
Introduction to Online Convex Optimization

Second Edition

Elad Hazan

ar
X

iv
:1

90
9.

05
20

7v
3

 [
cs

.L
G

]
 6

 A
ug

 2
02

3

ii

%⌦-à*�-ù& .⌦/W* W= ⌦;*ë#⌦%à&
(! �3§XW%à*

"...you shall research and meditate therein day and night..."
—Yehoshua 1:8

iii

To my family: Dana, Hadar, Yoav, Oded and Deluca,
—EH

© [2021] Elad Hazan

iv

Contents

Preface xi

Acknowledgements xv

List of Symbols xix

1 Introduction 1
1.1 The Online Convex Optimization Setting 2
1.2 Examples of Problems That Can Be Modeled via Online Con-

vex Optimization . 3
1.2.1 Prediction from expert advice 3
1.2.2 Online spam filtering 4
1.2.3 Online shortest paths 5
1.2.4 Portfolio selection . 6
1.2.5 Matrix completion and recommendation systems . . . 7

1.3 A Gentle Start: Learning from Expert Advice 8
1.3.1 The weighted majority algorithm 9
1.3.2 Randomized weighted majority 11
1.3.3 Hedge . 12

1.4 Bibliographic Remarks . 14
1.5 Exercises . 15

2 Basic Concepts in Convex Optimization 17
2.1 Basic Definitions and Setup 17

2.1.1 Projections onto convex sets 19
2.1.2 Introduction to optimality conditions 20

2.2 Gradient Descent . 21
2.2.1 The Polyak stepsize 22
2.2.2 Measuring distance to optimality 24
2.2.3 Analysis of the Polyak stepsize 25

v

vi CONTENTS

2.3 Constrained Gradient/Subgradient Descent 27

2.3.1 Basic gradient descent—linear convergence 27

2.4 Reductions to Non-smooth and Non-strongly Convex Functions 29

2.4.1 Reduction to smooth, non strongly convex functions . 30

2.4.2 Reduction to strongly convex, non-smooth functions . 31

2.4.3 Reduction to general convex functions 34

2.5 Example: Support Vector Machine Training 34

2.6 Bibliographic Remarks . 37

2.7 Exercises . 38

3 First-Order Algorithms for Online Convex Optimization 41

3.1 Online Gradient Descent . 42

3.2 Lower Bounds . 45

3.3 Logarithmic Regret . 46

3.3.1 Online gradient descent for strongly convex functions . 47

3.4 Application: Stochastic Gradient Descent 48

3.4.1 Example: stochastic gradient descent for SVM training 50

3.5 Bibliographic Remarks . 52

3.6 Exercises . 53

4 Second-Order Methods 55

4.1 Motivation: Universal Portfolio Selection 55

4.1.1 Mainstream portfolio theory 55

4.1.2 Universal portfolio theory 56

4.1.3 Constant rebalancing portfolios 57

4.2 Exp-Concave Functions . 58

4.3 Exponentially Weighted Online Convex Optimization 60

4.4 The Online Newton Step Algorithm 62

4.5 Bibliographic Remarks . 68

4.6 Exercises . 69

5 Regularization 71

5.1 Regularization Functions . 72

5.2 The RFTL Algorithm and its Analysis 73

5.2.1 Meta-algorithm definition 74

5.2.2 The regret bound . 74

5.3 Online Mirror Descent . 77

5.3.1 Equivalence of lazy OMD and RFTL 78

5.3.2 Regret bounds for Mirror Descent 79

5.4 Application and Special Cases 81

CONTENTS vii

5.4.1 Deriving online gradient descent 81

5.4.2 Deriving multiplicative updates 82

5.5 Randomized Regularization 83

5.5.1 Perturbation for convex losses 84

5.5.2 Perturbation for linear cost functions 87

5.5.3 Follow-the-perturbed-leader for expert advice 88

5.6 * Adaptive Gradient Descent 91

5.6.1 Analysis of adaptive regularization 93

5.7 Bibliographic Remarks . 97

5.8 Exercises . 98

6 Bandit Convex Optimization 101

6.1 The Bandit Convex Optimization Setting 101

6.2 The Multiarmed Bandit (MAB) Problem 102

6.2.1 EXP3: simultaneous exploration and exploitation . . . 105

6.3 A Reduction from Limited Information to Full Information . 106

6.3.1 Part 1: using unbiased estimators 107

6.3.2 Part 2: point-wise gradient estimators 109

6.4 Online Gradient Descent without a Gradient 112

6.5 * Optimal Regret Algorithms for Bandit Linear Optimization 114

6.5.1 Self-concordant barriers 115

6.5.2 A near-optimal algorithm 116

6.6 Bibliographic Remarks . 120

6.7 Exercises . 121

7 Projection-Free Algorithms 123

7.1 Review: Relevant Concepts from Linear Algebra 123

7.2 Motivation: Recommender Systems 124

7.3 The Conditional Gradient Method 126

7.3.1 Example: matrix completion via CG 128

7.4 Projections versus Linear Optimization 130

7.5 The Online Conditional Gradient Algorithm 132

7.6 Bibliographic Remarks . 137

7.7 Exercises . 138

8 Games, Duality, and Regret 139

8.1 Linear Programming and Duality 140

8.2 Zero-sum Games and Equilibria 141

8.2.1 Equivalence of von Neumann Theorem and LP duality 143

8.3 Proof of von Neumann Theorem 144

viii CONTENTS

8.4 Approximating Linear Programs 146

8.5 Bibliographic Remarks . 148

8.6 Exercises . 149

9 Learning Theory, Generalization, and Online Convex Opti-
mization 151

9.1 Statistical Learning Theory 151

9.1.1 Overfitting . 152

9.1.2 No free lunch? . 153

9.1.3 Examples of learning problems 155

9.1.4 Defining generalization and learnability 156

9.2 Agnostic Learning using Online Convex Optimization 157

9.2.1 Reminder: measure concentration and martingales . . 159

9.2.2 Analysis of the reduction 160

9.3 Learning and Compression . 162

9.4 Bibliographic Remarks . 165

9.5 Exercises . 166

10 Learning in Changing Environments 169

10.1 A Simple Start: Dynamic Regret 170

10.2 The Notion of Adaptive Regret 171

10.2.1 Weakly and strongly adaptive algorithms 172

10.3 Tracking the Best Expert . 173

10.4 Efficient Adaptive Regret for Online Convex Optimization . . 176

10.5 * Computationally Efficient Methods 178

10.5.1 The pruning method 182

10.6 Bibliographic Remarks . 183

10.7 Exercises . 184

11 Boosting and Regret 185

11.1 The Problem of Boosting . 186

11.2 Boosting by Online Convex Optimization 187

11.2.1 Simplification of the setting 187

11.2.2 Algorithm and analysis 188

11.2.3 AdaBoost . 190

11.2.4 Completing the picture 191

11.3 Bibliographic Remarks . 193

11.4 Exercises . 194

CONTENTS ix

12 Online Boosting 195
12.1 Motivation: Learning from a Huge Set of Experts 195

12.1.1 Example: boosting online binary classification 196
12.1.2 Example: personalized article placement 197

12.2 The Contextual Learning Model 197
12.3 The Extension Operator . 198
12.4 The Online Boosting Method 200
12.5 Bibliographic Remarks . 205
12.6 Exercises . 206

13 Blackwell Approachability and Online Convex Optimization207
13.1 Vector-Valued Games and Approachability 208
13.2 From Online Convex Optimization to Approachability 210
13.3 From Approachability to Online Convex Optimization 213

13.3.1 Cones and polar cones 213
13.3.2 The reduction . 214
13.3.3 Existence of a best response oracle 215

13.4 Bibliographic Remarks . 217
13.5 Exercises . 218

x CONTENTS

Preface

This book serves as an introduction to the expanding theory of online convex
optimization (OCO). It was written as an advanced textbook to serve as
a basis for a graduate course, and/or as a reference to researchers diving
into this fascinating world at the intersection of optimization and machine
learning.

Such a course was given at the Technion in 2010–2014, with slight vari-
ations from year to year, and later at Princeton University in 2015–2020.
The core material in these courses is fully covered in this book, along with
exercises that allow students to complete parts of proofs, or that were found
illuminating and thought-provoking by those taking the course. Most of
the material is given with examples of applications, which are interlaced
throughout various topics. These include prediction from expert advice,
portfolio selection, matrix completion and recommendation systems, and
support vector machine training.

Our hope is that this compendium of material and exercises will be useful
to you; the researcher and/or educator.

Placing this Book in the Machine Learning Library

The broad field of machine learning, as in the sub-disciplines of online learn-
ing, boosting, regret minimization in games, universal prediction, and other
related topics, have seen a plethora of introductory books in recent years.
With this note, we can hardly do justice to all of these, but perhaps point to
the most related books on the topics of machine learning, learning in games,
and optimization, whose intersection is our main focus.

The most closely related book, which served as an inspiration to the
current, and indeed an inspiration to the entire field of learning in games, is
the wonderful text of Cesa-Bianchi and Lugosi [2006]. From the literature
on mathematical optimization theory, there are the numerous introductory

xi

xii Preface

essays to convex optimization and convex analysis, to name only a few [Boyd
and Vandenberghe, 2004, Nesterov, 2004, Nemirovski and Yudin, 1983, Ne-
mirovskii, 2004, Borwein and Lewis, 2006, Rockafellar, 1997]. The author
fondly recommends the text from which he has learned about mathematical
optimization theory [Nemirovskii, 2004]. The more broad texts on machine
learning are too numerous to state here.

The primary purpose of this is to serve as an educational textbook for
a dedicated course on OCO and the convex optimization approach to ma-
chine learning. Online convex optimization has already had enough impact
to appear in several surveys and introductory texts [Hazan, 2011, Shalev-
Shwartz, 2011, Rakhlin, 2009, Rakhlin and Sridharan, 2014]. We hope this
compilation of material and exercises will further enrich the literature.

Book’s tructure

This book is intended to serve as a reference for a self-contained course
for graduate students in computer science/electrical engineering/operations
research/statistics and related fields. As such, its organization follows the
structure of the course “Decision Analysis”, taught at the Technion, and
later “Theoretical Machine Learning”, taught at Princeton University.

Each chapter should take one or two weeks of classes, depending on the
depth and breadth of the intended course. Chapter 1 is designed to be a
teaser for the field, and it is less rigorous than the rest of the book.

Roughly speaking, the book can be conceived as three units. The first,
from chapter 2 through 4, contains the basic definitions, framework and core
algorithms for OCO. Chapters 5 to 7 contain more advanced algorithms and
in-depth analysis of the framework and its extensions to other computational
and information access models. The rest of the book deals with more ad-
vanced algorithms, more difficult settings, and relationships to well-known
machine learning paradigms.

This book can assist educators in designing a complete course on the
topic of online convex optimization, or it can serve as a component in a
comprehensive course on machine learning. A accompanying manual of so-
lutions to selected exercises given in the book is available for educators only.

Preface xiii

New in the Second Edition

The main additions to the second edition of this book include the following:

• Expanded coverage of optimization in chapter 2, with a unified gradi-
ent descent analysis of the Polyak stepsize.

• Expanded coverage of learning theory in chapter 9, with an introduc-
tion to compression and its use in generalization theory.

• An expanded chapter 4, with addition of the exponential weighted
optimizer for exp-concave loss functions.

• A revised chapter 5, with the addition of mirror descent analysis, as
well as a revised section on adaptive gradient methods.

• New chapter 10 on the notion of adaptive regret and algorithms for
OCO with near-optimal adaptive regret bounds.

• New chapter 11 on boosting and its relationship to OCO. Derivation
of boosting algorithms from regret minimization.

• New chapter 12 on online boosting.

• New chapter 13 on Blackwell approachability and its strong connection
to OCO.

In addition, numerous typos are fixed, exercises are corrected, and so-
lutions to several questions have been made available in a separate manual
for educators.

xiv Preface

Acknowledgements

The First Version

First of all, I gratefully acknowledge the numerous contributions and insight
of the students of the course “decision analysis” given at the Technion during
2010-2014, as well as the students of “theoretical machine learning” taught
at Princeton University during 2015-2016.

I would like to thank the friends, colleagues and students that have con-
tributed many suggestions and corrections. A partial list includes: Sanjeev
Arora, Shai Shalev-Shwartz, Aleksander Madry, Yoram Singer, Satyen Kale,
Alon Gonen, Roi Livni, Gal Lavee, Maayan Harel, Daniel Khasabi, Shuang
Liu, Jason Altschuler, Haipeng Luo, Zeyuan Allen-Zhu, Mehrdad Mahdavi,
Jaehyun Park, Baris Ungun, Maria Gregori, Tengyu Ma, Kayla McCue, Es-
ther Rolf, Jeremy Cohen, Daniel Suo, Lydia Liu, Fermi Ma, Mert Al, Amir
Reza Asadi, Carl Gabel, Nati Srebro, Abbas Mehrabian, Chris Liaw, Nikhil
Bansal, Naman Agarwal, Raunak Kumar, Zhize Li, Sheng Zhang, Swati
Gupta, Xinyi Chen, Liang Zeng and Kunal Mittal.

I thank Udi Aharoni for his artwork and illustrations depicting algo-
rithms in this book.

I am forever indebted to my teacher and mentor, Sanjeev Arora, without
him this book would not be possible.

Finally, I am grateful for the love and support of my wife and children:
Dana, Hadar, Yoav, and Oded.

The Second Version

I am most thankful to my students and colleagues that have collaborated
with me on research, some of which appears in the second version of this
book. Notably my collaborators on boosting methods including Nataly
Brukhim, Xinyi Chen, Shay Moran, Naman Agarwal and Karan Singh.

xv

xvi Acknowledgements

Thanks to my students that helped me proof check new and existing
sections: Edgar Minasyan, Paula Gradu, Karan Singh, Nataly Brukhim,
Xinyi Chen, Naman Agarwal and Udaya Ghai.

I am thankful to Shay Moran for explaining compression schemes and
how they simplify generalization for boosting.

I gratefully acknowledges the help of Ahmed Farah, Charlie Cowen-Breen
and the students of “COS 597C: Computational Control Theory” for many
helpful suggestions, corrections and solutions to many of the problem sets.

I am very thankful to Wouter Koolen-Wijkstra for a helpful suggestion
in the analysis of the Online Newton Step algorithm.

Thanks to Shiyun Lin for finding typos and improving the presentation
of the randomized regularization section.

I thank the extremely helpful and rigorous reviewers of this book found
by MIT press who gave fantastic suggestions and improve the final manuscript.

As in the first version and even more so, I am grateful for the love and
support of my wife and children: Dana, Hadar, Yoav, and Oded.

Elad Hazan
Princeton University

List of Figures

1.1 Linear equalities and inequalities that define the flow poly-
tope, which is the convex hull of all u-v paths 6

2.1 Pythagorean theorem . 19
2.2 Optimality conditions: negative subgradient pointing out-

wards . 21
2.3 Iterates of the GD algorithm 22
2.4 The hinge loss function versus the 0/1 loss function 35

3.1 OGD: the iterate xt+1 is derived by advancing xt in the di-
rection of the current gradient ∇t, and projecting back into
K . 43

6.1 The Minkowski set Kδ . 112

7.1 Direction of progression of the CG algorithm 127

9.1 Symmetric random walk: 12 trials of 200 steps. The black
dotted lines show the functions ±

√
x and ±2

√
x, respectively. 159

10.1 Illustration of the working set St 180

11.1 Distinguishing zero versus one from a single pixel 185

xvii

xviii LIST OF FIGURES

List of Symbols

General

def
= definition

argmin{} the argument minimizing the expression in braces

[n] the set of integers {1, 2, . . . , n}

Geometry and Calculus

Rd d dimensional Euclidean space

∆d d dimensional simplex, {
∑

i xi = 1,xi ≥ 0}

S d dimensional sphere, {∥x∥ = 1}

B d dimensional ball, {∥x∥ ≤ 1}

R real numbers

C complex numbers

|A| determinant of matrix A

xix

xx LIST OF FIGURES

Learning Theory

X ,Y feature/label sets

D distribution over examples (x, y)

H hypothesis class in X 7→ Y

h single hypothesis h ∈ H

m training set size

error(h) generalization error of hypothesis h ∈ H

Optimization

x vectors in the decision set

K decision set

∇kf the k’th differential of f ; note ∇kf ∈ Rdk

∇−2f the inverse Hessian of f

∇f the gradient of f

∇t the gradient of f at point xt

x⋆ the global or local optima of objective f

ht objective value distance to optimality, ht = f(xt)− f(x⋆)

dt Euclidean distance to optimality dt = ∥xt − x⋆∥

G upper bound on norm of subgradients

D upper bound on Euclidean diameter

Dp, Gp upper bound on the p-norm of the subgradients/diameter

LIST OF FIGURES xxi

Regularization

R strongly convex and smooth regularization function

BR(x||y) R-Bregman-divergence R(x)−R(y)−∇R(y)⊤(x− y)

GR upper bound on norm of (sub)gradients

D2
R squared R diameter maxx,y∈K{R(x)−R(y)}

∥x∥2A squared matrix norm x⊤Ax

∥x∥2y local norm according to local regularization x⊤∇2R(y)x

∥x∥∗ dual norm to ∥x∥

xxii LIST OF FIGURES

Chapter 1

Introduction

This book considers optimization as a process. In many practical appli-
cations, the environment is so complex that it is not feasible to lay out a
comprehensive theoretical model and use classical algorithmic theory and
mathematical optimization. It is necessary, as well as beneficial, to take a
robust approach, by applying an optimization method that learns as more
aspects of the problem are observed. This view of optimization as a pro-
cess has become prominent in various fields, which has led to spectacular
successes in modeling and systems that are now part of our daily lives.

The growing body of literature of machine learning, statistics, decision
science, and mathematical optimization blurs the classical distinctions be-
tween deterministic modeling, stochastic modeling, and optimization method-
ology. We continue this trend in this book, studying a prominent optimiza-
tion framework whose precise location in the mathematical sciences is un-
clear: the framework of online convex optimization (OCO), which was first
defined in the machine learning literature (see section 1.4, later in this chap-
ter). The metric of success is borrowed from game theory, and the framework
is closely tied to statistical learning theory and convex optimization.

We embrace these fruitful connections and, on purpose, do not try to use
any particular jargon in the discussion. Rather, this book will start with
actual problems that can be modeled and solved via OCO. We will proceed
to present rigorous definitions, backgrounds, and algorithms. Throughout,
we provide connections to the literature in other fields. It is our hope that
you, the reader, will contribute to our understanding of these connections
from your domain of expertise, and expand the growing amount of literature
on this fascinating subject.

1

2 CHAPTER 1. INTRODUCTION

1.1 The Online Convex Optimization Setting

In OCO, an online player iteratively makes decisions. At the time of each
decision, the outcome or outcomes associated with it are unknown to the
player.

After committing to a decision, the decision maker suffers a loss: every
possible decision incurs a (possibly different) loss. These losses are unknown
to the decision maker beforehand. The losses can be adversarially chosen,
and even depend on the action taken by the decision maker.

Already at this point, several restrictions are necessary in order for this
framework to make any sense at all:

• The losses determined by an adversary should not be allowed to be
unbounded 1. Otherwise, the adversary could keep decreasing the
scale of the loss at each step, and never allow the algorithm to recover
from the loss of the first step. Thus, we assume that the losses lie in
some bounded region.

• The decision set must be somehow bounded and/or structured, though
not necessarily finite.

To see why this is necessary, consider decision making with an infinite
set of possible decisions. An adversary can assign high loss to all the
strategies chosen by the player indefinitely, while setting apart some
strategies with zero loss. This precludes any meaningful performance
metric.

Surprisingly, interesting statements and algorithms can be derived with
not much more than these two restrictions. The online convex optimization
(OCO) framework models the decision set as a convex set in Euclidean space
denoted as K ⊆ Rn. The costs are modeled as bounded convex functions
over K.

The OCO framework can be seen as a structured repeated game. The
protocol of this learning framework is as follows.

At iteration t, the online player chooses xt ∈ K . After the player has
committed to this choice, a convex cost function ft ∈ F : K 7→ R is revealed.
Here, F is the bounded family of cost functions available to the adversary.
The cost incurred by the online player is ft(xt), the value of the cost function
for the choice xt. Let T denote the total number of game iterations.

What would make an algorithm a good OCO algorithm? As the frame-
work is game-theoretic and adversarial in nature, the appropriate perfor-
mance metric also comes from game theory: define the regret of the decision

1.2. EXAMPLES OF PROBLEMS THAT CAN BEMODELED VIA ONLINE CONVEXOPTIMIZATION 3

maker to be the difference between the total cost she has incurred and that
of the best fixed decision in hindsight. In OCO, we are usually interested in
an upper bound on the worst-case regret of an algorithm.

Let A be an algorithm for OCO, which maps a certain game history to
a decision in the decision set:

xA
t = A(f1, ..., ft−1) ∈ K.

We formally define the regret of A after T iterations as:

RegretT (A) = sup
{f1,...,fT }⊆F

{
T∑
t=1

ft(x
A
t)−min

x∈K

T∑
t=1

ft(x)

}
. (1.1)

If the algorithm is clear from the context, we henceforth omit the super-
script and denote the algorithm’s decision at time t simply as xt. Intuitively,
an algorithm performs well if its regret is sublinear as a function of T (i.e.
RegretT (A) = o(T)), since this implies that on average, the algorithm per-
forms as well as the best fixed strategy in hindsight.

The running time of an algorithm for OCO is defined to be the worst-
case expected time to produce xt, for an iteration t ∈ [T]2 in a T -iteration
repeated game. Typically, the running time will depend on n (the dimen-
sionality of the decision set K), T (the total number of game iterations), and
the parameters of the cost functions and underlying convex set.

1.2 Examples of Problems That Can Be Modeled
via Online Convex Optimization

Perhaps the main reason that OCO has become a leading online learning
framework in recent years is its powerful modeling capability: problems from
diverse domains such as online routing, ad selection for search engines, and
spam filtering can all be modeled as special cases. In this section, we briefly
survey a few special cases and how they fit into the OCO framework.

1.2.1 Prediction from expert advice

Perhaps the most well known problem in prediction theory is the experts
problem. The decision maker has to choose among the advice of n given
experts. After making her choice, a loss between zero and 1 is incurred. This
scenario is repeated iteratively, and at each iteration, the costs of the various
experts are arbitrary (and possibly even adversarial, trying to mislead the

4 CHAPTER 1. INTRODUCTION

decision maker). The goal of the decision maker is to do as well as the best
expert in hindsight.

The OCO setting captures this as a special case: the set of decisions is the
set of all distributions over n elements (experts); that is, the n-dimensional
simplex K = ∆n = {x ∈ Rn ,

∑
i xi = 1 , xi ≥ 0}. Let the cost of the ith

expert at iteration t be gt(i), and let gt be the cost vector of all n experts.
Then the cost function is the expected cost of choosing an expert according
to distribution x, and it is given by the linear function ft(x) = g⊤

t x.

Thus, prediction from expert advice is a special case of OCO, in which
the decision set is the simplex and the cost functions are linear and bounded,
in the ℓ∞ norm, to be at most 1. The bound on the cost functions is derived
from the bound on the elements of the cost vector gt.

The fundamental importance of the experts problem in machine learning
warrants special attention, and we shall return to it and analyze it in detail
at the end of this chapter.

1.2.2 Online spam filtering

Consider an online spam-filtering system. Repeatedly, emails arrive in the
system and are classified as spam or valid. Obviously, such a system has
to cope with adversarially generated data and dynamically change with the
varying input—a hallmark of the OCO model.

The linear variant of this model is captured by representing the emails
as vectors according to the “bag-of-words” representation. Each email is
represented as a vector a ∈ Rd, where d is the number of words in the dic-
tionary. The entries of this vector are all zero, except for those coordinates
that correspond to words appearing in the email, which are assigned the
value one.

To predict whether an email is spam, we learn a filter, for example a
vector x ∈ Rd. Usually a bound on the Euclidean norm of this vector is
decided upon a priori, and is a parameter of great importance in practice.

Classification of an email a ∈ Rd by a filter x ∈ Rd is given by the sign
of the inner product between these two vectors, i.e., b̂ = sign(x⊤a) (with,
for example, +1 meaning valid and −1 meaning spam).

In the OCO model of online spam filtering, the decision set is taken to
be the set of all such norm-bounded linear filters, i.e., the Euclidean ball of
a certain radius. The cost functions are determined according to a stream
of incoming emails arriving into the system, and their labels (which may be
known by the system, partially known, or not known at all). Let (a, b) be an
email/label pair. Then the corresponding cost function over filters is given

1.2. EXAMPLES OF OCO 5

by f(x) = ℓ(b̂, b). Here b̂ is the classification given by the filter x, b is the
true label, and ℓ is a convex loss function, for example, the scaled square
loss ℓ(b̂, b) = 1

4(b̂− b)2.

At this point the reader may wonder - why use a square loss rather than
any other function? The most natural choice being perhaps a loss of one if
b = b̂ and zero otherwise.

To answer this, notice first that if both b and b̂ are binary and in {−1, 1},
then the square loss is indeed one or zero. However, moving to a continuous
function allows us much more flexibility in the decision making process. We
can allow, for example, the algorithm to return a number in the interval
[−1, 1] depending on its confidence.

Another reason has to do with the algorithmic efficiency of finding a a
good solution. This will be the subject of future chapters.

1.2.3 Online shortest paths

In the online shortest path problem, the decision maker is given a directed
graph G = (V,E) and a source-sink pair u, v ∈ V . At each iteration t ∈ [T],
the decision maker chooses a path pt ∈ Pu,v, where Pu,v ⊆ E|V | is the set
of all u-v-paths in the graph. The adversary independently chooses weights
(lengths) on the edges of the graph, given by a function from the edges to the
real numbers wt : E 7→ R, which can be represented as a vector wt ∈ Rm,
where m = |E|. The decision maker suffers and observes a loss, which is the
weighted length of the chosen path

∑
e∈pt wt(e).

The discrete description of this problem as an experts problem, where
we have an expert for each path, presents an efficiency challenge. There are
potentially exponentially many paths in terms of the graph representation
size.

Alternatively, the online shortest path problem can be cast in the online
convex optimization framework as follows. Recall the standard description
of the set of all distributions over paths (flows) in a graph as a convex set in
Rm, with O(m+ |V |) constraints (figure 1.1). Denote this flow polytope by
K. The expected cost of a given flow x ∈ K (distribution over paths) is then
a linear function, given by ft(x) = w⊤

t x, where, as defined above, wt(e) is
the length of the edge e ∈ E. This inherently succinct formulation leads to
computationally efficient algorithms.

6 CHAPTER 1. INTRODUCTION

∑
e=(u,w),w∈V

xe = 1 =
∑

e=(w,v),w∈V

xe flow value is one

∀w ∈ V \ {u, v}
∑

e=(w,x)∈E

xe =
∑

e=(x,w)∈E

xe flow conservation

∀e ∈ E 0 ≤ xe ≤ 1 capacity constraints

Figure 1.1: Linear equalities and inequalities that define the flow polytope,
which is the convex hull of all u-v paths

1.2.4 Portfolio selection

In this section we consider a portfolio selection model that does not make
any statistical assumptions about the stock market (as opposed to the stan-
dard geometric Brownian motion model for stock prices), and is called the
“universal portfolio selection” model.

At each iteration t ∈ [T], the decision maker chooses a distribution of her
wealth over n assets xt ∈ ∆n. The adversary independently chooses market
returns for the assets, i.e., a vector rt ∈ Rn with strictly positive entries
such that each coordinate rt(i) is the price ratio for the i’th asset between
the iterations t and t + 1. The ratio between the wealth of the investor at
iterations t+1 and t is r⊤t xt, and hence the gain in this setting is defined to
be the logarithm of this change ratio in wealth log(r⊤t xt). Notice that since
xt is the distribution of the investor’s wealth, even if xt+1 = xt, the investor
may still need to trade to adjust for price changes.

The goal of regret minimization, which in this case corresponds to min-
imizing the difference maxx⋆∈∆n

∑T
t=1 log(r

⊤
t x

⋆) −
∑T

t=1 log(r
⊤
t xt), has an

intuitive interpretation. The first term is the logarithm of the wealth accu-
mulated by the best possible in-hindsight distribution x⋆. Since this distri-
bution is fixed, it corresponds to a strategy of rebalancing the position after
every trading period, and hence, is called a constant rebalanced portfolio.
The second term is the logarithm of the wealth accumulated by the online
decision maker. Hence regret minimization corresponds to maximizing the
ratio of the investor’s wealth to the wealth of the best benchmark from a
pool of investing strategies.

A universal portfolio selection algorithm is defined to be one that, in
this setting, attains regret converging to zero. Such an algorithm, albeit

1.2. LEARNING FROM EXPERT ADVICE 7

requiring exponential time, was first described by Cover (see bibliographic
notes at the end of this chapter). The online convex optimization framework
has given rise to much more efficient algorithms based on Newton’s method.
We shall return to study these in detail in chapter 4.

1.2.5 Matrix completion and recommendation systems

The prevalence of large-scale media delivery systems such as the Netflix
online video library, Spotify music service and many others, give rise to very
large scale recommendation systems. One of the most popular and successful
models for automated recommendation is the matrix completion model.

In this mathematical model, recommendations are thought of as compos-
ing a matrix. The customers are represented by the rows, the different media
are the columns, and at the entry corresponding to a particular user/media
pair we have a value scoring the preference of the user for that particular
media.

For example, for the case of binary recommendations for music, we have
a matrix X ∈ {0, 1}n×m where n is the number of persons considered, m is
the number of songs in our library, and 0/1 signifies dislike/like respectively:

Xij =

0, person i dislikes song j

1, person i likes song j
.

In the online setting, for each iteration the decision maker outputs a
preference matrix Xt ∈ K, where K ⊆ {0, 1}n×m is a subset of all possible
zero/one matrices. An adversary then chooses a user/song pair (it, jt) along
with a “real” preference for this pair yt ∈ {0, 1}. Thus, the loss experienced
by the decision maker can be described by the convex loss function,

ft(X) = (Xit,jt − yt)
2.

The natural comparator in this scenario is a low-rank matrix, which
corresponds to the intuitive assumption that preference is determined by few
unknown factors. Regret with respect to this comparator means performing,
on the average, as few preference-prediction errors as the best low-rank
matrix.

We return to this problem and explore efficient algorithms for it in chap-
ter 7.

8 CHAPTER 1. INTRODUCTION

1.3 A Gentle Start: Learning from Expert Advice

Consider the following fundamental iterative decision making problem:

At each time step t = 1, 2, . . . , T , the decision maker faces a choice
between two actions A or B (i.e., buy or sell a certain stock). The decision
maker has assistance in the form ofN “experts” that offer their advice. After
a choice between the two actions has been made, the decision maker receives
feedback in the form of a loss associated with each decision. For simplicity
one of the actions receives a loss of zero (i.e., the “correct” decision) and
the other a loss of one.

We make the following elementary observations:

1. A decision maker that chooses an action uniformly at random each
iteration, trivially attains a loss of T

2 and is “correct” 50% of the time.

2. In terms of the number of mistakes, no algorithm can do better in the
worst case! In a later exercise, we will devise a randomized setting in
which the expected number of mistakes of any algorithm is at least T

2 .

We are thus motivated to consider a relative performance metric: can
the decision maker make as few mistakes as the best expert in hindsight?
The next theorem shows that the answer in the worst case is negative for a
deterministic decision maker.

Theorem 1.1. Let L ≤ T
2 denote the number of mistakes made by the best

expert in hindsight. Then there does not exist a deterministic algorithm that
can guarantee less than 2L mistakes.

Proof. Assume that there are only two experts and one always chooses op-
tion A while the other always chooses option B. Consider the setting in
which an adversary always chooses the opposite of our prediction (she can
do so, since our algorithm is deterministic). Then, the total number of mis-
takes the algorithm makes is T . However, the best expert makes no more
than T

2 mistakes (at every iteration exactly one of the two experts is mis-
taken). Therefore, there is no algorithm that can always guarantee less than
2L mistakes.

This observation motivates the design of random decision making algo-
rithms, and indeed, the OCO framework gracefully models decisions on a
continuous probability space. Henceforth we prove Lemmas 1.3 and 1.4 that
show the following:

1.3. LEARNING FROM EXPERT ADVICE 9

Theorem 1.2. Let ε ∈ (0, 12). Suppose the best expert makes L mistakes.
Then:

1. There is an efficient deterministic algorithm that can guarantee less
than 2(1 + ε)L+ 2 logN

ε mistakes;

2. There is an efficient randomized algorithm for which the expected num-
ber of mistakes is at most (1 + ε)L+ logN

ε .

1.3.1 The weighted majority algorithm

The weighted majority (WM) algorithm is intuitive to describe: each expert
i is assigned a weight Wt(i) at every iteration t. Initially, we set W1(i) = 1
for all experts i ∈ [N]. For all t ∈ [T] let St(A), St(B) ⊆ [N] be the set of
experts that choose A (and respectively B) at time t. Define,

Wt(A) =
∑

i∈St(A)

Wt(i) Wt(B) =
∑

i∈St(B)

Wt(i)

and predict according to

at =

{
A if Wt(A) ≥Wt(B)

B otherwise.

Next, update the weights Wt(i) as follows:

Wt+1(i) =

{
Wt(i) if expert i was correct

Wt(i)(1− ε) if expert i was wrong
,

where ε is a parameter of the algorithm that will affect its performance.
This concludes the description of the WM algorithm. We proceed to bound
the number of mistakes it makes.

Lemma 1.3. Denote by Mt the number of mistakes the algorithm makes
until time t, and by Mt(i) the number of mistakes made by expert i until
time t. Then, for any expert i ∈ [N] we have

MT ≤ 2(1 + ε)MT (i) +
2 logN

ε
.

We can optimize ε to minimize the above bound. The expression on the
right hand side is of the form f(x) = ax + b/x, that reaches its minimum

10 CHAPTER 1. INTRODUCTION

at x =
√

b/a. Therefore the bound is minimized at ε⋆ =
√

logN/MT (i).
Using this optimal value of ε, we get that for the best expert i⋆

MT ≤ 2MT (i
⋆) +O

(√
MT (i⋆) logN

)
.

Of course, this value of ε⋆ cannot be used in advance since we do not know
which expert is the best one ahead of time (and therefore we do not know the
value of MT (i

⋆)). However, we shall see later on that the same asymptotic
bound can be obtained even without this prior knowledge.

Let us now prove Lemma 1.3.

Proof. Let Φt =
∑N

i=1Wt(i) for all t ∈ [T], and note that Φ1 = N .
Notice that Φt+1 ≤ Φt. However, on iterations in which the WM algo-

rithm erred, we have

Φt+1 ≤ Φt(1−
ε

2
),

the reason being that experts with at least half of total weight were wrong
(else WM would not have erred), and therefore

Φt+1 ≤
1

2
Φt(1− ε) +

1

2
Φt = Φt(1−

ε

2
).

From both observations,

Φt ≤ Φ1(1−
ε

2
)Mt = N(1− ε

2
)Mt .

On the other hand, by definition we have for any expert i that

WT (i) = (1− ε)MT (i).

Since the value of WT (i) is always less than the sum of all weights ΦT , we
conclude that

(1− ε)MT (i) = WT (i) ≤ ΦT ≤ N(1− ε

2
)MT .

Taking the logarithm of both sides we get

MT (i) log(1− ε) ≤ logN +MT log (1− ε

2
).

