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Abstract

Demonstration learning is a powerful and practical technique to de-

velop robot behaviors. Even so, development remains a challenge and

possible demonstration limitations, for example correspondence issues

between the robot and demonstrator, can degrade policy performance.

This work presents an approach for policy improvement through a tac-

tile interface located on the body of the robot. We introduce the Tactile

Policy Correction (TPC) algorithm, that employs tactile feedback for

the refinement of a demonstrated policy, as well as its reuse for the

development of other policies. The TPC algorithm is validated on hu-

manoid robot performing grasp positioning tasks. The performance of

the demonstrated policy is found to improve with tactile corrections.

Tactile guidance also is shown to enable the development of policies

able to successfully execute novel, undemonstrated, tasks. We further

show that different modalities, namely teleoperation and tactile control,

provide information about allowable variability in the target behavior

in different areas of the state space.
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1

Introduction

The realization of physical movement is fundamental to many robotics

applications. Whether operating in industrial and laboratory settings,

or within general society, physically embodied robots typically are

tasked with the execution of physical actions, thus requiring an al-

gorithm for motion control. Over the years a variety of approaches for

motion control have been proposed, with many resulting in impressive

robot capabilities. The development of control paradigms becomes in-

creasingly difficult however as robot and domain complexities grow,

for example with high degree-of-freedom manipulators or interactions

with compliant objects. Often traditional approaches that define ex-

plicit mathematical models of the world, and from these derive rules

for control, struggle to scale with increasing complexity. Moreover, the

development of a control paradigm for any robot platform is confounded

by difficulties such as noisy sensors and inaccurate actuation.

In the face of such challenges, to develop robust control algorithms

typically requires a significant measure of expertise and effort from the

developer. The advancement of techniques that reduce the demands

placed on a developer therefore are desirable. We introduce in this ar-

ticle an approach to policy development in which corrections provided

1
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Fig. 1.1 Our approach of a) task demonstration, followed by tactile correction of the learned
policy for b) refinement of the demonstrated behavior and c) its reuse in the development

of other policies. Black solid arrows indicate demonstrated or corrected executions, black
dashed arrows generalization executions and white arrows human hand movement.

by a teacher through a tactile interface are used to adapt and improve a

policy. Our Tactile Policy Correction (TPC) algorithm initially derives

a policy via Learning from Demonstration (LfD) techniques (Fig. 1.1a).

Under LfD, a robot learner generalizes a policy from data recorded dur-

ing the execution of a target behavior by a task expert. Our approach

then has a human teacher provide policy corrections through a tactile

interface located on the body of the robot. The corrections indicate

relative adjustments to the robot pose, and thus to the policy predic-

tions. The teacher provides corrections in order to accomplish one of

two goals, and how corrections are incorporated into the policy differs
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for each. The first goal is to refine a policy during execution, and thus

to improve its performance based on execution experience (Fig. 1.1b).

The second goal is to assist in policy reuse, by guiding an existing

policy towards accomplishing a different task (Fig. 1.1c).

We validate our approach on a humanoid robot performing end-

effector positioning tasks. We show that policies produced under our

policy derivation technique are flexible with respect to variability seen

between the teacher demonstrations, and furthermore that different

teaching modalities (i.e. task demonstration, tactile correction) pro-

vide information about acceptable execution variability within differ-

ent areas of the state space. The performance of a policy learned from

demonstration is shown to improve after refinement through tactile

corrections. Successful policy reuse also is validated. Through tactile

guidance, executions with existing policies are iteratively adjusted to-

wards producing new behaviors, with the result of policies able to exe-

cute alternate, undemonstrated, tasks. Tactile corrections thus enable

the development of new policies, bootstrapped on the reuse of a policy

learned from demonstration.

The remainder of this chapter reports on the related literature

that supports this work. Chapter 2 introduces the TPC algorithm and

presents our implementation in detail. Experimental setup and results

are reported in Chapter 3. A discussion of our approach and findings

are provided in Chapter 4, followed by concluding remarks.

1.1 Background and Motivation

We begin with a discussion of policy development under Learning from

Demonstration (LfD), followed by existing approaches to policy refine-

ment and reuse within LfD.

1.1.1 Learning from Demonstration

Under LfD, teacher executions of a desired behavior are recorded and

a policy is derived from the resultant dataset. LfD has seen success in a

variety of robotics applications, and has the attractive characteristics of

being an intuitive means for human teacher to robot learner knowledge

transfer, as well as being an accessible policy development technique for
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those who are not robotics-experts. There are many design decisions to

consider when building an LfD system. These range from who executes

the demonstrations and how they are recorded, to the technique used

for policy derivation. Here we overview only those decisions specific

to our particular system, and refer the reader to Argall et al. (2009)

and Billard et al. (2008) for a full review of robot LfD.

When recording and executing demonstrations the issue of corre-

spondence is key, where teacher demonstrations do not directly map

to the robot learner due to differences in sensing or motion (Nehaniv

and Dautenhahn, 2002). Correspondence issues are minimized when the

learner records directly from its own sensors while under the control

of the teacher. For example, under teleoperation the teacher remotely

controls the robot platform (e.g. Sweeney and Grupen (2007)), while

under kinesthetic control the teacher touches the robot to guide the

motion (e.g. Calinon and Billard (2007)). Teleoperation requires an in-

terface for the direct control of all degrees of freedom on the robot. By

contrast, kinesthetic teaching requires a (passive or active) responsive-

ness to human touch, for example back-drivable motors or force-torque

sensing in the joints. Both techniques are employed in our work.

Many approaches exist within LfD to derive a policy from the

demonstration data (Argall et al., 2009), the most popular of which

either directly approximate the underlying function mapping obser-

vations to actions, or approximate a state transition model and then

derive a policy using techniques such as Reinforcement Learning (Sut-

ton and Barto, 1998). Our work derives a policy under a variant of

the first approach, where probabilistic regression techniques are used

to predict a target robot pose based on world state, and a controller

external to the algorithm selects an action able to accomplish this tar-

get pose. Our reason for splitting policy prediction into these two steps

is tied to the mechanism by which the algorithm responds to tactile

feedback (discussed in Sec. 2.1).

1.1.2 Policy Refinement and Reuse

Even with the advantages secured through demonstration, policy de-

velopment typically is still non-trivial. To have a robot learn from its
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execution performance, or experience, therefore is a valuable policy im-

provement tool for any development technique. Within the context of

LfD specifically, execution experience can be used to overcome limita-

tions in the demonstration dataset. One possible limitation is dataset

sparsity, since demonstration from every world state is infeasible in all

but the simplest domains. Other limitations include poor correspon-

dence between the teacher and learner or deficiencies in the teacher,

who may in fact provide suboptimal or ambiguous demonstrations.

Here we consider policy refinement and policy reuse as two techniques

to assist the development process, or equivalently to reduce the strain

on the policy developer.

Within demonstration learning, a variety of approaches incorporate

information gathered from experience in order to refine a policy. For ex-

ample, execution experience is used to update reward-determined state

values (Guenter et al., 2007; Kober and Peters, 2009; Stolle and Atke-

son, 2007) and learned state transition models (Abbeel and Ng, 2005;

Bagnell and Schneider, 2001). Other approaches provide more demon-

stration data, driven by teacher-initiated demonstrations (Calinon and

Billard, 2007) as well as by learner requests for more data (Chernova

and Veloso, 2008; Grollman and Jenkins, 2007). In this work, we also

provide more data, but using a different control mechanism than during

the initial teacher demonstrations; specifically, teleoperation is used for

the initial demonstration data, and a form of hybrid kinesthetic control

when producing the refinement data.

Policy reuse under LfD occurs most frequently with behavior prim-

itives, or simpler policies that contribute to the execution of a more

complex policy. Hand-coded behavior primitives are used within tasks

learned from demonstration (Nicolescu and Mataric, 2003), demon-

strated primitives are combined into a new policy by a human (Saun-

ders et al., 2006) or automatically by the learning algorithm (Argall,

2009), and demonstrated tasks are decomposed into a library of primi-

tives (Bentivegna, 2004). The focus of our approach is instead on adapt-

ing an existing policy to accomplish a different task, rather than incor-

porating the existing behavior as a subcomponent of a larger task.
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1.1.3 Tactile Corrections

To enable policy refinement and reuse, the approach taken in this work

is to provide corrections on a policy execution. Corrections have the ad-

vantage of providing guidance on a more suitable alternate prediction

for the policy, instead of requiring that this be inferred from an indi-

cation of prediction quality, as state reward does for example. Having

directed feedback becomes particularly relevant when guiding a policy

towards accomplishing a novel behavior.

Within LfD policy correction has seen limited attention, and most

examples consider a human teacher selecting the correct prediction

from a discrete set of actions with significant time duration (Chernova

and Veloso, 2008; Nicolescu and Mataric, 2003). The target application

domain for our work however has policies making continuous-valued

predictions at a rapid rate, and both features complicate the individ-

ual selection of a single alternate prediction to serve as the correction.

To address these challenges, we translate feedback from a tactile sensor

into continuous-valued modifications of the current pose online, as the

robot executes. In contrast to other work with continuous-valued cor-

rections (Argall, 2009), we offer corrective feedback online, instead of

post-execution, and through a tactile interface, instead of a high-level

computational language.

