problem formulation and context understanding,
data engineering, model development, deployment, and monitoring and maintenance.

• The assessment criteria, which cover novelty, accuracy, efficiency, stability, interpretability,
reproducibility, engineering quality, scalability, generalizability, and eco-friendliness.

The subsequent content of the review and certain key conclusions are summarized as follows:
• Section 3 noted that any DL application starts with problem formulation, and there is certainly
room for elements of this to be automated to some degree. However, it was acknowledged
that the reliance on human involvement would be most challenging to reduce here and, as of
such, this phase of a DL workflow has negligible presence in AutoDL research.

• Section 4 examined automated data engineering, categorizing research trends into the supple-
mentary generation of data/labels and the intelligent exploitation of DL model inputs via data
augmentation/selection. Although relatively untouched under the lens of automation in DL,
data engineering appears to have greater long-term returns on model accuracy than model
engineering, suggesting that attention to this area will grow over time. This may potentially
improve, as a generalization, the relatively weak efficiencies of associated approaches.

• Section 5 examined NAS, dissecting algorithms for constructing neural networks into the
spaces that they search, the optimization strategies that they use, and the tactics that they
employ to mitigate expensive model training, if any. This is where the bulk of publications
in AutoDL exists, so the topic is well advanced. Even so, the assessment within this review
has identified gaps in knowledge here and there, mostly revolving around prerequisites to
the maturation of an exploratory field. Specifically, while NAS research is responsible for
many algorithms capable of producing high-performance DL models, it is generally not
interpretable which elements of a NAS algorithm contribute to that performance, nor is it
clear in which contexts that performance is reproducibly attainable.

• Section 6 examined HPO – in AutoDL this conventionally refers to optimizing training-
algorithm hyperparameters – and categorized associated approaches by how much they
leverage assumptions/knowledge about a training algorithm and hyperparameter space, i.e.,
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black-box, gray-box, and white-box. Historically serving as the first expansion of AutoDL
beyond NAS, the topic is similarly well studied, especially black-box HPO and, augmented
by tactics to minimize the sampling/training of candidate models, gray-box HPO. White-box
HPO is newer to the scene, folding HPO into model training for dramatic efficiency boosts,
and its strong promise has yet to be validated by rigorous reproducibility studies.

• Section 7 examined automated deployment, with deployment-aware AutoDL and hardware
search describing, with respect to a DL model and its deployment environment, which
of the two is modified to suit the other one. Relatively untouched, in similar fashion to
automated data engineering, the topic nonetheless possesses enough research literature to
form a preliminary overview, and it seems likely that attention to this area will intensify in
the future as AutoDL continues to be translated from predominantly academic settings to
real-world applications. For now, the assessment found that progress in hardware search
moves slower than in deployment-aware AutoDL, although this is understandable given
that hardware is extremely non-standardized; this does not diminish the importance of the
endeavor.

• Section 8 examined automated maintenance, although it acknowledged the challenges of DL,
primarily relating to computational costs, that currently make model adaptation frequently
infeasible, at least in online fashion. Nonetheless, while there is too little automation-specific
research in this area for a substantial assessment, the importance of this phase of the DL
workflow to many real-world applications warranted far more in-depth consideration than for
automated problem formulation. Accordingly, scenarios for how dynamic data environments
may change were discussed, and presently favored paradigms for efficiently training a model
around such dynamics were reviewed. These approaches were categorized into domain
adaptation, low-shot learning, and continuous learning.

Following the survey, Section 9 focused back on the assessment criteria proposed in this monograph,
discussing a possible way in which AutoDL researchers may self-assess and report their theoreti-
cal/experimental investigations, so as to better foster a research environment that is conducive
to accelerated progress in the field. Then, driven by the same criteria, the section concluded by
presenting and discussing an overarching perspective of AutoDL as of the early 2020s, as well as a
summary of how the field may evolve in pursuit of: usability, capability, autonomy, consolidation,
and emergence.
Ultimately, this review concludes that AutoDL sits in an unusual position, having made ex-

ceptional progress in certain areas while also remaining far short of its potential. Granted, it is
a nascent endeavor, and there are physical realities that keep general progress restrained; it is
unlikely that an end-to-end integrated system for processing DL applications will be seen any time
soon, even as the related field of AutoML seems to be moving in that direction [140]. Nonetheless,
the trajectory of AutoDL in the broadest sense is also unnecessarily hindered by human factors,
such as an all-too-common disregard, intentional or otherwise, for problems other than NAS, goals
other than model accuracy, time periods other than the last few years, and so on. We hope that this
survey challenges such narrow perspectives, supporting the DL community with an encompassing
overview of “what is” and “what can be” in AutoDL.
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[321] Indrė Žliobaitė, Marcin Budka, and Frederic Stahl. 2015. Towards cost-sensitive adaptation: When is it worth updating
your predictive model? Neurocomputing 150 (feb 2015), 240–249. https://doi.org/10.1016/j.neucom.2014.05.084

[322] Indre Zliobaite and Bogdan Gabrys. 2014. Adaptive preprocessing for streaming data. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 26, 2 (2014), 309–321.

[323] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V Le. 2020. Learning data
augmentation strategies for object detection. In Proceedings of the European Conference on Computer Vision (ECCV).
Springer, 566–583.

[324] Barret Zoph and Quoc V Le. 2017. Neural architecture search with reinforcement learning. In International Conference
on Learning Representations (ICLR).

[325] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning transferable architectures for scalable
image recognition. In Proceedings of the IEEE Conference Computer Vision Pattern Recognition (CVPR). 8697–8710.

https://doi.org/10.1016/j.neucom.2014.05.084

	Abstract
	1 Introduction
	2 AutoDL: An Overview
	2.1 The DL Workflow
	2.2 Connections to AutoML
	2.3 AutoDL Beyond AutoML
	2.4 Assessment Criteria for AutoDL Research

	3 Automated Problem Formulation
	4 Automated Data Engineering
	4.1 Supplementary Generation
	4.2 Intelligent Exploitation
	4.3 Overview

	5 Neural Architecture Search
	5.1 Search Space
	5.2 Search Strategy
	5.3 Efficient Candidate Evaluation
	5.4 Overview

	6 Hyperparameter Optimization
	6.1 Black-box HPO Approaches
	6.2 Gray-box HPO Approaches
	6.3 White-box HPO Approaches
	6.4 Limitations in Applicability
	6.5 Overview

	7 Automated Deployment
	7.1 Deployment-aware AutoDL
	7.2 Hardware Search
	7.3 Overview

	8 Automated Maintenance
	8.1 The Challenges of Online Learning
	8.2 Scenarios for Continuous Monitoring
	8.3 The Current Paradigms of Maintenance
	8.4 Overview

	9 Critical Discussion and Future Directions
	9.1 A Proposed Questionnaire for Self-assessment
	9.2 An Overarching Evaluation of AutoDL
	9.3 Challenges and Opportunities

	10 Conclusions
	References