Next, we use the approximations

−x− x2 ≤ log (1− x) ≤ −x 0 < x <
1

2
,

which follow from the Taylor series of the logarithm function, to obtain that

−MT (i)(ε+ ε2) ≤ logN −MT
ε

2
,

and the lemma follows.

1.3. LEARNING FROM EXPERT ADVICE 11

1.3.2 Randomized weighted majority

In the randomized version of the WM algorithm, denoted RWM, we choose
expert i w.p. pt(i) = Wt(i)/

∑N
j=1Wt(j) at time t.

Lemma 1.4. Let Mt denote the number of mistakes made by RWM until
iteration t. Then, for any expert i ∈ [N] we have

E[MT] ≤ (1 + ε)MT (i) +
logN

ε
.

The proof of this lemma is very similar to the previous one, where the factor
of two is saved by the use of randomness:

Proof. As before, let Φt =
∑N

i=1Wt(i) for all t ∈ [T], and note that Φ1 = N .
Let m̃t = Mt −Mt−1 be the indicator variable that equals one if the RWM
algorithm makes a mistake on iteration t. Let mt(i) equal one if the i’th
expert makes a mistake on iteration t and zero otherwise. Inspecting the
sum of the weights:

Φt+1 =
∑
i

Wt(i)(1− εmt(i))

= Φt(1− ε
∑
i

pt(i)mt(i)) pt(i) =
Wt(i)∑
j Wt(j)

= Φt(1− εE[m̃t])

≤ Φte
−εE[m̃t]. 1 + x ≤ ex

On the other hand, by definition we have for any expert i that

WT (i) = (1− ε)MT (i)

Since the value of WT (i) is always less than the sum of all weights ΦT , we
conclude that

(1− ε)MT (i) = WT (i) ≤ ΦT ≤ Ne−εE[MT].

Taking the logarithm of both sides we get

MT (i) log(1− ε) ≤ logN − εE[MT]

Next, we use the approximation

−x− x2 ≤ log (1− x) ≤ −x , 0 < x <
1

2

to obtain
−MT (i)(ε+ ε2) ≤ logN − εE[MT],

and the lemma follows.

12 CHAPTER 1. INTRODUCTION

1.3.3 Hedge

The RWM algorithm is in fact more general: instead of considering a dis-
crete number of mistakes, we can consider measuring the performance of an
expert by a non-negative real number ℓt(i), which we refer to as the loss
of the expert i at iteration t. The randomized weighted majority algorithm
guarantees that a decision maker following its advice will incur an average
expected loss approaching that of the best expert in hindsight.

Historically, this was observed by a different and closely related algorithm
called Hedge, whose total loss bound will be of interest to us later on in the
book.

Algorithm 1 Hedge

1: Initialize: ∀i ∈ [N], W1(i) = 1
2: for t = 1 to T do
3: Pick it ∼R Wt, i.e., it = i with probability xt(i) =

Wt(i)∑
j Wt(j)

4: Incur loss ℓt(it).
5: Update weights Wt+1(i) = Wt(i)e

−εℓt(i)

6: end for

Henceforth, denote in vector notation the expected loss of the algorithm
by

E[ℓt(it)] =
N∑
i=1

xt(i)ℓt(i) = x⊤
t ℓt

Theorem 1.5. Let ℓ2t denote the N -dimensional vector of square losses,
i.e., ℓ2t (i) = ℓt(i)

2, let ε > 0, and assume all losses to be non-negative. The
Hedge algorithm satisfies for any expert i⋆ ∈ [N]:

T∑
t=1

x⊤
t ℓt ≤

T∑
t=1

ℓt(i
⋆) + ε

T∑
t=1

x⊤
t ℓ

2
t +

logN

ε

Proof. As before, let Φt =
∑N

i=1Wt(i) for all t ∈ [T], and note that Φ1 = N .

1.3. LEARNING FROM EXPERT ADVICE 13

Inspecting the sum of weights:

Φt+1 =
∑

iWt(i)e
−εℓt(i)

= Φt
∑

i xt(i)e
−εℓt(i) xt(i) =

Wt(i)∑
j Wt(j)

≤ Φt
∑

i xt(i)(1− εℓt(i) + ε2ℓt(i)
2)) for x ≥ 0,

e−x ≤ 1− x+ x2

= Φt(1− εx⊤
t ℓt + ε2x⊤

t ℓ
2
t)

≤ Φte
−εx⊤

t ℓt+ε2x⊤
t ℓ2t . 1 + x ≤ ex

On the other hand, by definition, for expert i⋆ we have that

WT+1(i
⋆) = e−ε

∑T
t=1 ℓt(i

⋆)

Since the value of WT (i
⋆) is always less than the sum of all weights Φt, we

conclude that

WT+1(i
⋆) ≤ ΦT+1 ≤ Ne−ε

∑
t x

⊤
t ℓt+ε2

∑
t x

⊤
t ℓ2t .

Taking the logarithm of both sides we get

−ε
T∑
t=1

ℓt(i
⋆) ≤ logN − ε

T∑
t=1

x⊤
t ℓt + ε2

T∑
t=1

x⊤
t ℓ

2
t

and the theorem follows by simplifying.

14 CHAPTER 1. INTRODUCTION

1.4 Bibliographic Remarks

The OCO model was first defined by Zinkevich [2003] and has since become
widely influential in the learning community and significantly extended since
(see thesis and surveys [Hazan, 2006, 2011, Shalev-Shwartz, 2011]).

The problem of prediction from expert advice and the Weighted Majority
algorithm were devised in [Littlestone and Warmuth, 1989, 1994]. This
seminal work was one of the first uses of the multiplicative updates method—
a ubiquitous meta-algorithm in computation and learning, see the survey
[Arora et al., 2012] for more details. The Hedge algorithm was introduced
by Freund and Schapire [1997].

The Universal Portfolios model was put forth in [Cover, 1991], and is
one of the first examples of a worst-case online learning model. Cover gave
an optimal-regret algorithm for universal portfolio selection that runs in
exponential time. A polynomial time algorithm was given in [Kalai and
Vempala, 2003], which was further sped up in [Agarwal et al., 2006, Hazan
et al., 2007]. Numerous extensions to the model also appeared in the liter-
ature, including addition of transaction costs [Blum and Kalai, 1999] and
relation to the Geometric Brownian Motion model for stock prices [Hazan
and Kale, 2009].

In their influential paper, Awerbuch and Kleinberg [2008] put forth the
application of online convex optimization to online routing. A great deal
of work has been devoted since then to improve the initial bounds, and
generalize it into a complete framework for decision making with limited
feedback. This framework is an extension of OCO, called Bandit Convex
Optimization (BCO). We defer further bibliographic remarks to chapter 6
which is devoted to the BCO framework.

1.5. EXERCISES 15

1.5 Exercises

1. (Attributed to Claude Shannon)
Construct market returns over two stocks for which the wealth accumulated over
any single stock decreases exponentially, whereas the best constant rebalanced port-
folio increases wealth exponentially. More precisely, construct two sequences of
numbers in the range (0,∞), that represent returns, such that:

(a) Investing in any of the individual stocks results in exponential decrease in
wealth. This means that the product of the prefix of numbers in each of these
sequences decreases exponentially.

(b) Investing evenly on the two assets and rebalancing after every iteration in-
creases wealth exponentially.

2.

(a) Consider the experts problem in which the losses are between zero and a
positive real number G > 0. Give an algorithm that attains expected loss upper
bounded by:

T∑
t=1

E[ℓt(it)] ≤ min
i⋆∈[N]

T∑
t=1

ℓt(i
⋆) + c

√
T logN

for the best constant c you can (the constant c should be independent of the number
of game iterations T , and the number of experts N . Assume that T is known in
advance).

(b) Suppose the upper bound G is not known in advance. Give an algorithm
whose performance is asymptotically as good as your algorithm in part (a), up to
an additive and/or multiplicative constant which is independent of T,N,G. Prove
your claim.

3. Consider the experts problem in which the losses can be negative and are
real numbers in the range [−1, 1]. Give an algorithm with regret guarantee of
O(
√
T logN) and prove your claim.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Concepts in Convex
Optimization

In this chapter we give a gentle introduction to convex optimization and
present some basic algorithms for solving convex mathematical programs.
Although offline convex optimization is not our main topic, it is useful to
recall the basic definitions and results before we move on to OCO. This will
help in assessing the advantages and limitations of OCO. Furthermore, we
describe some tools that will be our bread-and-butter later on.

The material in this chapter is far from being new. A broad and sig-
nificantly more detailed literature exists, and the reader is deferred to the
bibliography at the end of this chapter for references. We give here only the
most elementary analysis, and focus on the techniques that will be of use to
us later on.

2.1 Basic Definitions and Setup

The goal in this chapter is to minimize a continuous and convex function over
a convex subset of Euclidean space. Henceforth, let K ⊆ Rd be a bounded
convex and closed set in Euclidean space. We denote by D an upper bound
on the diameter of K:

∀x,y ∈ K, ∥x− y∥ ≤ D.

A set K is convex if for any x,y ∈ K, all the points on the line segment
connecting x and y also belong to K, i.e.,

∀α ∈ [0, 1], αx+ (1− α)y ∈ K.

17

18 CHAPTER 2. CONVEX OPTIMIZATION

A function f : K 7→ R is convex if for any x,y ∈ K

∀α ∈ [0, 1], f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y).

This inequality, and generalizations thereof, is also known as Jensen’s in-
equality. Equivalently, if f is differentiable, that is, its gradient ∇f(x)
exists for all x ∈ K, then it is convex if and only if ∀x,y ∈ K

f(y) ≥ f(x) +∇f(x)⊤(y − x).

For convex and non-differentiable functions f , the subgradient at x is defined
to be any member of the set of vectors {∇f(x)} that satisfies the above for
all y ∈ K.

We denote by G > 0 an upper bound on the norm of the subgradients
of f over K, i.e., ∥∇f(x)∥ ≤ G for all x ∈ K. Such an upper bound implies
that the function f is Lipschitz continuous with parameter G, that is, for
all x,y ∈ K

|f(x)− f(y)| ≤ G∥x− y∥.
The optimization and machine learning literature studies special types

of convex functions that admit useful properties, which in turn allow for
more efficient optimization. Notably, we say that a function is α-strongly
convex if

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥2.

A function is β-smooth if

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥y − x∥2.

The latter condition is equivalent to a Lipschitz condition over the gradients,
i.e.,

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.
If the function is twice differentiable and admits a second derivative,

known as a Hessian for a function of several variables, the above conditions
are equivalent to the following condition on the Hessian, denoted ∇2f(x):

αI ≼ ∇2f(x) ≼ βI,

where A ≼ B if the matrix B −A is positive semidefinite.
When the function f is both α-strongly convex and β-smooth, we say

that it is γ-well-conditioned where γ is the ratio between strong convexity
and smoothness, also called the condition number of f

γ =
α

β
≤ 1

2.1. BASIC DEFINITIONS AND SETUP 19

2.1.1 Projections onto convex sets

In the following algorithms we shall make use of a projection operation onto
a convex set, which is defined as the closest point in terms of Euclidean
distance 3 inside the convex set to a given point. Formally,

Π
K
(y)

def
= argmin

x∈K
∥x− y∥.

When clear from the context, we shall remove the K subscript. It is left as
an exercise to the reader to prove that the projection of a given point over
a closed, bounded and convex set exists and is unique.

The computational complexity of projections is a subtle issue that de-
pends much on the characterization of K itself. Most generally, K can be
represented by a membership oracle—an efficient procedure that is capable
of deciding whether a given x belongs to K or not. In this case, projections
can be computed in polynomial time. In certain special cases, projections
can be computed very efficiently in near-linear time. The computational
cost of projections, as well as optimization algorithms that avoid them al-
together, is discussed in chapter 7.

A crucial property of projections that we shall make extensive use of is
the Pythagorean theorem, which we state here for completeness:

Figure 2.1: Pythagorean theorem

20 CHAPTER 2. CONVEX OPTIMIZATION

Theorem 2.1 (Pythagoras, circa 500 BC). Let K ⊆ Rd be a convex set,
y ∈ Rd and x = ΠK(y). Then for any z ∈ K we have

∥y − z∥ ≥ ∥x− z∥.

We note that there exists a more general version of the Pythagorean
theorem. The above theorem and the definition of projections are true and
valid not only for Euclidean norms, but for projections according to other
distances that are not norms. In particular, an analogue of the Pythagorean
theorem remains valid with respect to Bregman divergences (see chapter 5).

2.1.2 Introduction to optimality conditions

The standard curriculum of high school mathematics contains the basic facts
concerning when a function (usually in one dimension) attains a local opti-
mum or saddle point. The generalization of these conditions to more than
one dimension is called the KKT (Karush-Kuhn-Tucker) conditions, and
the reader is referred to the bibliographic material at the end of this chap-
ter for an in-depth rigorous discussion of optimality conditions in general
mathematical programming.

For our purposes, we describe only briefly and intuitively the main facts
that we will require henceforth. Naturally, we restrict ourselves to convex
programming, and thus a local minimum of a convex function is also a global
minimum (see exercises at the end of this chapter). In general there can be
many points in which a function is minimized, and thus we refer to the set
of minima of a given objective function, denoted as argminx∈Rn{f(x)} 4.

The generalization of the fact that a minimum of a convex differentiable
function on R is a point in which its derivative is equal to zero, is given by
the multi-dimensional analogue that its gradient is zero:

∇f(x) = 0 ⇐⇒ x ∈ argmin
x∈Rn

{f(x)}.

We will require a slightly more general, but equally intuitive, fact for con-
strained optimization: at a minimum point of a constrained convex function,
the inner product between the negative gradient and direction towards the
interior of K is non-positive. This is depicted in figure 2.2, which shows that
−∇f(x⋆) defines a supporting hyperplane to K. The intuition is that if the
inner product were positive, one could improve the objective by moving in
the direction of the projected negative gradient. This fact is stated formally
in the following theorem.

2.2. GRADIENT DESCENT 21

Theorem 2.2 (Karush-Kuhn-Tucker). Let K ⊆ Rd be a convex set, x⋆ ∈
argminx∈K f(x). Then for any y ∈ K we have

∇f(x⋆)⊤(y − x⋆) ≥ 0.

Figure 2.2: Optimality conditions: negative subgradient pointing outwards

2.2 Gradient Descent

Gradient descent (GD) is the simplest and oldest of optimization methods.
It is an iterative method—the optimization procedure proceeds in iterations,
each improving the objective value. The basic method amounts to iteratively
moving the current point in the direction of the gradient, which is a linear
time operation if the gradient is given explicitly (indeed, for many functions
computing the gradient at a certain point is a simple linear-time operation).

The basic template algorithm, for unconstrained optimization, is given
in 2, and a depiction of the iterates it produced in figure 2.3.

For a convex function there always exists a choice of step sizes that will
cause GD to converge to the optimal solution. The rates of convergence,
however, differ greatly and depend on the smoothness and strong convexity
properties of the objective function. The following table summarises the

22 CHAPTER 2. CONVEX OPTIMIZATION

Figure 2.3: Iterates of the GD algorithm

Algorithm 2 Gradient Descent

1: Input: time horizon T , initial point x0, step sizes {ηt}
2: for t = 0, . . . , T − 1 do
3: xt+1 = xt − ηt∇t

4: end for
5: return x̄ = argminxt

{f(xt)}

convergence rates of GD variants for convex functions with different convex-
ity parameters. The rates described omit the (usually small) constants in
the bounds—we focus on asymptotic rates.

In this section we address only the first row of Table 2.1. For accelerated
methods and their analysis see references at the bibliographic section.

2.2.1 The Polyak stepsize

Luckily, there exists a simple choice of step sizes that yields the optimal
convergence rate, called the Polyak stepsize. It has a huge advantage of not
depending on the strong convexity and/or smoothness parameters of the
objective function.

However, it does depend on the distance in function value to optimality
and gradient norm. While the latter can be efficiently estimated, the dis-
tance to optimality is not always available if f(x∗) is not known ahead of

2.2. GRADIENT DESCENT 23

general α-strongly β-smooth γ-well
convex conditioned

Gradient descent 1√
T

1
αT

β
T e−γT

Accelerated GD — — β
T 2 e−

√
γ T

Table 2.1: Rates of convergence of first order (gradient-based) methods
as a function of the number of iterations and the smoothness and strong-
convexity of the objective. Dependence on other parameters and constants,
namely the Lipchitz constant, diameter of constraint set and initial distance
to the objective is omitted. Acceleration for non-smooth functions is not
possible in general.

time. This can be remedied, as referred to in the bibliography.
We henceforth denote:

1. Distance to optimality in value: ht = h(xt) = f(xt)− f(x∗)

2. Euclidean distance to optimality: dt = ∥xt − x∗∥

3. Current gradient norm ∥∇t∥ = ∥∇f(xt)∥

With these notations we can describe the algorithm precisely in Algo-
rithm 3:

Algorithm 3 Gradient Descent with Polyak stepsize

1: Input: time horizon T , x0
2: for t = 0, . . . , T − 1 do
3: Set ηt =

ht
∥∇t∥2

4: xt+1 = xt − ηt∇t

5: end for
6: Return x̄ = argminxt

{f(xt)}

To prove precise convergence bounds, assume ∥∇t∥ ≤ G, and define:

BT = min

{
Gd0√
T
,
2βd20
T

,
3G2

αT
, βd20

(
1− γ

4

)T}
We can now state the main guarantee of GD with the Polyak stepsize:

Theorem 2.3. (GD with the Polyak Step Size) Algorithm 3 guarantees the
following after T steps:

f(x̄)− f(x⋆) ≤ min
0≤t≤T

{ht} ≤ BT

24 CHAPTER 2. CONVEX OPTIMIZATION

2.2.2 Measuring distance to optimality

When analyzing convergence of gradient methods, it is useful to use potential
functions in lieu of function distance to optimality, such as gradient norm
and/or Euclidean distance. The following relationships hold between these
quantities.

Lemma 2.4. The following properties hold for α-strongly-convex functions
and/or β-smooth functions over Euclidean space Rd.

1. α
2 d

2
t ≤ ht

2. ht ≤ β
2d

2
t

3. 1
2β∥∇t∥2 ≤ ht

4. ht ≤ 1
2α∥∇t∥2

Proof. 1. ht ≥ α
2 d

2
t :

By strong convexity, we have

ht = f(xt)− f(x⋆)

≥ ∇f(x⋆)⊤(xt − x⋆) + α
2 ∥xt − x⋆∥2

= α
2 ∥xt − x⋆∥2

where the last inequality follows since the gradient at the global opti-
mum is zero.

2. ht ≤ β
2d

2
t :

By smoothness,

ht = f(xt)− f(x⋆)

≤ ∇f(x⋆)⊤(xt − x⋆) + β
2 ∥xt − x⋆∥2

= β
2 ∥xt − x⋆∥2

where the last inequality follows since the gradient at the global opti-
mum is zero.

3. ht ≥ 1
2β∥∇t∥2: Using smoothness, and let xt+1 = xt − η∇t for η = 1

β ,

ht = f(xt)− f(x⋆)

≥ f(xt)− f(xt+1)

≥ ∇f(xt)
⊤(xt − xt+1)− β

2 ∥xt − xt+1∥2

= η∥∇t∥2 − β
2 η

2∥∇t∥2

= 1
2β∥∇t∥2.

2.2. GRADIENT DESCENT 25

4. ht ≤ 1
2α∥∇t∥2:

We have for any pair x,y ∈ Rd:

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥x− y∥2

≥ min
z∈Rd

{
f(x) +∇f(x)⊤(z− x) +

α

2
∥x− z∥2

}
= f(x)− 1

2α
∥∇f(x)∥2.

by taking z = x− 1

α
∇f(x)

In particular, taking x = xt , y = x⋆, we get

ht = f(xt)− f(x⋆) ≤ 1

2α
∥∇t∥2. (2.1)

2.2.3 Analysis of the Polyak stepsize

We are now ready to prove Theorem 2.3, which directly follows from the
following lemma.

Lemma 2.5. Suppose that a sequence x0, . . .xt satisfies:

d2t+1 ≤ d2t −
h2t
∥∇t∥2

(2.2)

then for x̄ as defined in the algorithm, we have:

f(x̄)− f(x⋆) ≤ 1

T

∑
t

ht ≤ BT .

Proof. The proof analyzes different cases:

1. For convex functions with gradient bounded by G,

d2t+1 − d2t ≤ − h2
t

∥∇t∥2 ≤ −
h2
t

G2

Summing up over T iterations, and using Cauchy-Schwartz on the
T -dimensional vectors of 1

T 1 and (h1, ..., hT), we have

1

T

∑
t

ht ≤
1√
T

√∑
t

h2t

≤ G√
T

√∑
t

(d2t − d2t+1) ≤
Gd0√
T

.

26 CHAPTER 2. CONVEX OPTIMIZATION

2. For smooth functions whose gradient is bounded by G, Lemma 2.4
implies:

d2t+1 − d2t ≤ −
h2t
∥∇t∥2

≤ − ht
2β

.

This implies
1

T

∑
t

ht ≤
2βd20
T

.

3. For strongly convex functions, Lemma 2.4 implies:

d2t+1 − d2t ≤ −
h2t
∥∇t∥2

≤ − h2t
G2
≤ −α2d4t

4G2
.

In other words, d2t+1 ≤ d2t (1−
α2d2t
4G2) . Defining at :=

α2d2t
4G2 , we have:

at+1 ≤ at(1− at) .

This implies that at ≤ 1
t+1 , which can be seen by induction5. The

proof is completed as follows6 :

1

T/2

T∑
t=T/2

h2t ≤ 2G2

T

T∑
t=T/2

(d2t − d2t+1)

=
2G2

T
(d2T/2 − d2T)

=
8G4

α2T
(aT/2 − aT)

≤ 9G4

α2T 2
.

Thus, there exists a t for which h2t ≤ 9G4

α2T 2 . Taking the square root
completes the claim.

4. For both strongly convex and smooth functions:

d2t+1 − d2t ≤ −
h2t
∥∇t∥2

≤ − ht
2β
≤ − α

4β
d2t

Thus,

hT ≤ βd2T ≤ βd20

(
1− α

4β

)T

= βd20

(
1− γ

4

)T
.

This completes the proof of all cases.

2.3. CONSTRAINED GRADIENT/SUBGRADIENT DESCENT 27

2.3 Constrained Gradient/Subgradient Descent

The vast majority of the problems considered in this text include constraints.
Consider the examples given in section 1.2: a path is a point in the flow
polytope, a portfolio is a point in the simplex and so on. In the language of
optimization, we require x not only to minimize a certain objective function,
but also to belong to a convex set K.

In this section we describe and analyze constrained gradient descent. Al-
gorithmically, the change from the previous section is small: after updating
the current point in the direction of the gradient, one may need to project
back to the decision set. However, the analysis is somewhat more involved,
and instructive for the later parts of this text.

2.3.1 Basic gradient descent—linear convergence

Algorithmic box 4 describes a template for gradient descent over a con-
strained set. It is a template since the sequence of step sizes {ηt} is left as
an input parameter, and the several variants of the algorithm differ on its
choice.

Algorithm 4 Basic gradient descent

1: Input: f , T , initial point x1 ∈ K, sequence of step sizes {ηt}
2: for t = 1 to T do
3: Let yt+1 = xt − ηt∇f(xt), xt+1 = ΠK (yt+1)
4: end for
5: return xT+1

As opposed to the unconstrained setting, here we require a precise setting
of the learning rate to obtain the optimal convergence rate.

Theorem 2.6. For constrained minimization of γ-well-conditioned func-
tions and ηt =

1
β , Algorithm 4 converges as

ht+1 ≤ h1 · e−
γt
4

Proof. By strong convexity we have for every x,xt ∈ K (where we denote
∇t = ∇f(xt) as before):

∇⊤
t (x− xt) ≤ f(x)− f(xt)−

α

2
∥x− xt∥2. (2.3)

28 CHAPTER 2. CONVEX OPTIMIZATION

Next, appealing to the algorithm’s definition and the choice ηt =
1
β , we have

xt+1 = argminx∈K

{
∇⊤

t (x− xt) +
β
2 ∥x− xt∥2

}
. (2.4)

To see this, notice that

Π
K
(xt − ηt∇t)

= argmin
x∈K

{
∥x− (xt − ηt∇t)∥2

}
definition of projection

= argmin
x∈K

{
∇⊤

t (x− xt) +
1

2ηt
∥x− xt∥2

}
. see exercise 6

Thus, we have

ht+1 − ht = f(xt+1)− f(xt)

≤ ∇⊤
t (xt+1 − xt) +

β

2
∥xt+1 − xt∥2 smoothness

≤ min
x∈K

{
∇⊤

t (x− xt) +
β

2
∥x− xt∥2

}
by (2.4)

≤ min
x∈K

{
f(x)− f(xt) +

β − α

2
∥x− xt∥2

}
. by (2.3)

The minimum can only grow if we take it over a subset of K. Thus we can
restrict our attention to all points that are convex combination of xt and
x⋆, which we denote by the interval [xt,x

⋆] = {(1− µ)xt + µx⋆, µ ∈ [0, 1]},
and write

ht+1 − ht ≤ min
x∈[xt,x⋆]

{
f(x)− f(xt) +

β − α

2
∥x− xt∥2

}
= f((1− µ)xt + µx⋆)− f(xt) +

β − α

2
µ2∥x⋆ − xt∥2

≤ (1− µ)f(xt) + µf(x⋆)− f(xt) +
β − α

2
µ2∥x⋆ − xt∥2 convexity

= −µht +
β − α

2
µ2∥x⋆ − xt∥2. (2.5)

Where the equality is by writing x as x = (1 − µ)xt + µx⋆. Using strong

2.4. REDUCTIONS TO NON-SMOOTHANDNON-STRONGLY CONVEX FUNCTIONS29

convexity, we have for any xt and the minimizer x⋆:

ht = f(xt)− f(x⋆)

≥ ∇f(x⋆)⊤(xt − x⋆) +
α

2
∥x⋆ − xt∥2 α-strong convexity

≥ α

2
∥x⋆ − xt∥2. optimality Thm 2.2

Thus, plugging this into equation (2.5), we get

ht+1 − ht ≤ (−µ+
β − α

α
µ2)ht

≤ − α

4(β − α)
ht. optimal choice of µ

Thus,

ht+1 ≤ ht(1−
α

4(β − α)
) ≤ ht(1−

α

4β
) ≤ hte

−γ/4.

This gives the theorem statement by induction.

2.4 Reductions to Non-smooth and Non-strongly
Convex Functions

The previous section dealt with γ-well-conditioned functions, which may
seem like a significant restriction over vanilla convexity. Indeed, many in-
teresting convex functions are not strongly convex nor smooth, and as we
have seen, the convergence rate of gradient descent greatly differs for these
functions. We have completed the picture for unconstrained optimization,
and in this section we complete it for a bounded set.

The literature on first order methods is abundant with specialized anal-
yses that explore the convergence rate of gradient descent for more general
functions. In this manuscript we take a different approach: instead of ana-
lyzing variants of GD from scratch, we use reductions to derive near-optimal
convergence rates for smooth functions that are not strongly convex, or
strongly convex functions that are not smooth, or general convex functions
without any further restrictions.

While attaining sub-optimal convergence bounds (by logarithmic fac-
tors), the advantage of this approach is two-fold: first, the reduction method
is very simple to state and analyze, and its analysis is significantly shorter
than analyzing GD from scratch. Second, the reduction method is generic,
and thus extends to the analysis of accelerated gradient descent (or any
other first order method) along the same lines. We turn to these reductions
next.

30 CHAPTER 2. CONVEX OPTIMIZATION

2.4.1 Reduction to smooth, non strongly convex functions

Our first reduction applies the GD algorithm to functions that are β-smooth
but not strongly convex.

The idea is to add a controlled amount of strong convexity to the func-
tion f , and then apply the algorithm 4 to optimize the new function. The
solution is distorted by the added strong convexity, but a tradeoff guarantees
a meaningful convergence rate.

Algorithm 5 Gradient descent, reduction to β-smooth functions

1: Input: f , T , x1 ∈ K, parameter α̃.
2: Let g(x) = f(x) + α̃

2 ∥x− x1∥2
3: Apply Algorithm 4 with parameters g, T, {ηt = 1

β},x1, return xT .

Lemma 2.7. For β-smooth convex functions, Algorithm 5 with parameter
α̃ = β log t

D2t
converges as

ht+1 = O

(
β log t

t

)
Proof. The function g is α̃-strongly convex and (β + α̃)-smooth (see exer-
cises). Thus, it is γ = α̃

α̃+β -well-conditioned. Notice that

ht = f(xt)− f(x⋆)

= g(xt)− g(x⋆) +
α̃

2
(∥x⋆ − x1∥2 − ∥xt − x1∥2)

≤ hgt + α̃D2. def of D, §2.1

Here, we denote hgt = g(xt)− g(x⋆). Since g(x) is α̃
α̃+β -well-conditioned,

ht+1 ≤ hgt+1 + α̃D2

≤ hg1e
− α̃t

4(α̃+β) + α̃D2 Theorem 2.6

= O(
β log t

t
), choosing α̃ = β log t

D2t

where we ignore constants and terms depending on D and hg1.

Stronger convergence rates of O(βt) can be obtained by analyzing GD
from scratch, and these are known to be tight. Thus, our reduction is
suboptimal by a factor of O(log T), which we tolerate for the reasons stated
at the beginning of this section.

2.4. REDUCTIONS 31

2.4.2 Reduction to strongly convex, non-smooth functions

Our reduction from non-smooth functions to γ-well-conditioned functions is
similar in spirit to the one of the previous subsection. However, whereas
for strong convexity the obtained rates were off by a factor of log T , in this
section we will also be off by factor of d, the dimension of the decision
variable x, as compared to the standard analyses in convex optimization.
For tight bounds, the reader is referred to the excellent reference books and
surveys listed in the bibliography section 2.6.

Algorithm 6 Gradient descent, reduction to non-smooth functions

1: Input: f,x1, T, δ
2: Let f̂δ(x) = Ev∼B [f(x+ δv)]
3: Apply Algorithm 4 on f̂δ,x1, T, {ηt = δ}, return xT

We apply the GD algorithm to a smoothed variant of the objective func-
tion. In contrast to the previous reduction, smoothing cannot be obtained
by simple addition of a smooth (or any other) function. Instead, we need
a smoothing operation. The one we describe is particularly simple and
amounts to taking a local integral of the function. More sophisticated,
but less general, smoothing operators exist that are based on the Moreau-
Yoshida regularization, see bibliographic section for more details.

Let f be G-Lipschitz continuous and α-strongly convex. Define for any
δ > 0,

Sδ[f] : Rd 7→ R , Sδ[f](x) = E
v∼B

[f(x+ δv)] ,

where B = {x ∈ Rd : ∥x∥ ≤ 1} is the Euclidean ball and v ∼ B denotes
a random variable drawn from the uniform distribution over B. When the
function f is clear from the context, we henceforth use the simpler notation
f̂δ = Sδ[f].

We will prove that the function f̂δ = Sδ[f] is a smooth approximation
to f : Rd 7→ R, i.e., it is both smooth and close in value to f , as given in the
following lemma.

Lemma 2.8. f̂δ has the following properties:

1. If f is α-strongly convex, then so is f̂δ

2. f̂δ is dG
δ -smooth

3. |f̂δ(x)− f(x)| ≤ δG for all x ∈ K .

32 CHAPTER 2. CONVEX OPTIMIZATION

Before proving this lemma, let us first complete the reduction. Using
Lemma 2.8 and the convergence for γ-well-conditioned functions the follow-
ing approximation bound is obtained.

Lemma 2.9. For δ = dG
α

log t
t Algorithm 6 converges as

ht = O

(
G2d log t

αt

)
.

Before proving this lemma, notice that the gradient descent method is
applied with gradients of the smoothed function f̂δ rather than gradients of
the original objective f . In this section we ignore the computational cost of
computing such gradients given only access to gradients of f , which may be
significant. Techniques for estimating these gradients are further explored
in chapter 6.

Proof. Note that by Lemma 2.8 the function f̂δ is γ-well-conditioned for
γ = αδ

dG .

ht+1 = f(xt+1)− f(x⋆)

≤ f̂δ(xt+1)− f̂δ(x
⋆) + 2δG Lemma 2.8

≤ h1e
− γt

4 + 2δG Theorem 2.6

= h1e
− αtδ

4dG + 2δG γ = αδ
dG by Lemma 2.8

= O

(
dG2 log t

αt

)
. δ = dG

α
log t
t

We proceed to prove that f̂δ is indeed a good approximation to the
original function.

Proof of Lemma 2.8. First, since f̂δ is an average of α-strongly convex func-
tions, it is also α-strongly convex. In order to prove smoothness, we will
use Stokes’ theorem from calculus: For all x ∈ Rd and for a vector ran-
dom variable v which is uniformly distributed over the Euclidean sphere
S = {y ∈ Rd : ∥y∥ = 1},

E
v∼S

[f(x+ δv)v] =
δ

d
∇f̂δ(x). (2.6)

2.4. REDUCTIONS 33

Recall that a function f is β-smooth if and only if for all x,y ∈ K, it
holds that ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥. Now,

∥∇f̂δ(x)−∇f̂δ(y)∥ =

=
d

δ
∥ E
v∼S

[f(x+ δv)v]− E
v∼S

[f(y + δv)v] ∥ by (2.6)

=
d

δ
∥ E
v∼S

[f(x+ δv)v − f(y + δv)v] ∥ linearity of expectation

≤ d

δ
E

v∼S
∥f(x+ δv)v − f(y + δv)v∥ Jensen’s inequality

≤ dG

δ
∥x− y∥ E

v∼S
[∥v∥] Lipschitz continuity

=
dG

δ
∥x− y∥. v ∈ S

This proves the second property of Lemma 2.8. We proceed to show the
third property, namely that f̂δ is a good approximation to f .

|f̂δ(x)− f(x)| =
∣∣∣∣ Ev∼B

[f(x+ δv)]− f(x)

∣∣∣∣ definition of f̂δ

≤ E
v∼B

[|f(x+ δv)− f(x)|] Jensen’s inequality

≤ E
v∼B

[G∥δv∥] f is G-Lipschitz

≤ Gδ. v ∈ B

We note that GD variants for α-strongly convex functions, even with-
out the smoothing approach used in our reduction, are known to converge
quickly and without dependence on the dimension. We state the known
algorithm and result here without proof (see bibliography for references).

Theorem 2.10. Let f be α-strongly convex, and let x1, ...,xt be the iterates
of Algorithm 4 applied to f with ηt =

2
α(t+1) . Then

f

(
1

t

t∑
s=1

2s

t+ 1
xs

)
− f(x⋆) ≤ 2G2

α(t+ 1)
.

34 CHAPTER 2. CONVEX OPTIMIZATION

2.4.3 Reduction to general convex functions

One can apply both reductions simultaneously to obtain a rate of Õ(d√
t
).

While near-optimal in terms of the number of iterations, the weakness of
this bound lies in its dependence on the dimension. In the next chapter we
shall show a rate of O(1√

t
) as a direct consequence of a more general online

convex optimization algorithm.

2.5 Example: Support Vector Machine Training

To illustrate the usefulness of the gradient descent method, let us describe
an optimization problem that has gained much attention in machine learning
and can be solved efficiently using the methods we have just analyzed.