We posit that tactile feedback furthers many of the strengths of

demonstration-based learning. Namely, humans already use touch to

instruct other humans in certain contexts; for example when demon-

strating a motion, like a tennis swing, that requires a particular position

trajectory. To augment demonstration learning with tactile feedback

therefore is one natural extension to the idea of teaching robots as

humans teach other humans. Demonstration-based policy development

also is accessible to those who are not robotics experts, and possibly

operating robots outside of laboratory or industrial settings. Here the

detection of tactile interactions can be critical for safe robot opera-

tion around humans, and so tactile sensing gains importance on a very

fundamental level. These tactile sensing capabilities might then be ad-

ditionally exploited, to transfer knowledge from human to robot for the

purpose of behavior development.
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Within the field of robot learning (including but not restricted to

LfD), only a handful of works utilize human touch for the develop-

ment of robot behaviors. For example, tactile feedback is detected in

order to minimize resistance to movement during demonstration with

an industrial arm (Grunwald et al., 2003), and to minimize the support

forces provided by a teacher during humanoid behavior learning (Mi-

nato et al., 2007). Tactile interactions between a robotic pet-surrogate

and elderly patients also are mapped to reward signals, that are used

within a Reinforcement Learning paradigm to adapt behavior selec-

tion (Wada and Shibata, 2007).

1.2 Our Approach

In summary, the approach presented in this paper employs tactile cor-

rections to modify a policy learned through demonstration, for the

purpose of both policy refinement and policy reuse.

Our target application domain is low-level motion control for high

degree-of-freedom (DoF) robots. To specify a target behavior for each

joint is complicated, and systems typically are under-constrained, re-

sulting in for example many joint configurations mapping to a sin-

gle end-effector pose. The ability to exploit previously learned domain

knowledge for the development of new policy behaviors, i.e. policy

reuse, thus is advantageous. Performance might suffer however if the

reused policy provides only an approximation to the new target behav-

ior. Moreover, while the use of demonstration for policy development is

practical for many reasons, it is limited by the interface controlling the

demonstration, the quality of which furthermore frequently degrades as

the degrees of freedom to control increase. We aim to overcome policy

deficiencies through refinement.

To accomplish both refinement and reuse, the policy incorporates

new behavior examples. Instead of producing the examples from teacher

demonstration however (Calinon and Billard, 2007; Chernova and

Veloso, 2008; Grollman and Jenkins, 2007), which would be unable to

improve upon limitations like a poor demonstration interface, we have

the student respond online to corrections indicated by a teacher and

treat the resultant trajectory as new training data. Providing explicit
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corrections has been seldom used within the LfD paradigm (Chernova

and Veloso, 2008; Nicolescu and Mataric, 2003), especially when the

corrections are continuous-valued and rapidly sampled (Argall, 2009).

We provide corrections through a tactile interface. In addition to be-

ing a technique that is relatively unaddressed to date within the robot

learning literature in general (Minato et al., 2007; Wada and Shibata,

2007), and LfD literature in particular (Grunwald et al., 2003), we argue

that information transfer through human touch is a natural extension

of human demonstration, as an intuitive and effective mechanism for

the transfer of knowledge from human to robot.



2

The Tactile Policy Correction Algorithm

We introduce Tactile Policy Correction (TPC) as an algorithm for the

refinement and reuse of motion policies, accomplished via tactile feed-

back from a human teacher (Argall et al., 2010). A policy initially

is derived from demonstrations of a task by a teacher. Through tac-

tile corrections, the policy then either is refined to better perform the

demonstrated task, or modified to accomplish an undemonstrated task

and thus reused in the development of a new policy. An overview of

the algorithm flow is provided in Figure 2.1, and pseudo-code for this

approach in Algorithm 1.

We formally define the world to consist of actions a ∈ A and obser-

vations z ∈ Z of world state, where a ∈ R
ℓ and z ∈ R

(m+n). An obser-

vation z consists of two components, z = (zϕ, z¬ϕ), where zϕ ∈ R
m

describes the robot pose, and z¬ϕ ∈ R
n describes any other observables

that are of interest to the policy.1 We define a demonstration to consist

of a sequence of Nd observations {zj}Nd

j=1, recorded during teacher exe-

cution of the task. A policy π : Z → A is derived from the collected set

1Pose information is necessary for the TPC algorithm, and so zϕ 6= ∅. The presence of
additional observation information however is application-dependent, and possibly absent

such that z¬ϕ = ∅.

9
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Fig. 2.1 Flow overview of the Tactile Policy Correction algorithm under the operational

modes of refinement and reuse.

D = {zj}Nj=1 of N datapoints from multiple demonstration executions.

2.1 Algorithm Execution

The first phase of the TPC algorithm consists of task demonstration

by the teacher, producing dataset D from which the learner derives

an initial policy π. The second phase of the algorithm involves learner

execution with the policy π, and corrective tactile feedback which is

used to adapt π. This execution-correction-adaptation cycle continues

to the satisfaction of the teacher.

A single execution-correction-adaptation cycle is presented in Al-

gorithm 1. Policy execution (lines 8-10) at timestep t consists of two

phases: prediction of a target pose ẑt
ϕ, and the selection of an action

to accomplish that pose. Pose prediction is accomplished via regression

techniques, based on state observation zt−1 (line 9). Action selection is

accomplished via a robot-specific controller, and its execution results

in a new robot pose zt
ϕ (line 10).

The human teacher may choose to offer a tactile correction at any

timestep of the execution. If detected, the robot learner translates the

tactile feedback into an incremental shift δtǫ ∈ R
m in robot pose, ac-

cording to mappingM (line 12). Note that the form taken by the tactile
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Algorithm 1 Tactile Policy Correction
1: Given D

2: initialize δ
0 ← 0

3: derive π ← policyDerivation(D)
4: set refine = true ∨ reuse = true

5:

6: while correcting do

7: initialize δtǫ ← 0

8: Policy π execution:
9: predict ẑ

t
ϕ ← regression

(

z
t−1

)

10: execute z
t
ϕ ← controller

(

ẑ
t
ϕ + δ

t−1
)

11: if {detect touch} then
12: map δ

t
ǫ ← M (touch)

13: correct z
t
ϕ ← controller

(

z
t
ϕ + δ

t
ǫ

)

14: end if

15: record δ
t ← δ

t−1 + δ
t
ǫ

16: if {refine} then
17: set wt

18: record D ← D ∪
(

z
t, wt

)

19: else {reuse}
20: select Ds ⊆ D

21: replace z
i
ϕ ← z

i
ϕ + δ

t , ∀zi ∈ Ds

22: end if

23: end while

24:

25: if {refine} then
26: rederive π ← policyDerivation(D)
27: return π

28: else {reuse}
29: derive π′ ← policyDerivation(D)
30: return π′

31: end if

feedback is platform-specific, depending both on the tactile sensors em-

ployed to detect contact and how the sensor feedback is processed.

The robot controller is then passed the new adjusted pose, for which

the incremental shift δtǫ is added to the current robot pose zt
ϕ (line 13).

The influence of this incremental shift is maintained over multiple

timesteps, through an offset parameter δt ∈ R
m that maintains a sum

of all adjustments seen during the execution (line 15) and is added to

the pose prediction at each execution timestep (line 10).

How the pose adjustment is recorded into the policy is handled
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differently for policy refinement versus policy reuse:

• For policy refinement, the corrected execution is treated as

new data for the policy (lines 16-18). Observation zt, and a

weight wt ∈ [0, 1] for the new datapoint (details in Sec. 2.4.1),

are recorded into the set D. The tactile correction thus also

is recorded since the current pose, that has responded to the

tactile feedback, is recorded through component zt
ϕ ∈ zt.

• For policy reuse, the indicated correction is applied to exist-

ing points within the dataset (lines 19-21). A subset of points

Ds ⊆ D are selected, and the offset δt is applied to their pose

components zϕ (details in Sec. 2.4.2).

In both cases the dataset D is modified and, upon completion of the

entire execution, a policy is derived from this set. In the case of re-

finement, the existing policy π is replaced with an updated version via

rederivation (line 26). In the case of reuse, a new policy π′ is derived,

leaving the original policy π unchanged (line 29).

Important to note is that the TPC algorithm is generic with respect

to the techniques used for pose prediction (regression) and action

selection (controller) during policy execution, as well as to the tech-

nique that translates tactile feedback into a pose adjustment (mapping

M). The following sections (2.2-2.3) will describe the particular tech-

niques we employ for the implementation of the TPC algorithm within

this article.

2.2 Policy Execution

This section describes policy execution under our implementation of

the TPC algorithm. For pose prediction, Gaussian Mixture Regression

is employed (Sec. 2.2.1) along with a modification to allow for execu-

tion variability (details in Sec. 2.5), and for action selection an inverse

kinematic controller (Sec. 2.2.2).
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2.2.1 Pose Prediction

Target poses are predicted through the GMM-GMR algorithm (Calinon

and Billard, 2007), which first encodes demonstrations in a Gaussian

Mixture Model (GMM) and then predicts a target pose through Gaus-

sian Mixture Regression (GMR) (Cohn et al., 1996). The parameters

of the GMM are trained under a weighted version of the Expectation-

Maximization (EM) algorithm. Full details of the GMM-GMR process

and our weighted EM implementation are provided respectively in Ta-

bles 2.1 and 2.2.

Our implementation defines observation component zϕ as the

Cartesian position x ∈ R
3 and orientation q ∈ R

4 (as a quaternion,

‖q‖ = 1) of the end-effector in a robot-centric reference frame. Thus

zϕ ≡ [x, q] ∈ R
7. We further define component z¬ϕ ≡ τ ∈ R as the

time of the recorded observation. The GMM thus models the joint prob-

ability of the temporal and spatial aspects of the demonstrations. To

make a pose prediction, GMR estimates the conditional expectation of

zϕ given z¬ϕ; formally, the expectation E (p (x, q|τ)), also referred to

as the marginal joint probability pτ (x, q).

The output of GMM-GMR is a mean trajectory and associated co-

variance envelope. Our formulation additionally takes advantage of the

probabilistic nature of this regression technique to generate variabil-

ity, and thus flexibility, in the predicted trajectory. The details of our

approach to deviating from the regression trajectory are provided in

Section 2.5.