A very basic and successful learning paradigm is the linear classification
model. In this model, the learner is presented with positive and negative
examples of a concept. Each example, denoted by ai, is represented in Eu-
clidean space by a d dimensional feature vector. For example, a common
representation for emails in the spam-classification problem are binary vec-
tors in Euclidean space, where the dimension of the space is the number of
words in the language. The i’th email is a vector ai whose entries are given
as ones for coordinates corresponding to words that appear in the email,
and zero otherwise7. In addition, each example has a label bi ∈ {−1,+1},
corresponding to whether the email has been labeled spam/not spam. The
goal is to find a hyperplane separating the two classes of vectors: those with
positive labels and those with negative labels. If such a hyperplane, which
completely separates the training set according to the labels, does not ex-
ist, then the goal is to find a hyperplane that achieves a separation of the
training set with the smallest number of mistakes.

Mathematically speaking, given a set of n examples to train on, we seek
x ∈ Rd that minimizes the number of incorrectly classified examples, i.e.

min
x∈Rd

∑
i∈[n]

δ(sign(x⊤ai) ̸= bi) (2.7)

where sign(x) ∈ {−1,+1} is the sign function, and δ(z) ∈ {0, 1} is the
indicator function that takes the value 1 if the condition z is satisfied and
zero otherwise.

This optimization problem, which is at the heart of the linear classifi-
cation formulation, is NP-hard, and in fact NP-hard to even approximate

2.5. EXAMPLE: SVM 35

Figure 2.4: The hinge loss function versus the 0/1 loss function

non-trivially 8. However, in the special case that a linear classifier (a hyper-
plane x) that classifies all of the examples correctly exists, the problem is
solvable in polynomial time via linear programming.

Various relaxations have been proposed to solve the more general case,
when no perfect linear classifier exists. One of the most successful in practice
is the Support Vector Machine (SVM) formulation.

The soft margin SVM relaxation replaces the 0/1 loss in (2.7) with a
convex loss function, called the hinge-loss, given by

ℓa,b(x) = hinge(b · x⊤a) = max{0, 1− b · x⊤a}.

In figure 2.4 we depict how the hinge loss is a convex relaxation for the non-
convex 0/1 loss. Further, the SVM formulation adds to the loss minimization
objective a term that regularizes the size of the elements in x. The reason
and meaning of this additional term shall be addressed in later sections. For
now, let us consider the SVM convex program:

min
x∈Rd

λ
1

n

∑
i∈[n]

ℓai,bi(x) +
1

2
∥x∥2

 (2.8)

This is an unconstrained non-smooth and strongly convex program. It
follows from Theorems 2.3 and 2.10 that O(1ε) iterations suffice to attain an
ε-approximate solution. We spell out the details of applying the subgradient
descent algorithm to this formulation in Algorithm 7.

Notice that the learning rates are left unspecified, even though they can
be explicitly set as in Theorem 2.10, or using the Polyak rate. The Polyak

36 CHAPTER 2. CONVEX OPTIMIZATION

Algorithm 7 SVM training via subgradient descent

1: Input: training set of n examples {(ai, bi)}, T , learning rates {ηt}, initial
x1 = 0.

2: for t = 1 to T do
3: Let ∇t = λ 1

n

∑n
i=1∇ℓai,bi(xt) + xt where

∇ℓai,bi(x) =

0, bix

⊤ai > 1

−biai, otherwise

4: xt+1 = xt − ηt∇t for ηt =
2

t+1
5: end for
6: return x̄T = 1

T

∑T
t=1

2t
T+1xt

rate requires knowing the function value at optimality, although this can be
relaxed (see bibliography).

A caveat of using gradient descent for SVM is the requirement to com-
pute the full gradient, which may require a full pass over the data for each
iteration. We will see a significantly more efficient algorithm in the next
chapter!

2.6. BIBLIOGRAPHIC REMARKS 37

2.6 Bibliographic Remarks

The reader is referred to dedicated books on convex optimization for much
more in-depth treatment of the topics surveyed in this background chapter.
For background in convex analysis see the texts [Borwein and Lewis, 2006,
Rockafellar, 1997]. The classic textbook of Boyd and Vandenberghe [2004]
gives a broad introduction to convex optimization with numerous applica-
tions, see also [Boyd, 2014]. For detailed rigorous convergence proofs and in
depth analysis of first order methods, see lecture notes by Nesterov [2004]
and books by Nemirovski and Yudin [1983], Nemirovskii [2004], as well as
more recent lecture notes and texts [Bubeck, 2015, Hazan, 2019]. Theorem
2.10 is taken from [Bubeck, 2015] Theorem 3.9.

The logarithmic overhead in the reductions of section 2.4 can be removed
with a more careful reduction and analysis, for details see [Allen-Zhu and
Hazan, 2016]. A more sophisticated smoothing operator is the Moreau-
Yoshida regularization: it avoids the dimension factor loss. However, it is
sometimes less computationally efficient to work with [Parikh and Boyd,
2014].

The Polyak learning rate is detailed in [Polyak, 1987]. A recent ex-
position allows obtaining the same optimal rate without knowledge of the
optimal function value [Hazan and Kakade, 2019].

Using linear separators and halfspaces to learn and separate data was
considered in the very early days of AI [Rosenblatt, 1958, Minsky and Pa-
pert, 1969]. Notable the Perceptron algorithm was one of the first learning
algorithms, and closely related to gradient descent. Support vector machines
were introduced in [Cortes and Vapnik, 1995, Boser et al., 1992], see also
the book of Schölkopf and Smola [2002].

Learning halfspaces with the zero-one loss is computationally hard, and
hard to even approximate non-trivially [Daniely, 2016]. Proving that a prob-
lem is hard to approximate is at the forefront of computational complexity,
and based on novel characterizations of the complexity class NP [Arora and
Barak, 2009].

38 CHAPTER 2. CONVEX OPTIMIZATION

2.7 Exercises

1. Prove that a differentiable function f(x) : R → R is convex if and only if for
any x, y ∈ R it holds that f(x)− f(y) ≤ (x− y)f ′(x).

2. Recall that we say that a function f : Rn → R has a condition number γ = α/β
over K ⊆ Rd if the following two inequalities hold for all x,y ∈ K:

(a) f(y) ≥ f(x) + (y − x)⊤∇f(x) + α
2 ∥x− y∥2

(b) f(y) ≤ f(x)+(y−x)⊤∇f(x)+β
2 ∥x− y∥2 Prove that if f is twice differentiable

and it holds that βI ≽ ∇2f(x) ≽ αI for any x ∈ K, then the condition number of
f over K is α/β.

3. Prove:

(a) The sum of convex functions is convex.

(b) Let f be α1-strongly convex and g be α2-strongly convex. Then f + g is
(α1 + α2)-strongly convex.

(c) Let f be β1-smooth and g be β2-smooth. Then f + g is (β1 + β2)-smooth.

4. Let K ⊆ Rd be bounded and closed. Prove that convexity of K is a necessary
and sufficient condition for all x ∈ Rd for ΠK(x) to be a singleton, that is for
|ΠK(x)| = 1. To prove that this is a necessary condition, it is enough to provide a
counterexample.

5. Consider the n-dimensional simplex

∆n = {x ∈ Rn |
n∑

i=1

xi = 1, xi ≥ 0 , ∀i ∈ [n]}.

Give an algorithm for computing the projection of a point x ∈ Rn onto the set ∆n

(a near-linear time algorithm exists).

6. Prove the following identity:

argmin
x∈K

{
∇⊤

t (x− xt) +
1

2ηt
∥x− xt∥2

}
=argmin

x∈K

{
∥x− (xt − ηt∇t)∥2

}
.

2.7. EXERCISES 39

7. Let f(x) : Rn → R be a convex differentiable function and K ⊆ Rn be a convex
set. Prove that x⋆ ∈ K is a minimizer of f over K if and only if for any y ∈ K it
holds that (y − x⋆)⊤∇f(x⋆) ≥ 0.

8. * Extending Nesterov’s accelerated GD algorithm:
Assume a black-box access to Nesterov’s algorithm that attains the rate of e−

√
γ T

for γ-well-conditioned functions, as in Table 2.1. Apply a reduction to obtain the
β
T 2 rate for β-smooth functions, as in Table 2.1, up to logarithmic factors.

40 CHAPTER 2. CONVEX OPTIMIZATION

Chapter 3

First-Order Algorithms for
Online Convex Optimization

In this chapter we describe and analyze the most simple and basic algo-
rithms for online convex optimization (recall the definition of the model as
introduced in chapter 1), which are also surprisingly useful and applicable
in practice. We use the same notation introduced in §2.1. However, in con-
trast to the previous chapter, the goal of the algorithms introduced in this
chapter is to minimize regret, rather than the optimization error (which is
ill-defined in an online setting).

Recall the definition of regret in an OCO setting, as given in equation
(1.1), with subscripts, superscripts and the supremum over the function class
omitted when they are clear from the context:

RegretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

Table 3.1 details known upper and lower bounds on the regret for dif-
ferent types of convex functions as it depends on the number of prediction
iterations.

In order to compare regret to optimization error it is useful to consider
the average regret, or Regret/T . Let x̄T = 1

T

∑T
t=1 xt be the average deci-

sion. If the functions ft are all equal to a single function f : K 7→ R, then
Jensen’s inequality implies that f(x̄T) converges to f(x⋆) at a rate at most
the average regret, since

f(x̄T)− f(x⋆) ≤ 1

T

T∑
t=1

[f(xt)− f(x⋆)] =
RegretT

T
.

41

42 CHAPTER 3. FIRST-ORDER ALGORITHMS

α-strongly convex β-smooth δ-exp-concave

Upper bound 1
α log T

√
T n

δ log T

Lower bound 1
α log T

√
T n

δ log T

Average regret log T
αT

1√
T

n log T
δT

Table 3.1: Attainable asymptotic regret bounds for loss function classes.

The reader may recall Table 2.1 describing offline convergence of first
order methods: as opposed to offline optimization, smoothness does not
improve asymptotic regret rates. However, exp-concavity, a weaker property
than strong convexity, comes into play and gives improved regret rates.

This chapter will present algorithms and lower bounds that realize the
above known results for OCO. The property of exp-concavity and its appli-
cations, as well as logarithmic regret algorithms for exp-concave functions
are deferred to the next chapter.

3.1 Online Gradient Descent

Perhaps the simplest algorithm that applies to the most general setting
of online convex optimization is online gradient descent. This algorithm,
which is based on standard gradient descent from offline optimization, was
introduced in its online form by Zinkevich (see bibliography at the end of
this section).

Algorithm 8 online gradient descent

1: Input: convex set K, T , x1 ∈ K, step sizes {ηt}
2: for t = 1 to T do
3: Play xt and observe cost ft(xt).
4: Update and project:

yt+1 = xt − ηt∇ft(xt)

xt+1 = Π
K
(yt+1)

5: end for

Pseudo-code for the algorithm is given in Algorithm 8, and a conceptual
illustration is given in figure 3.1.

In each iteration, the algorithm takes a step from the previous point in

3.1. ONLINE GRADIENT DESCENT 43

Figure 3.1: OGD: the iterate xt+1 is derived by advancing xt in the direction
of the current gradient ∇t, and projecting back into K

the direction of the gradient of the previous cost. This step may result in
a point outside of the underlying convex set. In such cases, the algorithm
projects the point back to the convex set, i.e. finds its closest point in the
convex set. Despite the fact that the next cost function may be completely
different than the costs observed thus far, the regret attained by the algo-
rithm is sublinear. This is formalized in the following theorem (recall the
definition of G and D from the previous chapter).

Theorem 3.1. Online gradient descent with step sizes {ηt = D
G
√
t
, t ∈ [T]}

guarantees the following for all T ≥ 1:

RegretT =
T∑
t=1

ft(xt)− min
x⋆∈K

T∑
t=1

ft(x
⋆) ≤ 3

2
GD
√
T .

Proof. Let x⋆ ∈ argminx∈K
∑T

t=1 ft(x). Define ∇t
def
= ∇ft(xt). By convexity

ft(xt)− ft(x
⋆) ≤ ∇⊤

t (xt − x⋆) (3.1)

We first upper-bound ∇⊤
t (xt − x⋆) using the update rule for xt+1 and The-

44 CHAPTER 3. FIRST-ORDER ALGORITHMS

orem 2.1 (the Pythagorean theorem):

∥xt+1 − x⋆∥2 =

∥∥∥∥ΠK(xt − ηt∇t)− x⋆

∥∥∥∥2 ≤ ∥xt − ηt∇t − x⋆∥2 . (3.2)

Hence,

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 + η2t ∥∇t∥2 − 2ηt∇⊤
t (xt − x⋆)

2∇⊤
t (xt − x⋆) ≤ ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

ηt
+ ηtG

2. (3.3)

Summing (3.1) and (3.3) from t = 1 to T , and setting ηt = D
G
√
t
(with

1
η0

def
= 0):

2

(
T∑
t=1

ft(xt)− ft(x
⋆)

)
≤ 2

T∑
t=1

∇⊤
t (xt − x⋆)

≤
T∑
t=1

∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

ηt
+G2

T∑
t=1

ηt

≤
T∑
t=1

∥xt − x⋆∥2
(

1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt
1

η0

def
= 0,

∥xT+1 − x∗∥2 ≥ 0

≤ D2
T∑
t=1

(
1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤ D2 1

ηT
+G2

T∑
t=1

ηt telescoping series

≤ 3DG
√
T .

The last inequality follows since ηt =
D

G
√
t
and

∑T
t=1

1√
t
≤ 2
√
T .

The online gradient descent algorithm is straightforward to implement,
and updates take linear time given the gradient. However, there is a pro-
jection step which may take significantly longer, as discussed in §2.1.1 and
chapter 7.

3.2. LOWER BOUNDS 45

3.2 Lower Bounds

The previous section introduces and analyzes a very simple and natural ap-
proach to online convex optimization. Before continuing our venture, it is
worthwhile to consider whether the previous bound can be improved? We
measure performance of OCO algorithms both by regret and by computa-
tional efficiency. Therefore, we ask ourselves whether even simpler algo-
rithms that attain tighter regret bounds exist.

The computational efficiency of online gradient descent seemingly leaves
little room for improvement, putting aside the projection step it runs in
linear time per iteration. What about obtaining better regret?

Perhaps surprisingly, the answer is negative: online gradient descent
attains, in the worst case, tight regret bounds up to small constant factors!
This is formally given in the following theorem.

Theorem 3.2. Any algorithm for online convex optimization incurs Ω(DG
√
T)

regret in the worst case. This is true even if the cost functions are generated
from a fixed stationary distribution.

We give a sketch of the proof; filling in all details is left as an exercise
at the end of this chapter.

Consider an instance of OCO where the convex setK is the n-dimensional
hypercube, i.e.

K = {x ∈ Rn , ∥x∥∞ ≤ 1}.

There are 2n linear cost functions, one for each vertex v ∈ {±1}n, defined
as

∀v ∈ {±1}n , fv(x) = v⊤x.

Notice that both the diameter of K and the bound on the norm of the cost
function gradients, denoted G, are bounded by

D ≤

√√√√ n∑
i=1

22 = 2
√
n, G ≤

√√√√ n∑
i=1

(±1)2 =
√
n

The cost functions in each iteration are chosen at random, with uniform
probability, from the set {fv,v ∈ {±1}n}. Denote by vt ∈ {±1}n the vertex
chosen in iteration t, and denote ft = fvt . By uniformity and independence,

46 CHAPTER 3. FIRST-ORDER ALGORITHMS

for any t and xt chosen online, Evt [ft(xt)] = Evt [v
⊤
t xt] = 0. However,

E
v1,...,vT

[
min
x∈K

T∑
t=1

ft(x)

]
= E

min
x∈K

∑
i∈[n]

T∑
t=1

vt(i) · xi

= nE

[
−

∣∣∣∣∣
T∑
t=1

vt(1)

∣∣∣∣∣
]

i.i.d. coordinates

= −Ω(n
√
T).

The last equality is left as an exercise.

The facts above nearly complete the proof of Theorem 3.2; see the exer-
cises at the end of this chapter.

3.3 Logarithmic Regret

At this point, the reader may wonder: we have introduced a seemingly
sophisticated and obviously general framework for learning and prediction,
as well as a linear-time algorithm for the most general case, complete with
tight regret bounds, and done so with elementary proofs! Is this all OCO
has to offer?

The answer to this question is two-fold:

1. Simple is good: the philosophy behind OCO treats simplicity as a
merit. The main reason OCO has taken the stage in online learning in
recent years is the simplicity of its algorithms and their analysis, which
allow for numerous variations and tweaks in their host applications.

2. A very wide class of settings, which will be the subject of the next
sections, admit more efficient algorithms, in terms of both regret and
computational complexity.

In §2 we surveyed optimization algorithms with convergence rates that
vary greatly according to the convexity properties of the function to be
optimized. Do the regret bounds in online convex optimization vary as
much as the convergence bounds in offline convex optimization over different
classes of convex cost functions?

Indeed, next we show that for important classes of loss functions signif-
icantly better regret bounds are possible.

3.3. LOGARITHMIC REGRET 47

3.3.1 Online gradient descent for strongly convex functions

The first algorithm that achieves regret logarithmic in the number of iter-
ations is a twist on the online gradient descent algorithm, changing only
the step size. The following theorem establishes logarithmic bounds on the
regret if the cost functions are strongly convex.

Theorem 3.3. For α-strongly convex loss functions, online gradient descent
with step sizes ηt =

1
αt achieves the following guarantee for all T ≥ 1

RegretT ≤
G2

2α
(1 + log T).

Proof. Let x⋆ ∈ argminx∈K
∑T

t=1 ft(x). Recall the definition of regret

RegretT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
⋆).

Define ∇t
def
= ∇ft(xt). Applying the definition of α-strong convexity to

the pair of points {xt,x
∗}, we have

2(ft(xt)− ft(x
⋆)) ≤ 2∇⊤

t (xt − x⋆)− α∥x⋆ − xt∥2. (3.4)

We proceed to upper-bound ∇⊤
t (xt − x⋆). Using the update rule for xt+1

and the Pythagorean theorem 2.1, we get

∥xt+1 − x⋆∥2 = ∥Π
K
(xt − ηt∇t)− x⋆∥2 ≤ ∥xt − ηt∇t − x⋆∥2.

Hence,

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 + η2t ∥∇t∥2 − 2ηt∇⊤
t (xt − x⋆)

and

2∇⊤
t (xt − x⋆) ≤ ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

ηt
+ ηtG

2. (3.5)

Summing (3.5) from t = 1 to T , setting ηt = 1
αt (define 1

η0

def
= 0), and

48 CHAPTER 3. FIRST-ORDER ALGORITHMS

combining with (3.4), we have:

2
T∑
t=1

(ft(xt)− ft(x
⋆))

≤
T∑
t=1

∥xt − x⋆∥2
(

1

ηt
− 1

ηt−1
− α

)
+G2

T∑
t=1

ηt

since
1

η0

def
= 0, ∥xT+1 − x∗∥2 ≥ 0

= 0 +G2
T∑
t=1

1

αt

≤ G2

α
(1 + log T)

3.4 Application: Stochastic Gradient Descent

A special case of Online Convex Optimization is the well-studied setting of
stochastic optimization. In stochastic optimization, the optimizer attempts
to minimize a convex function over a convex domain as given by the math-
ematical program:

min
x∈K

f(x).

However, unlike standard offline optimization, the optimizer is given access
to a noisy gradient oracle, defined by

O(x) def
= ∇̃x s.t. E[∇̃x] = ∇f(x) , E[∥∇̃x∥2] ≤ G2

That is, given a point in the decision set, a noisy gradient oracle returns
a random vector whose expectation is the gradient at the point and whose
variance is bounded by G2.

We will show that regret bounds for OCO translate to convergence rates
for stochastic optimization. As a special case, consider the online gradient
descent algorithm whose regret is bounded by

RegretT = O(DG
√
T)

3.4. STOCHASTIC GRADIENT DESCENT 49

Applying the OGD algorithm over a sequence of linear functions that are
defined by the noisy gradient oracle at consecutive points, and finally re-
turning the average of all points along the way, we obtain the stochastic
gradient descent algorithm, presented in Algorithm 9.

Algorithm 9 stochastic gradient descent

1: Input: O,K, T , x1 ∈ K, step sizes {ηt}
2: for t = 1 to T do
3: Let ∇̃t = O(xt)
4: Update and project:

yt+1 = xt − ηt∇̃t

xt+1 = Π
K
(yt+1)

5: end for
6: return x̄T

def
= 1

T

∑T
t=1 xt

Theorem 3.4. Algorithm 9 with step sizes ηt =
D

G
√
t
guarantees

E[f(x̄T)] ≤ min
x⋆∈K

f(x⋆) +
3GD

2
√
T
.

Proof. For the analysis, we define the linear functions ft(x)
def
= ∇̃⊤

t x. Using
the regret guarantee of OGD, we have

E[f(x̄T)]− f(x⋆)

≤ E[
1

T

∑
t

f(xt)]− f(x⋆) convexity of f (Jensen)

≤ 1

T
E[
∑
t

∇f(xt)
⊤(xt − x⋆)] convexity again

=
1

T
E[
∑
t

∇̃⊤
t (xt − x⋆)] noisy gradient estimator

=
1

T
E[
∑
t

ft(xt)− ft(x
⋆)] Algorithm 9, line (3)

≤ RegretT
T

definition

≤ 3GD

2
√
T

theorem 3.1

50 CHAPTER 3. FIRST-ORDER ALGORITHMS

It is important to note that in the proof above, we have used the fact
that the regret bounds of online gradient descent hold against an adaptive
adversary. This need arises since the cost functions ft defined in Algorithm
9 depend on the choice of decision xt ∈ K.

In addition, the careful reader may notice that by plugging in different
step sizes (also called learning rates) and applying SGD to strongly convex
functions, one can attain Õ(1/T) convergence rates, where the Õ notation
hides logarithmic factors in T . Details of this derivation are left as an
exercise.

3.4.1 Example: stochastic gradient descent for SVM training

Recall our example of Support Vector Machine training from §2.5. The task
of training an SVM over a given data set amounts to solving the following
convex program (equation (2.8)):

f(x) = min
x∈Rd

λ
1

n

∑
i∈[n]

ℓai,bi(x) +
1

2
∥x∥2

ℓa,b(x) = max{0, 1− b · x⊤a}.

Algorithm 10 SGD for SVM training

1: Input: training set of n examples {(ai, bi)}, T . Set x1 = 0
2: for t = 1 to T do
3: Pick an example uniformly at random t ∈ [n].
4: Let ∇̃t = λ∇ℓat,bt(xt) + xt where

∇ℓat,bt(xt) =

0, btx

⊤
t at > 1

−btat, otherwise

5: xt+1 = xt − ηt∇̃t

6: end for
7: return x̄T

def
= 1

T

∑T
t=1 xt

Using the technique described in this chapter, namely the OGD and SGD
algorithms, we can devise a much faster algorithm than the one presented
in the previous chapter. The idea is to generate an unbiased estimator for

3.4. SGD FOR SVM 51

the gradient of the objective using a single example in the dataset, and use
it in lieu of the entire gradient. This is given formally in the SGD algorithm
for SVM training presented in Algorithm 10.

It follows from Theorem 3.4 that this algorithm, with appropriate pa-
rameters ηt, returns an ε-approximate solution after T = O(1

ε2
) iterations.

Furthermore, with a little more care and using Theorem 3.3, a rate of Õ(1ε)
is obtained with parameters ηt = O(1t).

This matches the convergence rate of standard offline gradient descent.
However, observe that each iteration is significantly cheaper—only one ex-
ample in the data set need be considered! That is the magic of SGD; we
have matched the nearly optimal convergence rate of first order methods
using extremely cheap iterations. This makes it the method of choice in
numerous applications.

52 CHAPTER 3. FIRST-ORDER ALGORITHMS

3.5 Bibliographic Remarks

The OCO framework was introduced by Zinkevich [2003], where the OGD
algorithm was introduced and analyzed. Precursors to this algorithm, albeit
for less general settings, were introduced and analyzed in [Kivinen and War-
muth, 1997]. Logarithmic regret algorithms for Online Convex Optimization
were introduced and analyzed in [Hazan et al., 2007].

The stochastic gradient descent (SGD) algorithm dates back to Robbins
and Monro [1951], where it was called “stochastic approximation”. The
importance of SGD for machine learning was advocated for in [Bottou, 1998,
Bottou and Bousquet, 2008]. The literature on SGD is vast and the reader
is referred to the text of Bubeck [2015] and paper by Lan [2012].

Application of SGD to soft-margin SVM training was explored in [Shalev-
Shwartz et al., 2011a]. Tight convergence rates of SGD for strongly convex
and non-smooth functions were only recently obtained in [Hazan and Kale,
2011, Rakhlin et al., 2012, Shamir and Zhang, 2013].

3.6. EXERCISES 53

3.6 Exercises

1. Prove that SGD for a strongly convex function can, with appropriate param-
eters ηt, converge as Õ(1

T). Recall that the Õ notation hides logarithmic factors in
the parameters, including T . You may assume that the gradient estimators have
Euclidean norms bounded by the constant G.

2. ∗ In this exercise we show how to remove some a-priory knowledge from the
design of online convex optimization algorithms.

(a) Design an OCO algorithm that attains the same asymptotic regret bound as
OGD, up to factors logarithmic in G without knowing the parameter G ahead of
time.

(b) Do the same for the parameter D: design an OCO algorithm that attains
the same asymptotic regret bound as OGD, up to factors logarithmic in D without
knowing the parameter D ahead of time. This time you may assume G is known.
You may assume that it is possible to compute projections onto K without knowing
its diameter.

3. In this exercise we prove a tight lower bound on the regret of any algorithm
for online convex optimization.

(a) For any sequence of T fair coin tosses, let Nh be the number of head outcomes
and Nt be the number of tails. Give an asymptotically tight upper and lower
bound on E[|Nh −Nt|]. That is, give an order of growth of this random variable
as a function of T , up to multiplicative and additive constants.

(b) Consider a 2-expert problem, in which the losses are inversely correlated:
either expert one incurs a loss of one and the second expert negative one, or vice
versa. Use the fact above to design a setting in which any experts algorithm incurs
regret asymptotically matching the upper bound.

(c) Consider the general OCO setting over a convex set K. Design a setting in
which the cost functions have gradients whose norm is bounded by G, and obtain
a lower bound on the regret as a function of G, the diameter of K, and the number
of game iterations.

4. Implement the SGD algorithm for SVM training. Apply it on the MNIST
dataset. Compare your results to the offline GD algorithm from the previous chap-
ter.

54 CHAPTER 3. FIRST-ORDER ALGORITHMS

Chapter 4

Second-Order Methods

The motivation for this chapter is the application of online portfolio selec-
tion, considered in the first chapter of this book. We begin with a detailed
description of this application. We proceed to describe a new class of con-
vex functions that model this problem. This new class of functions is more
general than the class of strongly convex functions discussed in the previ-
ous chapter. It allows for logarithmic regret algorithms, which are based on
second order methods from convex optimization. In contrast to first order
methods, which have been our focus thus far and relied on (sub)gradients,
second order methods exploit information about the second derivative of the
objective function.

4.1 Motivation: Universal Portfolio Selection

In this subsection we give the formal definition of the universal portfolio
selection problem that was informally described in §1.2.

4.1.1 Mainstream portfolio theory

Mainstream financial theory models stock prices as a stochastic process
known as Geometric Brownian Motion (GBM). This model assumes that
the fluctuations in the prices of the stocks behave essentially as a random
walk. It is perhaps easier to think about a price of an asset (stock) on time
segments, obtained from a discretization of time into equal segments. Thus,
the logarithm of the price at segment t+1, denoted lt+1, is given by the sum
of the logarithm of the price at segment t and a Gaussian random variable

55

56 CHAPTER 4. SECOND-ORDER METHODS

with a particular mean and variance,

lt+1 ∼ lt +N (µ, σ).

This is only an informal way of thinking about GBM. The formal model
is a continuous time process, similar to the discrete time stochastic process
we have just described, obtained as the time intervals, means, and variances
approach zero.

The GBM model gives rise to particular algorithms for portfolio selection
(as well as more sophisticated applications such as options pricing). Given
the means and variances of the stock prices over time of a set of assets,
as well as their cross-correlations, a portfolio with maximal expected gain
(mean) for a specific risk (variance) threshold can be formulated.

The fundamental question is, of course, how does one obtain the mean
and variance parameters, not to mention the cross-correlations, of a given
set of stocks? One accepted solution is to estimate these from historical
data, e.g., by taking the recent history of stock prices.

4.1.2 Universal portfolio theory

The theory of universal portfolio selection is very different from the GBM
model. The main difference being the lack of statistical assumptions about
the stock market. The idea is to model investing as a repeated decision
making scenario, which fits nicely into our OCO framework, and to measure
regret as a performance metric.

Consider the following scenario: at each iteration t ∈ [T], the decision
maker chooses xt, a distribution of her wealth over n assets, such that xt ∈
∆n. Here ∆n = {x ∈ Rn

+,
∑

i xi = 1} is the n-dimensional simplex, i.e.,
the set of all distributions over n elements. An adversary independently
chooses market returns for the assets, i.e., a vector rt ∈ Rn

+ such that each
coordinate rt(i) is the price ratio for the i’th asset between the iterations t
and t + 1. For example, if the i’th coordinate is the Google ticker symbol
GOOG traded on the NASDAQ, then

rt(i) =
price of GOOG at time t+ 1

price of GOOG at time t

How does the decision maker’s wealth change? Let Wt be her total wealth
at iteration t. Then, ignoring transaction costs, we have

Wt+1 = Wt · r⊤t xt

4.1. UNIVERSAL PORTFOLIO SELECTION 57

Over T iterations, the total wealth of the investor is given by

WT = W1 ·
T−1∏
t=1

r⊤t xt

The goal of the decision maker, to maximize the overall wealth gain WT /W0,
can be attained by maximizing the following more convenient logarithm of
this quantity, given by

log
WT

W1
=

T−1∑
t=1

log r⊤t xt

The above formulation is already very similar to our OCO setting, albeit
phrased as a gain maximization rather than a loss minimization setting. Let

ft(x) = log(r⊤t x)

The convex set is the n-dimensional simplex K = ∆n, and define the regret
to be

RegretT = max
x⋆∈K

T∑
t=1

ft(x
⋆)−

T∑
t=1

ft(xt)

The functions ft are concave rather than convex, which is perfectly fine as
we are framing the problem as a maximization rather than a minimization.
Note also that the regret is the negation of the usual regret notion (1.1) we
have considered for minimization problems.

Since this is an online convex optimization instance, we can use the
online gradient descent algorithm from the previous chapter to invest, which
ensures O(

√
T) regret (see exercises). What guarantee do we attain in terms

of investing? To answer this, in the next section we reason about what x⋆

in the above expression may be.

4.1.3 Constant rebalancing portfolios

As x⋆ ∈ K = ∆n is a point in the n-dimensional simplex, consider the
special case of x⋆ = e1, i.e., the first standard basis vector (the vector that
has zero in all coordinates except the first, which is set to one). The term∑T

t=1 ft(e1) becomes
∑T

t=1 log rt(1), or

log

T∏
t=1

rt(1) = log

(
price of stock at time T + 1

initial price of stock

)

58 CHAPTER 4. SECOND-ORDER METHODS

As T becomes large, any sublinear regret guarantee (e.g., the O(
√
T) regret

guarantee achieved using online gradient descent) achieves an average regret
that approaches zero. In this context, this implies that the log-wealth gain
achieved (in average over T rounds) is as good as that of the first stock.
Since x⋆ can be taken to be any vector, sublinear regret guarantees average
log-wealth growth as good as any stock!

However, x⋆ can be significantly better, as shown in the following ex-
ample. Consider a market of two stocks that fluctuate wildly. The first
stock increases by 100% every even day and returns to its original price the
following (odd) day. The second stock does exactly the opposite: decreases
by 50% on even days and rises back on odd days. Formally, we have

rt(1) = (2 ,
1

2
, 2 ,

1

2
, ...)

rt(2) = (
1

2
, 2 ,

1

2
, 2 , ...)

Clearly, any investment in either of the stocks will not gain in the long
run. However, the portfolio x⋆ = (0.5, 0.5) increases wealth by a factor of
r⊤t x

⋆ = (12)
2 + 1 = 1.25 daily! Such a mixed distribution is called a fixed

rebalanced portfolio, as it needs to rebalance the proportion of total capital
invested in each stock at each iteration to maintain this fixed distribution
strategy.

Thus, vanishing average regret guarantees long-run growth as the best
constant rebalanced portfolio in hindsight. Such a portfolio strategy is called
universal. We have seen that the online gradient descent algorithm gives
essentially a universal algorithm with regret O(

√
T). Can we get better

regret guarantees?

4.2 Exp-Concave Functions

For convenience, we return to considering losses of convex functions, rather
than gains of concave functions as in the application for portfolio selection.
The two problems are equivalent: we simply replace the maximization of
the concave f(x) = log(r⊤t x) with the minimization of the convex f(x) =
− log(r⊤t x).

In the previous chapter we have seen that the OGD algorithm with care-
fully chosen step sizes can deliver logarithmic regret for strongly convex
functions. However, the loss function for the OCO setting of portfolio se-
lection, ft(x) = − log(r⊤t x), is not strongly convex. Instead, the Hessian of

4.2. EXP-CONCAVE FUNCTIONS 59

this function is given by

∇2ft(x) =
rtr

⊤
t

(r⊤t x)
2

which is a rank one matrix. Recall that the Hessian of a twice-differentiable
strongly convex function is larger than a multiple of identity matrix and
is positive definite and in particular has full rank. Thus, the loss function
above is quite far from being strongly convex.

However, an important observation is that this Hessian is large in the
direction of the gradient. This property is called exp-concavity. We pro-
ceed to define this property rigorously and show that it suffices to attain
logarithmic regret.

Definition 4.1. A convex function f : Rn 7→ R is defined to be α-exp-
concave over K ⊆ Rn if the function g is concave, where g : K 7→ R is
defined as

g(x) = e−αf(x)

For the following discussion, recall the notation of §2.1, and in particular
our convention over matrices that A ≽ B if and only if A − B is positive
semidefinite. Exp-concavity implies strong-convexity in the direction of the
gradient. This reduces to the following property:

Lemma 4.2. A twice-differentiable function f : Rn 7→ R is α-exp-concave
at x if and only if

∇2f(x) ≽ α∇f(x)∇f(x)⊤.

The proof of this lemma is given as a guided exercise at the end of this
chapter. We prove a slightly stronger lemma below.

Lemma 4.3. Let f : K → R be an α-exp-concave function, and D,G denote
the diameter of K and a bound on the (sub)gradients of f respectively. The
following holds for all γ ≤ 1

2 min{ 1
GD , α} and all x,y ∈ K:

f(x) ≥ f(y) +∇f(y)⊤(x− y) +
γ

2
(x− y)⊤∇f(y)∇f(y)⊤(x− y).

Proof. The composition of a concave and non-decreasing function with an-
other concave function is concave 9. Therefore, since 2γ ≤ α, the composi-
tion of g(x) = x2γ/α with f(x) = exp(−αf(x)) is concave. It follows that

the function h(x)
def
= exp(−2γf(x)) is concave. Then by the concavity of

h(x),
h(x) ≤ h(y) +∇h(y)⊤(x− y)

60 CHAPTER 4. SECOND-ORDER METHODS

Plugging in ∇h(y) = −2γ exp(−2γf(y))∇f(y) gives

exp(−2γf(x)) ≤ exp(−2γf(y))[1− 2γ∇f(y)⊤(x− y)].

Simplifying gives

f(x) ≥ f(y)− 1

2γ
log
(
1− 2γ∇f(y)⊤(x− y)

)
.

Next, note that |2γ∇f(y)⊤(x−y)| ≤ 2γGD ≤ 1 and that using the Taylor
approximation, for z ≥ −1, it holds that − log(1− z) ≥ z + 1

4z
2. Applying

the inequality for z = 2γ∇f(y)⊤(x− y) implies the lemma.