2.2.2 Action Selection

Given a target pose ẑϕ, action selection is accomplished via an inverse

kinematic controller. Our action space A consists of the 7-DoF velocity

vector θ̇ ∈ R
7 controlling the joint angles of a robot arm. The manip-

ulator of our implementation (Sec. 3.1) is redundant, as the number of

degrees of freedom (7) exceeds the number of constraints (6, position

and orientation). We therefore compute desired joint angle velocities θ̇

according to the distance between the target pose ẑt
ϕ and the current

robot pose zt
ϕ by using a pseudo-inverse method that both avoids joint

limits and is robust to singularities (Baerlocher and Boulic, 2004).
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Table 2.1 Gaussian Mixture Regression (GMR)

The demonstrations within dataset D are modeled probabilistically within
a Gaussian Mixture Model (GMM), that defines for each point z

j ∈ D a
probability function given by a mixture of K Gaussian components

p(zj) =
K
∑

k=1

p(k) p(zj |k) =
K
∑

k=1

γk N
(

z
j ;µk,Σk

)

where γk is the prior of the kth component, and N
(

z
j ;µk,Σk

)

is a Gaus-
sian distribution with mean µk and covariance Σk. The optimal number of

components K is determined according to the Bayes Information Criterion
(BIC). In this work, a datapoint z

j consists of two parts: pose z
j
ϕ (≡ [x, q])

and timestamp z
j
¬ϕ (≡ τ), which for notational simplicity we reference here

respectively with ϕ and τ . To compute a conditional expectation of ϕ given τ

(i.e. zϕ given z¬ϕ) for each component k, we first define

µk =
(

µτ,k, µϕ,k

)

, Σk =

(

Σττ,k Στϕ,k

Σϕτ,k Σϕϕ,k

)

and Gaussian Mixture Regression (GMR) then uses

p (ϕk|τ, k) ∼ N
(

ϕk; µ̂ϕ,k, Σ̂ϕϕ,k

)

µ̂ϕ,k = µϕ,k +Σϕτ,k

(

Σττ,k

)−1 (
τ − µτ,k

)

Σ̂ϕϕ,k = Σϕϕ,k − Σϕτ,k

(

Σττ,k

)−1
Στϕ,k

to provide the expected distribution of ϕ given τ for component k (i.e. zϕ,k

given z¬ϕ) . Finally, by considering all of the components k and their regression
priors βk(τ), a target pose ẑϕ is predicted with mean µ̂ϕ and covariance Σ̂ϕϕ

according to

µ̂ϕ =

K
∑

k=1

βk (τ) µ̂k , Σ̂ϕϕ =

K
∑

k=1

βk (τ)2 Σ̂ϕϕ,k

βk (τ) =
p (k) p (τ |k)

∑K
i=1 p (i) p (τ |i)

=
γk N

(

τ ;µτ,k,Σττ,k

)

∑K
i=1 N (τ ;µτ,i,Σττ,i)

2.3 Tactile Corrections

Our interface for providing tactile corrections to the robot learner con-

sists of five Ergonomic Touchpads located on the manipulator arm.2

2Touchpad feedback is somewhat limited in comparison to more sophisticated tactile sen-
sors. In practice corrective repositioning is not always as responsive as the teacher requires,
and so we pause policy execution such that psuedo-code lines 12-13 loop until reposition-
ing is complete. Note that this limitation results from a deficiency in hardware, not the

algorithm. The validation of TPC with a more sophisticated tactile sensor is under active
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Table 2.2 Weighted Expectation-Maximization (EM)

Our weighted version of the EM algorithm modifies GMM-GMR parameter es-
timation to include weight wj ≥ 0, ΣN

j=1w
j > 0. The algorithm loops between

the E-step and M-step until the overall likelihood
∑K

k=1 Ek is maximized:
E-step:

p
(i+1)
k,j

=
γ
(i)
k

N
(

z
j ;µ

(i)
k

,Σ
(i)
k

)

ΣK
ik=1γ

(i)
ik

N
(

zj ;µ
(i)
ik

,Σ
(i)
ik

)

E
(i+1)
k

= ΣN
j=1w

jp
(i+1)
k,j

M-step:

γ
(i+1)
k

=
E

(i+1)
k

ΣN
j=1w

j

µ
(i+1)
k

=
ΣN

j=1w
jp

(i+1)
k,j

z
j

E
(i+1)
k

Σ
(i+1)
k

=
ΣN

j=1w
jp

(i+1)
k,j

(

z
j − µ

(i+1)
k

)(

z
j − µ

(i+1)
k

)T

E
(i+1)
k

The pads detect contact presence and relative motion, which we map

to a change in end-effector position and orientation.

Four touchpads, T0 · · ·T3, encircle the lower forearm of the robot

arm (near the wrist), and one, T4, is located on the back of the robot

hand (Fig. 2.2a,b). Touch data from pad Tk, k = 0..4, consists of a 2-

D relative change in pixels
(

∆utk,∆vtk
)

. The target pose adjustement

δtǫ is computed using the forward kinematic function f of the whole

arm, such that δtǫ = f(θt + θ̇
t
∆t) − ẑt

ϕ. Here θt is the current joint

configuration, ∆t the timestep for touchpad data capture, ẑt
ϕ the target

pose predicted by the regression model, and θ̇
t
the joint velocity to

accomplish the adjustment, the computation for which is described

next. In practice, we decompose the mapping M 7→ δǫ into two distinct

parts that operate separately on the wrist and hand, as this seemed a

more intuitive mapping for the experimenters providing corrections.

The first part of the mapping M operates on the first 5-DoF leading

to the wrist of our 7-DoF manipulator. Sliding the fingers along two

development for future work.
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Fig. 2.2 a,b) Schematic of the touch pads controlling the robot wrist and hand. c,d) Fingers
sliding on opposite pads produces rotational (c) or translational (d) motions.

opposite touchpads leads either to a translational or rotational motion

command, depending on whether the sliding directions agree or not

(Fig. 2.2c,d). The velocity żt
ϕ for the pose correction is computed by

mapping touch data (in R
8, 4 pads × 2-D data) from pads T0 · · ·T3 to

a vector describing the target velocity in Cartesian-space wrist coor-

dinates, and then to robot-centric world coordinates through rotation

matrix R:

żt
ϕ =

[

R

R

]



















κν
(

−∆vt0 +∆vt2
)

κν
(

∆vt1 −∆vt3
)

κν
(

−∆ut0 −∆ut1 −∆ut2 −∆ut3
)

κω
(

−∆ut0 +∆ut2
)

κω
(

∆ut1 −∆ut3
)

κω
(

∆vt0 +∆vt1 +∆vt2 +∆vt3
)



















Constant parameters κν and κω scale respectively the translational

and rotational components of the touch data, to account for differences

in units (pixels for the tactile feedback, m
s

and rad
s

for the velocity

components). The mapping from Cartesian-space velocity żt
ϕ to joint

velocity θ̇
t

{0..5} for the first 5-DoFs in the arm then is computed using

inverse kinematics (Baerlocher and Boulic, 2004).

The second part of the mapping M operates on the last 2-DoF of

the manipulator, that control the robot hand. Touch data (in R
2, 1
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pad × 2-D data) from pad T4 thus maps directly to the target joint

velocities, such that θ̇{6..7} =
[

κν∆ut4, κν∆vt4
]

.

2.4 Policy Adaptation

Upon the completion of a corrected execution, policy adaptation is

accomplished by (re)deriving the policy from the feedback-modified

dataset. How the dataset has been modified depends on whether the

policy is being adapted for the purpose of refinement (Sec. 2.4.1) or

reuse (Sec. 2.4.2). The operational mode for the algorithm, being either

refinement or reuse, is indicated by the teacher (Alg. 1, line 4).

Policy (re)derivation consists of (re)estimating the regression pa-

rameters, again using the weighted EM algorithm (Tbl. 2.2). Though

policy execution under TPC consists both of pose prediction via re-

gression techniques and action selection by a controller, under our

implementation the controller is statically defined. Policy derivation

therefore requires regression parameter estimation only.

2.4.1 Adaptation for Policy Refinement

When tactile corrections are provided for the purpose of policy refine-

ment, new datapoints are generated by the execution-correction pro-

cess. A weight is associated with each point in the set D, and therefore

must be determined for any new datapoints as well.

Datapoint weights are assigned based on the covariance envelope of

the original GMM derived from the demonstration data. In particular,

we define weight functions for corrected executions wC(t) and demon-

strated executions wD(t) as

wC(t) = 1−
|Σ̂t

ϕϕ|
1
2

2 · Σmax
, Σmax = max

t
|Σ̂t

ϕϕ|
1
2 (2.1)

wD(t) = 1− wC(t) (2.2)

where |Σ̂t
ϕϕ| is the determinant of the GMR prediction covariance ma-

trix at time t. We then assign weight wj for datapoint zj with functions

wD(t) or wC(t), based on whether zj was part of a demonstrated or

corrected execution (respectively) and the time (τ ≡ z
j
¬ϕ) of the ob-

servation recording.
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x

t
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t

x

t

wC

t
0

1

wD δt

t
0

wC

wD

Σmax

|Σ|
^ 1

2
_

Original demonstrations

Original regression mean

Original regression covariance

Adapted demonstrations for reuse

“Reused” regression mean

Original regression covariance

“Reused” regression covariance

Corrected executions

“Refined” regression mean

Original regression covariance

“Refined” regression covariance

Refinement

Reuse

Fig. 2.3 Illustration of policy adaptation under refinement and reuse. Top center: Original
demonstration data, with associated regression mean and covariance envelope. Refinement

panel: Our weight function formulation (top), that is a function of covariance envelope size

(|Σ̂|
1

2 ). Illustration of an example weight function (middle) and how with it the covariance
envelope narrows more dramatically as time progresses and wC ≫ wD (bottom). Reuse
panel: Illustration of the accumulation of correction offsets during an execution (top), and

how this shifts the points in the dataset and thus the regression signal (bottom).

With this weight formulation, we assume teacher demonstrations

provide an accurate portrayal of the variability profile of the task. That

is, in areas of low covariance, little variability is allowed (or equiva-

lently, high precision is required) in the target task behavior, while in

areas of high covariance, much variability in the resulting behavior is

acceptable, even expected. With our weight formulation, in areas of

low covariance (|Σ̂t
ϕϕ|

1
2 ≪ Σmax), corrected datapoints are given a high

weight, and the regression signal accordingly shifts strongly. By con-

trast, in areas of high covariance (|Σ̂t
ϕϕ|

1
2 → Σmax), it is not unexpected

that executions might differ from the demonstrated behavior, and so

demonstrated and corrected execution points are given approximately

equal weight. In Figure 2.3 (Refinement panel) this weight formulation

is shown (top), as well as an example weight function (middle) and the

resulting adapted regression signal (bottom).
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2.4.2 Adaptation for Policy Reuse

When tactile corrections are provided for the purpose of policy reuse,

existing points within the set D are modified. In particular, a subset of

points Ds ⊆ D are selected, and the pose adjustment is applied to the

pose component of these points (zϕ ∈ Ds). Note that an entirely new

policy is instantiated when reuse is employed, and it is not expected

after reuse that the new policy be able to perform the task of the

original policy from which it was adapted.

The subset Ds is selected according to nearness, within the input

space of the regression function, between the execution point that re-

ceived the tactile correction and the points within dataset D. In our

work the input space of the regression function is execution time. Since

our demonstrations are resampled to have an equal number of exe-

cution points, the metric for nearness is straightforward: for a given

modified execution point zt, we build Ds by simply taking all points

in D that occurred at this same time in their respective demonstration

trajectories, such that Ds = {zi|zi
¬ϕ = zt

¬ϕ, ∀zi ∈ D}. We then apply

to the pose components of these points the offset δt.

With this nearness metric however, caution must be exercised when

changing points within the dataset. In particular, our regression formu-

lation (details in the following section, 2.5) allows for deviations from

srictly following the regression signal - that is, the mean trajectory -

of GMR. Thus at the same point in time with respect to the execu-

tion sequence, different executions might be in distinct areas of the

state space for which the target policy behavior differs. Caution must

be exercised since a correction which is appropriate for one location

might not be appropriate for the other. Consider for example a policy

for object grasping, where at the time just prior to grasping a different

hand orientation is required depending on the direction of approach.

A correction that flips the robot hand by 90 degrees thus might be

appropriate if the object was approached from the top (causing the

object to be grasped from the side), but not if approached from the

side (causing an attempted grasp from below, and a collision with the

object’s supporting surface).

We address this issue by restricting the operational mode of reuse to
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correcting only executions that follow exactly the regression signal. This

restriction ensures that an execution point receiving corrections lies at

the regression mean of the set of datapoints with similar timestamps.

Any provided corrections thus produce offsets that are appropriate for

this mean, and are not particular to the extremes of these points. Note

that this restriction is in place only for reuse, and is lifted for executions

that are a straightforward reproduction or corrected for the purpose of

refinement.

In conclusion, the idea behind the TPC formulation for reuse is

to take one large step in the direction of the new policy behavior, by

shifting entire subsets of the existing dataset. By comparison, if the

modified execution was instead added to the existing dataset, as in

refinement, the new data would simply be averaged with the existing

data during policy derivation. While the regression trajectory would

indeed be pulled in the direction of the new data, and thus the new

target behavior, the effect would be more iterative and less dramatic

than one-shot reuse. In Figure 2.3 (Reuse panel) an illustration is pro-

vided of the correction offsets accumulated throughout an execution

(top), and the resulting shift in regression signal (bottom).

2.5 Deviating from the Regression Signal

We conclude this chapter with a description of our formulation that

allows for flexibility in the trajectory predicted by GMM-GMR.

2.5.1 Formulation

Under GMR, a target pose ẑt
ϕ is predicted with mean µ̂t

ϕ and covariance

Σ̂
t

ϕϕ (Fig. 2.4). We modify the pose prediction by

ẑt
ϕ = µ̂t

ϕ + δtλ (2.3)

and thus apply to the regression mean offset δtλ ∈ R
m

δtλ =

{

∆t
λ if λt ≤ λmax

∆t
λ
λmax
λt otherwise

(2.4)

∆t
λ = zt

ϕ − µ̂t
ϕ , λt = ‖(Σ̂t

ϕϕ)
− 1

2∆t
λ‖ (2.5)
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where δtλ is defined by the difference (∆t
λ) between the current robot

pose and regression mean, and whether the magnitude (λt) of this

difference (inversely scaled by standard deviation (Σ̂t
ϕϕ)

1
2 ) exceeds a

threshold (λmax).

Fig. 2.4 Illustration of our offset formulation for GMR that allows for deviations from the
regression mean (bold vs. dashed lines), showing adaptability with respect starting position.

The amount of allowable deviation is dictated in terms of an accept-

able number (λmax) of standard deviations from the regression mean,

where λmax ≥ 0 is a constant parameter set by hand (in our empirical

validations, λmax = 2). For execution points (including starting posi-

tions) within this threshold (i.e. within λmax standard deviations of the

regression mean µ̂t
ϕ), the execution proceeds with its current pose (i.e.

ẑt
ϕ = µt

ϕ + ∆t
λ = zt

ϕ). Execution points outside of this threshold are

first projected (e.g. Fig. 2.4, zϕ to ẑϕ) to the envelope (shaded region)

defined by λmax standard deviations around the regression mean. The

result is more flexible learner executions, that take advantage of the

variability present within the teacher demonstrations.
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2.5.2 More Flexible Executions

One gain of this regression formulation is allowing the learner exe-

cution to take a more direct path to the goal, that perhaps deviates

from the regression trajectory but is still within the bounds of what

was demonstrated. Figure 2.4 illustrates that in the absence of offset

δλ, the execution trajectory (dashed line) follows the regression mean

(white trajectory), regardless of whether a more appropriate path (e.g.

a shorter path, such as demonstration d∗) is contained within the set

of demonstrations. With the offset, however, the learner execution is

free to follow a more direct path to the goal (bold line), providing this

is within λmax standard deviations of the regression mean.

The executions in Figure 2.5 confirm this behavior with real robot

data. Here the validation task consisted of positioning the 7-DoF end-

effector of the iCub humanoid robot to grasp a cylindrical object.3

Demonstrations were provided from multiple starting end-effector po-

sitions with respect to the object. To explore policy flexibility with

respect to acceptable variability in task execution, three policies were

developed for comparison:

π : Derived from the demonstration set using standard GMR.

πλ : Derived from the demonstration set using our modified version

of GMR with offset δλ.

πλ,c : Produced from the tactile correction of πλ using TPC.

Table 2.3 provides the lengths of the execution trajectories (as frac-

tions of the distance traveled by policy π) from 4 starting positions

(s1..s4) for all policies. Indeed, from all positions the incorporation of

offset δλ allows for execution paths that approach the target position

more directly, shown by shorter trajectory lengths (πλ vs. π, πλ,c vs. π).

The most dramatic improvement is seen with starting point s4, whose

position is such that the execution must travel explicitly away from the

target position (∗) to reach the start of the regression trajectory (sr).

In this case overt backtracking is the result if offset δλ is not employed.

3Full details of the iCub robot and this experimental domain will be provided in Section 3.1.
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x3
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s1

s2

s4

s3

x1
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s1

s2

s4

s3

a) b) c)

Fig. 2.5 a) Demonstration executions to target position ∗. b) Executions from starting
positions s1..s4, performed by policy π. Note that executions first visit the start (sr) of the

regression trajectory. c) Executions from starting positions s1..s4, performed by policy πλ,
which proceed directly to the target position.

Unnecessary backtracking in the absence of δλ is a consequence of

time-dependence in the system. With our offset, the pose predictions

are no longer restricted to follow exactly the regression trajectory, but

are still constrained by the demonstrations in the set. Namely, if the

starting position of the current execution is outside of the initial co-

variance envelope, and thus sufficiently dissimilar to any of the demon-

stration start positions, the execution will first snap (possibly back-

tracking) to the closest point on the edge of this initial envelope; by

contrast, without offset λ the execution would snap all the way to the

regression mean. The offset δλ formulation therefore tackles to a certain

degree some of the negative consequences of time-dependence, though

time-dependence is still present and at times a drawback.

Table 2.3 Execution Length (from multiple starting positions, as a fraction of the execution
length of policy π)

Starting Position π πλ πλ,c

s1 1 0.69 0.66

s2 1 0.88 0.88

s3 1 0.64 0.67
s4 1 0.35 0.27
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Empirical Validation

This chapter provides empirical validation of the TPC algorithm. Our

experimental domain involves positioning the end-effectors of a high-

DoF humanoid, for interactions with and between a variety of objects.

The performance of policies refined under TPC is reported, and suc-

cessful policy reuse also is confirmed. We furthermore examine shifts

in the regression covariance envelope, which as a result of tactile feed-

back may contract or expand within different dimensions to increase

respectively execution precision or flexibility. A comparison addition-

ally is provided between policies developed under TPC, and those that

receive more teleoperation demonstrations in lieu of tactile corrections.