4.3 Exponentially Weighted Online Convex Opti-
mization

Before diving into efficient second order methods, we first describe a simple
algorithm based on the multiplicative updates method which gives logarith-
mic regret for exp-concave losses. Algorithm (11) below, called EWOO, is
a close relative to the Hedge Algorithm (1). Its regret guarantee is robust:
it does not include a Lipschitz constant or a diameter bound. In addition,
it is particularly simple to describe and analyze.

The downside of EWOO is its running time. A naive implementation
would run in exponential time of the dimension. It is possible to given
a randomized polynomial time implementation based on random sampling
techniques, where the polynomial depends both on the dimension as well as
the number of iterations, see bibliographic section for more details.

Algorithm 11 Exponentially Weighted Online Optimizer

1: Input: convex set K, T , parameter α > 0.
2: for t = 1 to T do

3: Let wt(x) = e−α
∑t−1

τ=1
fτ (x).

4: Play xt given by

xt =

∫
K x wt(x)dx∫
K wt(x)dx

.

5: end for

In the analysis below, it can be observed that choosing xt at random
with density proportional to wt(x), instead of computing the entire integral,
also guarantees our regret bounds on the expectation. This is the basis for

4.3. EXPONENTIALLYWEIGHTEDONLINE CONVEXOPTIMIZATION61

the polynomial time implementation. We proceed to give the logarithmic
regret bounds.

Theorem 4.4.

RegretT (EWOO) ≤ d

α
log T +

2

α
.

Proof. Let ht(x) = e−αft(x). Since ft is α-exp-concave, we have that ht is
concave and thus

ht(xt) ≥
∫
K ht(x)

∏t−1
τ=1 hτ (x) dx∫

K
∏t−1

τ=1 hτ (x) dx
.

Hence, we have by telescoping product,

t∏
τ=1

hτ (xτ) ≥
∫
K
∏t

τ=1 hτ (x) dx∫
K 1 dx

=

∫
K
∏t

τ=1 hτ (x) dx

vol(K)
(4.1)

By definition of x⋆ we have x⋆ ∈ argmaxx∈K
∏T

t=1 ht(x). Denote by
Sδ ⊂ K the translated Minkowski set given by

Sδ = (1− δ)x⋆ +K1−δ = {x = (1− δ)x⋆ + δy , y ∈ K} .

By concavity of ht and the fact that ht is non-negative, we have that,

∀x ∈ Sδ . ht(x) ≥ (1− δ)ht(x
⋆).

Hence,

∀x ∈ Sδ

T∏
τ=1

hτ (x) ≥ (1− δ)T
T∏

τ=1

hτ (x
⋆)

Finally, since Sδ = (1 − δ)x⋆ + δK is simply a rescaling of K followed by a
translation, and we are in d dimensions, vol(Sδ) = vol(K)× δd. Putting this
together with equation (4.1), we have

T∏
τ=1

hτ (xτ) ≥
vol(Sδ)

vol(K)
(1− δ)T

T∏
τ=1

hτ (x
⋆) ≥ δd(1− δ)T

T∏
τ=1

hτ (x
⋆).

We can now simplify by taking logarithms and changing sides,

RegretT (EWOO) =
∑

t ft(xt)− ft(x
⋆)

= 1
α log

∏T
τ=1 hτ (x⋆)∏T
τ=1 hτ (xτ)

≤ 1
α

(
d log 1

δ + T log 1
1−δ

)
≤ d

α log T + 2
α ,

where the last step is by choosing δ = 1
T .

62 CHAPTER 4. SECOND-ORDER METHODS

4.4 The Online Newton Step Algorithm

Thus far we have only considered first order methods for regret minimization.
In this section we consider a quasi-Newton approach, i.e., an online convex
optimization algorithm that approximates the second derivative, or Hessian
in more than one dimension. However, strictly speaking, the algorithm we
analyze is also first order, in the sense that it only uses gradient information.

The algorithm we introduce and analyze, called online Newton step, is
detailed in Algorithm 12. At each iteration, this algorithm chooses a vector
that is the projection of the sum of the vector chosen at the previous iteration
and an additional vector. Whereas for the online gradient descent algorithm
this added vector was the gradient of the previous cost function, for online
Newton step this vector is different: it is reminiscent to the direction in which
the Newton-Raphson method would proceed if it were an offline optimization
problem for the previous cost function. The Newton-Raphson algorithm
would move in the direction of the vector which is the inverse Hessian times
the gradient. In online Newton step, this direction is A−1

t ∇t, where the
matrix At is related to the Hessian as will be shown in the analysis.

Since adding a multiple of the Newton vector A−1
t ∇t to the current vector

may result in a point outside the convex set, an additional projection step
is required to obtain xt, the decision at time t. This projection is different
than the standard Euclidean projection used by online gradient descent in
Section 3.1. It is the projection according to the norm defined by the matrix
At, rather than the Euclidean norm.

Algorithm 12 online Newton step

1: Input: convex set K, T , x1 ∈ K ⊆ Rn, parameters γ, ε > 0, A0 = εIn
2: for t = 1 to T do
3: Play xt and observe cost ft(xt).
4: Rank-1 update: At = At−1 +∇t∇⊤

t

5: Newton step and generalized projection:

yt+1 = xt −
1

γ
A−1

t ∇t

xt+1 =
At

Π
K
(yt+1) = argmin

x∈K

{
∥yt+1 − x∥2At

}
6: end for

The advantage of the online Newton step algorithm is its logarithmic re-

4.4. THE ONLINE NEWTON STEP ALGORITHM 63

gret guarantee for exp-concave functions, as defined in the previous section.
The following theorem bounds the regret of online Newton step.

Theorem 4.5. Algorithm 12 with parameters γ = 1
2 min{ 1

GD , α}, ε = 1
γ2D2

and T ≥ 4 guarantees

RegretT ≤ 2

(
1

α
+GD

)
n log T.

As a first step, we prove the following lemma.

Lemma 4.6. The regret of online Newton step is bounded by

RegretT (ONS) ≤
(
1

α
+GD

)(T∑
t=1

∇⊤
t A

−1
t ∇t + 1

)

Proof. Let x⋆ ∈ argminx∈K
∑T

t=1 ft(x) be the best decision in hindsight.
By Lemma 4.3, we have for γ = 1

2 min{ 1
GD , α},

ft(xt)− ft(x
⋆) ≤ Rt,

where we define

Rt
def
= ∇⊤

t (xt − x⋆)− γ

2
(x⋆ − xt)

⊤∇t∇⊤
t (x

⋆ − xt).

According to the update rule of the algorithm xt+1 = Π
At
K (yt+1). Now, by

the definition of yt+1:

yt+1 − x⋆ = xt − x⋆ − 1

γ
A−1

t ∇t, and (4.2)

At(yt+1 − x⋆) = At(xt − x⋆)− 1

γ
∇t. (4.3)

Multiplying the transpose of (4.2) by (4.3) we get

(yt+1 − x⋆)⊤At(yt+1 − x⋆) =

(xt−x⋆)⊤At(xt−x⋆)− 2

γ
∇⊤

t (xt−x⋆) +
1

γ2
∇⊤

t A
−1
t ∇t. (4.4)

Since xt+1 is the projection of yt+1 in the norm induced by At, we have by
the Pythagorean theorem (see §2.1.1)

(yt+1 − x⋆)⊤At(yt+1 − x⋆) = ∥yt+1 − x⋆∥2At

≥ ∥xt+1 − x⋆∥2At

= (xt+1 − x⋆)⊤At(xt+1 − x⋆).

64 CHAPTER 4. SECOND-ORDER METHODS

This inequality is the reason for using generalized projections as opposed
to standard projections, which were used in the analysis of online gradient
descent (see §3.1 Equation (3.2)). This fact together with (4.4) gives

∇⊤
t (xt−x⋆) ≤ 1

2γ
∇⊤

t A
−1
t ∇t +

γ

2
(xt−x⋆)⊤At(xt−x⋆)

− γ

2
(xt+1 − x⋆)⊤At(xt+1 − x⋆).

Now, summing up over t = 1 to T we get that

T∑
t=1

∇⊤
t (xt − x⋆) ≤ 1

2γ

T∑
t=1

∇⊤
t A

−1
t ∇t +

γ

2
(x1 − x⋆)⊤A1(x1 − x⋆)

+
γ

2

T∑
t=2

(xt − x⋆)⊤(At −At−1)(xt − x⋆)

− γ

2
(xT+1 − x⋆)⊤AT (xT+1 − x⋆)

≤ 1

2γ

T∑
t=1

∇⊤
t A

−1
t ∇t +

γ

2

T∑
t=1

(xt−x⋆)⊤∇t∇⊤
t (xt−x⋆)

+
γ

2
(x1 − x⋆)⊤(A1 −∇1∇⊤

1)(x1 − x⋆).

In the last inequality we use the fact that At −At−1 = ∇t∇⊤
t , and the fact

that the matrix AT is PSD and hence the last term before the inequality is
negative. Thus,

T∑
t=1

Rt ≤
1

2γ

T∑
t=1

∇⊤
t A

−1
t ∇t +

γ

2
(x1 − x⋆)⊤(A1 −∇1∇⊤

1)(x1 − x⋆).

Using the algorithm parameters A1 − ∇1∇⊤
1 = εIn , ε = 1

γ2D2 and our

notation for the diameter ∥x1 − x⋆∥2 ≤ D2 we have

RegretT (ONS) ≤
T∑
t=1

Rt ≤
1

2γ

T∑
t=1

∇⊤
t A

−1
t ∇t +

γ

2
D2ε

≤ 1

2γ

T∑
t=1

∇⊤
t A

−1
t ∇t +

1

2γ
.

Since γ = 1
2 min{ 1

GD , α}, we have 1
γ ≤ 2(1α+GD). This gives the lemma.

4.4. THE ONLINE NEWTON STEP ALGORITHM 65

We can now prove Theorem 4.5.

Proof of Theorem 4.5. First we show that the term
∑T

t=1∇⊤
t A

−1
t ∇t is upper

bounded by a telescoping sum. Notice that

∇⊤
t A

−1
t ∇t = A−1

t • ∇t∇⊤
t = A−1

t • (At −At−1)

where for matrices A,B ∈ Rn×n we denote by A •B =
∑n

i=1

∑n
j=1AijBij =

Tr(AB⊤), which is equivalent to the inner product of these matrices as
vectors in Rn2

.
For real numbers a, b ∈ R+, the first order Taylor expansion of the

logarithm of b at a implies a−1(a − b) ≤ log a
b . An analogous fact holds

for positive semidefinite matrices, i.e., A−1 • (A − B) ≤ log |A|
|B| , where |A|

denotes the determinant of the matrix A (this is proved in Lemma 4.7).
Using this fact we have

T∑
t=1

∇⊤
t A

−1
t ∇t =

T∑
t=1

A−1
t • ∇t∇⊤

t

=

T∑
t=1

A−1
t • (At −At−1)

≤
T∑
t=1

log
|At|
|At−1|

= log
|AT |
|A0|

.

Since AT =
∑T

t=1∇t∇⊤
t + εIn and ∥∇t∥ ≤ G, the largest eigenvalue of

AT is at most TG2 + ε. Hence the determinant of AT can be bounded by
|AT | ≤ (TG2 + ε)n. Hence recalling that ε = 1

γ2D2 and γ = 1
2 min{ 1

GD , α},
for T > 4,

T∑
t=1

∇⊤
t A

−1
t ∇t ≤ log

(
TG2+ε

ε

)n
≤ n log(TG2γ2D2 + 1) ≤ n log T.

Plugging into Lemma 4.6 we obtain

RegretT (ONS) ≤
(
1

α
+GD

)
(n log T + 1),

which implies the theorem for n > 1, T ≥ 4.

66 CHAPTER 4. SECOND-ORDER METHODS

It remains to prove the technical lemma for positive semidefinite (PSD)
matrices used above.

Lemma 4.7. Let A ≽ B ≻ 0 be positive definite matrices. Then

A−1 • (A−B) ≤ log
|A|
|B|

Proof. For any positive definite matrix C, denote by λ1(C), . . . , λn(C) its
eigenvalues (which are positive).

A−1 • (A−B) = Tr(A−1(A−B))

= Tr(A−1/2(A−B)A−1/2) Tr(XY) = Tr(Y X)

= Tr(I −A−1/2BA−1/2)

=

n∑
i=1

[
1− λi(A

−1/2BA−1/2)
]

Tr(C) =

n∑
i=1

λi(C)

≤ −
n∑

i=1

log
[
λi(A

−1/2BA−1/2)
]

1− x ≤ − log(x)

= − log

[
n∏

i=1

λi(A
−1/2BA−1/2)

]

= − log |A−1/2BA−1/2| = log
|A|
|B|

|C| =
n∏

i=1

λi(C)

In the last equality we use the facts |AB| = |A||B| and |A−1| = 1
|A| for

positive definite matrices (see exercises).

Implementation and running time. The online Newton step algorithm
requires O(n2) space to store the matrix At. Every iteration requires the
computation of the matrix A−1

t , the current gradient, a matrix-vector prod-
uct, and possibly a projection onto the underlying convex set K.

A näıve implementation would require computing the inverse of the ma-
trix At on every iteration. However, in the case that At is invertible, the
matrix inversion lemma (see bibliography) states that for invertible matrix
A and vector x,

(A+ xx⊤)−1 = A−1 − A−1xx⊤A−1

1 + x⊤A−1x
.

4.4. THE ONLINE NEWTON STEP ALGORITHM 67

Thus, given A−1
t−1 and ∇t one can compute A−1

t in time O(n2) using only
matrix-vector and vector-vector products.

The online Newton step algorithm also needs to make projections onto
K, but of a slightly different nature than online gradient descent and other
online convex optimization algorithms. The required projection, denoted by

Π
At
K , is in the vector norm induced by the matrix At, viz. ∥x∥At =

√
x⊤Atx.

It is equivalent to finding the point x ∈ K which minimizes (x−y)⊤At(x−y)
where y is the point we are projecting. This is a convex program which can
be solved up to any degree of accuracy in polynomial time.

Modulo the computation of generalized projections, the online Newton
step algorithm can be implemented in time and space O(n2). In addition,
the only information required is the gradient at each step (and the exp-
concavity constant α of the loss functions).

68 CHAPTER 4. SECOND-ORDER METHODS

4.5 Bibliographic Remarks

The Geometric Brownian Motion model for stock prices was suggested and
studied as early as 1900 in the PhD thesis of Louis Bachelier [Bachelier,
1900], see also [Osborne, 1959], and used in the Nobel Prize winning work of
Black and Scholes on options pricing [Black and Scholes, 1973]. In a strong
deviation from standard financial theory, Thomas Cover [Cover, 1991] put
forth the universal portfolio model, whose algorithmic theory we have his-
torically sketched in chapter 1. The EWOO algorithm was essentially given
in Cover’s paper for the application of portfolio selection and logarithmic
loss functions, and extended to exp-concave loss functions in [Hazan et al.,
2006]. The randomized extension of Cover’s algorithm that runs in poly-
nomial running time is due to Kalai and Vempala [2003], and it naturally
extends to EWOO.

Some bridges between classical portfolio theory and the universal model
appear in [Abernethy et al., 2012]. Options pricing and its relation to regret
minimization was recently also explored in the work of [DeMarzo et al.,
2006].

Exp-concave functions have been considered in the context of predic-
tion in [Kivinen and Warmuth, 1999], see also [Cesa-Bianchi and Lugosi,
2006] (chapter 3.3 and bibliography). A more general condition than exp-
concavity called mixability was used by Vovk [1990] to give a general mul-
tiplicative update algorithm, see also [Foster et al., 2018]. For a thorough
discussion of various conditions that allow logarithmic regret in online learn-
ing see [van Erven et al., 2015].

For the square-loss, [Azoury andWarmuth, 2001] gave a specially tailored
and near-optimal prediction algorithm. Logarithmic regret algorithms for
online convex optimization and the Online Newton Step algorithm were
presented in [Hazan et al., 2007].

Logarithmic regret algorithms were used to derive Õ(1ε)-convergent al-
gorithms for non-smooth convex optimization in the context of training sup-
port vector machines in [Shalev-Shwartz et al., 2011a]. Building upon these
results, tight convergence rates of SGD for strongly convex and non-smooth
functions were obtained in [Hazan and Kale, 2011].

The Sherman-Morrison formula, a.k.a. the matrix inversion lemma, gives
the form of the inverse of a matrix after a rank-1 update, see [Riedel, 1991].

4.6. EXERCISES 69

4.6 Exercises

1. For this question, assume all functions are twice differentiable. Prove that exp-
concave functions are a larger class than strongly convex and Lipschitz functions.
That is, prove that a strongly convex function over a bounded domain that is also
G-Lipschitz is also exp-concave. Show that the converse is not necessarily true.

2. Prove that a twice-differentiable function f is α-exp-concave over K if and only
if for all x ∈ K,

∇2f(x) ≽ α∇f(x)∇f(x)⊤.

Hint: consider the Hessian of the function e−αf(x), and use the fact that the Hessian
of a convex function is always positive semidefinite.

3. Write pseudo-code for a portfolio selection algorithm based on online gradient
descent. That is, given a set of return vectors, spell out the exact constants and
updates based upon the gradients of the reward functions. Derive the regret bound
based on Theorem 3.1. You may assume that the multiplicative change in price for
any single asset is bounded, and use this quantity in your regret bound.
Do the same (pseudo-code and regret bound) for the Online Newton Step algorithm
applied to portfolio selection.

Note: you are not required to give pseudo-code for projections onto the simplex.

4. Download stock prices from your favorite online finance website over a period
of at least three years. Create a dataset for testing portfolio selection algorithms
by creating price-return vectors. Implement the OGD and ONS algorithms and
benchmark them on your data.

5. Prove that for positive definite matrices, A,B ≻ 0, the following hold:
|AB| = |A||B| and |A−1| = 1

|A| , where |A| denotes the determinant of A.

6. Let h(x) : R 7→ R be concave and non-decreasing, and let g(x) : K 7→ R be

concave. Prove that the function f(x) = h(g(x)) is concave.

70 CHAPTER 4. SECOND-ORDER METHODS

Chapter 5

Regularization

In the previous chapters we have explored algorithms for OCO that are
motivated by convex optimization. However, unlike convex optimization, the
OCO framework optimizes the Regret performance metric. This distinction
motivates a family of algorithms, called “Regularized Follow The Leader”
(RFTL), which we introduce in this chapter.

In an OCO setting of regret minimization, the most straightforward
approach for the online player is to use at any time the optimal decision
(i.e., point in the convex set) in hindsight. Formally, let

xt+1 = argmin
x∈K

t∑
τ=1

fτ (x).

This flavor of strategy is known as “fictitious play” in economics, and has
been named “Follow the Leader” (FTL) in machine learning. It is not hard
to see that this simple strategy fails miserably in a worst-case sense. That
is, this strategy’s regret can be linear in the number of iterations, as the
following example shows: Consider K = [−1, 1], let f1(x) =

1
2x, and let fτ

for τ = 2, . . . , T alternate between −x or x. Thus,

t∑
τ=1

fτ (x) =

1
2x, t is odd

−1
2x, otherwise

The FTL strategy will keep shifting between xt = −1 and xt = 1, always
making the wrong choice.

The intuitive FTL strategy fails in the example above because it is un-
stable. Can we modify the FTL strategy such that it won’t change decisions
often, thereby causing it to attain low regret?

71

72 CHAPTER 5. REGULARIZATION

This question motivates the need for a general means of stabilizing the
FTL method. Such a means is referred to as “regularization”.

5.1 Regularization Functions

In this chapter we consider regularization functions, denoted R : K 7→ R,
which are strongly convex and smooth (recall definitions in §2.1).

Although it is not strictly necessary, we assume that the regularization
functions in this chapter are twice differentiable over K and, for all points
x ∈ int(K) in the interior of the decision set, have a Hessian ∇2R(x) that
is, by the strong convexity of R, positive definite.

We denote the diameter of the set K relative to the function R as

DR =
√

max
x,y∈K

{R(x)−R(y)}.

Henceforth we make use of general norms and their dual. The dual norm
to a norm ∥ · ∥ is given by the following definition:

∥y∥∗ def
= sup

∥x∥≤1

{
x⊤y

}
.

A positive definite matrix A gives rise to the matrix norm ∥x∥A =
√
x⊤Ax.

The dual norm of a matrix norm is ∥x∥∗A = ∥x∥A−1 .

The generalized Cauchy-Schwarz theorem asserts x⊤y ≤ ∥x∥∥y∥∗ and
in particular for matrix norms, x⊤y ≤ ∥x∥A∥y∥∗A (see exercises).

In our derivations, we usually consider matrix norms with respect to
∇2R(x), the Hessian of the regularization function R(x), as well as the
inverse Hessian denoted ∇−2R(x). In such cases, we use the notation

∥x∥y
def
= ∥x∥∇2R(y),

and similarly

∥x∥∗y
def
= ∥x∥∇−2R(y).

A crucial quantity in the analysis of OCO algorithms that use regulariza-
tion is the remainder term of the Taylor approximation of the regularization
function, and especially the remainder term of the first order Taylor approx-
imation. The difference between the value of the regularization function at
x and the value of the first order Taylor approximation is known as the
Bregman divergence, given by

5.2. THE RFTL ALGORITHM AND ITS ANALYSIS 73

Definition 5.1. Denote by BR(x||y) the Bregman divergence with respect
to the function R, defined as

BR(x||y) = R(x)−R(y)−∇R(y)⊤(x− y).

For twice differentiable functions, Taylor expansion and the mean-value
theorem assert that the Bregman divergence is equal to the second derivative
at an intermediate point, i.e., (see exercises)

BR(x||y) =
1

2
∥x− y∥2z,

for some point z ∈ [x,y], meaning there exists some α ∈ [0, 1] such that
z = αx+(1−α)y. Therefore, the Bregman divergence defines a local norm,
which has a dual norm. We shall denote this dual norm by

∥ · ∥∗x,y
def
= ∥ · ∥∗z.

With this notation we have

BR(x||y) =
1

2
∥x− y∥2x,y.

In online convex optimization, we commonly refer to the Bregman divergence
between two consecutive decision points xt and xt+1. In such cases, we
shorthand notation for the norm defined by the Bregman divergence with
respect to R on the intermediate point in [xt,xt+1] as ∥ · ∥t

def
= ∥ · ∥xt,xt+1 .

The latter norm is called the local norm at iteration t. With this notation,
we have BR(xt||xt+1) =

1
2∥xt − xt+1∥2t .

Finally, we consider below generalized projections that use the Bregman
divergence as a distance instead of a norm. Formally, the projection of a
point y according to the Bregman divergence with respect to function R is
given by

argmin
x∈K

BR(x||y).

5.2 The RFTL Algorithm and its Analysis

Recall the caveat with straightforward use of follow-the-leader: as in the
bad example we have considered, the predictions of FTL may vary wildly
from one iteration to the next. This motivates the modification of the basic
FTL strategy in order to stabilize the prediction. By adding a regularization
term, we obtain the RFTL (Regularized Follow the Leader) algorithm.

74 CHAPTER 5. REGULARIZATION

We proceed to formally describe the RFTL algorithmic template and an-
alyze it. The analysis gives asymptotically optimal regret bounds. However,
we do not optimize the constants in the regret bounds in order to improve
clarity of presentation.

Throughout this chapter, recall the notation of ∇t to denote the gradient
of the current cost function at the current point, i.e.,

∇t
def
= ∇ft(xt).

In the OCO setting, the regret of convex cost functions can be bounded by
a linear function via the inequality ft(xt)−ft(x

⋆) ≤ ∇⊤
t (xt−x⋆). Thus, the

overall regret (recall definition (1.1)) of an OCO algorithm can be bounded
by ∑

t

ft(xt)− ft(x
⋆) ≤

∑
t

∇⊤
t (xt − x⋆). (5.1)

5.2.1 Meta-algorithm definition

The generic RFTL meta-algorithm is defined in Algorithm 13. The regu-
larization function R is assumed to be strongly convex, smooth, and twice
differentiable.

Algorithm 13 Regularized Follow The Leader

1: Input: η > 0, regularization function R, and a bounded, convex and
closed set K.

2: Let x1 = argminx∈K {R(x)}.
3: for t = 1 to T do
4: Play xt and observe cost ft(xt).
5: Update

xt+1 = argmin
x∈K

{
η

t∑
s=1

∇⊤
s x+R(x)

}

6: end for

5.2.2 The regret bound

Theorem 5.2. The RFTL Algorithm 13 attains for every u ∈ K the fol-
lowing bound on the regret:

RegretT ≤ 2η

T∑
t=1

∥∇t∥∗2t +
R(u)−R(x1)

η
.

5.2. THE RFTL ALGORITHM 75

If an upper bound on the local norms is known, i.e., ∥∇t∥∗t ≤ GR for all
times t, then we can further optimize over the choice of η to obtain

RegretT ≤ 2DRGR

√
2T .

To prove Theorem 5.2, we first relate the regret to the “stability” in
prediction. This is formally captured by the following lemma10.

Lemma 5.3. Algorithm 13 guarantees the following regret bound

RegretT ≤
T∑
t=1

∇⊤
t (xt − xt+1) +

1

η
D2

R

Proof. For convenience of the derivations, define the functions

g0(x)
def
=

1

η
R(x) , gt(x)

def
= ∇⊤

t x.

By equation (5.1), it suffices to bound
∑T

t=1[gt(xt)− gt(u)]. As a first step,
we prove the following inequality:

Lemma 5.4. For every u ∈ K,

T∑
t=0

gt(u) ≥
T∑
t=0

gt(xt+1).

Proof. by induction on T :
Induction base:
By definition, we have that x1 = argminx∈K{R(x)}, and thus g0(u) ≥
g0(x1) for all u.
Induction step:
Assume that for T , we have

T∑
t=0

gt(u) ≥
T∑
t=0

gt(xt+1)

and let us prove the statement for T+1. Since xT+2 = argminx∈K{
∑T+1

t=0 gt(x)}

76 CHAPTER 5. REGULARIZATION

we have:

T+1∑
t=0

gt(u) ≥
T+1∑
t=0

gt(xT+2)

=
T∑
t=0

gt(xT+2) + gT+1(xT+2)

≥
T∑
t=0

gt(xt+1) + gT+1(xT+2)

=

T+1∑
t=0

gt(xt+1).

Where in the third line we used the induction hypothesis for u = xT+2.

We conclude that

T∑
t=1

[gt(xt)− gt(u)] ≤
T∑
t=1

[gt(xt)− gt(xt+1)] + [g0(u)− g0(x1)]

=
T∑
t=1

gt(xt)− gt(xt+1) +
1

η
[R(u)−R(x1)]

≤
T∑
t=1

gt(xt)− gt(xt+1) +
1

η
D2

R.

Proof of Theorem 5.2. Recall that R(x) is a convex function and K is a
convex set. Denote:

Φt(x)
def
= η

t∑
s=1

∇⊤
s x+R(x).

By the Taylor expansion (with its explicit remainder term via the mean-
value theorem) at xt+1, and by the definition of the Bregman divergence,

Φt(xt) = Φt(xt+1) + (xt − xt+1)
⊤∇Φt(xt+1) +BΦt(xt||xt+1)

≥ Φt(xt+1) +BΦt(xt||xt+1)

= Φt(xt+1) +BR(xt||xt+1).

5.3. ONLINE MIRROR DESCENT 77

The inequality holds since xt+1 is a minimum of Φt over K, as in Theorem
2.2. The last equality holds since the component ∇⊤

s x is linear and thus
does not affect the Bregman divergence. Thus,

BR(xt||xt+1) ≤ Φt(xt)− Φt(xt+1) (5.2)

= (Φt−1(xt)− Φt−1(xt+1)) + η∇⊤
t (xt − xt+1)

≤ η∇⊤
t (xt − xt+1) (xt is the minimizer)

To proceed, recall the shorthand for the norm induced by the Bregman
divergence with respect to R on point xt,xt+1 as ∥ · ∥t = ∥ · ∥xt,xt+1 . Sim-
ilarly for the dual local norm ∥ · ∥∗t = ∥ · ∥∗xt,xt+1

. With this notation, we

have BR(xt||xt+1) = 1
2∥xt − xt+1∥2t . By the generalized Cauchy-Schwarz

inequality,

∇⊤
t (xt − xt+1) ≤ ∥∇t∥∗t · ∥xt − xt+1∥t Cauchy-Schwarz

= ∥∇t∥∗t ·
√

2BR(xt||xt+1)

≤ ∥∇t∥∗t ·
√

2 η∇⊤
t (xt − xt+1). (5.2)

After rearranging we get

∇⊤
t (xt − xt+1) ≤ 2 η ∥∇t∥∗2t .

Combining this inequality with Lemma 5.3 we obtain the theorem statement.

5.3 Online Mirror Descent

In the convex optimization literature, “Mirror Descent” refers to a general
class of first order methods generalizing gradient descent. Online Mirror
descent (OMD) is the online counterpart of this class of methods. This
relationship is analogous to the relationship of online gradient descent to
traditional (offline) gradient descent.

OMD is an iterative algorithm that computes the current decision using a
simple gradient update rule and the previous decision, much like OGD. The
generality of the method stems from the update being carried out in a “dual”
space, where the duality notion is defined by the choice of regularization:
the gradient of the regularization function defines a mapping from Rn onto
itself, which is a vector field. The gradient updates are then carried out in
this vector field.

78 CHAPTER 5. REGULARIZATION

For the RFTL algorithm the intuition was straightforward—the regular-
ization was used to ensure stability of the decision. For OMD, regularization
has an additional purpose: regularization transforms the space in which gra-
dient updates are performed. This transformation enables better bounds in
terms of the geometry of the space.

The OMD algorithm comes in two flavors: an agile and a lazy version.
The lazy version keeps track of a point in Euclidean space and projects onto
the convex decision set K only at decision time. In contrast, the agile version
maintains a feasible point at all times, much like OGD.

Algorithm 14 Online Mirror Descent

1: Input: parameter η > 0, regularization function R(x).
2: Let y1 be such that ∇R(y1) = 0 and x1 = argminx∈K BR(x||y1).
3: for t = 1 to T do
4: Play xt.
5: Observe the loss function ft and let ∇t = ∇ft(xt).
6: Update yt according to the rule:

[Lazy version] ∇R(yt+1) = ∇R(yt)− η∇t

[Agile version] ∇R(yt+1) = ∇R(xt)− η∇t

Project according to BR:

xt+1 = argmin
x∈K

BR(x||yt+1)

7: end for

Both versions can be analyzed to give roughly the same regret bounds as
the RFTL algorithm. In light of what we will see next, this is not surprising:
for linear cost functions, the RFTL and lazy-OMD algorithms are equivalent!

Thus, we get regret bounds for free for the lazy version. The agile
version can be shown to attain similar regret bounds, and is in fact superior
in certain settings that require adaptivity. This issue is further explored in
chapter 10. The analysis of the agile version is of independent interest and
we give it below.

5.3.1 Equivalence of lazy OMD and RFTL

The OMD (lazy version) and RFTL are identical for linear cost functions,
as we show next.

5.3. ONLINE MIRROR DESCENT 79

Lemma 5.5. Let f1, ..., fT be linear cost functions. The lazy OMD and
RFTL algorithms produce identical predictions, i.e.,

argmin
x∈K

{BR(x||yt)} = argmin
x∈K

(
η

t−1∑
s=1

∇⊤
s x+R(x)

)
.

Proof. First, observe that the unconstrained minimum

x⋆
t

def
= argmin

x∈Rn

{ t−1∑
s=1

∇⊤
s x+

1

η
R(x)

}
satisfies

∇R(x⋆
t) = −η

t−1∑
s=1

∇s.

By definition, yt also satisfies the above equation, but since R(x) is strictly
convex, there is only one solution for the above equation and thus yt = x⋆

t .
Hence,

BR(x||yt) = R(x)−R(yt)− (∇R(yt))
⊤(x− yt)

= R(x)−R(yt) + η
t−1∑
s=1

∇⊤
s (x− yt) .

Since R(yt) and
∑t−1

s=1∇⊤
s yt are independent of x, it follows that BR(x||yt)

is minimized at the point x that minimizes R(x) + η
∑t−1

s=1∇⊤
s x over K

which, in turn, implies that

argmin
x∈K

BR(x||yt) = argmin
x∈K

{ t−1∑
s=1

∇⊤
s x+

1

η
R(x)

}
.

5.3.2 Regret bounds for Mirror Descent

In this subsection we prove regret bounds for the agile version of the RFTL
algorithm. The analysis is quite different than the one for the lazy version,
and of independent interest.

Theorem 5.6. The OMD Algorithm 14 attains for every u ∈ K the follow-
ing bound on the regret:

RegretT ≤
η

4

T∑
t=1

∥∇t∥∗2t +
R(u)−R(x1)

2η
.

80 CHAPTER 5. REGULARIZATION

If an upper bound on the local norms is known, i.e., ∥∇t∥∗t ≤ GR for all
times t, then we can further optimize over the choice of η to obtain

RegretT ≤ DRGR

√
T .

Proof. Since the functions ft are convex, for any x∗ ∈ K,

ft(xt)− ft(x
∗) ≤ ∇ft(xt)

⊤(xt − x∗).

The following property of Bregman divergences follows from the definition:
for any vectors x,y, z,

(x− y)⊤(∇R(z)−∇R(y)) = BR(x,y)−BR(x, z) +BR(y, z).

Combining both observations,

ft(xt)− ft(x
∗) ≤ ∇ft(xt)

⊤(xt − x∗)

=
1

η
(∇R(yt+1)−∇R(xt))

⊤(x∗ − xt)

=
1

η
[BR(x

∗,xt)−BR(x
∗,yt+1) +BR(xt,yt+1)]

≤ 1

η
[BR(x

∗,xt)−BR(x
∗,xt+1) +BR(xt,yt+1)]

where the last inequality follows from the generalized Pythagorean theorem,
as xt+1 is the projection w.r.t the Bregman divergence of yt+1 and x∗ ∈ K
is in the convex set. Summing over all iterations,

Regret ≤ 1

η
[BR(x

∗,x1)−BR(x
∗,xT)] +

T∑
t=1

1

η
BR(xt,yt+1)

≤ 1

η
D2

R +
T∑
t=1

1

η
BR(xt,yt+1) (5.3)

We proceed to boundBR(xt,yt+1). By definition of Bregman divergence,
and the generalized Cauchy-Schwartz inequality,

BR(xt,yt+1) +BR(yt+1,xt) = (∇R(xt)−∇R(yt+1))
⊤(xt − yt+1)

= η∇ft(xt)
⊤(xt − yt+1)

≤ η∥∇ft(xt)∥∗t ∥xt − yt+1∥t

≤ 1

2
η2G2

R +
1

2
∥xt − yt+1∥2t .

5.4. APPLICATION AND SPECIAL CASES 81

where in the last inequality follows from (a− b)2 ≥ 0. Thus, we have

BR(xt,yt+1) ≤
1

2
η2G2

R +
1

2
∥xt − yt+1∥2t −BR(yt+1,xt) =

1

2
η2G2

R.

Plugging back into Equation (5.3), and by non-negativity of the Bregman
divergence, we get

Regret ≤ 1

2
[
1

η
D2

R +
1

2
ηTG2

R] ≤ DRGR

√
T ,

by taking η = DR√
TGR

5.4 Application and Special Cases

In this section we illustrate the generality of the regularization technique: we
show how to derive the two most important and famous online algorithms—
the online gradient descent algorithm and the online exponentiated gradi-
ent (based on the multiplicative update method)—from the RFTL meta-
algorithm.

Other important special cases of the RFTL meta-algorithm are derived
with matrix-norm regularization—namely, the von Neumann entropy func-
tion, and the log-determinant function, as well as self-concordant barrier
regularization—which we shall explore in detail in the next chapter.

5.4.1 Deriving online gradient descent

To derive the online gradient descent algorithm, we take R(x) = 1
2∥x−x0∥22

for an arbitrary x0 ∈ K. Projection with respect to this divergence is the
standard Euclidean projection (see exercises), and in addition, ∇R(x) =
x− x0. Hence, the update rule for the OMD Algorithm 14 becomes:

xt = Π
K
(yt), yt = yt−1 − η∇t−1 lazy version

xt = Π
K
(yt), yt = xt−1 − η∇t−1 agile version

The latter algorithm is exactly online gradient descent, as described in
Algorithm 8 in chapter 3. However, both variants behave very differently,
as explored in chapter 10 (see also exercises).

Theorem 5.2 gives us the following bound on the regret (where DR, ∥ · ∥t
are the diameter and local norm defined with respect to the regularizer R

82 CHAPTER 5. REGULARIZATION

as defined in the beginning of this chapter, and D is the Euclidean diameter
as defined in chapter 2)

RegretT ≤
1

η
D2

R + 2η
∑
t

∥∇t∥∗2t ≤
1

2η
D2 + 2η

∑
t

∥∇t∥2 ≤ 2GD
√
T ,

where the second inequality follows since for R(x) = 1
2∥x − x0∥2, the local

norm ∥ · ∥t reduces to the Euclidean norm.

5.4.2 Deriving multiplicative updates

Let R(x) = x logx =
∑

i xi logxi be the negative entropy function, where
logx is to be interpreted element-wise. Then ∇R(x) = 1+ logx, and hence
the update rules for the OMD algorithm become:

xt = argmin
x∈K

BR(x||yt), logyt = logyt−1 − η∇t−1 lazy version

xt = argmin
x∈K

BR(x||yt), logyt = logxt−1 − η∇t−1 agile version

With this choice of regularizer, a notable special case is the experts
problem we encountered in §1.3, for which the decision set K is the n-
dimensional simplex ∆n = {x ∈ Rn

+ |
∑

i xi = 1}. In this special case, the
projection according to the negative entropy becomes scaling by the ℓ1 norm
(see exercises), which implies that both update rules amount to the same
algorithm:

xt+1(i) =
xt(i) · e−η∇t(i)∑n
j=1 xt(j) · e−η∇t(j)

,

which is exactly the Hedge algorithm from the first chapter!
Theorem 5.6 gives us the following bound on the regret:

RegretT ≤ 2

√
2D2

R

∑
t

∥∇t∥∗2t .

If the costs per individual expert are in the range [0, 1], it can be shown that

∥∇t∥∗t ≤ ∥∇t∥∞ ≤ 1 = GR.

In addition, when R is the negative entropy function, the diameter over the
simplex can be shown to be bounded by D2

R ≤ log n (see exercises), giving
rise to the bound

RegretT ≤ 2DRGR

√
2T ≤ 2

√
2T log n.

5.5. RANDOMIZED REGULARIZATION 83

For an arbitrary range of costs, we obtain the exponentiated gradient
algorithm described in Algorithm 15.

Algorithm 15 Exponentiated Gradient

1: Input: parameter η > 0.
2: Let y1 = 1 , x1 =

y1

∥y1∥1 .
3: for t = 1 to T do
4: Predict xt.
5: Observe ft, update yt+1(i) = yt(i)e

−η∇t(i) for all i ∈ [n].
6: Project: xt+1 =

yt+1

∥yt+1∥1
7: end for

The regret achieved by the exponentiated gradient algorithm can be
bounded using the following corollary of Theorem 5.2:

Corollary 5.7. The exponentiated gradient algorithm with gradients bounded

by ∥∇t∥∞ ≤ G∞ and parameter η =
√

logn
2TG2

∞
has regret bounded by

RegretT ≤ 2G∞
√
2T log n.

5.5 Randomized Regularization

The connection between stability in decision making and low regret has
motivated our discussion of regularization thus far. However, this stability
need not be achieved only using strongly convex regularization functions.
An alternative method to achieve stability in decisions is by introducing
randomization into the algorithm. In fact, historically, this method preceded
methods based on strongly convex regularization (see bibliography).

In this section we first describe a deterministic algorithm for online con-
vex optimization that is easily amenable to speedup via randomization. We
then give an efficient randomized algorithm for the special case of OCO with
linear losses.

Oblivious vs. adaptive adversaries. For simplicity, we consider our-
selves in this section with a slightly restricted version of OCO. So far, we
have not restricted the cost functions in any way, and they could depend
on the choice of decision by the online learner. However, when dealing
with randomized algorithms, this issue becomes a bit more subtle: can the
cost functions depend on the randomness of the decision making algorithm

84 CHAPTER 5. REGULARIZATION

itself? Furthermore, when analyzing the regret, which is now a random
variable, dependencies across different iterations require probabilistic ma-
chinery which adds little to the fundamental understanding of randomized
OCO algorithms. To avoid these complications, we make the following as-
sumption throughout this section: the cost functions {ft} are adversarially
chosen ahead of time, and do not depend on the actual decisions of the online
learner. This version of OCO is called the oblivious setting, to distinguish
it from the adaptive setting.

5.5.1 Perturbation for convex losses

The prediction in Algorithm 16 is according to a version of the follow-the-
leader algorithm, augmented with an additional component of randomiza-
tion. It is a deterministic algorithm that computes the expected decision
according to a random variable. The random variable is the minimizer over
the decision set according to the sum of gradients of the cost functions and
an additional random vector.

In practice, the expectation need not be computed exactly. Estimation
(via random sampling) up to a precision that depends linearly on the number
of iterations would suffice.

The algorithm accepts as input a distribution, with the probability den-
sity function (PDF) denoted D, over vectors in n-dimensional Euclidean
space n ∈ Rn. For σ, L ∈ R, we say that a distribution D is (σ, L) = (σa, La)
stable with respect to the norm ∥ · ∥a if

E
n∼D

[∥n∥∗a] = σa,

and

∀u,
∫
n
|D(n)−D(n− u)| dn ≤ La∥u∥∗a.

Here n ∼ D denotes a vector n ∈ Rn sampled according to distribution D,
and D(n) is the value of the probability density function D over n. The
subscript a is omitted if clear from the context.

The first parameter, σ, is related to the variance of D, while the second,
L, is a measure of the sensitivity of the distribution11. For example, if D is
the uniform distribution over the hypercube [0, 1]n, then it holds that (see
exercises) for the Euclidean norm

σ2 ≤
√
n , L2 ≤ 1.

Reusing notation from previous chapters, denote by D = Da the diameter
of the set K according to the norm ∥ · ∥a, and by D∗ = D∗

a the diameter

5.5. RANDOMIZED REGULARIZATION 85

according to its dual norm. Similarly, denote by G = Ga and G∗ = G∗
a an

upper bound on the norm (and dual norm) of the gradients.

Algorithm 16 Follow-the-perturbed-leader for convex losses

1: Input: η > 0, distribution D over Rn, decision set K ⊆ Rn.
2: Let x1 = En∼D

[
argminx∈K

{
n⊤x

}]
.

3: for t = 1 to T do
4: Predict xt.
5: Observe the loss function ft, suffer loss ft(xt) and let ∇t = ∇ft(xt).
6: Update

xt+1 = E
n∼D

[
argmin

x∈K

{
η

t∑
s=1

∇⊤
s x+ n⊤x

}]
(5.4)

7: end for

Theorem 5.8. Let the distribution D be (σ, L)-stable with respect to norm
∥ · ∥a. The FPL algorithm attains the following bound on the regret:

RegretT ≤ ηDG∗2LT +
1

η
σD.

We can further optimize over the choice of η to obtain

RegretT ≤ 2LDG∗√σT .

Proof. Define the random variable xn
t = argminx∈K

{
η
∑t

s=1∇⊤
s x+ n⊤x

}
,

and the random function gn0 as

gn0 (x)
def
=

1

η
n⊤x.

It follows from Lemma 5.4 applied to the functions {gt(x) = ∇⊤
t x} that

E

[
T∑
t=0

gt(u)

]
≥ E

[
gn0 (x

n
1) +

∑T
t=1 gt(x

n
t+1)

]
≥ E [gn0 (x

n
1)] +

∑T
t=1 gt(E[xn

t+1]) convexity

= E [gn0 (x
n
1)] +

∑T
t=1 gt(xt+1)

86 CHAPTER 5. REGULARIZATION

and thus,

T∑
t=1

∇t(xt − x⋆)

=

T∑
t=1

gt(xt)−
T∑
t=1

gt(x
⋆)

≤
T∑
t=1

gt(xt)−
T∑
t=1

gt(xt+1) +E[gn0 (x
⋆)− gn0 (x

n
1)]

≤
T∑
t=1

∇t(xt − xt+1) +
1

η
E[∥n∥∗∥x⋆ − xn

1 ∥] Cauchy-Schwarz

≤
T∑
t=1

∇t(xt − xt+1) +
1

η
σD.

Hence, ∑T
t=1 ft(xt)−

∑T
t=1 ft(x

⋆)

≤
∑T

t=1∇⊤
t (xt − x∗)

≤
∑T

t=1∇⊤
t (xt − xt+1) +

1
ησD above

≤ G∗∑T
t=1 ∥xt − xt+1∥+ 1

ησD. Cauchy-Schwarz (5.5)

We now argue that ∥xt − xt+1∥ = O(η). Let

ht(n) = argmin
x∈K

{
η

t−1∑
s=1

∇⊤
s x+ n⊤x

}
,

and hence xt = En∼D[ht(n)]. Recalling that D(n) denotes the value of the
probability density function D over n ∈ Rn, we can write:

xt =

∫
n∈Rn

ht(n)D(n)dn,

and:

xt+1 =

∫
n∈Rn

ht(n+ η∇t)D(n)dn =

∫
n∈Rn

ht(n)D(n− η∇t)dn.

5.5. RANDOMIZED REGULARIZATION 87

Notice that xt,xt+1 may depend on each other. However, by linearity of
expectation, we have that

∥xt − xt+1∥

=

∥∥∥∥∥∥
∫

n∈Rn

(ht(n)− ht(n+ η∇t))D(n)dn

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫

n∈Rn

ht(n)(D(n)−D(n− η∇t))dn

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫

n∈Rn

(ht(n)− ht(0))(D(n)−D(n− η∇t))dn

∥∥∥∥∥∥
≤
∫

n∈Rn

∥ht(n)− ht(0)∥|D(n)−D(n− η∇t)|dn

≤ D

∫
n∈Rn

|D(n)−D(n− η∇t)| dn since ∥xt − ht(0)∥ ≤ D

≤ DL · η∥∇t∥∗ ≤ ηDLG∗. since D is (σ, L)-stable.

Substituting this bound back into (5.5) we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
⋆) ≤ ηLDG∗2T + 1

ησD.

For the choice of D as the uniform distribution over the unit hypercube
[0, 1]n, which has parameters σ2 ≤

√
n and L2 ≤ 1 for the Euclidean norm,

the optimal choice of η gives a regret bound of DGn1/4
√
T . This is a factor

n1/4 worse than the online gradient descent regret bound of Theorem 3.1.
For certain decision sets K a better choice of distribution D results in near-
optimal regret bounds.

5.5.2 Perturbation for linear cost functions

The case of linear cost functions ft(x) = g⊤
t x is of particular interest in the

context of randomized regularization. Denote

wt(n) = argmin
x∈K

{
η

t∑
s=1

g⊤
s x+ n⊤x

}
.

88 CHAPTER 5. REGULARIZATION

By linearity of expectation, we have that

ft(xt) = ft(E
n∼D

[wt(n)]) = E
n∼D

[ft(wt(n))].

Thus, instead of computing xt precisely, we can sample a single vector n0 ∼
D, and use it to compute x̂t = wt(n0), as illustrated in Algorithm 17.

Algorithm 17 FPL for linear losses

1: Input: η > 0, distribution D over Rn, decision set K ⊆ Rn.
2: Sample n0 ∼ D. Let x̂1 ∈ argminx∈K{−n⊤

0 x}.
3: for t = 1 to T do
4: Predict x̂t.
5: Observe the linear loss function, suffer loss g⊤

t xt.
6: Update

x̂t = argmin
x∈K

{
η

t−1∑
s=1

g⊤
s x+ n⊤

0 x

}

7: end for

By the above arguments, we have that the expected regret for the random
variables x̂t is the same as that for xt. We obtain the following Corollary:

Corollary 5.9.

E
n0∼D

[
T∑
t=1

ft(x̂t)−
T∑
t=1

ft(x
⋆)

]
≤ ηLDG∗2T +

1

η
σD.

The main advantage of this algorithm is computational: with a single
linear optimization step over the decision set K (which does not even have
to be convex!), we attain near optimal expected regret bounds.

5.5.3 Follow-the-perturbed-leader for expert advice

An interesting special case (and in fact the first use of perturbation in de-
cision making) is that of non-negative linear cost functions over the unit
n-dimensional simplex with costs bounded by one, or the problem of predic-
tion of expert advice we have considered in chapter 1.

Algorithm 17 applied to the probability simplex and with exponentially
distributed noise is known as the follow-the-perturbed-leader for prediction
from expert advice method. We spell it out in Algorithm 18.

5.5. RANDOMIZED REGULARIZATION 89

Algorithm 18 FPL for prediction from expert advice

1: Input: η > 0
2: Draw n exponentially distributed variables n(i) ∼ e−ηx.
3: Let x1 = argminei∈∆n

{−e⊤i n}.
4: for t = 1 to T do
5: Predict using expert it such that x̂t = eit
6: Observe the loss vector and suffer loss g⊤

t x̂t = gt(it)
7: Update (w.l.o.g. choose x̂t+1 to be a vertex)

x̂t+1 = argmin
x∈∆n

{
t∑

s=1

g⊤
s x− n⊤x

}

8: end for

Notice that we take the perturbation to be distributed according to the
one-sided negative exponential distribution, i.e., n(i) ∼ e−ηx, or more pre-
cisely

Pr[n(i) ≤ x] = 1− e−ηx ∀x ≥ 0.

Corollary 5.9 gives regret bounds that are suboptimal for this special
case, thus we give here an alternative analysis that gives tight bounds up to
constants amounting to the following theorem.

Theorem 5.10. Algorithm 18 outputs a sequence of predictions x̂1, ..., x̂T ∈
∆n such that:

(1− η)E

[∑
t

g⊤
t x̂t

]
≤ min

x⋆∈∆n

∑
t

g⊤
t x

⋆ +
4 log n

η
.

Notice that as a special case of the above theorem, choosing η =
√

logn
T

yields a regret bound of

RegretT = O(
√
T log n),

which is equivalent up to constant factors to the guarantee given for the
Hedge algorithm in Theorem 1.5.

Proof. We start with the same analysis technique throughout this chapter:
let g0 = −n. It follows from Lemma 5.4 applied to the functions {ft(x) =
g⊤
t x} that

E

[
T∑
t=0

g⊤
t u

]
≥ E

[
T∑
t=0

g⊤
t x̂t+1

]
,

90 CHAPTER 5. REGULARIZATION

and thus,

E

[
T∑
t=1

g⊤
t (x̂t − x⋆)

]
≤ E

[
T∑
t=1

g⊤
t (x̂t − x̂t+1)

]
+E[g⊤

0 (x
⋆ − x1)]

≤ E

[
T∑
t=1

g⊤
t (x̂t − x̂t+1)

]
+E[∥n∥∞∥x⋆ − x1∥1]

≤
T∑
t=1

E
[
g⊤
t (x̂t − x̂t+1) | x̂t

]
+

4

η
log n, (5.6)

where the second inequality follows by the generalized Cauchy-Schwarz in-
equality, and the last inequality follows since (see exercises)

E
n∼D

[∥n∥∞] ≤ 2 log n

η
.

We proceed to bound E[g⊤
t (x̂t − x̂t+1)|x̂t], which is naturally bounded

by the probability that x̂t is not equal to x̂t+1 multiplied by the maximum
value that gt can attain (i.e., its ℓ∞ norm):

E[g⊤
t (x̂t − x̂t+1) | x̂t] ≤ ∥gt∥∞ · Pr[x̂t ̸= x̂t+1 | x̂t] ≤ Pr[x̂t ̸= x̂t+1 | x̂t].

Above we have that ∥gt∥∞ ≤ 1 by assumption that the losses are bounded
by one.

To bound the latter, notice that the probability x̂t = eit is the leader at
time t is the probability that −n(it) > v for some value v that depends on
the entire loss sequence till now. On the other hand, given x̂t, we have that
x̂t+1 = x̂t remains the leader if −n(it) > v + gt(it), since it was a leader by
a margin of more than the cost it will suffer. Thus,

Pr[x̂t ̸= x̂t+1 | x̂t] = 1− Pr[−n(it) > v + gt(it) | − n(it) > v]

= 1−
∫∞
v+gt(it)

ηe−ηx∫∞
v ηe−ηx

= 1− e−ηgt(it)

≤ ηgt(it) = ηg⊤
t x̂t.

Substituting this bound back into (5.6) we have

E[
∑T

t=1 g
⊤
t (x̂t − x⋆)] ≤ η

∑
tEt[g

⊤
t x̂t] +

4 logn
η ,

which simplifies to the Theorem.

5.6. * ADAPTIVE GRADIENT DESCENT 91

5.6 * Adaptive Gradient Descent

Thus far we have introduced regularization as a general methodology for
deriving online convex optimization algorithms. The main theorem of this
chapter, Theorem 5.2, bounds the regret of the RFTL algorithm for any
strongly convex regularizer as

RegretT ≤ max
u∈K

√
2
∑
t

∥∇t∥∗2t BR(u||x1). (5.7)

In addition, we have seen how to derive the online gradient descent and the
multiplicative weights algorithms as special cases of the RFTL methodol-
ogy. But are there other special cases of interest, besides these two basic
algorithms, that warrant such general and abstract treatment?

There are surprisingly few cases of interest besides the Euclidean and En-
tropic regularizations and their matrix analogues12. However, in this chapter
we will give some justification of the abstract treatment of regularization.

Our treatment is motivated by the following question: thus far we have
thought of R as a strongly convex function. But which strongly convex
function should we choose to minimize regret? This is a deep and difficult
question which has been considered in the optimization literature since its
early developments. Naturally, the optimal regularization should depend
on both the convex underlying decision set, as well as the actual cost func-
tions (see exercises for a natural candidate of a regularization function that
depends on the convex decision set).

We shall treat this question no differently than we treat other optimiza-
tion problems throughout this manuscript itself: we’ll learn the optimal
regularization online! That is, a regularizer that adapts to the sequence
of cost functions and is in a sense the “optimal” regularization to use in
hindsight. This gives rise to the AdaGrad (Adaptive subGradient method)
algorithm 19, which explicitely optimizes over the regularization choice in
line (5) to minimize the gradient norms, which is the dominant expression
in (5.7).

92 CHAPTER 5. REGULARIZATION

Algorithm 19 AdaGrad

1: Input: parameters η,x1 ∈ K.
2: Initialize: G0 = 0,
3: for t = 1 to T do
4: Predict xt, suffer loss ft(xt).
5: Update Gt = Gt−1 +∇t∇⊤

t and define

[Diagonal version] Ht = argmin
H⪰0,H=diag(H)

{
Gt •H−1 +Tr(H)

}
= diag(Gt

1/2)

[Full matrix version] Ht = argmin
H⪰0

{
Gt •H−1 +Tr(H)

}
= Gt

1/2

6: Update
yt+1 = xt − ηH−1

t ∇t

xt+1 = argmin
x∈K

∥yt+1 − x∥2Ht

7: end for

AdaGrad comes in two versions: diagonal and full matrix, the first being
particularly efficient to implement with negligible computational overhead
over online gradient descent. In the algorithm definition and throughout
this chapter, the notation A−1 refers to the Moore-Penrose pseudoinverse of
the matrix A.

The computation in line (5) finds the regularization matrix H which
minimizes the norm of the gradients from within the positive semi-definite
cone, with or without a diagonal constraint. This is closely related, as we
shall see, to optimization w.r.t. two natural sets of matrices:

1. H1 = {H = diag(H), H ⪰ 0 , Tr(H) ≤ 1}

2. H2 = {H ⪰ 0 , Tr(H) ≤ 1}.

This results in a regularization matrix that is provably optimal in the fol-
lowing sense,

Lemma 5.11. For Hi ∈ {H1,H2} with the corresponding HT ,√√√√min
H∈Hi

T∑
t=1

∥∇t∥∗2H = Tr(HT).

Using this lemma, we show the regret of AdaGrad is at most a con-
stant factor larger than the minimum regret of all RFTL algorithm with

5.6. * ADAPTIVE GRADIENT DESCENT 93

regularization functions whose Hessian is fixed and belongs to the class Hi.
Furthermore, the regret of the diagonal version can be a factor

√
d smaller

than that of online gradient descent for certain gradient geometries. The
regret bound on AdaGrad is formally stated in the following theorem.

Theorem 5.12. Let {xt} be defined by Algorithm 19 with parameters η = D
(full matrix) or η = D∞ (diagonal). Then for any x⋆ ∈ K,

RegretT (AdaGrad-diag) ≤
√
2D∞

√
min
H∈H1

∑
t

∥∇t∥∗2H ,

RegretT (AdaGrad-full) ≤
√
2D

√
min
H∈H2

∑
t

∥∇t∥∗2H .

Before proceeding to the analysis, we consider when the regret bounds
for AdaGrad improve upon those of Online Gradient Descent. One such case
is when K is the unit cube in d-dimensional Euclidean space. This convex
set has D∞ = 1 and D =

√
d. Lemma 5.11 and Theorems 5.12,5.2 imply

that the regret of diagonal AdaGrad and OGD are bounded by

RegretT (AdaGrad-diag) ≤
√
2Tr(diag(GT)

1/2),

RegretT (OGD) ≤
√
2d

√∑
t

∥∇t∥2 =
√
2dTr(diag(GT)).

The relationship between the two terms depends on the matrix diag(GT).
If this matrix is sparse, then AdaGrad has a superior bound by at most

√
d

factor. For other convex bodies, such as the Euclidean ball, and when the
matrix GT is dense, the regret of OGD can be a factor

√
d lower.

5.6.1 Analysis of adaptive regularization

We proceed with the proof of Theorem 5.12. The first component is the
following Lemma, which generalizes the RFTL analysis to changing regular-
ization.

Lemma 5.13. Let H0 = argminH⪰0 {Tr(H)} = 0,

RegretT (GenAdaReg) ≤ η

2
(GT •H−1

T +Tr(HT)) +
1

2η

T∑
t=0

∥xt−x⋆∥2Ht−Ht−1
.

94 CHAPTER 5. REGULARIZATION

Proof. By the definition of yt+1:

yt+1 − x⋆ = xt − x⋆ − ηHt
−1∇t

Ht(yt+1 − x⋆) = Ht(xt − x⋆)− η∇t.

Multiplying the transpose of the first equation by the second we get

(yt+1 − x⋆)⊤Ht(yt+1 − x⋆) =

(xt−x⋆)⊤Ht(xt−x⋆)− 2η∇⊤
t (xt−x⋆) + η2∇⊤

t H
−1
t ∇t. (5.8)

Since xt+1 is the projection of yt+1 in the norm induced by Ht, we have (see
§2.1.1)

(yt+1 − x⋆)⊤Ht(yt+1 − x⋆) = ∥yt+1 − x⋆∥2Ht
≥ ∥xt+1 − x⋆∥2Ht

.

This inequality is the reason for using generalized projections as opposed
to standard projections, which were used in the analysis of online gradient
descent (see §3.1 Equation (3.2)). This fact together with (5.8) gives

∇⊤
t (xt−x⋆) ≤ η

2
∇⊤

t H
−1
t ∇t +

1

2η

(
∥xt − x⋆∥2Ht

− ∥xt+1 − x⋆∥2Ht

)
.

Now, summing up over t = 1 to T we get that

T∑
t=1

∇⊤
t (xt − x⋆) ≤ η

2

T∑
t=1

∇⊤
t H

−1
t ∇t +

1

2η
∥x1 − x⋆∥2H0

(5.9)

+
1

2η

T∑
t=1

(
∥xt − x⋆∥2Ht

− ∥xt − x⋆∥2Ht−1

)
− 1

2η
∥xT+1 − x⋆∥2HT

≤ η

2

T∑
t=1

∇⊤
t H

−1
t ∇t +

1

2η

T∑
t=0

∥xt−x⋆∥2Ht−Ht−1
.

In the last inequality we use the definition H0 = 0. We proceed to bound
the first term. To this end, define the functions

Ψt(H) = ∇t∇⊤
t •H−1 , Ψ0(H) = Tr(H).

By definition, Ht is the minimizer of
∑t

i=0Ψi over H. Therefore, using the
BTL Lemma 5.4, we have that

T∑
t=1

∇⊤
t H

−1
t ∇t =

∑T
t=1Ψt(Ht)

≤
∑T

t=1Ψt(HT) + Ψ0(HT)−Ψ0(H0)

= GT •H−1
T +Tr(HT).

5.6. * ADAPTIVE GRADIENT DESCENT 95

We can now continue with the proof of Theorem 5.12.

Proof of Theorem 5.12. We bound both parts of Lemma 5.13, with the fol-
lowing two lemmas,

Lemma 5.14. For both the diagonal and full matrix versions of AdaGrad,
the following holds

GT •H−1
T ≤ Tr(HT).

Lemma 5.15. Let D∞ denote the ℓ∞ diameter of K, and D the Euclidean
diameter. Then the following bounds hold,

Diagonal AdaGrad:
T∑
t=1

∥xt − x⋆∥2Ht−Ht−1
≤ D2

∞Tr(HT).

Full matrix AdaGrad:
T∑
t=1

∥xt − x⋆∥2Ht−Ht−1
≤ D2Tr(HT).

Now combining Lemma 5.13 with the above two lemmas, and using η =
D√
2
or η = D∞√

2
appropriately, we obtain the theorem.

We proceed to complete the proof of the two lemmas above.

Proof of Lemma 5.14. The optimization problem of choosing Ht in line (5)
of Algorithm 19 has an explicit solution, given in the following proposition
(whose proof is left as an exercise).

Proposition 5.16. Consider the following optimization problems, for A ≽
0:

min
X⪰0,Tr(X)≤1

{
X−1 •A

}
min
X⪰0

{
A •X−1 +Tr(X)

}
.

Then the global optimizer to these problems is obtained at X = A1/2

Tr(A1/2)

and X = A1/2 respectively. Over the set of diagonal matrices, the global

optimizer is obtained at X = diag(A)1/2

Tr(A1/2)
and X = diag(A)1/2 respectively.

A direct corollary of this proposition gives Lemma 5.11 as follows:

Corollary 5.17.√
min
H∈H

∑
t

∥∇t∥∗2H =
√

minH∈HTr(H−1
∑

t∇t∇⊤
t)

= Tr
√∑

t∇t∇⊤
t = Tr(HT)

96 CHAPTER 5. REGULARIZATION

The remaining term from Lemma 5.13 is the expression
∑T

t=0 ∥xt −
x⋆∥2Ht−Ht−1

, which we proceed to bound.

Proof of Lemma 5.15. By definitionGt ≽ Gt−1, and hence using proposition

5.16 and the definition of Ht in line (5), we have that Ht = diag(G
1/2
t) ≽

diag(G
1/2
t−1) = Ht−1. Since for a diagonal matrix H it holds that x⊤Hx ≤

∥x∥2∞Tr(H), we have

T∑
t=1

(xt−x⋆)⊤(Ht −Ht−1)(xt−x⋆)

≤
T∑
t=1

D2
∞Tr(Ht −Ht−1) diagonal structure, Ht −Ht−1 ⪰ 0

= D2
∞

T∑
t=1

(Tr(Ht)−Tr(Ht−1)) linearity of the trace

≤ D2
∞Tr(HT).

Next, we consider the full matrix case. By definition Gt ≽ Gt−1, and
hence Ht ≽ Ht−1. Thus,

T∑
t=1

(xt−x⋆)⊤(Ht −Ht−1)(xt−x⋆)

≤
T∑
t=1

D2λmax(Ht −Ht−1)

≤ D2
T∑
t=1

Tr(Ht −Ht−1) A ≽ 0 ⇒ λmax(A) ≤ Tr(A)

= D2
T∑
t=1

(Tr(Ht)−Tr(Ht−1)) linearity of the trace

≤ D2Tr(HT).

5.7. BIBLIOGRAPHIC REMARKS 97

5.7 Bibliographic Remarks

Regularization in the context of online learning was first studied in [Grove
et al., 2001] and [Kivinen and Warmuth, 2001]. The influential paper of
Kalai and Vempala [2005] coined the term “follow-the-leader” and intro-
duced many of the techniques that followed in OCO. The latter paper
studies random perturbation as a regularization and analyzes the follow-
the-perturbed-leader algorithm, following an early development by Hannan
[1957] that was overlooked in learning for many years.

In the context of OCO, the term follow-the-regularized-leader was coined
in [Shalev-Shwartz and Singer, 2007, Shalev-Shwartz, 2007], and at roughly
the same time an essentially identical algorithm was called “RFTL” in [Aber-
nethy et al., 2008]. The equivalence of RFTL and Online Mirror Descent
was observed by [Hazan and Kale, 2008]. The AdaGrad algorithm was intro-
duced in [Duchi et al., 2010, 2011], its diagonal version was also discovered
in parallel in [McMahan and Streeter, 2010]. The analysis of AdaGrad pre-
sented in this chapter is due to [Gupta et al., 2017].

Adaptive regularization has received significant attention due to its suc-
cess in training deep neural networks, and notably the development of adap-
tive algorithms that incorporate momentum and other heuristics, most pop-
ular of which are AdaGrad, RMSprop [Tieleman and Hinton, 2012] and
Adam [Kingma and Ba, 2014]. For a survey of optimization for deep learn-
ing, see the comprehensive text of Goodfellow et al. [2016].

There is a strong connection between randomized perturbation and de-
terministic regularization. For some special cases, adding randomization can
be thought of as a special case of deterministic strongly convex regulariza-
tion, see [Abernethy et al., 2014, 2016].

98 CHAPTER 5. REGULARIZATION

5.8 Exercises

1. This exercise concerns the notion of a dual norm.

(a) Show that the dual norm to a matrix norm given by A ≻ 0 corresponds to the
matrix norm of A−1.

(b) Prove the generalized Cauchy-Schwarz inequality for any norm, i.e.,

x⊤y ≤ ∥x∥∥y∥∗.

2. Prove that the Bregman divergence is equal to the local norm at an intermediate
point, that is:

BR(x||y) =
1

2
∥x− y∥2z,

where z ∈ [x,y], and the interval [x,y] is defined as

[x,y] = {v = αx+ (1− α)y , α ∈ [0, 1]}.

3. LetR(x) = 1
2∥x−x0∥2 be the (shifted) Euclidean regularization function. Prove

that the corresponding Bregman divergence is the Euclidean metric. Conclude that
projections with respect to this divergence are standard Euclidean projections.

4. Prove that the agile and lazy versions of the OMD meta-algorithm are different,
in the sense that they can produce different predictions over the same setting and
cost functions. Show this for the case that the regularization is Euclidean and the
decision set is the Euclidean ball.

5. For this problem the decision set is the n-dimensional simplex. Let R(x) =
x logx be the negative entropy regularization function. Prove that the correspond-
ing Bregman divergence is the relative entropy, and prove that the diameter DR of
the n-dimensional simplex with respect to this function is bounded by log n. Show
that projections with respect to this divergence over the simplex amounts to scaling
by the ℓ1 norm.

6. Prove that for the uniform distribution D over the unit hypercube [0, 1]n, the
parameters σ, L defined in §5.5 with respect to the Euclidean norm can be bounded
as σ <

√
n , L ≤ 1.

7. Let D be a one-sided multi-dimensional exponential distribution, such that a
vector n ∼ D is distributed over each coordinate exponentially:

Pr[ni ≤ x] = 1− e−x ∀i ∈ [n], x ≥ 0.

5.8. EXERCISES 99

Prove that
E

n∼D
[∥n∥∞] ≤ 2 log n.

(Hint: use the Chernoff bound)
Extra credit: prove that En∼D[∥n∥∞] = Hn, where Hn is the n-th harmonic num-
ber.

8. ∗ A set K ⊆ Rd is symmetric if x ∈ K implies −x ∈ K. Symmetric sets gives
rise to a natural definition of a norm. Define the function ∥ · ∥K : Rd 7→ R as

∥x∥K = argmin
α>0

{
1

α
x ∈ K

}
.

Prove that ∥ · ∥K is a norm if and only if K is convex.

9. ∗∗ Prove a lower bound of Ω(T) on the regret of the RFTL algorithm with
∥ · ∥K as a regularizer.

10. ∗ Prove that for positive definite matrices A ≽ B ≻ 0 it holds that

(a) A1/2 ≽ B1/2

(b) 2Tr((A−B)1/2) +Tr(A−1/2B) ≤ 2Tr(A1/2).

11. ∗ Consider the following minimization problem where A ≻ 0:

min
X

Tr(X−1A)

subject to X ≻ 0

Tr(X) ≤ 1.

Prove that its minimizer is given by X = A1/2/Tr(A1/2), and the minimum is
obtained at Tr2(A1/2).

100 CHAPTER 5. REGULARIZATION

Chapter 6

Bandit Convex Optimization

In many real-world scenarios the feedback available to the decision maker is
noisy, partial or incomplete. Such is the case in online routing in data net-
works, in which an online decision maker iteratively chooses a path through
a known network, and her loss is measured by the length (in time) of the
path chosen. In data networks, the decision maker can measure the RTD
(round trip delay) of a packet through the network, but rarely has access to
the congestion pattern of the entire network.

Another useful example is that of online ad placement in web search.
The decision maker iteratively chooses an ordered set of ads from an existing
pool. Her reward is measured by the viewer’s response—if the user clicks
a certain ad, a reward is generated according to the weight assigned to the
particular ad. In this scenario, the search engine can inspect which ads
were clicked through, but cannot know whether different ads, had they been
chosen to be displayed, would have been clicked through or not.

The examples above can readily be modeled in the OCO framework,
with the underlying sets being the convex hull of decisions. The pitfall of
the general OCO model is the feedback; it is unrealistic to expect that the
decision maker has access to a gradient oracle at any point in the space for
every iteration of the game.

6.1 The Bandit Convex Optimization Setting

The Bandit Convex Optimization (short: BCO) model is identical to the
general OCO model we have explored in previous chapters with the only
difference being the feedback available to the decision maker.

To be more precise, the BCO framework can be seen as a structured

101

102 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

repeated game. The protocol of this learning framework is as follows: At
iteration t, the online player chooses xt ∈ K. After committing to this choice,
a convex cost function ft ∈ F : K 7→ R is revealed. Here F is the bounded
family of cost functions available to the adversary. The cost incurred to the
online player is the value of the cost function at the point she committed
to ft(xt). As opposed to the OCO model, in which the decision maker has
access to a gradient oracle for ft over K, in BCO the loss ft(xt) is the only
feedback available to the online player at iteration t. In particular,
the decision maker does not know the loss had she chosen a different point
x ∈ K at iteration t.