We have implemented the TPC algorithm on a small 53-DoF hu-

manoid, the iCub (Tsagarakis et al., 2007). Demonstration is performed

via teleoperation by a human teacher, which is non-trivial as simulta-

neous control of 7 degrees of freedom is required to teleoperate a single

arm, 14 to teleoperate both arms simultaneously. Teleoperation is ac-

complished through a joint recording system and a mapping that allows

the human to directly control the motion of the robot arm by mov-

ing his own arm, during which the robot records from its own sensors

(Fig. 3.1). Sensing units from the commercial XSens joint recording

24
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Fig. 3.1 Teleoperation of the iCub robot by mapping the human joint angles, and thus the
human arm movement, to the robot arm.

system are placed on the human’s upper and lower arm, and back of

the hand. Each unit contains an accelerometer, gyroscope and inertial

sensing unit, and provides orientation information that we translate

into human joint angles. We then map the human joint angles to the

joint angles of the robot arm, thus accomplishing remote control.

In each of the following experiments, policy development consists

initially of task demonstration, followed by tactile corrections. Two hu-

man teachers provide demonstrations and corrections, neither of whom

are robotics novices.

3.1 Experimental Setup 1: Grasp Positioning

For our first set of validation tasks, the robot learns to position the end-

effector(s) of its 7-DoF arm(s) for uni-manual and bi-manual grasping

of different objects. Closing the hand(s) for grasping is handled by a

static controller.1 Multiple policies are developed to accomplish vari-

ous end-effector positioning behaviors, each of which has the learner

position one or both of its end-effectors to grasp an object located at

a particular position within the robot-centric coordinate frame.2

1The focus of the task objective is on end-effector positioning, rather than the grasp itself,

since the iCub hand has no force sensors or tactile feedback in its hands. Note also that
if controlling the hand is a part of the demonstrations, then the joint space is 15-DoF for
each arm and a more complex teleoperation system is required.

2The location of an object is fixed with respect to the robot for each developed policy.
This construction easily extends to be flexible with respect to object position however,

by switching to an object-oriented coordinate frame. As our goal was to validate policy
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3.1.1 Evaluation of Policy Performance

The performance of a policy is evaluated according to whether the

end-effector is positioned such that the robot is able to grasp the ob-

ject. Positions within the final covariance envelope of each policy are

tested for success in grasping, and are selected both systematically and

randomly; in particular, positions are systematically selected along the

boundaries of the covariance envelope, and sampled randomly within

its bounds. The same set of positions S are employed across all policies,

scaled by the respective dimensions of the covariance envelope for each.

In particular, the set S contains the following 21 positions: the final

position of the regression trajectory (1), the extremums of the final

covariance envelope (14, 2 extremums × 7 pose dimensions) and ran-

dom positions within the covariance envelope (6). The extremum po-

sitions are determined by setting a single dimension to its largest and

smallest values within the covariance envelope, and setting all other

dimensions to their regression mean values (i.e. the regression mean

± the covariance value of the dimension under consideration). We ex-

amine these extremum positions by looking separately at the subset

of positions corresponding to end-effector position (Sp ⊂ S, |Sp| = 6)

and end-effector orientation (So ⊂ S, |So| = 8). The reason for taking

particular interest in performance at the covariance envelope bound-

aries arises from our flexible regression formulation: with offset δλ, the

regression signal is not restricted to follow only the regression mean,

and produces predictions within or at the boundaries of the covariance

envelope. Furthermore, the performance within the envelope (i.e. on

the mean and random positions), tends to be quite good and vary little

across policies.

3.1.2 Analysis of the Covariance Envelope

When the TPC algorithm is in refinement mode, tactile corrections

produce new data, which might constrict or expand the covariance en-

velope of the regression signal. When the envelope is constricted, the

refinement and reuse under TPC, we chose a simpler task representation that was not

complicated by the sensing requirements to detect object position.



3.2. Refinement 27

resulting motion of the robot becomes more constrained and, assuming

a good regression trajectory, thus also more precise. When the enve-

lope is expanded, the motion becomes less constrained and thus more

flexible. Either might be desirable or undesirable within different di-

mensions for a given task.

We will examine changes in covariance by looking at the normalized

standard deviation of the full covariance matrix, as well as the sub-

matrices corresponding to end-effector position and orientation. More

specifically, the full covariance Σ̂ is composed of four submatrices

Σ̂ =

[

Σ̂x Σ̂qx

Σ̂xq Σ̂q

]

(3.1)

where subscripts x and q refer respectively to the position and ori-

entation components of the robot pose. The normalized covariance is

computed as |Σ| 1
2N (where |Σ| is the determinant of the N ×N matrix

Σ), and is reported for a given full covariance matrix Σ̂ (N = 7) and its

position and orientation submatrices Σ̂x, Σ̂q (N = 3, 4).

The position dimensions of the covariance envelope will be examined

in further detail, by looking at the change in envelope shape at the end

of the motion trajectory. In particular, we consider to what extent

the envelope shape deviates from a sphere, which corresponds to equal

variability in all three position dimensions. We measure this deviation

according ellipsoid level, defined as λ1/
√
λ2λ3 where λ2

1 ≥ λ2
2 ≥ λ2

3 are

the eigenvalues of Σ̂x. Intuitively, this metric compares the length of

the ellipsoid’s longest axis (λ1) to the bounding box (more specifically,

the square root3 of the area of the bounding box,
√
λ2λ3) of the cross

section perpendicular to this axis.

3.2 Refinement

We begin with an examination of policy refinement. Policies for four

end-effector positioning behaviors are developed by first demonstrating

the behavior, and then providing tactile corrections.

3The square root corrects for comparing a length (λ1) to an area (λ2 · λ3).
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3.2.1 Policy Development and Evaluation

We examine the effects of refinement by contrasting a policy before and

after tactile correction, and comparing it also to a policy developed

using teleoperation demonstration exclusively. The object behaviors

considered include positioning (e.g. Fig. 3.2) the right end-effector for

grasping a ball (πb) and a cylinder (πc), and positioning both the left

and right end-effectors for grasping a tray (πr, πl).
4 For each object

behavior, three policies are derived (Tbl. 3.1): the first from a set of

4 demonstrations, the second from that demonstration set plus tactile

corrections, and the third from that demonstration set plus 4 additional

demonstrations.

Table 3.1 Notational summary for the policies developed to evaluate refinement.

Ball Cylinder Tray, right Tray, left

4 Demos π4d
b π4d

c π4d
r π4d

l

4 Demos + Refine π4d′

b π4d′

c π4d′

r π4d′

l

4 Demos + 4 Demos π8d
b π8d

c π8d
r π8d

l

3.2.2 Performance Improvement

The performance of all policies was found to improve following tactile

refinement (Tbl. 3.2, π4d
i vs. π4d′

i , i = {b, c, l, r}). Averaged over all

policy behaviors, performance improved from a success rate of 81.0 ±
8.7% for the policies derived from 4 demonstrations, to 92.9 ± 6.2%

after those policies were provided with tactile corrections.

Tactile refinement furthermore was found to be more effective at im-

proving policy performance than providing more teleoperation demon-

strations (Tbl. 3.2, π4d′
i vs. π8d

i , i = {b, c, l, r}). While performance on

average improved following tactile refinement, by contrast it declined

4Note that the demonstrations of tray grasping are performed separately for the right and
left arms. While simultaneous operation is feasible technically with our teleoperation sys-
tem, it is difficult for the teacher to control both arms simultaneously and as a consequence

demonstration quality is lower than it is with separate demonstrations.
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Table 3.2 Performance results, comparing tactile refinement to more teleoperation.

Mean (%) Extremums (%) Random (%) Full set S (%)
Position Sp Orientation So

π4d
b 100 33.3 75 100 71.4

π4d′

b 100 83.3 100 100 95.2

π8d
b 100 33.3 75 83.33 66.7

π4d
c 100 50 100 100 85.7

π4d′

c 100 100 100 100 100

π8d
c 100 50 87.5 66.67 71.4

π4d
tr 100 50 75 100 76.2

π4d′

tr 100 66.7 87.5 100 85.7

π8d
tr 100 50 87.5 83.33 76.2

π4d
tl 100 83.3 87.5 100 90.5

π4d′

tl 100 83.3 87.5 100 90.5

π8d
tl 100 66.7 87.5 100 85.7

with more teleoperation demonstrations, from 81.0±8.7% to 75.0±8.1%

(average over all policy behaviors). The likely cause is growth in covari-

ance (discussed in the following section) which, paired with the decrease

in performance, implies that these demonstrations introduced undesir-

able variability into the dataset. In general, providing more demonstra-

tions with our teleoperation system increased the covariance envelope,

as very precise executions were difficult to achieve. When the learner

has limited information about the task behavior in many areas of the

execution space, providing more demonstrations typically resulted in

an increase in policy performance, despite the growth in covariance.

However, once the policy was sufficiently informed, especially in areas

where precise positioning was required, then the lack of precision in the

teleoperation interface, as well as the noise in human execution, was

more likely to introduce unwanted variability into the policy. Changes

in the covariance envelope, and its effect on policy performance, are

discussed next.

3.2.3 Adapting the Covariance Envelope

Table 3.3 compares the changes in covariance following refinement ver-

sus more teleoperation demonstration, by reporting the normalized
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standard deviations matrices. In particular, tactile refinement reduced

the standard deviation of the regression signal (π4d′ vs. π4d), where

by contrast providing more demonstrations consistently increased the

standard deviation (π8d vs. π4d). Given that tactile refinement also im-

proved policy performance, while more demonstrations negatively im-

pacted performance (Tbl. 3.2), we conclude that refinement removed,

while more demonstration introduced, unwanted variability into the pol-

icy behavior.

Variability with respect to the starting position was present in the

original demonstration sets. The cylinder and tray tasks however also

allowed for some variability in the target position, as the hand may

be positioned for grasping at various locations along the principle axis

of the cylinder or edge of the tray. Variability in target position was

minimally present in the demonstration set, since navigating the end-

effector to various grasp locations on the cylinder required a high level

of precision that was difficult to achieve with the mechanism used for

teleoperation. Through tactile corrections, however, the teacher was

able to convey variability with respect to target position.

Stated more generally, it can be the case that in areas requiring

high precision (e.g. at the target position) a broadened covariance is

desirable along certain dimensions (e.g. along the length of the cylin-

der), while a narrowed covariance is desirable along others (e.g. loca-

tion of the cylinder). Our teleoperation system was unable to isolate

its operation to a single dimension in such high-precision areas, and

so broadened the covariance within all dimensions. By contrast, the

tactile correction interface was sensitive enough to operate within a

single dimension in high-precision areas, and so broadened the covari-

Table 3.3 Normalized standard deviation, average over all policy behaviors. The full co-

variance over all dimensions is shown, as well as the covariance over those corresponding to
position only and orientation only.

Standard Deviation (×10−2)

Full Σ̂ Position only Σ̂x Orientation only Σ̂q

π4d 1.4± 0.3 1.0± 0.3 2.5± 0.8

π4d′ 1.0± 0.4 0.9± 0.2 1.5± 0.7

π8d 2.0± 0.1 1.5± 0.2 3.3± 0.7
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Fig. 3.2 Sequence of tasks learned from policy reuse. Left to right, top to bottom: Demon-

stration of ball-grasping via teleoperation (πb); reuse of ball-grasping to grasp a cylinder
(πc); reuse of cylinder-grasping to grasp a tray with the right hand (πr); mirroring of
right-handed tray-grasping to grasp a tray with the left hand (πl).

ance within only select dimensions.

An increase in flexibility within a single dimension is reflected in

an increase in ellipsoid level. This was seen following tactile corrections

(3.0±1.1 vs. 2.1±0.4, for policies π4d′
i vs. π4d

i , average over i = {c, r, l}).
Providing more teleoperation demonstrations however was not able to

increase the ellipsoid level (1.9 ± 0.5 vs. 2.1 ± 0.4, for policies π8d
i vs.

π4d
i , average over i = {c, r, l}), though the teacher was in fact making

an effort to indicate flexibility when appropriate.

3.3 Reuse: Efficient Sequence

We next examine policy reuse, by learning policies for the four object

behaviors of the previous section as a sequence that begins with the

demonstration of a single policy and continues with successive rounds

of policy reuse (Fig. 3.2).
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3.3.1 Policy Development and Evaluation

The sequential policy development occurs as follows. An initial policy

behavior is demonstrated via teleoperation by a human teacher, and the

resulting policy is refined using tactile corrections. Beginning with the

demonstrated policy, successive policy behaviors then are bootstrapped

from existing policies, by first employing tactile feedback for reuse in

order to generate a new behavior, and following this with refinement

to improve the behavior.

The demonstrated policy consists of positioning the robot end-

effector to grasp the ball. A policy able to grasp the cylinder is then

bootstrapped from the ball policy, which requires a new end-effector

orientation. A bimanual behavior to grasp a tray is developed next, in

two phases. First a policy for the right arm is bootstrapped from the

cylinder policy, which requires a shift in end-effector orientation and

position. The learned right-arm policy is then mirrored on the left arm.

In summary, eight policies are developed for evaluation (Fig. 3.2):

πb, π
′
b : Ball grasping, derived from 4 teleoperation demonstrations

(πb) and then refined with tactile feedback (π′
b).

πc, π
′
c : Cylinder grasping, bootstrapped from the reuse (πc) of ball

policy π′
b and then refined (π′

c).

πr, π
′
r : Tray grasping for the right arm, bootstrapped from the reuse

(πr) of cylinder policy π′
c and then refined (π′

r).

πl, π
′
l : Tray grasping for the left arm, bootstrapped from mirroring

(πl) the right arm tray policy π′
r, and then refined (π′

l).

We refer to a single instance of learning this complete sequence of

tasks as a learning trial. Three learning trials were performed for our

empirical validations.

3.3.2 Successful Policy Reuse

Prior to receiving tactile feedback for the purpose of one-shot reuse,

none of the original policies were able to perform the adapted tasks.
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That is, the success rate of the ball policy π′
b attempting to grasp

the cylinder was 0%, as was the success rate of the cylinder policy π′
c

attempting to grasp the tray.

Following however tactile feedback and policy derivation according

to the TPC update rule for reuse, the success rate of the adapted

policies improved respectively from 0% to 85.71 ± 10.35% and from

0% to 88.89± 8.05% (Tbl. 3.4, πi=c,l). Successful policy reuse thus was

enabled through tactile feedback. Furthermore, the tactile corrections

provided for refinement, following reuse, again resulted in improved

policy performance. Note also that for the tray behavior, mirroring the

right-tray policy on the left hand has a higher success rate than reusing

the cylinder policy, which is unsurprising given similarity between the

left and right tray behaviors.

Table 3.4 Performance results of sequential reuse, average of 3 learning trials.

Mean (%) Extremums (%) Random (%) Full set S (%)
Position Sp Orientation So

πb 100± 0 38.9± 9.6 70.8± 7.2 88.9± 19.3 68.3± 5.5
π′
b 100± 0 88.9± 9.6 100± 0 100± 0 96.8± 2.8

πc 100± 0 72.2± 9.6 83.3± 14.4 100± 0 85.7± 4.8
π′
c 100± 0 88.9± 9.6 92.6± 7.2 100± 0 93.7± 2.8

πr 100± 0 66.7± 0 95.8± 7.2 100± 0 88.9± 2.8
π′
r 100± 0 88.9± 9.6 95.8± 7.2 100± 0 95.2± 4.8

πl 100± 0 83.3± 16.7 91.7± 14.4 100± 0 92.1± 9.9
π′
l 100± 0 77.8± 9.6 100± 0 100± 0 93.7± 2.8

3.3.3 Adapting the Covariance Envelope

The amount of allowable variability in a policy behavior differed be-

tween the tasks, as well as the execution dimensions. For example,

compared to the ball policy from which it is bootstrapped, the cylinder

policy allowed for increased variability along the principal axis of the

cylinder, corresponding to the position of the hand on the cylinder.

End-effector orientation was more constrained, however, as the palm

of the hand must roughly align with the cylinder axis.

To realize the differences in acceptable variability between reused

policies, during refinement tactile corrections were employed to indi-

cate areas of desirable flexibility. Table 3.5 presents the ellipsoid level
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of the covariance envelope at the final position, before and after tactile

refinement. The comparatively low ellipsoid level of the ball policies

reflects the absence of a flexible position dimension. That tactile re-

finement was able to indicate flexibility along the axis of the cylinder

is shown by an increase in ellipsoid level (1.6± 0.4 → 2.9± 0.5).

In Figure 3.3 we see that the variability learned for cylinder-grasping

(a, front and side views) then was successfully preserved by one-shot

reuse when adapted for tray-grasping (b, bottom and side views). In

particular, the elongated envelope dimension now lies along the edge

of the tray, corresponding to flexibility with respect to the position

of the hand on the tray. The preservation of the covariance envelope

shape, paired with the adaptation of its placement in space, is a direct

result of the TPC mechanism for policy reuse. The preservation of

desired variability is further confirmed by the high ellipsoid level of the

cylinder being maintained in the adaptation from cylinder-grasping to

tray-grasping (Tbl. 3.5, cylinder, after refinement → tray-right, before

refinement).

Tactile refinement also might produce data that causes the regres-

sion envelope to narrow, in order to reflect portions of the target mo-

tion for which more precision is required. Figure 3.4 presents example

trajectories for each task behavior following reuse (Before refinement)

and then refinement (After refinement), where the covariance envelopes

(or rather, the dimensions within Cartesian space, i.e. Σ̂x) of the final

end-effector positions are shown as mesh ellipses. Images of the robot

at different phases of performing each task, and from various starting

positions, are also provided. For all behaviors, refinement did indeed re-

duce variability, with one notable exception: refinement of the cylinder-

Table 3.5 Changes in covariance envelope (within the position dimensions, Σ̂x) with refine-
ment, average of 3 learning trials.

Ellipsoid Level
Before refinement (πi) After refinement (π′

i)

ball 2.1± 0.3 1.6± 0.2
cylinder 1.6± 0.4 2.9± 0.5
tray, right 3.4± 0.7 4.4± 1.2
tray, left 4.4± 1.2 4.8± 1.1
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Fig. 3.3 Changes in covariance envelope (within the position dimensions, Σ̂x) with reuse.
Cylinder-grasping (a) is adapted via reuse for tray-grasping (b). Callouts for each 3-D plot
show a single dimension projected onto the other two dimensions. Example reproduction

trajectories shown in red.

grasping policy, for which increased variance along the cylinder axis was

permitted and desired.

3.3.4 Comparison to Demonstration

Polices developed under the TPC technique of reuse perform similarly

to policies developed via demonstration, and so the absence of demon-

stration data for a specific behavior does not appear to negatively

impact policy performance. The trend continues following refinement,

with the TPC reuse policies producing similar or superior performance

to those that received more teleoperation demonstrations.

In particular, for the cylinder policy no difference is seen between

the two approaches overall (Tbl. 3.4 πc vs. Tbl. 3.2 π4d
c , Full set S).