As before, let T denote the total number of game iterations (i.e., predic-
tions and their incurred loss). Let A be an algorithm for BCO, which maps
a certain game history to a decision in the decision set. We formally define
the regret of A that predicted x1, ..., xT to be

RegretT (A) = sup
{f1,...,fT }⊆F

{∑T
t=1ft(xt)−min

x∈K

∑T
t=1ft(x)

}
.

6.2 The Multiarmed Bandit (MAB) Problem

A classical model for decision making under uncertainty is the multiarmed
bandit (MAB) model. The term MAB nowadays refers to a multitude of
different variants and sub-scenarios that are too large to survey. This section
addresses perhaps the simplest variant—the non-stochastic MAB problem—
which is defined as follows:

Iteratively, a decision maker chooses between n different actions it ∈
{1, 2, ..., n}, while, at the same time, an adversary assigns each action a loss
in the range [0, 1]. The decision maker receives the loss for it and observes
this loss, and nothing else. The goal of the decision maker is to minimize
her regret.

The reader undoubtedly observes this setting is identical to the setting
of prediction from expert advice, the only difference being the feedback
available to the decision maker: whereas in the expert setting the decision
maker can observe the rewards or losses for all experts in retrospect, in the
MAB setting, only the losses of the decisions actually chosen are known.

It is instructive to explicitly model this problem as a special case of BCO.
Take the decision set to be the set of all distributions over n actions, i.e.,
K = ∆n is the n-dimensional simplex. The loss function is taken to be the

6.2. MULTIARMED BANDITS 103

linearization of the costs of the individual actions, that is:

ft(x) = ℓ⊤t x =
n∑

i=1

ℓt(i)x(i) ∀x ∈ K,

where ℓt(i) is the loss associated with the i’th action at the t’th iteration.
Thus, the cost functions are linear functions in the BCO model.

The MAB problem exhibits an exploration-exploitation tradeoff: an effi-
cient (low regret) algorithm has to explore the value of the different actions
in order to make the best decision. On the other hand, having gained suf-
ficient information about the environment, a reasonable algorithm needs to
exploit this action by picking the best action.

The simplest way to attain a MAB algorithm would be to separate ex-
ploration and exploitation. Such a method would proceed by

1. With some probability, explore the action space (i.e., by choosing an
action uniformly at random). Use the feedback to construct an esti-
mate of the actions’ losses.

2. Otherwise, use the estimates to apply a full-information experts algo-
rithm as if the estimates are the true historical costs.

This simple scheme already gives a sublinear regret algorithm, presented
in algorithm 20.

Lemma 6.1. Algorithm 20, with A being the the online gradient descent
algorithm, guarantees the following regret bound:

E

[
T∑
t=1

ℓt(it)−min
i

T∑
t=1

ℓt(i)

]
≤ O(T

2
3n

2
3)

Proof. For the random functions {ℓ̂t} defined in algorithm 20, notice that

1. E[ℓ̂t(i)] = Pr[bt = 1] · Pr[it = i|bt = 1] · nδ ℓt(i) = ℓt(i).

2. ∥ℓ̂t∥2 ≤ n
δ · |ℓt(it)| ≤

n
δ .

Therefore the regret of the simple algorithm can be related to that of A on
the estimated functions.

On the other hand, the simple MAB algorithm does not always play
according to the distribution generated by A: with probability δ it plays
uniformly at random, which may lead to a regret of one on these exploration
iterations. Let St ⊆ [T] be those iterations in which bt = 1. This is captured
by the following lemma:

104 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

Algorithm 20 Simple MAB algorithm

1: Input: OCO algorithm A, parameter δ.
2: for t = 1 to T do
3: Let bt be a Bernoulli random variable that equals 1 with probability

δ.
4: if bt = 1 then
5: Choose it ∈ {1, 2, ..., n} uniformly at random and play it.
6:

7: Let

ℓ̂t(i) =

n
δ · ℓt(it), i = it

0, otherwise
.

8: Let f̂t(x) = ℓ̂⊤t x and update xt+1 = A(f̂1, ..., f̂t).
9: else

10: Choose it ∼ xt and play it.
11: Update f̂t = 0, ℓ̂t = 0, xt+1 = xt.
12: end if
13: end for

Lemma 6.2.

E[ℓt(it)] ≤ E[ℓ̂⊤t xt] + δ

Proof.

E[ℓt(it)]

= Pr[bt = 1] ·E[ℓt(it)|bt = 1]

+Pr[bt = 0] ·E[ℓt(it)|bt = 0]

≤ δ + Pr[bt = 0] ·E[ℓt(it)|bt = 0]

= δ + (1− δ)E[ℓ⊤t xt|bt = 0] bt = 0→ it ∼ xt, independent of lt

≤ δ +E[ℓ⊤t xt] non-negative random variables

= δ +E[ℓ̂⊤t xt] ℓ̂t is independent of xt

6.2. MULTIARMED BANDITS 105

We thus have,

E[RegretT]

= E[
∑T

t=1 ℓt(it)−
∑T

t=1 ℓt(i
⋆)]

= E[
∑

t ℓt(it)−
∑

t ℓ̂t(i
⋆)] i⋆ is indep. of ℓ̂t

≤ E[
∑

t ℓ̂t(xt)−mini
∑

t ℓ̂t(i)] + δT Lemma 6.2

= E[RegretST
(A)] + δ · T

≤ 3
2GD

√
δT + δ · T Theorem 3.1,E[|ST |] = δT

≤ 3 n√
δ

√
T + δ · T For ∆n, D ≤ 2 , ∥ℓ̂t∥ ≤ n

δ

= O(T
2
3n

2
3). δ = n

2
3T− 1

3

6.2.1 EXP3: simultaneous exploration and exploitation

The simple algorithm of the previous section can be improved by combining
the exploration and exploitation steps. This gives a near-optimal regret
algorithm, called EXP3, presented below.

Algorithm 21 EXP3 - simple version

1: Input: parameter ε > 0. Set x1 = (1/n)1.
2: for t ∈ {1, 2, ..., T} do
3: Choose it ∼ xt and play it.
4: Let

ℓ̂t(i) =

1

xt(it)
· ℓt(it), i = it

0, otherwise

5: Update yt+1(i) = xt(i)e
−εℓ̂t(i) , xt+1 =

yt+1

∥yt+1∥1
6: end for

As opposed to the simple multiarmed bandit algorithm, the EXP3 al-
gorithm explores every iteration by always creating an unbiased estimator
of the entire loss vector. This results in a possibly large magnitude of the
vectors ℓ̂ and a large gradient bound for use with online gradient descent.
However, the large magnitude vectors are created with low probability (pro-
portional to their magnitude), which allows for a finer analysis.

Ultimately, the EXP3 algorithm attains a worst case regret bound of
O(
√
Tn log n), which is nearly optimal (up to a logarithmic term in the

number of actions).

106 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

Lemma 6.3. Algorithm 21 with non-negative losses and ε =
√

logn
Tn guar-

antees the following regret bound:

E[
∑

ℓt(it)−min
i

∑
ℓt(i)] ≤ 2

√
Tn log n.

Proof. For the random losses {ℓ̂t} defined in algorithm 21, notice that

E[ℓ̂t(i)] = Pr[it = i] · ℓt(i)xt(i)
= xt(i) · ℓt(i)xt(i)

= ℓt(i).

E[x⊤
t ℓ̂

2
t] =

∑
i Pr[it = i] · xt(i)ℓ̂t(i)

2

=
∑

i xt(i)
2ℓ̂t(i)

2 =
∑

i ℓt(i)
2 ≤ n. (6.1)

Therefore we have E[f̂t] = ft, and the expected regret with respect to the
functions {f̂t} is equal to that with respect to the functions {ft}. Thus, the
regret with respect to ℓ̂t can be related to that of ℓt.

The EXP3 algorithm applies Hedge to the losses given by ℓ̂t, which are
all non-negative and thus satisfy the conditions of Theorem 1.5. Thus, the
expected regret with respect to ℓ̂t, can be bounded by,

E[RegretT] = E[
∑T

t=1 ℓt(it)−mini
∑T

t=1 ℓt(i)]

= E[
∑T

t=1 ℓt(it)−
∑T

t=1 ℓt(i
⋆)]

≤ E[
∑T

t=1 ℓ̂t(xt)−
∑T

t=1 ℓ̂t(i
⋆)] i⋆ is indep. of ℓ̂t

≤ E[ε
∑T

t=1

∑n
i=1 ℓ̂t(i)

2xt(i) +
logn
ε] Theorem 1.5

≤ εTn+ logn
ε equation (6.1)

≤ 2
√
Tn log n. by choice of ε

We proceed to derive an algorithm for the more general setting of bandit
convex optimization that attains near-optimal regret.

6.3 A Reduction from Limited Information to Full
Information

In this section we derive a low regret algorithm for the general setting of
bandit convex optimization. In fact, we shall describe a general technique
for designing bandit algorithms, which is composed of two parts:

6.3. FROM LIMITED TO FULL INFORMATION 107

1. A general technique for taking an online convex optimization algorithm
that uses only the gradients of the cost functions (formally defined
below), and applying it to a family of vector random variables with
carefully chosen properties.

2. Designing the random variables that allow the template reduction to
produce meaningful regret guarantees.

We proceed to describe the two parts of this reduction, and in the re-
mainder of this chapter we describe two examples of using this reduction to
design bandit convex optimization algorithms.

6.3.1 Part 1: using unbiased estimators

The key idea behind many of the efficient algorithms for bandit convex
optimization is the following: although we cannot calculate ∇ft(xt) explic-
itly, it is possible to find an observable random variable gt that satisfies
E[gt] ≈ ∇ft(xt) = ∇t. Thus, gt can be seen as an estimator of the gradient.
By substituting gt for ∇t in an OCO algorithm, we will show that many
times it retains its sublinear regret bound.

Formally, the family of regret minimization algorithms for which this
reduction works is captured in the following definition.

Definition 6.4. (first order OCO Algorithm) Let A be an OCO (deter-
ministic) algorithm receiving an arbitrary sequence of differential loss func-
tions f1, . . . , fT , and producing decisions x1 ← A(∅),xt ← A(f1, . . . , ft−1).
A is called a first order online algorithm if the following holds:

• The family of loss functions F is closed under addition of linear func-
tions: if f ∈ F and u ∈ Rn then f + u⊤x ∈ F .

• Let f̂t be the linear function f̂t(x) = ∇ft(xt)
⊤x, then for every itera-

tion t ∈ [T]:

A(f1, . . . , ft−1) = A(f̂1, ..., f̂t−1)

We can now consider a formal reduction from any first order online
algorithm to a bandit convex optimization algorithm as follows.

Perhaps surprisingly, under very mild conditions the reduction above
guarantees the same regret bounds as the original first order algorithm up to
the magnitude of the estimated gradients. This is captured in the following
lemma.

108 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

Algorithm 22 Reduction to bandit feedback.

1: Input: convex set K ⊂ Rn, first order online algorithm A.
2: Let x1 = A(∅).
3: for t = 1 to T do
4: Generate distribution Dt, sample yt ∼ Dt with E[yt] = xt.
5: Play yt.
6: Observe ft(yt), generate gt with E[gt] = ∇ft(xt).
7: Let xt+1 = A(g1, ...,gt).
8: end for

Lemma 6.5. Let u be a fixed point in K. Let f1, . . . , fT : K → R be a se-
quence of differentiable functions. Let A be a first order online algorithm that
ensures a regret bound of the form RegretT (A) ≤ BA(∇f1(x1), . . . ,∇fT (xT))
in the full information setting. Define the points {xt} as: x1 ← A(∅),
xt ← A(g1, . . . ,gt−1) where each gt is a vector valued random variable such
that:

E[gt
∣∣x1, f1, . . . ,xt, ft] = ∇ft(xt).

Then the following holds for all u ∈ K:

E[
T∑
t=1

ft(xt)]−
T∑
t=1

ft(u) ≤ E[BA(g1, . . . ,gT)].

Proof. Define the functions ht : K → R as follows:

ht(x) = ft(x) + ξ⊤t x, where ξt = gt −∇ft(xt).

Note that

∇ht(xt) = ∇ft(xt) + gt −∇ft(xt) = gt.

Therefore, deterministically applying a first order method A on the random
functions ht is equivalent to applying A on a stochastic first order approxi-
mation of the deterministic functions ft. Thus by the full-information regret
bound of A we have:

T∑
t=1

ht(xt)−
T∑
t=1

ht(u) ≤ BA(g1, . . . ,gT). (6.2)

6.3. FROM LIMITED TO FULL INFORMATION 109

Also note that:

E[ht(xt)] = E[ft(xt)] +E[ξ⊤t xt]

= E[ft(xt)] +E[E[ξ⊤t xt

∣∣x1, f1, . . . ,xt, ft]]

= E[ft(xt)] +E[E[ξt
∣∣x1, f1, . . . ,xt, ft]

⊤xt]

= E[ft(xt)].

where we used E[ξt|x1, f1, . . . ,xt, ft] = 0. Similarly, since u ∈ K is fixed we
have that E[ht(u)] = ft(u). The lemma follows from taking the expectation
of Equation (6.2).

6.3.2 Part 2: point-wise gradient estimators

In the preceding part we have described how to convert a first order algo-
rithm for OCO to one that uses bandit information, using specially tailored
random variables. We now describe how to create these vector random
variables.

Although we cannot calculate ∇ft(xt) explicitly, it is possible to find an
observable random variable gt that satisfies E[gt] ≈ ∇ft, and serves as an
estimator of the gradient.

The question is how to find an appropriate gt, and in order to answer it
we begin with an example in a 1-dimensional case.

Example 6.6. A 1-dimensional gradient estimate
Recall the definition of the derivative:

f ′(x) = lim
δ→0

f(x+ δ)− f(x− δ)

2δ
.

The above shows that for a 1-dimensional derivative, two evaluations of f
are required. Since in our problem we can perform only one evaluation, let
us define g(x) as follows:

g(x) =

f(x+δ)

δ , with probability 1
2

−f(x−δ)
δ , with probability 1

2

. (6.3)

It is clear that

E[g(x)] =
f(x+ δ)− f(x− δ)

2δ
.

Thus, in expectation, for small δ, g(x) approximates f ′(x).

110 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

The sphere sampling estimator

We will now show how the gradient estimator (6.3) can be extended to
the multidimensional case. Let x ∈ Rn, and let Bδ and Sδ denote the
n-dimensional ball and sphere with radius δ :

Bδ = {x| ∥x∥ ≤ δ} ,

Sδ = {x| ∥x∥ = δ} .

We define f̂(x) = f̂δ(x) to be a δ-smoothed version of f(x):

f̂δ (x) = E
v∈B

[f (x+ δv)] , (6.4)

where v is drawn from a uniform distribution over the unit ball. This
construction is very similar to the one used in Lemma 2.8 in context of
convergence analysis for convex optimization. However, our goal here is
very different.

Note that when f is linear, we have f̂δ(x) = f(x). We shall address the
case in which f is indeed linear as a special case, and show how to estimate
the gradient of f̂(x), which, under the assumption, is also the gradient of
f(x). The following lemma shows a simple relation between the gradient
∇f̂δ and a uniformly drawn unit vector.

Lemma 6.7. Fix δ > 0. Let f̂δ(x) be as defined in (6.4), and let u be a
uniformly drawn unit vector u ∼ S. Then

E
u∈S

[f (x+ δu)u] =
δ

n
∇f̂δ (x) .

Proof. Using Stokes’ theorem from calculus, we have

∇
∫
Bδ

f (x+ v) dv =

∫
Sδ

f (x+ u)
u

∥u∥
du. (6.5)

From (6.4), and by definition of expectation, we have

f̂δ(x) =

∫
Bδ

f (x+ v) dv

vol(Bδ)
. (6.6)

where vol(Bδ) is the volume of an n-dimensional ball of radius δ. Similarly,

E
u∈S

[f (x+ δu)u] =

∫
Sδ

f (x+ u) u
∥u∥du

vol(Sδ)
. (6.7)

6.3. OGD WITHOUT A GRADIENT 111

Combining (6.4), (6.5), (6.6), and (6.7), and the fact that the ratio of the
volume of a ball in n dimensions and the sphere of dimension n − 1 is
volnBδ/voln−1Sδ = δ/n gives the desired result.

Under the assumption that f is linear, Lemma 6.7 suggests a simple
estimator for the gradient ∇f . Draw a random unit vector u, and let g (x) =
n
δ f (x+ δu)u.

The ellipsoidal sampling estimator

The sphere estimator above is at times difficult to use: when the center of
the sphere is very close to the boundary of the decision set only a very small
sphere can fit completely inside. This results in a gradient estimator with
large variance.

In such cases, it is useful to consider ellipsoids rather than spheres. Luck-
ily, the generalisation to ellipsoidal sampling for gradient estimation is a
simple corollary of our derivation above:

Corollary 6.8. Consider a continuous function f : Rn → R, an invertible
matrix A ∈ Rn×n, and let v ∼ Bn and u ∼ Sn. Define the smoothed version
of f with respect to A:

f̂(x) = E[f(x+Av)].

Then the following holds:

∇f̂(x) = nE[f(x+Au)A−1u].

Proof. Let g(x) = f(Ax), and ĝ(x) = Ev∈B[g(x+ v)].

nE[f(x+Au)A−1u] = nA−1E[f(x+Au)u]

= nA−1E[g(A−1x+ u)u]

= A−1∇ĝ(A−1x) Lemma 6.7

= A−1A∇f̂(x) = ∇f̂(x).

112 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

6.4 Online Gradient Descent without a Gradient

The simplest and historically earliest application of the BCO-to-OCO reduc-
tion outlined before is the application of the online gradient descent algo-
rithm to the bandit setting. The FKM algorithm (named after its inventors,
see bibliographic section) is outlined in algorithm 23.

For simplicity, we assume that the set K contains the unit ball centered
at the zero vector, denoted 0. Denote Kδ = {x | 1

1−δx ∈ K}. It is left as an
exercise to show that Kδ is convex for any 0 < δ < 1 and that all balls of
radius δ around points in Kδ are contained in K.

We also assume for simplicity that the adversarially chosen cost functions
are bounded by one over K, i.e., that |ft(x)| ≤ 1 for all x ∈ K.

Figure 6.1: The Minkowski set Kδ

Algorithm 23 FKM Algorithm

1: Input: decision set K containing 0, set x1 = 0, parameters δ, η.
2: for t = 1 to T do
3: Draw ut ∈ S1 uniformly at random, set yt = xt + δut.
4: Play yt, observe and incur loss ft (yt). Let gt =

n
δ ft (yt)ut.

5: Update xt+1 = Π
Kδ

[xt − ηgt].

6: end for

6.4. OGD WITHOUT A GRADIENT 113

The FKM algorithm is an instantiation of the generic reduction from
bandit convex optimization to online convex optimization with spherical
gradient estimators over the set Kδ. It iteratively projects onto Kδ, in order
to have enough space for spherical gradient estimation. This degrades its
performance by a controlled quantity. Its regret is bounded as follows.

Theorem 6.9. Algorithm 23 with parameters η = D
nT 3/4 , δ = 1

T 1/4 guaran-
tees the following expected regret bound

T∑
t=1

E[ft(yt)]−min
x∈K

T∑
t=1

ft(x) ≤ 9nDGT 3/4 = O(T 3/4).

Proof. Recall our notation of x⋆ = argminx∈K
∑T

t=1 ft(x). Denote

x⋆
δ = Π

Kδ

(x⋆).

Then by properties of projections we have ∥x⋆
δ − x⋆∥ ≤ δD, where D is the

diameter of K. Thus, assuming that the cost functions {ft} are G-Lipschitz,
we have

T∑
t=1

E[ft(yt)]−
T∑
t=1

ft(x
⋆) ≤

T∑
t=1

E[ft(yt)]−
T∑
t=1

ft(x
⋆
δ) + δTGD. (6.8)

Denote f̂t = f̂δ,t = Eu∼B[f(x + δu)] for shorthand. We can now bound

114 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

the regret by

T∑
t=1

E[ft(yt)]−
T∑
t=1

ft(x
⋆)

≤
T∑
t=1

E[ft(xt)]−
T∑
t=1

ft(x
⋆) + δDGT ft is G-Lipschitz

≤
T∑
t=1

E[ft(xt)]−
T∑
t=1

ft(x
⋆
δ) + 2δDGT Inequality (6.8)

≤
T∑
t=1

E[f̂t(xt)]−
T∑
t=1

f̂t(x
⋆
δ) + 4δDGT Lemma 2.8

≤ RegretOGD(g1, ...,gT) + 4δDGT Lemma 6.5

≤ η
T∑
t=1

∥gt∥2 +
D2

η
+ 4δDGT OGD regret, Theorem 3.1

≤ η
n2

δ2
T +

D2

η
+ 4δDGT |ft(x)| ≤ 1

≤ 9nDGT 3/4. η =
D

nT 3/4
, δ =

1

T 1/4

6.5 * Optimal Regret Algorithms for Bandit Lin-
ear Optimization

A special case of BCO that is of considerable interest is BLO—Bandit Lin-
ear Optimization. This setting has linear cost functions, and captures the
network routing and ad placement examples discussed in the beginning of
this chapter, as well as the non-stochastic MAB problem.

In this section we give near-optimal regret bounds for BLO using tech-
niques from interior point methods for convex optimization.

The generic OGD method of the previous section suffers from three pit-
falls:

1. The gradient estimators are biased, and estimate the gradient of a
smoothed version of the real cost function.

6.5. OPTIMAL REGRET FOR BLO 115

2. The gradient estimators require enough “wiggle room” and are thus
ill-defined on the boundary of the decision set.

3. The gradient estimates have potentially large magnitude, proportional
to the distance from the boundary.

Fortunately, the first issue is non-existent for linear functions - the gradi-
ent estimators turn out to be unbiased for linear functions. In the notation
of the previous chapters, we have for linear functions:

f̂δ(x) = E
v∼B

[f(x+ δv)] = f(x).

Thus, Lemma 6.7 gives us a stronger guarantee:

E
u∈S

[f (x+ δu)u] =
δ

n
∇f̂δ (x) =

δ

n
∇f(x).

To resolve the second and third issues we use self-concordant barrier
functions, a rather advanced technique from interior point methods for con-
vex optimization.

6.5.1 Self-concordant barriers

Self-concordant barrier functions were devised in the context of interior point
methods for optimization as a way of ensuring that the Newton method
converges in polynomial time over bounded convex sets. In this brief intro-
duction we survey some of their beautiful properties that will allow us to
derive an optimal regret algorithm for BLO.

Definition 6.10. Let K ∈ Rn be a convex set with a nonempty interior
int(K). A function R : int(K)→ R is called ν-self-concordant if:

1. R is three times continuously differentiable and convex, and approaches
infinity along any sequence of points approaching the boundary of K.

2. For every h ∈ Rn and x ∈ int(K) the following holds:

|∇3R(x)[h,h,h]| ≤ 2(∇2R(x)[h,h])3/2,
|∇R(x)[h]| ≤ ν1/2(∇2R(x)[h,h])1/2

where the third order differential is defined as:

∇3R(x)[h,h,h] def
=

∂3

∂t1∂t2∂t3
R(x+ t1h+ t2h+ t3h)

∣∣∣∣
t1=t2=t3=0

116 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

The Hessian of a self-concordant barrier induces a local norm at every x ∈
int(K), we denote this norm by || · ||x and its dual by || · ||∗x, which are defined
∀h ∈ Rn by

∥h∥x =
√

h⊤∇2R(x)h, ∥h∥∗x =
√
h⊤(∇2R(x))−1h.

We assume that ∇2R(x) always has full rank. In BCO applications this is
easy to ensure by adding a fictitious quadratic function to the barrier, which
does not affect the overall regret by more than a constant.

Let R be a self-concordant barrier and x ∈ int(K). The Dikin ellipsoid
is

E1(x) := {y ∈ Rn : ∥y − x∥x ≤ 1},

i.e., the ∥ · ∥x-unit ball centered around x, is completely contained in K.
In our next analysis we will need to boundR(y)−R(x) for x,y ∈ int(K),

for which the following lemma is useful:

Lemma 6.11. Let R be a ν-self concordant function over K, then for all
x,y ∈ int(K):

R(y)−R(x) ≤ ν log
1

1− πx(y)
,

where πx(y) = inf{t ≥ 0 : x+ t−1(y − x) ∈ K}.

The function πx(y) is called the Minkowski function for K, and its output
is always in the interval [0, 1]. Moreover, as y approaches the boundary of
K then πx(y)→ 1.

Another important property of self-concordant functions is the relation-
ship between a point and the optimum, and the norm of the gradient at the
point, according to the local norm, as given by the following lemma.

Lemma 6.12. Let x ∈ int(K) be such that ∥∇R(x)∥∗x ≤ 1
4 , and let x⋆ =

argminx∈KR(x). Then

∥x− x⋆∥x ≤ 2∥∇R(x)∥∗x.

6.5.2 A near-optimal algorithm

We have now set up all the necessary tools to derive a near-optimal BLO
algorithm, presented in algorithm 24.

6.5. OPTIMAL REGRET FOR BLO 117

Algorithm 24 SCRIBLE

1: Input: decision set K with self concordant barrier R, set x1 ∈ int(K)
such that ∇R(x1) = 0, parameters η, δ.

2: for t = 1 to T do
3: Let At =

[
∇2R(xt)

]−1/2
.

4: Pick ut ∈ S uniformly, and set yt = xt +Atut.
5: Play yt, observe and suffer loss ft (yt). let gt = nft (yt)A

−1
t ut.

6: Update

xt+1 = argmin
x∈Kδ

{
η

t∑
τ=1

g⊤
τ x+R(x)

}
.

7: end for

Theorem 6.13. For appropriate choice of η, δ, the SCRIBLE algorithm
guarantees

T∑
t=1

E[ft(yt)]−min
x∈K

T∑
t=1

ft(x) ≤ O
(√

T log T
)
.

Proof. First, we note that yt ∈ K never steps outside of the decision set.
The reason is that xt ∈ K and yt lies in the Dikin ellipsoid centered at xt.

Further, by Corollary 6.8, we have that

E[gt] = ∇f̂t(xt) = ∇ft(xt),

where the latter equality follows since ft is linear, and thus its smoothed
version is identical to itself.

A final observation is that line 24 in the algorithm is an invocation of
the RFTL algorithm with the self-concordant barrier R serving as a regu-
larisation function. The RFTL algorithm for linear functions is a first order
OCO algorithm and thus Lemma 6.5 applies.

118 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

We can now bound the regret by

T∑
t=1

E[ft(yt)]−
T∑
t=1

ft(x
⋆)

≤
T∑
t=1

E[f̂t(xt)]−
T∑
t=1

f̂t(x
⋆) f̂t = ft, E[yt] = xt

≤ RegretRFTL(g1, ...,gT) Lemma 6.5

≤
T∑
t=1

g⊤
t (xt − xt+1) +

R(x⋆)−R(x1)

η
Lemma 5.3

≤
T∑
t=1

∥gt∥∗t ∥xt − xt+1∥t +
R(x⋆)−R(x1)

η
. Cauchy-Schwarz

Here we use our notation from the previous chapter for the local norm
∥h∥t = ∥h∥xt =

√
h⊤∇2R(xt)h.

To bound the last expression, we use Lemma 6.12, and the definition
of xt+1 = argminx∈K Φt(x) where Φt(x) = η

∑t
τ=1 g

⊤
τ x + R(x) is a self-

concordant barrier. Thus,

∥xt − xt+1∥t ≤ 2∥∇Φt(xt)∥∗t = 2∥∇Φt−1(xt) + ηgt∥∗t = 2η∥gt∥∗t ,

since ∇Φt−1(xt) = 0 by definition of xt. Recall that to use Lemma 6.12, we
need ∥∇Φt(xt)∥∗t = η∥gt∥∗t ≤ 1

4 , which is true by choice of η and since

∥gt∥∗ 2
t ≤ n2uT

t A
−T
t ∇−2R(xt)A

−1
t ut ≤ n2.

Thus,

T∑
t=1

E[ft(yt)]−
T∑
t=1

ft(x
⋆) ≤ 2η

T∑
t=1

∥gt∥∗ 2
t +

R(x⋆)−R(x1)

η

≤ 2ηn2T +
R(x⋆)−R(x1)

η
.

It remains to bound the Bregman divergence with respect to x⋆, for which
we use a similar technique as in the analysis of algorithm 23, and bound
the regret with respect to x⋆

δ , which is the projection of x⋆ onto Kδ. Using

6.5. OPTIMAL REGRET FOR BLO 119

equation (6.8), we can bound the overall regret by:

T∑
t=1

E[ft(yt)]−
T∑
t=1

ft(x
⋆)

≤
T∑
t=1

E[ft(yt)]−
T∑
t=1

ft(x
∗
δ) + δTGD equation (6.8)

= 2ηn2T +
R(x⋆

δ)−R(x1)

η
+ δTGD above derivation

≤ 2ηn2T +
ν log 1

1−πx1 (x
⋆
δ)

η
+ δTGD Lemma 6.11

≤ 2ηn2T +
ν log 1

δ

η
+ δTGD x⋆

δ ∈ Kδ.

Taking η = O(1√
T
) and δ = O(1

T), the above bound implies our theorem.

120 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

6.6 Bibliographic Remarks

The Multi-Armed Bandit problem has history going back more than fifty
years to the work of Robbins [1952], see the survey of Bubeck and Cesa-
Bianchi [2012] for a much more detailed history. The non-stochastic MAB
problem and the EXP3 algorithm, as well as tight lower bounds were given
in the seminal paper of Auer et al. [2003]. The logarithmic gap in attainable
regret for non-stochastic MAB was resolved in [Audibert and Bubeck, 2009].

Bandit Convex Optimization for the special case of linear cost func-
tions and the flow polytope, was introduced and studied by Awerbuch and
Kleinberg [2008] in the context of online routing. The full generality BCO
setting was introduced by Flaxman et al. [2005], who gave the first efficient
and low-regret algorithm for BCO. Tight bounds for BCO were obtained
by Bubeck et al. [2015] for the one dimensional case, via an inefficient algo-
rithm by Hazan and Li [2016], and finally with a polynomial time algorithm
in Bubeck et al. [2017].

The special case in which the cost functions are linear, called Bandit Lin-
ear Optimization, received significant attention. Dani et al. [2008] gave an
optimal regret algorithm up to constants depending on the dimension. Aber-
nethy et al. [2008] gave an efficient algorithm and introduced self-concordant
barriers to the bandit setting. Self-concordant barrier functions were devised
in the context of polynomial-time algorithms for convex optimization in the
seminal work of Nesterov and Nemirovskii [1994]. Lower bounds for regret
in the bandit linear optimization setting were studied by Shamir [2015].

In this chapter we have considered the expected regret as a performance
metric. Significant literature is devoted to high probability guarantees on
the regret. High probability bounds for the MAB problem were given in
[Auer et al., 2003], and for bandit linear optimization in [Abernethy and
Rakhlin, 2009]. Other more refined metrics have been recently explored in
[Dekel et al., 2012] and in the context of adaptive adversaries in [Neu et al.,
2014, Yu and Mannor, 2009, Even-Dar et al., 2009, Mannor and Shimkin,
2003, Yu et al., 2009].

For a recent comprehensive text on bandit algorithms see [Lattimore and
Szepesvári, 2020].

6.7. EXERCISES 121

6.7 Exercises

1. Prove a lower bound on the regret of any algorithm for BCO: show that for the
special case of BCO over the unit sphere, any online algorithm must incur a regret
of Ω(

√
T).

2. ∗ Strengthen the above bound: show that for the special case of BLO over
the d-dimensional unit simplex, with cost functions bounded in ℓ∞ norm by one,
any online algorithm must incur a regret of Ω(

√
dT) as T →∞, up to logarithmic

terms in T .

3. Let K be convex. Show that the set Kδ is convex.

4. Let K be convex and contain the unit ball centered at zero. Show that for any
point x ∈ Kδ, the ball of radius δ centered at x is contained in K.

5. Consider the BCO setting with H-strongly convex functions, H is known a-
priori to the online learner. Show that in this case we can attain a regret bound of
Õ(T 2/3).
Hint: recall that we can attain a regret bound of O(log T) in the full-information
OCO with H-strongly convex functions, and recall that the notation Õ(·) hides
constant and poly-logarithmic terms.

6. Consider the BCO setting with the following twist: at every iteration, the
player is allowed to observe two evaluations of the function, as opposed to just
one. That is, the player gives xt, yt, and observes ft(xt), ft(yt). Regret is measured
w.r.t. xt, as usual: ∑

t

ft(xt)− min
x⋆∈K

∑
t

ft(x
⋆).

(a) Show how to construct a biased gradient estimator for ft with arbitrary small
bias and constant variance, that is independent of the bias.

(b) Show how to use the gradient estimator from the previous part to give an
efficient algorithm for this setting that attains O(

√
T) regret.

122 CHAPTER 6. BANDIT CONVEX OPTIMIZATION

Chapter 7

Projection-Free Algorithms

In many computational and learning scenarios the main bottleneck of opti-
mization, both online and offline, is the computation of projections onto the
underlying decision set (see §2.1.1). In this chapter we introduce projection-
free methods for online convex optimization, that yield more efficient algo-
rithms in these scenarios.

The motivating example throughout this chapter is the problem of ma-
trix completion, which is a widely used and accepted model in the con-
struction of recommendation systems. For matrix completion and related
problems, projections amount to expensive linear algebraic operations and
avoiding them is crucial in big data applications.

We start with a detour into classical offline convex optimization and
describe the conditional gradient algorithm, also known as the Frank-Wolfe
algorithm. Afterwards, we describe problems for which linear optimization
can be carried out much more efficiently than projections. We conclude with
an OCO algorithm that eschews projections in favor of linear optimization,
in much the same flavor as its offline counterpart.

7.1 Review: Relevant Concepts from Linear Alge-
bra

This chapter addresses rectangular matrices, which model applications such
as recommendation systems naturally. Consider a matrix X ∈ Rn×m. A
non-negative number σ ∈ R+ is said to be a singular value for X if there are
two vectors u ∈ Rn,v ∈ Rm such that

X⊤u = σv, Xv = σu.

123

124 CHAPTER 7. PROJECTION-FREE ALGORITHMS

The vectors u,v are called the left and right singular vectors respectively.
The non-zero singular values are the square roots of the eigenvalues of the
matrix XX⊤ (and X⊤X). The matrix X can be written as

X = UΣV ⊤ , U ∈ Rn×ρ , V ⊤ ∈ Rρ×m,

where ρ = min{n,m}, the matrix U is an orthogonal basis of the left singular
vectors of X, the matrix V is an orthogonal basis of right singular vectors,
and Σ is a diagonal matrix of singular values. This form is called the singular
value decomposition for X.

The number of non-zero singular values for X is called its rank, which
we denote by k ≤ ρ. The nuclear norm of X is defined as the ℓ1 norm of its
singular values, and denoted by

∥X∥∗ =
ρ∑

i=1

σi.

It can be shown (see exercises) that the nuclear norm is equal to the trace
of the square root of the matrix times its transpose, i.e.,

∥X∥∗ = Tr(
√
X⊤X)

We denote by A •B the inner product of two matrices as vectors in Rn×m,
that is

A •B =
n∑

i=1

m∑
j=1

AijBij = Tr(AB⊤).

7.2 Motivation: Recommender Systems

Media recommendations have changed significantly with the advent of the
Internet and rise of online media stores. The large amounts of data collected
allow for efficient clustering and accurate prediction of users’ preferences
for a variety of media. A well-known example is the so called “Netflix
challenge”—a competition of automated tools for recommendation from a
large dataset of users’ motion picture preferences.

One of the most successful approaches for automated recommendation
systems, as proven in the Netflix competition, is matrix completion. Perhaps
the simplest version of the problem can be described as follows.

The entire dataset of user-media preference pairs is thought of as a
partially-observed matrix. Thus, every person is represented by a row in

7.2. RECOMMENDATION SYSTEMS 125

the matrix, and every column represents a media item (movie). For sim-
plicity, let us think of the observations as binary—a person either likes or
dislikes a particular movie. Thus, we have a matrix M ∈ {0, 1, ∗}n×m where
n is the number of persons considered, m is the number of movies at our
library, and 0/1 and ∗ signify “dislike”, “like” and “unknown” respectively:

Mij =

0, person i dislikes movie j

1, person i likes movie j

∗, preference unknown

.

The natural goal is to complete the matrix, i.e., correctly assign 0 or 1 to
the unknown entries. As defined so far, the problem is ill-posed, since any
completion would be equally good (or bad), and no restrictions have been
placed on the completions.

The common restriction on completions is that the “true” matrix has
low rank. Recall that a matrix X ∈ Rn×m has rank k < ρ = min{n,m} if
and only if it can be written as

X = UV , U ∈ Rn×k, V ∈ Rk×m.

The intuitive interpretation of this property is that each entry in M
can be explained by only k numbers. In matrix completion this means,
intuitively, that there are only k factors that determine a persons preference
over movies, such as genre, director, actors and so on.

Now the simplistic matrix completion problem can be well-formulated
as in the following mathematical program. Denote by ∥ · ∥ob the Euclidean
norm only on the observed (non starred) entries of M , i.e.,

∥X∥2ob =
∑

Mij ̸=∗
X2

ij .

The mathematical program for matrix completion is given by

min
X∈Rn×m

1

2
∥X −M∥2ob

s.t. rank(X) ≤ k.

Since the constraint over the rank of a matrix is non-convex, it is stan-
dard to consider a relaxation that replaces the rank constraint by the nuclear
norm. It is known that the nuclear norm is a lower bound on the matrix

126 CHAPTER 7. PROJECTION-FREE ALGORITHMS

rank if the singular values are bounded by one (see exercises). Thus, we
arrive at the following convex program for matrix completion:

min
X∈Rn×m

1

2
∥X −M∥2ob (7.1)

s.t. ∥X∥∗ ≤ k.

We consider algorithms to solve this convex optimization problem next.

7.3 The Conditional Gradient Method

In this section we return to the basics of convex optimization—minimization
of a convex function over a convex domain as studied in chapter 2.

The conditional gradient (CG) method, or Frank-Wolfe algorithm, is a
simple algorithm for minimizing a smooth convex function f over a convex
set K ⊆ Rn. The appeal of the method is that it is a first order interior
point method - the iterates always lie inside the convex set, and thus no
projections are needed, and the update step on each iteration simply requires
to minimize a linear objective over the set. The basic method is given in
algorithm 25.

Algorithm 25 Conditional gradient

1: Input: step sizes {ηt ∈ (0, 1], t ∈ [T]}, initial point x1 ∈ K.
2: for t = 1 to T do
3: vt ← argminx∈K

{
x⊤∇f(xt)

}
.

4: xt+1 ← xt + ηt(vt − xt).
5: end for

Note that in the CG method, the update to the iterate xt may be not be
in the direction of the gradient, as vt is the result of a linear optimization
procedure in the direction of the negative gradient. This is depicted in figure
7.1.

The following theorem gives an essentially tight performance guarantee
of this algorithm over smooth functions. Recall our notation from chapter
2: x⋆ denotes the global minimizer of f over K, D denotes the diameter of
the set K, and ht = f(xt)−f(x⋆) denotes the suboptimality of the objective
value in iteration t.

7.3. THE CONDITIONAL GRADIENT METHOD 127

Figure 7.1: Direction of progression of the CG algorithm

Theorem 7.1. The CG algorithm applied to β-smooth functions with step
sizes ηt = min{1, 2t } attains the following convergence guarantee

ht ≤
2βD2

t

Proof. As done before in this manuscript, we denote ∇t = ∇f(xt). For any
set of step sizes, we have

f(xt+1)− f(x⋆) = f(xt + ηt(vt − xt))− f(x⋆)

≤ f(xt)− f(x⋆) + ηt(vt − xt)
⊤∇t + η2t

β

2
∥vt − xt∥2 smoothness

≤ f(xt)− f(x⋆) + ηt(x
⋆ − xt)

⊤∇t + η2t
β

2
∥vt − xt∥2 vt choice

≤ f(xt)− f(x⋆) + ηt(f(x
⋆)− f(xt)) + η2t

β

2
∥vt − xt∥2 convexity

≤ (1− ηt)(f(xt)− f(x⋆)) +
η2t β

2
D2. (7.2)

We reached the recursion ht+1 ≤ (1− ηt)ht + η2t
βD2

2 , and by Lemma 7.2 we
obtain,

ht ≤
2βD2

t
.

128 CHAPTER 7. PROJECTION-FREE ALGORITHMS

Lemma 7.2. Let {ht} be a sequence that satisfies the recurence

ht+1 ≤ ht(1− ηt) + η2t c.

Then taking ηt = min{1, 2t } implies

ht ≤
4c

t
.

Proof. This is proved by induction on t.
Induction base. For t = 1, we have

h2 ≤ h1(1− η1) + η21c = c ≤ 4c.

Induction step.

ht+1 ≤ (1− ηt)ht + η2t c

≤
(
1− 2

t

)
4c

t
+

4c

t2
induction hypothesis

=
4c

t

(
1− 1

t

)
≤ 4c

t
· t

t+ 1
t−1
t ≤

t
t+1

=
4c

t+ 1
.

7.3.1 Example: matrix completion via CG

As an example of an application for the conditional gradient algorithm, recall
the mathematical program given by (7.1). The gradient of the objective
function at point Xt is

∇f(Xt) = (Xt −M)ob =

Xt

ij −Mij , (i, j) ∈ OB

0, otherwise

. (7.3)

Over the set of bounded-nuclear norm matrices, the linear optimization of
line 3 in algorithm 25 becomes,

minX • ∇t , ∇t = ∇f(Xt)

s.t. ∥X∥∗ ≤ k.

7.3. THE CONDITIONAL GRADIENT METHOD 129

For simplicity, let’s consider square symmetric matrices, for which the nu-
clear norm is equivalent to the trace norm, and the above optimization
problem becomes

minX • ∇t

s.t. Tr(X) ≤ k.

It can be shown that this program is equivalent to the following (see exer-
cises):

min
x∈Rn

x⊤∇tx

s.t. ∥x∥22 ≤ k.

Hence, this is an eigenvector computation in disguise! Computing the largest
eigenvector of a matrix takes linear time via the power method, which also
applies more generally to computing the largest singular value of rectangular
matrices. With this, step 3 of algorithm 25, which amounts to mathematical
program (7.1), becomes computing vmax(−∇f(Xt)), the largest eigenvector
of −∇f(Xt). Algorithm 25 takes on the modified form described in Algo-
rithm 26.

Algorithm 26 Conditional gradient for matrix completion

1: Let X1 be an arbitrary matrix of trace k in K.
2: for t = 1 to T do
3: vt =

√
k · vmax(−∇t).

4: Xt+1 = Xt + ηt(vtv
⊤
t −Xt) for ηt ∈ (0, 1).

5: end for

Comparison to other gradient-based methods. How does this com-
pare to previous convex optimization methods for solving the same matrix
completion problem? As a convex program, we can apply gradient descent,
or even more advantageously in this setting, stochastic gradient descent as
in §3.4. Recall that the gradient of the objective function at point Xt takes
the simple form (7.3). A stochastic estimate for the gradient can be attained
by observing just a single entry of the matrix M , and the update itself takes
constant time as the gradient estimator is sparse. However, the projection
step is significantly more difficult.

In this setting, the convex set K is the set of bounded nuclear norm
matrices. Projecting a matrix onto this set amounts to calculating the SVD
of the matrix, which is similar in computational complexity to algorithms for

130 CHAPTER 7. PROJECTION-FREE ALGORITHMS

matrix diagonalization or inversion. The best known algorithms for matrix
diagonalization are superlinear in the matrices’ size, and thus impractical
for large datasets that are common in applications.

In contrast, the CG method does not require projections at all, and
replaces them with linear optimization steps over the convex set, which we
have observed to amount to singular vector computations. The latter can
be implemented to take linear time via the power method or the Lanczos
algorithm (see bibliography).

Thus, the Conditional Gradient method allows for optimization of the
mathematical program (7.1) with a linear-time operation (eigenvector using
power method) per iteration, rather than a significantly more expensive
computation (SVD) needed for gradient descent.

7.4 Projections versus Linear Optimization

The conditional gradient (Frank-Wolfe) algorithm described before does not
resort to projections, but rather computes a linear optimization problem of
the form

argmin
x∈K

{
x⊤u

}
. (7.4)

When is the CG method computationally preferable? The overall compu-
tational complexity of an iterative optimization algorithm is the product
of the number of iterations and the computational cost per iteration. The
CG method does not converge as well as the most efficient gradient descent
algorithms, meaning it requires more iterations to produce a solution of a
comparable level of accuracy. However, for many interesting scenarios the
computational cost of a linear optimization step (7.4) is significantly lower
than that of a projection step.

Let us point out several examples of problems for which we have very effi-
cient linear optimization algorithms, whereas our state-of-the-art algorithms
for computing projections are significantly slower.

Recommendation systems and matrix prediction. In the example
pointed out in the preceding section of matrix completion, known methods
for projection onto the spectahedron, or more generally the bounded nuclear-
norm ball, require singular value decompositions, which take superlinear
time via our best known methods. In contrast, the CG method requires
maximal eigenvector computations which can be carried out in linear time
via the power method (or the more sophisticated Lanczos algorithm).

7.4. PROJECTIONS VERSUS LINEAR OPTIMIZATION 131

Network routing and convex graph problems. Various routing and
graph problems can be modeled as convex optimization problems over a
convex set called the flow polytope.

Consider a directed acyclic graph with m edges, a source node marked
s and a target node marked t. Every path from s to t in the graph can be
represented by its identifying vector, that is a vector in {0, 1}m in which the
entries that are set to 1 correspond to edges of the path. The flow polytope
of the graph is the convex hull of all such identifying vectors of the simple
paths from s to t. This polytope is also exactly the set of all unit s–t flows
in the graph if we assume that each edge has a unit flow capacity (a flow
is represented here as a vector in Rm in which each entry is the amount of
flow through the corresponding edge).

Since the flow polytope is just the convex hull of s–t paths in the graph,
minimizing a linear objective over it amounts to finding a minimum weight
path given weights for the edges. For the shortest path problem we have
very efficient combinatorial optimization algorithms, namely Dijkstra’s al-
gorithm.

Thus, applying the CG algorithm to solve any convex optimization prob-
lem over the flow polytope will only require iterative shortest path compu-
tations.

Ranking and permutations. A common way to represent a permutation
or ordering is by a permutation matrix. Such are square matrices over
{0, 1}n×n that contain exactly one 1 entry in each row and column.

Doubly-stochastic matrices are square, real-valued matrices with non-
negative entries, in which the sum of entries of each row and each column
amounts to 1. The polytope that defines all doubly-stochastic matrices
is called the Birkhoff-von Neumann polytope. The Birkhoff-von Neumann
theorem states that this polytope is the convex hull of exactly all n × n
permutation matrices.

Since a permutation matrix corresponds to a perfect matching in a fully
connected bipartite graph, linear minimization over this polytope corre-
sponds to finding a minimum weight perfect matching in a bipartite graph.

Consider a convex optimization problem over the Birkhoff-von Neumann
polytope. The CG algorithm will iteratively solve a linear optimization
problem over the BVN polytope, thus iteratively solving a minimum weight
perfect matching in a bipartite graph problem, which is a well-studied com-
binatorial optimization problem for which we know of efficient algorithms.
In contrast, other gradient based methods will require projections, which

132 CHAPTER 7. PROJECTION-FREE ALGORITHMS

are quadratic optimization problems over the BVN polytope.

Matroid polytopes. A matroid is pair (E, I) where E is a set of elements
and I is a set of subsets of E called the independent sets which satisfy vari-
ous interesting proprieties that resemble the concept of linear independence
in vector spaces. Matroids have been studied extensively in combinatorial
optimization and a key example of a matroid is the graphical matroid in
which the set E is the set of edges of a given graph and the set I is the set of
all subsets of E which are cycle-free. In this case, I contains all the spanning
trees of the graph. A subset S ∈ I could be represented by its identifying
vector which lies in {0, 1}|E| which also gives rise to the matroid polytope
which is just the convex hull of all identifying vectors of sets in I. It can
be shown that some matroid polytopes are defined by exponentially many
linear inequalities (exponential in |E|), which makes optimization over them
difficult.

On the other hand, linear optimization over matroid polytopes is easy
using a simple greedy procedure which runs in nearly linear time. Thus, the
CG method serves as an efficient algorithm to solve any convex optimization
problem over matroids iteratively using only a simple greedy procedure.

7.5 The Online Conditional Gradient Algorithm

In this section we give a projection-free algorithm for OCO based on the
conditional gradient method, which is projection-free and thus carries the
computational advantages of the CG method to the online setting.

It is tempting to apply the CG method straightforwardly to the online
appearance of functions in the OCO setting, such as the OGD algorithm in
§3.1. However, it can be shown that an approach that only takes into account
the last cost function is doomed to fail. The reason is that the conditional
gradient method takes into account the direction of the gradient, and is
insensitive to its magnitude.

Instead, we apply the CG algorithm step to the aggregate sum of all
previous cost functions with added Euclidean regularization. The resulting
algorithm is given formally in Algorithm 27.

We can prove the following regret bound for this algorithm. While this
regret bound is suboptimal in light of the previous upper bounds we have
seen, its suboptimality is compensated by the algorithm’s lower computa-
tional cost.

7.5. ONLINE CONDITIONAL GRADIENT 133

Algorithm 27 Online conditional gradient

1: Input: convex set K, T , x1 ∈ K, parameters η, {σt}.
2: for t = 1, 2, . . . , T do
3: Play xt and observe ft.
4: Let Ft(x) = η

∑t−1
τ=1∇⊤

τ x+ ∥x− x1∥2.
5: Compute vt = argminx∈K{∇Ft(xt) · x}.
6: Set xt+1 = (1− σt)xt + σtvt.
7: end for

Theorem 7.3. Online conditional gradient (Algorithm 27) with parameters
η = D

2GT 3/4 , σt = min{1, 2
t1/2
}, attains the following guarantee

RegretT =
T∑
t=1

ft(xt)− min
x⋆∈K

T∑
t=1

ft(x
⋆) ≤ 8DGT 3/4

As a first step in analyzing Algorithm 27, consider the points

x⋆
t = argmin

x∈K
Ft(x).

These are exactly the iterates of the RFTL algorithm from chapter 5, namely
Algorithm 13 with the regularization being R(x) = ∥x − x1∥2, applied to
cost functions with a shift, namely:

f̃t = ft(x+ (x⋆
t − xt)).

The reason is that ∇t in Algorithm 27 refers to ∇ft(xt), whereas in the
RFTL algorithm we have ∇t = ∇ft(x⋆

t). Notice that for any point x ∈ K
we have |ft(x)− f̃t(x)| ≤ G∥xt − x⋆

t ∥. Thus, according to Theorem 5.2, we
have that ∑T

t=1 ft(x
⋆
t)−

∑T
t=1 ft(x

⋆)

≤ 2G
∑

t ∥xt − x⋆
t ∥+

∑T
t=1 f̃t(x

⋆
t)−

∑T
t=1 f̃t(x

⋆)

≤ 2G
∑

t ∥xt − x⋆
t ∥+ 2ηGT + 1

ηD. (7.5)

Using our previous notation, denote by ht(x) = Ft(x)− Ft(x
⋆
t), and

by ht = ht(xt). The main lemma we require to proceed is the following,
which relates the iterates xt to the optimal point according to the aggregate
function Ft.

Lemma 7.4. The iterates xt of Algorithm 27 satisfy for all t ≥ 1

ht ≤ 2D2σt.

134 CHAPTER 7. PROJECTION-FREE ALGORITHMS

Proof. As the functions Ft are 1-smooth, applying the offline Frank-Wolfe
analysis technique, and in particular Equation (7.2) to the function Ft we
obtain:

ht(xt+1) = Ft(xt+1)− Ft(x
⋆
t)

≤ (1− σt)(Ft(xt)− Ft(x
⋆
t)) +

D2

2
σ2
t Equation (7.2)

= (1− σt)ht +
D2

2
σ2
t .

In addition, by definition of Ft and ht we have

ht+1

= Ft(xt+1)− Ft(x
⋆
t+1) + η∇t+1(xt+1 − x⋆

t+1)

≤ ht(xt+1) + η∇t+1(xt+1 − x⋆
t+1) Ft(x

⋆
t) ≤ Ft(x

⋆
t+1)

≤ ht(xt+1) + ηG∥xt+1 − x⋆
t+1∥. Cauchy-Schwarz

Since Ft is 1-strongly convex, we have

∥x− x⋆
t ∥2 ≤ Ft(x)− Ft(x

⋆
t).

Thus,

ht+1 ≤ ht(xt+1) + ηG∥xt+1 − x⋆
t+1∥

≤ ht(xt+1) + ηG
√
ht+1

≤ ht(1− σt) +
1

2
D2σ2

t + ηG
√

ht+1 above derivation

≤ ht(1−
5

6
σt) +

5

8
D2σ2

t . equation (7.6) below

Above we used the following derivation, that holds by choice of param-
eters η = D

2GT 3/4 and σt = min{1, 2
t1/2
}: since η,G, ht are all non-negative,

we have

ηG
√
ht+1 =

(√
DGη

)2/3 (
Gη
D

)1/3√
ht+1

≤ 1
2

(√
DGη

)4/3
+ 1

2

(
Gη
D

)2/3
ht+1

≤ 1
8D

2σ2
t +

1
6σtht+1 (7.6)

We now claim that the theorem follows inductively. The base of the
induction holds since, for t = 1, the definition of F1 implies

h1 = F1(x1)− F1(x
⋆) = ∥x1 − x⋆∥2 ≤ D2 ≤ 2D2σ1.

7.5. ONLINE CONDITIONAL GRADIENT 135

Assuming the bound is true for t, we now show it holds for t+1 as well:

ht+1 ≤ ht(1−
5

6
σt) +

5

8
D2σ2

t

≤ 2D2σt

(
1− 5

6
σt

)
+

5

8
D2σ2

t

≤ 2D2σt

(
1− σt

2

)
≤ 2D2σt+1,

as required. The last inequality follows by the definition of σt (see exercises).

We proceed to use this lemma in order to prove our theorem:

Proof of Theorem 7.3. By definition, the functions Ft are 1-strongly convex.
Thus, we have for x⋆

t = argminx∈K Ft(x):

∥x− x⋆
t ∥2 ≤ Ft(x)− Ft(x

⋆
t).

Let η = D
2GT 3/4 , and notice that this satisfies the constraint of Lemma 7.4,

which requires ηG
√

ht+1 ≤ D2

2 σ2
t . In addition, η < 1 for T large enough.

Hence,

ft(xt)− ft(x
⋆
t) ≤ G∥xt − x⋆

t ∥

≤ G
√

Ft(xt)− Ft(x⋆
t)

≤ 2GD
√
σt. Lemma 7.4 (7.7)

Putting everything together we obtain:

136 CHAPTER 7. PROJECTION-FREE ALGORITHMS

RegretT (OCG) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
⋆)

=

T∑
t=1

[ft(xt)− ft(x
⋆
t) + ft(x

⋆
t)− ft(x

⋆)]

≤
T∑
t=1

2GD
√
σt +

∑
t

[ft(x
⋆
t)− ft(x

⋆)] by (7.7)

≤ 4GDT 3/4 +
∑
t

[ft(x
⋆
t)− ft(x

⋆)]

≤ 4GDT 3/4 + 2G
∑
t

∥xt − x⋆
t ∥+ 2ηGT +

1

η
D. by (7.5)

We thus obtain:

RegretT (OCG) ≤ 4GDT 3/4 + 2ηG2T +
D2

η

≤ 4GDT 2/3 +DGT 1/4 + 2DGT 3/4 ≤ 8DGT 3/4.

7.6. BIBLIOGRAPHIC REMARKS 137

7.6 Bibliographic Remarks

The matrix completion model has been extremely popular since its inception
in the context of recommendation systems [Srebro, 2004, Rennie and Srebro,
2005, Salakhutdinov and Srebro, 2010, Lee et al., 2010, Candes and Recht,
2009, Shamir and Shalev-Shwartz, 2011].

The conditional gradient algorithm was devised in the seminal paper
by Frank and Wolfe [1956]. Due to the applicability of the FW algorithm
to large-scale constrained problems, it has been a method of choice in re-
cent machine learning applications, to name a few: [Hazan, 2008, Jaggi and
Sulovský, 2010, Lacoste-Julien et al., 2013, Jaggi, 2013, Dud́ık et al., 2012,
Harchaoui et al., 2012, Hazan and Kale, 2012, Shalev-Shwartz et al., 2011b,
Bach et al., 2012, Tewari et al., 2011, Garber and Hazan, 2011, 2013, Bel-
let et al., 2014]. In the context of matrix completion and recommendation
systems, several faster variants of the Frank-Wolfe method were proposed
[Garber, 2016, Allen-Zhu et al., 2017]

The online conditional gradient algorithm is due to Hazan and Kale
[2012]. An optimal regret algorithm, attaining the O(

√
T) bound, for the

special case of polyhedral sets was devised in [Garber and Hazan, 2013].
Recent works consider accelerating projection-free optimization using

variance reduction [Lan and Zhou, 2016, Hazan and Luo, 2016], and the
case of projection-free algorithms with stochastic gradient oracles [Mokhtari
et al., 2018, Chen et al., 2018, Xie et al., 2019].

For an analysis of the running time of the power and Lanczos methods
for computing eigenvectors see [Kuczyński and Woźniakowski, 1992]. For
modern algorithms for fast computation of the singular value decomposition
see [Allen-Zhu and Li, 2016, Musco and Musco, 2015].

138 CHAPTER 7. PROJECTION-FREE ALGORITHMS

7.7 Exercises

1. Prove that if the singular values are smaller than or equal to one, then the
nuclear norm is a lower bound on the rank, i.e., show

rank(X) ≥ ∥X∥∗.

2. Prove that the trace is related to the nuclear norm via

∥X∥∗ = Tr(
√
XX⊤) = Tr(

√
X⊤X).

3. In this question we show that maximizing a linear function over the specta-
hedron can be reduced to a maximal eigenvector computation.

(a) Consider the the following mathematical program for a symmetric C ∈ Rd×d:

maxX • C
X ∈ Sd = {X ∈ Rd×d , X ≽ 0 , Tr(X) ≤ 1}.

Prove that it has the same solution as the mathematical program:

max
x∈Rd

x⊤Cx

s.t. ∥x∥2 ≤ 1.

(b) Show how to use eigenvector computations to maximize a general (a-symmetric)
linear functions over the spectahedron.

4. Prove that for positive integers t > 0, any c ∈ [0, 1] and σt =
2
tc it holds that

σt(1−
σt

2
) ≤ σt+1.

5. Download the MovieLens dataset from the web. Implement an online
recommendation system based on the matrix completion model: implement the
OCG and OGD algorithms for matrix completion. Benchmark your results.

Chapter 8

Games, Duality, and Regret

In this chapter we tie the material covered thus far to some of the most
intriguing concepts in optimization and game theory. We shall use the exis-
tence of online convex optimization algorithms with sublinear regret to prove
two fundamental properties: convex duality in mathematical optimization,
and von Neumann’s minimax theorem in game theory.

Historically, the theory of games was developed by von Neumann in
the early 1930’s. In an entirely different scientific thread, the theory of
linear programming (LP) was advanced by Dantzig a decade later. Dantzig
describes in his memoir a notable meeting between himself and von Neumann
at Princeton in 1947. In this meeting, according to Dantzig, after describing
the geometric and algebraic versions of linear programming, von Neumann
essentially formulated and proved linear programming duality:

“I don’t want you to think I am pulling all this out of my sleeve at
the spur of the moment like a magician. I have just recently com-
pleted a book with Oscar Morgenstern on the theory of games.
What I am doing is conjecturing that the two problems are equiv-
alent. The theory that I am outlining for your problem is an
analogue to the one we have developed for games.” 13

At that time, the topic of discussion was not the existence and unique-
ness of equilibrium in zero-sum games, which is captured by the minimax
theorem. Both concepts were originally captured and proved using very dif-
ferent mathematical techniques: the minimax theorem was originally proved
using machinery from mathematical topology, whereas linear programming
duality was shown using convexity and geometric tools.

More than half a century later, Freund and Schapire tied both concepts,
which were by then known to be strongly related, to regret minimization.

139

140 CHAPTER 8. GAMES, DUALITY, AND REGRET

We shall follow their lead in this chapter, introduce the relevant concepts and
give concise proofs using the machinery developed earlier in this manuscript.

The chapter can be read with basic familiarity with linear programming
and little or no background in game theory. We define linear programming
and zero-sum games succinctly, barely enough to prove the duality theorem
and the minimax theorem. The reader is referred to the numerous wonderful
texts available on linear programming and game theory for a much more
thorough introduction and definitions.

8.1 Linear Programming and Duality

Linear programming is a widely successful and practical convex optimization
framework. Amongst its numerous successes is the Nobel prize award given
on account of its application to economics. It is a special case of the convex
optimization problem from chapter 2 in which K is a polyhedron (i.e., an
intersection of a finite set of halfspaces) and the objective function is a
linear function. Thus, a linear program can be described as follows, where
(A ∈ Rn×m):

min c⊤x

s.t. Ax ≥ b .

The above formulation can be transformed into several different forms via
basic manipulations. For example, any LP can be transformed to an equiv-
alent LP with the variables taking only non-negative values. This can be
accomplished by writing every variable x as x = x+ − x−, with x+, x− ≥ 0.
It can be verified that this transformation leaves us with another LP, whose
variables are non-negative, and contains at most twice as many variables
(see exercises section for more details).

We are now ready to define a central notion in LP and state the duality
theorem:

Theorem 8.1 (The duality theorem). Given a linear program:

min c⊤x

s.t. Ax ≥ b,

x ≥ 0,

8.2. ZERO-SUM GAMES AND EQUILIBRIA 141

its dual program is given by:

max b⊤y

s.t. A⊤y ≤ c,

y ≥ 0.

and the objectives of both problems are either equal or unbounded.

Instead of studying duality directly, we proceed to define zero-sum games
and an analogous concept to duality.

8.2 Zero-sum Games and Equilibria

The theory of games is an established research field in economic theory. We
give here brief definitions of the main concepts studied in this chapter.

Let us start with an example of a zero-sum game we all know: the rock-
paper-scissors game. In this game each of the two players chooses a strategy:
either rock, scissors or paper. The winner is determined according to the
following table, where 0 denotes a draw, −1 denotes that the row player
wins, and 1 denotes a column player victory.

- scissors paper rock

rock −1 1 0

paper 1 0 −1
scissors 0 −1 1

Table 8.1: Example of a zero-sum game in matrix representation.

The rock-paper-scissors game is called a “zero-sum” game since one can
think of the numbers as losses for the row player (loss of −1 resembles
victory, 1 loss and 0 draw), in which case the column player receives a loss
which is exactly the negation of the loss of the row player. Thus the sum of
losses which both players suffer is zero in every outcome of the game.

Noticed that we termed one player as the “row player” and the other
as the “column player” corresponding to the matrix losses. Such a matrix
representation is far more general:

Definition 8.2. A two-player zero-sum-game in normal form is given by a
matrix A ∈ [−1, 1]n×m. The loss for the row player playing strategy i ∈ [n]
is equal to the negative loss (reward) of the column player playing strategy
j ∈ [m] and equal to Aij.

142 CHAPTER 8. GAMES, DUALITY, AND REGRET

The fact that the losses were defined in the range [−1, 1] is arbitrary, as
the concept of main importance we define next is invariant to scaling and
shifting by a constant.

A central concept in game theory is equilibrium. There are many differ-
ent notions of equilibria. In two-player zero-sum games, a pure equilibrium
is a pair of strategies (i, j) ∈ [n] × [m] with the following property: given
that the column player plays j, there is no strategy that dominates i - i.e.,
every other strategy k ∈ [n] gives higher or equal loss to the row player.
Equilibrium also requires that a symmetric property for strategy j holds -
it is not dominated by any other strategy given that the row player plays i.

It can be shown that some games do not have a pure equilibrium as de-
fined above, e.g., the rock-paper-scissors game. However, we can extend the
notion of a strategy to a mixed strategy - a distribution over pure strategies.
The loss of a mixed strategy is the expected loss according to the distribu-
tion over pure strategies. More formally, if the row player chooses x ∈ ∆n

and column player chooses y ∈ ∆m, then the expected loss of the row player
(which is the negative reward to the column player) is given by:

E[loss] =
∑
i∈[n]

xi

∑
j∈[m]

yjAij = x⊤Ay.

We can now generalize the notion of equilibrium to mixed strategies.
Given a row strategy x, it is dominated by x̃ with respect to a column
strategy y if and only if

x⊤Ay > x̃⊤Ay.

We say that x is dominant with respect to y if and only if it is not dominated
by any other mixed strategy. A pair (x,y) is an equilibrium for game A if
and only if both x and y are dominant with respect to each other. It is
a good exercise for the reader at this point to find an equilibrium for the
rock-paper-scissors game.

At this point, some natural questions arise: Is there always an equilib-
rium in a given zero-sum game? Can it be computed efficiently? Are there
natural repeated-game-playing strategies that reach it?

As we shall see, the answer to all questions above is affirmative. Let
us rephrase these questions in a different way. Consider the optimal row
strategy, i.e., a mixed strategy x, such that the expected loss is minimized,
no matter what the column player does. The optimal strategy for the row
player would be:

x⋆ ∈ argmin
x∈∆n

max
y∈∆m

x⊤Ay.

8.2. ZERO-SUM GAMES AND EQUILIBRIA 143

Notice that we use the notation x⋆ ∈ rather than x⋆ =, since in general the
set of strategies attaining the minimal loss over worst-case column strategies
can contain more than a single strategy. Similarly, the optimal strategy for
the column player would be:

y⋆ ∈ argmax
y∈∆m

min
x∈∆n

x⊤Ay.

Playing these strategies, no matter what the column player does, the
row player would pay no more than

λR = min
x∈∆n

max
y∈∆m

x⊤Ay = max
y∈∆m

x⋆⊤Ay,

and column player would earn at least

λC = max
y∈∆m

min
x∈∆n

x⊤Ay = min
x∈∆n

x⊤Ay⋆.

With these definitions we can state von Neumann’s famous minimax
theorem:

Theorem 8.3 (von Neumann minimax theorem). In any zero-sum game,
it holds that λR = λC .

This theorem answers all our above questions on the affirmative. The
value λ⋆ = λC = λR is called the value of the game, and its existence and
uniqueness imply that any x⋆ and y⋆ in the appropriate optimality sets are
an equilibrium.

We proceed to give a constructive proof of von Neumann’s theorem which
also yields an efficient algorithm as well as natural repeated-game playing
strategies that converge to it.

8.2.1 Equivalence of von Neumann Theorem and LP duality

The von Neumann theorem is equivalent to the duality theorem of linear
programming in a very strong sense, and either implies the other via simple
reduction. Thus, it suffices to prove only von Neumann’s theorem to prove
the duality theorem.

The first part of this equivalence is shown by representing a zero-sum
game as a primal-dual linear program instance, as we do now.

144 CHAPTER 8. GAMES, DUALITY, AND REGRET

Observe that the definition of an optimal row strategy and value is equiv-
alent to the following LP:

min λ

s.t.
∑

xi = 1

∀i ∈ [m] . x⊤Aei ≤ λ

∀i ∈ [n] . xi ≥ 0.

To see that the optimum of the above LP is attained at λR, note that
the constraint x⊤Aei ≤ λ ∀i ∈ [m] is equivalent to the constraint ∀y ∈
∆m . x⊤Ay ≤ λ, since:

∀y ∈ ∆m . x⊤Ay =

m∑
j=1

x⊤Aej · yj ≤ λ

m∑
j=1

yj = λ

The dual program to the above LP is given by

max µ

s.t.
∑

yi = 1

∀i ∈ [n] . e⊤i Ay ≥ µ

∀i ∈ [m] . yi ≥ 0.

By similar arguments, the dual program precisely defines λC and y⋆.
The duality theorem asserts that λR = λC = λ⋆, which gives von Neumann’s
theorem.

The other direction, i.e., showing that von Neumann’s theorem implies
LP duality, is slightly more involved. Basically, one can convert any LP into
the format of a zero-sum game. Special care is needed to ensure that the
original LP is indeed feasible, as zero-sum games are always feasible and
linear programs need not be. The details are left as an exercise at the end
of this chapter.

8.3 Proof of von Neumann Theorem

In this section we give a proof of von Neumann’s theorem using online convex
optimization algorithms with sublinear regret.

The first part of the theorem, which is also known as weak duality in the
LP context, is rather straightforward:

Direction 1 (λR ≥ λC):

8.3. PROOF OF VON NEUMANN THEOREM 145

Proof.

λR = min
x∈∆n

max
y∈∆m

x⊤Ay

= max
y∈∆m

x⋆⊤Ay definition of x⋆

≥ max
y∈∆m

min
x∈∆n

x⊤Ay

= λC .

The second and main direction, known as strong duality in the LP con-
text, requires the technology of online convex optimization we have proved
thus far:

Direction 2 (λR ≤ λC):

Proof. We consider a repeated game defined by the n ×m matrix A. For
t = 1, 2, ..., T , the row player provides a mixed strategy xt ∈ ∆n, column
player plays mixed strategy yt ∈ ∆m, and the loss of the row player, which
equals to the reward of the column player, equals x⊤

t Ayt.
The row player generates the mixed strategies xt according to an OCO

algorithm — specifically using the Exponentiated Gradient algorithm 15
from chapter 5. The convex decision set is taken to be the n dimensional
simplex K = ∆n = {x ∈ Rn | x(i) ≥ 0,

∑
x(i) = 1}. The loss function at

time t is given by

ft(x) = x⊤Ayt (ft is linear with respect to x) .

Spelling out the EG strategy for this particular instance, we have

xt+1(i)←
xt(i)e

−ηAiyt∑
j xt(i)e−ηAjyt

.

Then, by appropriate choice of η and Corollary 5.7, we have∑
t

ft(xt) ≤ min
x⋆∈K

∑
t

ft(x
⋆) +

√
2T log n . (8.1)

The column player plays her best response to the row player’s strategy,
that is:

yt = arg max
y∈∆m

x⊤
t Ay. (8.2)

146 CHAPTER 8. GAMES, DUALITY, AND REGRET

Denote the average mixed strategies by:

x̄ =
1

t

t∑
τ=1

xτ , ȳ =
1

t

t∑
τ=1

yτ .

Then, we have

λR = min
x

max
y

x⊤Ay

≤ max
y

x̄⊤Ay special case

=
1

T

∑
t

xtAy
⋆

≤ 1

T

∑
t

xtAyt by (8.2)

≤ 1

T
min
x

∑
t

x⊤Ayt +
√
2 log n/T by (8.1)

= min
x

x⊤Aȳ +
√

2 log n/T

≤ max
y

min
x

x⊤Ay +
√
2 log n/T special case

= λC +
√
2 log n/T .

Thus λR ≤ λC +
√

2 log n/T . As T →∞, we obtain part 2 of the theorem.