We do however note that reuse outperforms teleoperation on the po-

sition extremums (Sp), while the inverse is true for the orientation

extremums (Sq); the probable explanation is that hand orientation is

more constrainted for the cylinder than the ball, since the hand must

align with the cylinder’s principle axis while for the ball no such align-

ment is required. For a policy built from the reuse of the ball behavior,

this constraint therefore must be indicated through refinement. For

the right-hand tray-grasping policy, reuse outperforms teleoperation in

all measures (Tbl. 3.4 πr vs. Tbl. 3.2 π4d
r ). In this case the behaviors
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Fig. 3.4 Changes in covariance envelope (within the position dimensions, Σ̂x) with refine-
ment, for the ball (a), cylinder (b), tray-right (c) and tray-left (d) end-effector positioning

policies. Example reproduction trajectories shown in red.

were particularly well-suited for adaptation via reuse. More specifically,

cylinder-grasping is flexible with respect to where the hand is placed
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on the cylinder, while tray-grasping allows for variability in the posi-

tion of the hand along the edge of the tray. The adapted policy in this

case benefits from the preservation of variability (of covariance enve-

lope shape), that is adapted (shifted in position and orientation) to be

appropriate for tray grasping.

3.4 Reuse: Inefficient Sequence

The previous section noted that the sequence chosen for policy devel-

opment was particularly well-suited for reuse. In particular, a minimal

amount of covariance adaptation via refinement was required: in the se-

quence of ball→cylinder→tray,right→tray,left the elongated covariance

envelope was learned once for cylinder-grasping, and then preserved for

tray-grasping with the right and left hands. To examine the dependence

of policy reuse on the selection of a suitable learning sequence, in this

experiment policy development follows a sequence which we expect will

be less efficient in the context of reuse: tray,right→ball→cylinder.

3.4.1 Policy Development and Evaluation

In detail, the adaptation sequence consists of demonstrated end-effector

positioning to grasp a tray with the right hand, which is refined and

then reused to position for ball grasping. The refined ball-grasping pol-

icy is then reused to position for cylinder-grasping, with refinement

following. We expect this sequence to be inefficient with respect to

covariance adaptation: in particular, that the elongated covariance en-

velope learned for tray-grasping will be unlearned for ball-grasping,

and then relearned for cylinder-grasping. In summary, six policies are

developed for evaluation:

πr, π
′
r : Tray grasping for the right arm, derived from 4 teleoperation

demonstrations (πr) and then refined with tactile feedback (π′
r).

πb, π
′
b : Ball grasping, bootstrapped from the reuse (πb) of tray-right

policy π′
r and then refined (π′

b).

πc, π
′
c : Cylinder grasping, bootstrapped from the reuse (πc) of ball
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policy π′
b and then refined (π′

c).

We again refer to a single instance of learning this complete sequence

of tasks as a learning trial, and performed three learning trials for our

empirical validations. Each of the six policies for each learning trial were

evaluated on the 21 test positions in S, as defined in Section 3.1.1. A

different human teacher from that of the previous sequence furthermore

was employed to provide tactile corrections for learning the current

sequence.

3.4.2 Policy Performance

The ability to learn successful policies for each behavior, in spite of

the presumably suboptimal sequencing, was confirmed. Performance

details are provided in Table 3.6.

Similar performance was seen from the tray behavior, which here

was demonstrated but in the efficient sequence resulted from multi-

ple rounds of reuse, again suggesting that policies do not suffer as a

result of having no explicit demonstrations of their target behavior.

The opposite is suggested by the ball behavior however, which prior

to refinement did have better performance when demonstrated versus

reused. We conclude therefore that sequencing order can indeed play a

role in the success of reused policies. These results suggest in particu-

lar that a sequencing for which subsequent policies require broadening

the covariance, rather than restricting it, is more sound. A deficit in

performance however may be made up at least in part with refining

Table 3.6 Performance results of sequential reuse, inefficient sequence, average of 3 learning

trials.

Mean (%) Extremums (%) Random (%) Full set S (%)
Position Sp Orientation So

πr 100± 0 61.1± 25.5 79.2± 7.2 100± 0 91.0± 8.3
π′
r 100± 0 77.8± 9.6 100± 0 100± 0 93.7± 3.8

πb 66.7± 57.8 50.0± 16.7 54.2± 31.5 66.7± 33.3 57.1± 26.5
π′
b 100± 0 83.33± 16.7 83.3± 14.4 88.9± 19.2 85.7± 14.3

πc 100± 0 83.3± 0 100± 0 100± 0 95.2± 0
π′
c 100± 0 91.7± 11.8 100± 0 100± 0 97.6± 3.4
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corrections, and the ball behavior in this sequence saw a larger relative

improvement in performance following refinement than the inefficient

sequence (50.1% vs. 41.7% improvement).

The initial performance of the reused ball policy to accomplish the

cylinder behavior was surprisingly high (95.2±0%); higher than in the

efficient sequence (85.7±4.8%), in which the ball policy also was reused

for the cylinder behavior. One possible explanation is simply that differ-

ent demonstration and correction styles produce different policies, since

a different human teacher was employed for the development of each

sequence. A further possibility, supported by the results of the next

section, is that in this sequence the covariance envelope was already

appropriately constrained following reuse with respect to the location

of the cylinder, and so policy performance did not suffer as much from

imprecise positioning.

3.4.3 Adapting the Covariance Envelope

The evolution of ellipsoid levels (Tbl. 3.7) was less clear to interpret

overall than that of the efficient sequence. The ellipsoid level increased

with refinement for the tray behavior, which was expected given the

results and discussion of Section 3.3.3. The absence of change in the

cylinder policy similarly was not surprising given that the initial ellip-

soid level is already quite high. That the ellipsoid level increased for

the ball behavior however, and furthermore that this added flexibility

was paired not with a decrease, but rather an increase, in performance

success, was not expected.

In the previous sections we proposed that, unlike the cylinder and

tray policies, the ball behavior did not have a flexible dimension along

which positional variability was acceptable. In truth however there are

Table 3.7 Changes in covariance envelope (within the position dimensions, Σ̂x) with refine-
ment, inefficient sequence, average of 3 learning trials.

Ellipsoid Level
Before refinement (πi) After refinement (π′

i)

tray, right 3.9± 9.0 6.5± 11.2
ball 6.5± 4.1 9.9± 7.4

cylinder 7.5± 5.2 7.5± 5.5
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Fig. 3.5 Changes in covariance envelope (within the position dimensions, Σ̂x) with reuse,
ball object within the unintuitive sequence. Callouts for the 3-D plot show a single dimension
projected onto the other two dimensions. Note that the foam ball is compressed when

contacted by the end-effector.

arguably two such flexible dimensions, since the hand may be posi-

tioned to have initial contact with the ball over a spectrum of posi-

tions and still successfully grasp the object, ranging from the inside

to outside of the palm and the bottom of the palm to the fingertips.

The teacher of the efficient sequence did not exploit either of these

dimensions during demonstration or correction, preferring instead to

demonstrate consistent positioning behavior. By contrast, the human

teacher of the inefficient sequence exploited the palm-fingertips dimen-

sion (Fig. 3.5). These results again emphasize that differing amounts

of variability can be acceptable in different dimensions, and that to

increase policy performance might not in fact require an increase in

precision.

3.5 Experimental Results and Setup 2: Bimanual Relative

Positioning

For our second set of validation tasks, the robot learns to position

both end-effectors of its 7-DoF arms for bimanual object interaction.

Executions begin with the robot holding a basket in its right hand

and object in its left hand. The task is then to position the basket

to be in front of the robot, and position the object so that it might
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be dropped into the basket. The position of the right end-effector is

defined within the robot-centric coordinate frame, while the position

of the left end-effector is defined within a coordinate frame centered on

the right end-effector.

Fig. 3.6 Bimanual task of placing an object into a basket, demonstrated with a ball (left)

and reused with a cylinder (right).

The robot was provided with 4 teleoperation demonstrations that

placed a ball into the basket. The learned bimanual ball-basket policy

then was reused to place a cylinder into the basket, whose elongated

body required more clearance when being placed into the basket, as well

as a change in hand orientation. Tactile corrections were provided on

2 executions with the cylinder-basket policy, constituting refinement.

Figure 3.7 plots the regression signals following both reuse (top)

and refinement (bottom) for the left and right arms (average over di-

mensions Σ̂x ∈ R
3 and Σ̂q ∈ R

4). Indeed, we observe that corrections

induced a large shift in orientation when the ball-basket policy is reused

for the cylinder object, about midway through the task execution (red

line). Corrections that then refined the cylinder-basket behavior en-

couraged this orientation shift to occur even earlier in the execution

(yellow line) and to a more extreme degree (green line). Though no

real change in position was required for the new behavior, the position

of the left arm was slightly perturbed as a result of providing the tac-

tile corrections during reuse (upper left plot). These perturbations were

smoothed out following refinement however (lower left plot). Finally,

note that the right arm received no corrections during reuse, since its

behavior of positioning the basket to be in front of the robot is nom-

inally the same for both objects, and so the regression signal of the

right arm was unchanged by reuse.
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Position dimensions Σ̂x Orientation dimensions Σ̂q

Fig. 3.7 Mean-centered covariance envelopes of the bimanual behavior modified by reuse
(top) and refinement (bottom) for the left (blue) and gray (red) arms, averaged over the
position dimensions Σ̂x (left) and orientation dimensions Σ̂q (right) of the regression pre-
diction space. Original envelopes as thin lines, post-adaptation envelopes as thick lines.

Figure 3.8 reports on the relative change in covariance envelope with

tactile corrections. The top graphs plot the (normalized) difference in

covariance at each timestep before and after policy reuse, within the

position (left) and orientation (right) dimensions (average over dimen-

sions Σ̂x ∈ R
3 and Σ̂q ∈ R

4). Recall that the right arm received no

corrections, and so there accordingly was no change in its covariance

envelope (dashed line). We see however that the covariance of the left

arm (solid line) holding the cylinder broadens (change in covariance

> 0) within the position dimensions to facilitate a larger clearance

over the side of the basket (middle peak around timestep 50, red line).
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Position dimensions Σ̂x Orientation dimensions Σ̂q

Fig. 3.8 Relative change in covariance envelope with bimanual reuse (top) and subsequent
refinement (bottom), averaged over the position dimensions Σ̂x (left) and orientation di-
mensions Σ̂q (right) of the regression prediction space.

Following this, a narrowing (change in covariance < 0) of the envelope

within the orientation dimensions was seen, reflecting the need for a

more precise object orientation when entering the basket (large valley

around timestep 75, yellow line).

The bottom graphs plot the (normalized) difference in covariance

before and after refinement of the cylinder-basket policy. Within all

dimensions and for both arms, the covariance envelope at each timestep

was narrowed (change in covariance < 0). The positioning of the right

arm (dashed line) when entering the basket was a particular target for

correction, as reflected in the extreme reduction in covariance within
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the position dimensions during the second half of the policy execution

(after the green line).

These results confirm that the covariance of the learned policy was

both narrowed and broadened at different points of the execution to

facilitate adaptation to a new task. Moreover, the initial adaptation

that resulted from policy reuse was further encouraged with refinement.



4

Discussion and Conclusions

The empirical results have confirmed the successful reuse and refine-

ment of policies using tactile feedback. Here we provide discussion on

key aspects of the TPC algorithm, and follow with concluding remarks.

4.1 Discussion

We begin with a discussion of tactile corrections and policy reuse as

employed in this work, noting particular advantages of each. A dis-

cussion also is provided about the presence of variability within the

learned policy, and the choice of weight formulation for corrected dat-

apoints. Following this, some promising directions for future research

are highlighted.

4.1.1 Tactile Corrections

There are many potential sources for suboptimal demonstrations.

While the teleoperation interface employed for demonstration in this

work does allow for control of a high-DoF robot arm, there are lim-

itations. Since the robot arm is controlled by the human moving her

own arm, the issue of correspondence was present, though transparent

45
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from the perspective of the robot. Differences in correspondence instead

are adjusted for online by the human while demonstrating. This limi-

tation therefore impacts primarily the human, who furthermore must

react to how another body - the robot’s body, rather than her own -

executes motions and interacts with the object, possibly as a mirror

image if the human faces the robot. Our approach addresses subopti-

mal demonstration with tactile corrections. Directly touching the robot

during execution has the advantage of changing the perspective of the

human, who now directly interacts with the body executing the task

(the robot).

Addressing the issue of embodiment thus is one feature of the TPC

algorithm that enables the effective transfer of information from teacher

to learner. Another is the online nature of the feedback, which allows

the teacher to provide feedback in the exact areas of the state space

in need of policy modification, as they are visited by the learner. The

teacher therefore is not required to revisit those states, or guess as

to their identity. The algorithm capitalizes on the existence of dis-

tinct instances during an execution, or equivalently along an execution

trajectory, at which the policy behavior requires modification. Rather

than demonstrate a trajectory in full to provide the modified behavior

information, the teacher needs only to indicate a correction at these

instances. The online aspect means that corrections also target exactly

those areas of the state space in need of policy improvement, which can

address the issue of sparsity in the demonstration set and suboptimal

datapoints.

Finally, we note that in this work tactile corrections were shown to

improve the behavior of policies derived from multiple, distinct, policy

development techniques. In particular, the techniques of task demon-

stration, policy reuse and policy mirroring were all employed for policy

development. While the initial performance of each technique varied,

all were shown to benefit from tactile correction.

4.1.2 Policy Reuse

That policy reuse is automated is a key strength of the TPC approach:

similar characteristics between the tasks are automatically extracted
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for reuse, and dissimilar ones are adapted through tactile guidance.

In these experiments, reuse involved a single execution by the robot,

during which the human provided corrections. By contrast, teleopera-

tion involved 4 executions while under the control of the teacher. Not

only were the number of executions greater, but the teacher was re-

quired to be actively engaged throughout the entire execution, which

is not the case for reuse when the teacher needed only to be actively

engaged when providing a correction. We therefore come to the quali-

tative conclusion that reuse required less effort than teleoperation, and

without a sacrifice in performance.

When examining policy refinement in the first set of experiments,

it was noted that the largest improvement came from refining the sole

policy that derived from teleoperation demonstrations (Tbl. 3.2, ball).

The cause was the demonstrated policy’s relatively low initial success

rate, in comparison to those policies derived from reuse. This trend

also was observed for comparisons within a single task (Tbl. 3.4), where

similar or superior performance was consistently achieved through reuse

in comparison to teleoperation. These results suggest that reuse is more

effective at transferring domain knowledge than is teleoperation.

Admittedly these results are strongly tied to our robot platform

and teleoperation mechanism, as well as to the task behaviors. Though

not the case for any of the tasks under consideration in this work,

presumably there exists a point at which tasks are sufficiently dissimi-

lar for reuse to be effective, and thus when teleoperation becomes the

more effective tool for transferring domain knowledge. The dissimilarity

between tasks may be roughly gauged by the amount of correction re-

quired for reuse to be effective. Another consideration might be whether

the new task requires that the covariance envelope be broadened versus

narrowed; Section 3.4.2 posited that reuse for a behavior that requires

covariance narrowing might be less efficient than broadening.

4.1.3 Reflecting Demonstration Variability in the Policy

This work employed a variant on the GMM-GMR regression formula-

tion, that allowed for deviations from the weighted mean of the demon-

strations. The goal of such a formulation was to allow for flexibility in
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the resulting policy execution. A noted benefit of such flexibility is the

possibility of following a more direct path to the target position. As

a trade-off, potential detriments included reaching the target position

less reliably however.

This formulation may equivalently be seen as using differences be-

tween demonstrations as a template by which to infer those parts of

the state space in which the task permits variability in the execution.

Likeminded approaches have aimed to infer the crucial aspects of task

execution by extracting what is similar between multiple demonstra-

tions or demonstrators (e.g. Calinon et al. (2009); Jäkel et al. (2010);

Kaiser et al. (1995); Pook and Ballard (1993)).

We highlight that, in the work of this article, acceptable vari-

ability in the task execution was effectively conveyed by the teacher

through multiple modalities; namely, teleoperation and tactile correc-

tions. Moreover, we claim that the modalities were individually better

suited for different areas of the state space. In particular, to indicate

generality in starting position, teleoperation was very effective. To pro-

vide generality over starting positions with tactile feedback we expect

would have been quite tedious in comparison, as the tactile interface

is best suited for small iterative movements. By contrast, to indicate

generality at the target position was best provided through the tactile

interface, which was more responsive to precise positioning.

4.1.4 Weighting New Datapoints

We also employed the idea of demonstration variability within our

weight formulation for new datapoints during policy refinement. In par-

ticular, in areas that exhibited little variability during teacher demon-

stration, the new behavior examples produced as a result of tactile

corrections were considered to be very significant. By contrast, in areas

that exhibited much variability during demonstration, the presence of

additional variability in the form of new corrected behavior examples

was more expected, and thus considered to be less significant.

We expect the development of suitable weight functions for cor-

rected datapoints to be an active area for future research. Many for-

mulations are potential candidates, and their suitability depends at a
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higher level on what the designer wants to see come out of the learn-

ing. For example, a separate weighting function might be employed for

refinement versus reuse, instead of the one-shot formulation employed

in this work. Another learning objective could be to infer the worth of

particular datapoints, according to some utility function, and therefore

not rely on the assumption that corrected datapoints are better exam-

ples (than the demonstrated datapoints) of the target task behavior.

4.1.5 Future Work

There are many promising extensions to this work. From an algorithmic

standpoint, one might consider alternative paradigms for setting the

weight on the influence of new data on a policy update, as previously

discussed. Correcting within the action space is another area of interest,

where for example human touch indicates changes in joint speed instead

of, or in addition to, changes in pose. Such a formulation would no

longer require that the policy execution be split into two parts (pose

prediction and action selection), though undoubtedly would introduce

nontrivial considerations with respect to implementation.

From an implementation standpoint, to validate TCP on a more

sophisticated tactile sensor, that provides a richer set of feedback sig-

nals, is one direction that we are actively pursuing. Another direction

is to expand the application influence of the tactile corrections, for

example to correct the entire arm pose in addition to end-effector posi-

tion. The formulation for policy derivation also might be improved, for

example by using a dynamical systems formulation that removes time-

dependence and allows for greater generalization over the state space

(e.g. Khansari-Zadeh and Billard (2010)). Such a formulation further-

more would be amenable to providing corrections within the action

space. The formulation for policy rederivation is a topic for potential

future work as well. The need to keep around all of the training data is a

drawback of our current system, that could be addressed by a formula-

tion that iteratively adapts, instead of completely retrains, the learned

model. Partial retraining is another option, where the model is adapted

only in those areas of the state space where corrections occurred.
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4.2 Conclusions

We have introduced Tactile Policy Correction (TPC) as an algorithm

for the refinement and reuse of policies through tactile feedback from

a human teacher. With tactile corrections, we aimed to improve the

performance of a demonstrated behavior in response to execution ex-

perience, and to mitigate some potential limitations in demonstration-

based learning. Multiple teaching modalities - namely, teleoperation

and tactile corrections - were employed to provide examples of behav-

ior execution, and we have highlighted the differing suitability of each

for providing information about acceptable variability in the task be-

havior at different points during the task execution.

We have validated TPC on a humanoid performing end-effector po-

sitioning tasks. Tactile corrections were found to improve the perfor-

mance of, and thus refine, a demonstrated policy. Furthermore, tactile

feedback was shown to enable policy development bootstrapped from

an existing behavior, and thus policy reuse. Comparisons to policies

derived from solely teleoperation demonstration confirmed policy reuse

to be an effective mechanism for transferring domain knowledge, and

policy refinement to be more successful at improving performance. Fu-

ture work will consider alternate algorithmic formulations for tactile

refinement and reuse, and furthermore will validate TPC with a more

sophisticated tactile sensor.
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