Notice that besides the basic definitions, the only tool used in the proof
is the existence of sublinear regret algorithms for online convex optimiza-
tion. The fact that the regret bounds for OCO algorithms were defined
without restricting the cost functions, and that they can be adversarially
chosen, is crucial for the proof. The functions ft are defined according to
yt, which is chosen based on xt. Thus, the cost functions we constructed
are adversarially chosen after the decision xt was made by the row player.

8.4 Approximating Linear Programs

The technique in the preceding section not only proves the minimax theorem,
and thus linear programming duality, but also entails an efficient algorithm.
Using the equivalence of zero-sum games and linear programs, this efficient
algorithm can be used to solve linear programming. We now spell out the
details of this algorithm in the context of zero-sum games.

8.4. APPROXIMATING LINEAR PROGRAMS 147

Consider the following algorithm:

Algorithm 28 Simple LP

1: Input: linear program in zero-sum game format, by matrix A ∈ Rn×m.
2: Let x1 = [1/n, 1/n, ..., 1/n]
3: for t = 1 to T do
4: Compute yt = maxy∈∆m x⊤

t Ay

5: Update ∀i . xt+1(i)← xt(i)e−ηAiyt∑
j xt(j)e

−ηAjyt

6: end for
7: return x̄ = 1

T

∑T
t=1 xt

Almost immediately we obtain from the previous derivation the follow-
ing:

Lemma 8.4. The returned vector x̄ of Algorithm 28 is a
√
2 logn√

T
-approximate

solution to the zero-sum game and linear program it describes.

Proof. Following the exact same steps of the previous derivation, we have

max
y

x̄⊤Ay =
1

T

∑
t

xtAy⋆

≤ 1

T

∑
t

xtAyt by (8.2)

≤ 1

T
min
x

∑
t

x⊤Ayt +
√
2 log n/T by (8.1)

= min
x

x⊤Aȳ +
√
2 log n/T

≤ max
y

min
x

x⊤Ay +
√

2 log n/T special case

= λ⋆ +
√
2 log n/T .

Therefore, for each i ∈ [m]:

x̄⊤Aei ≤ λ⋆ +

√
2 log n√

T

Thus, to obtain an ε-approximate solution, one would need 2 logn
ε2

itera-
tions, each involving a simple update procedure.

148 CHAPTER 8. GAMES, DUALITY, AND REGRET

8.5 Bibliographic Remarks

Game theory was founded in the late 1920’s-early ’30s, whose cornerstone
was laid in the classic text “Theory of Games and Economic Behavior” by
Neumann and Morgenstern [1944].

Linear programming is a fundamental mathematical optimization and
modeling tool, dating back to the 1940’s and the work of Kantorovich [1940]
and Dantzig [1951]. Duality for linear programming was conceived by von
Neumann, as described by Dantzig in an interview [Albers et al., 1986]. For
in depth treatment of the theory of linear programming there are numerous
comprehensive texts, e.g., [Bertsimas and Tsitsiklis, 1997, Matousek and
Gärtner, 2007].

The beautiful connection between low-regret algorithms and solving zero-
sum games was discovered by Freund and Schapire [1999]. More general
connections of convergence of low-regret algorithms to equilibria in games
were studied by Hart and Mas-Colell [2000], and more recently in [Even-dar
et al., 2009, Roughgarden, 2015].

Approximation algorithms that arise via simple Lagrangian relaxation
techniques were pioneered by Plotkin et al. [1995]. See also the survey [Arora
et al., 2012] and more recent developments that give rise to sublinear time
algorithms [Clarkson et al., 2012, Hazan et al., 2011].

8.6. EXERCISES 149

8.6 Exercises

1. Prove that equilibrium strategy pairs in zero-sum games are not unique. That
is, construct a zero-sum game for which there is more than one equilibrium.

2. In this question we prove a special case of Sion’s generalization to the minimax
theorem. Let f : X × Y 7→ R be a real valued function on X × Y , where X,Y are
bounded, closed and convex sets in Euclidean space Rd. Let f be convex-concave,
i.e.,

(a) For every y ∈ Y , the function f(·,y) : X 7→ R is convex.

(b) For every x ∈ X, the function f(x, ·) : Y 7→ R is concave. Prove that

min
x∈X

max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y)

3. Read Adler’s exposition on the equivalence of linear programming and zero
sum games [Adler, 2013]. Explain how to convert a linear program to a zero-sum
game.

4. Consider a repeated zero-sum game over a matrix A in which both players
change their mixed strategies according to a low-regret algorithm over the linear
cost/reward functions of the game. Prove that the average value of the game
approaches that of an equilibrium of the game given by A.

5. ∗ Write a semidefinite program as a zero-sum game. Write down an algorithm
for approximating the solution of a semidefinite program using OCO algorithms,
and sketch an analysis of its correctness and performance bound.

150 CHAPTER 8. GAMES, DUALITY, AND REGRET

Chapter 9

Learning Theory,
Generalization, and Online
Convex Optimization

In our treatment of online convex optimization so far we have only implicitly
discussed learning theory. The framework of OCO was shown to capture ap-
plications such as learning classifiers online, prediction with expert advice,
online portfolio selection and matrix completion, all of which have a learning
aspect. We have introduced the metric of regret and gave efficient algorithms
to minimize regret in various settings. We have also argued that minimiz-
ing regret is a meaningful approach for many online prediction problems.
However, the relation to other theories of learning was not discussed thus
far.

In this section we draw a formal and strong connection between OCO and
the theory of statistical learning. We begin by giving the basic definitions
of statistical learning theory, and proceed to describe how the applications
studied in this manuscript relate to this model. We then continue to show
how regret minimization in the setting of online convex optimization gives
rise to computationally efficient statistical learning algorithms.

9.1 Statistical Learning Theory

The theory of statistical learning addresses the problem of learning a concept
from examples. A concept is a mapping from domain X to labels Y, denoted
C : X 7→ Y.

As an example, consider the problem of optical character recognition. In

151

152 CHAPTER 9. LEARNING THEORY AND OCO

this setting, the domain X can be all n× n bitmap images, the label set Y
is the Latin (or other) alphabet, and the concept C maps a bitmap into the
character depicted in the image.

Statistical theory models the problem of learning a concept by allow-
ing access to labelled examples from the target distribution. The learning
algorithm has access to pairs, or samples, from an unknown distribution

(x, y) ∼ D , x ∈ X , y ∈ Y.

The goal is to be able to predict y as a function of x, i.e., to learn a
hypothesis, or a mapping from X to Y, denoted h : X 7→ Y, with small
error with respect to the distribution D. In the case that the label set is
binary Y = {0, 1}, or discrete such as in optical character recognition, the
generalization error of an hypothesis h with respect to distribution D is
given by

error(h)
def
= E

(x,y)∼D
[h(x) ̸= y].

More generally, the goal is to learn a hypothesis that minimizes the loss
according to a (usually convex) loss function ℓ : Y × Y 7→ R. In this case
the generalization error of a hypothesis is defined as:

error(h)
def
= E

(x,y)∼D
[ℓ(h(x), y)].

We henceforth consider learning algorithms A that observe a sample
from the distribution D , denoted S ∼ Dm for a sample of m examples,
S = {(x1, y1), ..., (xm, ym)}, and produce a hypothesis A(S) : X 7→ Y based
on this sample.

The goal of statistical learning can thus be summarised as follows:

Given access to i.i.d. samples from an arbitrary distribution
over X × Y corresponding to a certain concept, learn a hy-
pothesis h : X 7→ Y which has arbitrarily small generalization
error with respect to a given loss function.

9.1.1 Overfitting

In the problem of optical character recognition the task is to recognize a
character from a given image in bitmap format. To model it in the statistical
learning setting, the domain X is the set of all n×n bitmap images for some
integer n. The label set Y is the latin alphabet, and the concept C maps a
bitmap into the character depicted in the image.

9.1. STATISTICAL LEARNING THEORY 153

Consider the naive algorithm which fits the perfect hypothesis for a given
sample, in this case set of bitmaps. Namely, A(S) is the hypothesis which
correctly maps any given bitmap input xi to its correct label yi, and maps
all unseen bitmaps to the character “1.”

Clearly, this hypothesis does a very poor job of generalizing from expe-
rience - all images that have not been observed yet will be classified without
regard to their properties, surely an erroneous classification most times.
However - the training set, or observed examples, are perfectly classified by
this hypothesis!

This disturbing phenomenon is called “overfitting,” a central concern in
machine learning. Before continuing to add the necessary components in
learning theory to prevent overfitting, we turn our attention to a formal
statement of when overfitting can appear.

9.1.2 No free lunch?

The following theorem shows that learning, as stated in the goal of statistical
learning theory, is impossible without restricting the hypothesis class being
considered. For simplicity, we consider the zero-one loss in this section.

Theorem 9.1 (No Free Lunch Theorem). Consider any domain X of size
|X | = 2m > 4, and any algorithm A which outputs a hypothesis A(S) given
a sample S of size m. Then there exists a concept C : X → {0, 1} and a
distribution D such that:

• The generalization error of the concept C is zero.

• With probability at least 1
10 , the error of the hypothesis generated by A

is at least error(A(S)) ≥ 1
10 .

The proof of this theorem is based on the probabilistic method, a useful
technique for showing the existence of combinatorial objects by showing that
the probability they exist in some distributional setting is bounded away
from zero. In our setting, instead of explicitly constructing a concept C
with the required properties, we show it exists by a probabilistic argument.

Proof. We show that for any learning algorithm, there is some learning task
(i.e., “hard” concept) that it will not learn well. Formally, take D to be
the uniform distribution over X . Our proof strategy will be to show the
following inequality, where we take a uniform distribution over all concepts
X 7→ {0, 1}

154 CHAPTER 9. LEARNING THEORY AND OCO

Q
def
= E

C:X→{0,1}
[E
S∼Dm

[error(A(S))]] ≥ 1

4
.

After showing this step, we will use Markov’s Inequality to conclude the
theorem.

We proceed by using the linearity property of expectations, which allows
us to swap the order of expectations, and then conditioning on the event
that x ∈ S.

Q = E
S
[E
C
[E
x∈X

[A(S)(x) ̸= C(x)]]]

= E
S,x

[E
C
[A(S)(x) ̸= C(x)|x ∈ S] Pr[x ∈ S]]

+ E
S,x

[E
C
[A(S)(x) ̸= C(x)|x ̸∈ S] Pr[x ̸∈ S]].

All terms in the above expression, and in particular the first term, are
non-negative and at least 0. Also note that since the domain size is 2m and
the sample is of size |S| ≤ m, we have Pr(x ̸∈ S) ≥ 1

2 . Finally, observe that
Pr[A(S)(x) ̸= C(x)] = 1

2 for all x ̸∈ S since we are given that the “true”
concept C is chosen uniformly at random over all possible concepts. Hence,
we get that:

Q ≥ 0 +
1

2
· 1
2
=

1

4
,

which is the intermediate step we wanted to show. The random variable
ES∼Dm [error(A(S))] attains values in the range [0, 1]. Since its expectation
is at least 1

4 , the event that it attains a value of at least 1
4 is non-empty.

Thus, there exists a concept such that

E
S∼Dm

[error(A(S))] ≥ 1

4

where, as assumed beforehand, D is the uniform distribution over X .
We now conclude with Markov’s Inequality: since the expectation above

over the error is at least one-fourth, the probability over examples such that
the error of A over a random sample is at least one-tenth is at least

Pr
S∼Dm

(
error(A(S)) ≥ 1

10

)
≥

1
4 −

1
10

1− 1
10

>
1

10
.

9.1. STATISTICAL LEARNING THEORY 155

9.1.3 Examples of learning problems

The conclusion of the previous theorem is that the space of possible con-
cepts being considered in a learning problem needs to be restricted for any
meaningful guarantee. Thus, learning theory concerns itself with concept
classes, also called hypothesis classes, which are sets of possible hypotheses
from which one would like to learn. We denote the concept (hypothesis)
class by H = {h : X 7→ Y}.

Common examples of learning problems that can be formalized in this
model and the corresponding definitions include:

• Optimal character recognition: In the problem of optical character
recognition the domain X consists of all n×n bitmap images for some
integer n, the label set Y is a certain alphabet, and the concept C
maps a bitmap image into the character depicted in it. A common
(finite) hypothesis class for this problem is the set of all decision trees
with bounded depth.

• Text classification: In the problem of text classification the domain is a
subset of Euclidean space, i.e., X ⊆ Rd. Each document is represented
in its bag-of-words representation, and d is the size of the dictionary.
The label set Y is binary, where one indicates a certain classification
or topic, e.g.,“Economics”, and zero others.

A commonly used hypothesis class for this problem is the set of all
bounded-norm vectors in Euclidean spaceH = {hw , w ∈ Rd , ∥w∥22 ≤
ω} such that hw(x) = w⊤x. The loss function is chosen to be the hinge
loss, i.e., ℓ(ŷ, y) = max{0, 1− ŷy}.

• Recommendation systems: recall the online convex optimization for-
mulation of this problem in section 7.2. A statistical learning formu-
lation for this problem is very similar. The domain is a direct sum of
two sets X = X1 ⊕ X2. Here x1 ∈ X1 is a certain media item, and
every person is an item x2 ∈ X2. The label set Y is binary, where one
indicates a positive sentiment for the person to the particular media
item, and zero a negative sentiment.

A commonly considered hypothesis class for this problem is the set of
all mappings X1×X2 7→ Y that, when viewed as a matrix in R|X1|×|X2|,
have bounded algebraic rank.

156 CHAPTER 9. LEARNING THEORY AND OCO

9.1.4 Defining generalization and learnability

We are now ready to give the fundamental definition of statistical learning
theory, called Probably Approximately Correct (PAC) learning:

Definition 9.2 (PAC learnability). A hypothesis class H is PAC learnable
with respect to loss function ℓ : Y×Y 7→ R if the following holds. There exists
an algorithm A that accepts ST = {(xt, yt), t ∈ [T]} and returns hypothesis
A(ST) ∈ H that satisfies: for any ε, δ > 0 there exists a sufficiently large
natural number T = T (ε, δ), such that for any distribution D over pairs
(x, y) and T samples from this distribution, it holds that with probability at
least 1− δ

error(A(ST)) ≤ ε.

A few remarks regarding this definition:

• The set ST of samples from the underlying distribution is called the
training set. The error in the above definition is called the gener-
alization error, as it describes the overall error of the concept as
generalized from the observed training set. The behavior of the num-
ber of samples T as a function of the parameters ε, δ and the concept
class is called the sample complexity of H.

• The definition of PAC learning says nothing about computational effi-
ciency. Computational learning theory usually requires, in addition to
the definition above, that the algorithm A is efficient, i.e., polynomial
running time with respect to ε, log 1

δ and the representation of the hy-
pothesis class. The representation size for a discrete set of concepts is
taken to be the logarithm of the number of hypotheses in H, denoted
log |H|.

• If the hypothesis A(ST) returned by the learning algorithm belongs to
the hypothesis class H, as in the definition above, we say that H is
properly learnable. More generally, Amay return hypothesis from a
different hypothesis class, in which case we say that H is improperly
learnable.

The fact that the learning algorithm can learn up to any desired accu-
racy ε > 0 is called the realizability assumption and greatly reduces the
generality of the definition. It amounts to requiring that a hypothesis with
near-zero error belongs to the hypothesis class. In many cases, concepts are
only approximately learnable by a given hypothesis class, or inherent noise
in the problem prohibits realizability (see exercises).

9.2. AGNOSTIC LEARNING USINGONLINE CONVEXOPTIMIZATION157

This issue is addressed in the definition of a more general learning con-
cept, called agnostic learning:

Definition 9.3 (agnostic PAC learnability). The hypothesis class H is ag-
nostically PAC learnable with respect to loss function ℓ : Y × Y 7→ R if the
following holds. There exists an algorithm A that accepts ST = {(xt, yt), t ∈
[T]} and returns hypothesis A(ST) that satisfies: for any ε, δ > 0 there exists
a sufficiently large natural number T = T (ε, δ) such that for any distribution
D over pairs (x, y) and T samples from this distribution, it holds that with
probability at least 1− δ

error(A(ST)) ≤ min
h∈H
{error(h)}+ ε.

With these definitions, we can state the fundamental theorem of statis-
tical learning theory for finite hypothesis classes:

Theorem 9.4 (PAC learnability of finite hypothesis classes). Every finite
concept class H is agnostically PAC learnable with sample complexity that
is poly(ε, δ, log |H|).

In the following sections we prove this theorem, and in fact a more
general statement that holds also for certain infinite hypothesis classes. The
complete characterization of which infinite hypothesis classes are learnable
is a deep and fundamental question, whose complete answer was given by
Vapnik and Chervonenkis (see bibliography). The question of which (finite
or infinite) hypothesis classes are efficiently PAC learnable, especially in
the improper sense, is still at the forefront of learning theory today.

9.2 Agnostic Learning using Online Convex Opti-
mization

In this section we show how to use online convex optimization for agnostic
PAC learning. Following the paradigm of this manuscript, we describe and
analyze a reduction from agnostic learning to online convex optimization.
The reduction is formally described in Algorithm 29.

158 CHAPTER 9. LEARNING THEORY AND OCO

Algorithm 29 Reduction: Learning ⇒ OCO

1: Input: OCO algorithm A, convex hypothesis class H ⊆ Rd, convex loss
function ℓ.

2: Let h1 ← A(∅).
3: for t = 1 to T do
4: Draw labeled example (xt, yt) ∼ D.
5: Let ft(h) = ℓ(h(xt), yt).
6: Update

ht+1 = A(f1, ..., ft).

7: end for
8: Return h̄ = 1

T

∑T
t=1 ht.

For this reduction we assumed that the concept (hypothesis) class is a
convex subset of Euclidean space. A similar reduction can be carried out for
discrete hypothesis classes (see exercises). In fact, the technique we explore
below will work for any hypothesis set H that admits a low regret algorithm,
and can be generalized to infinite hypothesis classes that are known to be
learnable.

Let h⋆ = argminh∈H{error(h)} be the hypothesis in the class H that
minimizes the generalization error. Using the assumption that A guarantees
sublinear regret, our simple reduction implies PAC learning, as given in the
following theorem.

Theorem 9.5. Let A be an OCO algorithm whose regret after T iterations
is guaranteed to be bounded by RegretT (A). Then for any δ > 0, with
probability at least 1− δ, it holds that

error(h̄) ≤ error(h⋆) +
RegretT (A)

T
+

√
8 log(2δ)

T
.

In particular, for T = O(1
ε2

log 1
δ + Tε(A)), where Tε(A) is the integer T

such that RegretT (A)
T ≤ ε, we have

error(h̄) ≤ error(h∗) + ε.

How general is the theorem above? In the previous chapters we have
described and analyzed OCO algorithms with regret guarantees that behave
asymptotically as O(

√
T) or better. This translates to sample complexity of

O(1
ε2

log 1
δ) (see exercises), which is known to be tight for certain scenarios.

To prove this theorem we need some tools from probability theory, such
as the concentration inequalities that we survey next.

9.2. AGNOSTIC LEARNING USINGONLINE CONVEXOPTIMIZATION159

9.2.1 Reminder: measure concentration and martingales

Let us briefly discuss the notion of a martingale in probability theory.
For intuition, it is useful to recall the simple random walk. Let Xi be a
Rademacher random variable which takes values

Xi =

1, with probability 1

2

−1, with probability 1
2

.

A simple symmetric random walk is described by the sum of such random
variables, depicted in figure 9.1. Let X =

∑T
i=1Xi be the position after T

steps of this random walk. The expectation and variance of this random
variable are E[X] = 0 , Var(X) = T .

Figure 9.1: Symmetric random walk: 12 trials of 200 steps. The black dotted
lines show the functions ±

√
x and ±2

√
x, respectively.

The phenomenon of measure concentration addresses the probability of
a random variable to attain values within range of its standard deviation.
For the random variable X, this probability is much higher than one would
expect using only the first and second moments. Using only the variance, it
follows from Chebychev’s inequality that

Pr
[
|X| ≥ c

√
T
]
≤ 1

c2
.

However, the event that |X| is centred around O(
√
T) is in fact much tighter,

160 CHAPTER 9. LEARNING THEORY AND OCO

and can be bounded by the Hoeffding-Chernoff lemma as follows

Pr[|X| ≥ c
√
T] ≤ 2e

−c2

2 Hoeffding-Chernoff lemma. (9.1)

Thus, deviating by a constant from the standard deviation decreases
the probability exponentially, rather than polynomially. This well-studied
phenomenon generalizes to sums of weakly dependent random variables and
martingales, which are important for our application.

Definition 9.6. A sequence of random variables X1, X2, ... is called a mar-
tingale if it satisfies:

E[Xt+1|Xt, Xt−1...X1] = Xt ∀ t > 0.

A similar concentration phenomenon to the random walk sequence occurs
in martingales. This is captured in the following theorem by Azuma.

Theorem 9.7 (Azuma’s inequality). Let
{
Xi

}T
i=1

be a martingale of T
random variables that satisfy |Xi −Xi+1| ≤ 1. Then:

Pr [|XT −X0| > c] ≤ 2e
−c2

2T .

By symmetry, Azuma’s inequality implies,

Pr [XT −X0 > c] = Pr [X0 −XT > c] ≤ e
−c2

2T . (9.2)

9.2.2 Analysis of the reduction

We are ready to prove the performance guarantee for the reduction in Algo-
rithm 29. Assume for simplicity that the loss function ℓ is bounded in the
interval [0, 1], i.e.,

∀ŷ, y ∈ Y , ℓ(ŷ, y) ∈ [0, 1].

Proof of Theorem 9.5. We start by defining a sequence of random variables
that form a martingale. Let

Zt
def
= error(ht)− ℓ(ht(xt), yt), Xt

def
=

t∑
i=1

Zi.

Let us verify that {Xt} is indeed a bounded martingale. Notice that by
definition of error(h), we have that

E
(x,y)∼D

[Zt|Xt−1] = error(ht)− E
(x,y)∼D

[ℓ(ht(x), y)] = 0.

9.2. AGNOSTIC LEARNING USINGONLINE CONVEXOPTIMIZATION161

Thus, by the definition of Zt,

E[Xt+1|Xt, ...X1] = E[Zt+1|Xt] +Xt = Xt.

In addition, by our assumption that the loss is bounded, we have that (see
exercises)

|Xt −Xt−1| = |Zt| ≤ 1. (9.3)

Therefore we can apply Azuma’s theorem to the martingale {Xt}, or rather
its consequence (9.2), and get

Pr[XT > c] ≤ e
−c2

2T .

Plugging in the definition of XT , dividing by T and using c =
√

2T log(2δ):

Pr

 1

T

T∑
t=1

error(ht)−
1

T

T∑
t=1

ℓ(ht(xt), yt) >

√
2 log(2δ)

T

 ≤ δ

2
. (9.4)

A similar martingale can be defined for h⋆ rather than ht, and repeating
the analogous definitions and applying Azuma’s inequality we get:

Pr

 1

T

T∑
t=1

error(h⋆)− 1

T

T∑
t=1

l(h⋆(xt), yt) < −

√
2 log(2δ)

T

 ≤ δ

2
. (9.5)

For notational convenience, let us use the following notation:

Γ1 =
1

T

T∑
t=1

error(ht)−
1

T

T∑
t=1

ℓ(ht(xt), yt),

Γ2 =
1

T

T∑
t=1

error(h⋆)− 1

T

T∑
t=1

l(h⋆(xt), yt).

Next, observe that

1

T

T∑
t=1

error(ht)− error(h⋆)

= Γ1 − Γ2 +
1

T

T∑
t=1

ℓ(ht(xt), yt)−
1

T

T∑
t=1

ℓ(h⋆(xt), yt)

≤ RegretT (A)
T

+ Γ1 − Γ2,

162 CHAPTER 9. LEARNING THEORY AND OCO

where in the last inequality we have used the definition ft(h) = ℓ(h(xt), yt).
From the above and Inequalities (9.4), (9.5) we get

Pr

 1

T

T∑
t=1

error(ht)− error(h⋆) >
RegretT (A)

T
+ 2

√
2 log(2δ)

T

≤ Pr

Γ1 − Γ2 > 2

√
2 log(1δ)

T

≤ Pr

Γ1 >

√
2 log(1δ)

T

+ Pr

Γ2 ≤ −

√
2 log(1δ)

T

≤ δ. Inequalities (9.4), (9.5)

By convexity we have that error(h̄) ≤ 1
T

∑T
t=1 error(ht). Thus, with proba-

bility at least 1− δ,

error(h̄) ≤ 1

T

T∑
t=1

error(ht) ≤ error(h⋆) +
RegretT (A)

T
+

√
8 log(2δ)

T
.

9.3 Learning and Compression

Thus far we have considered finite and certain infinite hypothesis classes, and
shown that they are efficiently learnable if there exists an efficient regret-
minimization algorithm for a corresponding OCO setting.

In this section we describe yet another property which is sufficient for
PAC learnability: the ability to compress the training set. This property is
particularly easy to state and use, especially for infinite hypothesis classes.
It does not, however, imply efficient algorithms.

Intuitively, if a learning algorithm is capable to express an hypothesis
using a small fraction of the training set, we will show that it generalizes
well to unseen data. For simplicity, we only consider learning problems
that satisfy a variant of the realizablility assumption, i.e., the compression
scheme generates a hypothesis that attains zero error.

More formally, we define the notion of a compression scheme for a given
learning problem as follows. The definition and theorem henceforth can be
generalized to allow for loss functions, but for simplicity, consider only the
zero-one loss function for this section.

9.3. LEARNING AND COMPRESSION 163

Definition 9.8. (Compression Scheme) A distribution D over X×Y admits
a compression scheme of size k, realized by an algorithm A, if the following
holds. For any T > k, let ST = {(xt, yt), t ∈ [T]} be a sample from D.
There exists an S′ ⊆ ST , |S′| = k, such that the algorithm A accepts the
set of k examples S′, and returns a hypothesis A(S′) ∈ {X 7→ Y}, which
satsifies:

error
ST

(A(S′)) = 0.

The main conclusion of this section is that a learning problem that ad-
mits a compression scheme of size k is PAC learnable with sample complexity
proportional to k. This is formally given the following theorem.

Theorem 9.9. Let D be a data distribution that admits a compression
scheme of size k realized by algorithm A. Then with probability at least
1− δ over the choice of a training set |ST | = T , it holds that

error(A(ST)) ≤
8k log T

δ

T
.

Proof. Denote by errorS(h) the error of an hypothesis h on a sample S of
i.i.d. examples, where the sample is taken independently of h. Since the
examples are chosen independently, the probability that a hypothesis with
error(h) > ε has errorS(h) = 0 is at most (1 − ε)|S|. Denote the event of h
satisfying these two conditions by h ∈ bad.

Consider a compression scheme for distribution D of size k, realized byA,
and a sample of size |ST | = T ≫ k. By definition of a compression scheme,
the hypothesis returned by A is based on k examples chosen from the set
S′ ⊆ ST . We can bounds the probability of the event that errorST

(A(S′)) =
0 and error(A(S′)) > ε, denoted by A(S′) ∈ bad, as follows,

Pr[A(S′) ∈ bad]

=
∑

S′⊆ST ,|S′|=k Pr[A(S′) ∈ bad] · Pr[S′] law of total probability

≤
(
T
k

)
(1− ε)T .

For ε =
8k log T

δ
T , we have that(

T

k

)
(1− ε)T ≤ T ke−εT ≤ δ.

Since the compression scheme is guaranteed to return a hypothesis such
that errorST

(A(S′)) = 0, this implies that with probability at least 1 − δ,
the hypothesis A(S′) has error(A(S′)) ≤ ε.

164 CHAPTER 9. LEARNING THEORY AND OCO

An important example of the use of compression schemes to bound the
generalization error is for the hypothesis class of hyperplanes in Rd. It is
left as an exercise to show that this hypothesis class admits a compression
scheme of size d.

9.4. BIBLIOGRAPHIC REMARKS 165

9.4 Bibliographic Remarks

The foundations of statistical and computational learning theory were put
forth in the seminal works of Vapnik [1998] and Valiant [1984] respectively.
There are numerous comprehensive texts on statistical and computational
learning theory, see e.g., [Kearns and Vazirani, 1994], and the recent text
[Shalev-Shwartz and Ben-David, 2014].

Reductions from the online to the statistical (a.k.a. “batch”) setting were
initiated by Littlestone [Littlestone, 1989]. Tighter and more general bounds
were explored in [Cesa-Bianchi et al., 2006, Cesa-Bianchi and Gentile, 2008,
Zhang, 2005].

The probabilistic method is attributed to Paul Erdos, see the illuminat-
ing text of Alon and Spencer [Alon and Spencer, 1992].

The relationship between compression and PAC learning was studied
in the seminal work of Littlestone and Warmuth [1986]. For more on the
relationship and historical connections between statistical learning and com-
pression see the inspiring chapter in [Wigderson, 2019]. More recently Moran
and Yehudayoff [2016], David et al. [2016] show that compression is equiva-
lent to learnability in general supervised learning tasks and give quantitative
bounds for this relationship.

The use of compression for proving generalization error bounds has been
applied in [Hanneke et al., 2019] for regression and in [Gottlieb et al., 2018,
Kontorovich et al., 2017] for nearest neighbor classification. Another ap-
plication is the recent work of Bousquet et al. [2020] which gives optimal
generalization error bounds for support vector machines using compression.

166 CHAPTER 9. LEARNING THEORY AND OCO

9.5 Exercises

1. Strengthen the no free lunch Theorem 9.1 to show the following: For any
ε > 0, there exists a finite domain X , such that for any learning algorithm A which
given a sample S produces hypothesis A(S), there exists a distribution D and a
concept C : X 7→ {0, 1} such that

(a) error(C) = 0

(b) ES∼Dm [error(A(S))] ≥ 1
2 − ε.

2. Let A be an agnostic learning algorithm for the finite hypothesis class
H : X 7→ Y and the zero-one loss. Consider any concept C : X 7→ Y which is
realized byH, and the concept Ĉ which is obtained by replacing the label associated
with each domain entry x ∈ X randomly with probability ε0 > 0 every time x is
sampled independently. That is:

Ĉ(x) =

1, with probability ε0

2

0, with probability ε0
2

C(x), otherwise

Prove that A can ε-approximate the concept Ĉ: that is, show that A can be used
to produce a hypothesis hA that has error

error
D

(hA) ≤
1

2
ε0 + ε

with probability at least 1− δ for every ε, δ with sample complexity polynomial in
1
ε , log

1
δ , log |H|.

3. Prove inequality 9.3.

4. (Sample complexity of SVM)
Consider the class of hypothesis given by hyperplanes in Euclidean space with
bounded norm

H = {x ∈ Rd , ∥x∥2 ≤ λ}.

Give an algorithm to PAC-learn this class with respect to the hinge loss function
using reduction (29). Analyze the resulting computational and sample complex-
ity.

5. Show how to use a modification of reduction 29 to learn a finite (non-convex)
hypothesis class efficiently, i.e., without enumerating over all hypothesis. For this

9.5. EXERCISES 167

question, success probability of 1
2 is sufficient.

Hint: instead of returning h̄, consider returning a hypothesis at random.

6. Consider the hypothesis class of all axis-aligned rectangles in the plane. That
is, consider all hypothesis parametrized by four real numbers, ax, bx, ay, by, such
that

hax,bx,ay,by (x) =

 1, x1 ∈ [ax, bx],x2 ∈ [ay, by]

0, o/w
.

Prove that this hypothesis class admits a compression scheme of size 4.

7. ∗ Consider the hypothesis class of all hyperplanes in Rd. This class is parame-
terized by all vectors in the unit sphere, such that

∀y ∈ Sd , hy(x) = sign(x⊤y).

Prove that this class has a compression scheme of size d.

168 CHAPTER 9. LEARNING THEORY AND OCO

Chapter 10

Learning in Changing
Environments

In online convex optimization the decision maker iteratively makes a decision
without knowledge of the future, and pays a cost based on her decision and
the observed outcome. The algorithms that we have studied thus far are
designed to perform nearly as well as the best single decision in hindsight.
The performance metric we have advocated for, average regret of the online
player, approaches zero as the number of game iterations grows.

In scenarios in which the outcomes are sampled from some (unknown)
distribution, regret minimization algorithms effectively “learn” the environ-
ment and approach the optimal strategy. This was formalized in chapter 9.
However, if the underlying distribution changes, no such claim can be made.

Consider for example the online shortest path problem we have studied
in the first chapter. It is a well observed fact that traffic in networks exhibits
changing cyclic patterns. A commuter may choose one path from home to
work on a weekday, but a completely different path on the weekend when
traffic patterns are different. Another example is the stock market: in a bull
market the investor may want to purchase technology stocks, but in a bear
market perhaps they would shift their investments to gold or government
bonds.

When the environment undergoes many changes, standard regret may
not be the best measure of performance. In changing environments, the
online convex optimization algorithms we have studied thus far for strongly
convex or exp-concave loss functions exhibit undesirable “static” behavior,
and converge to a fixed solution.

In this chapter we introduce and study a generalization of the concept

169

170 CHAPTER 10. ADAPTIVE REGRET

of regret called adaptive regret, to allow for a changing prediction strategy.
We start with examining the notion of adapting in the problem of prediction
from expert advice. We then continue to the more challenging setting of
online convex optimization, and derive efficient algorithms for minimizing
this more refined regret metric.

10.1 A Simple Start: Dynamic Regret

Before giving the main performance metric studied in this chapter, we con-
sider the first natural approach: measuring regret w.r.t. any sequence of
decisions. Clearly, in general it is impossible to compete with an arbitrary
changing benchmark. However, it is possible to give a refined analysis that
shows what happens to the regret of an online convex optimization algorithm
vs. changing decisions.

More precisely, define the dynamic regret of an OCO algorithm with
respect to a sequence u1, . . . ,uT as:

DynamicRegretT (A,u1, . . . ,uT)
def
=

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

To analyze the dynamic regret, some measure of the complexity of the
sequence u1, . . . ,uT is necessary. Let P(u1, . . . ,uT) be the path length of
the comparison sequence defined as

P(u1, . . . ,uT) =
T−1∑
t=1

∥ut − ut+1∥+ 1.

It is natural to expect the regret to scale with the path length, as indeed
the following theorem shows. For a fixed comparator ut = x⋆, the path
length is one, and thus Theorem 10.1 recovers the O(

√
T) standard regret

bound. For simplicity, we assume that the time horizon T is known ahead of
time, and so is the path length of the comparator sequence, although these
limitations can be removed (see bibliographic section).

Theorem 10.1. Online Gradient Descent (algorithm 8) with step size η ≈√
P(u1,...,uT)

T guarantees the following dynamic regret bound:

DynamicRegretT (A,u1, . . . ,uT) = O(
√
TP(u1, . . . ,uT))

10.2. THE NOTION OF ADAPTIVE REGRET 171

Proof. Using our notation, and following the steps of the proof of Theorem
3.1,

∥xt+1 − ut∥2 ≤ ∥yt+1 − ut∥2 = ∥xt − ut∥2 + η2∥∇t∥2 − 2η∇⊤
t (xt − ut).

Thus,

2∇⊤
t (xt − ut) ≤ ∥xt−ut∥2−∥xt+1−ut∥2

η + ηG2

Using convexity and summing this inequality across time we get

2

(
T∑
t=1

ft(xt)− ft(ut)

)
≤ 2

T∑
t=1

∇⊤
t (xt − x⋆)

≤
T∑
t=1

∥xt − ut∥2 − ∥xt+1 − ut∥2

η
+ ηG2T

=
1

η

T∑
t=1

(
∥xt∥2 − ∥xt+1∥2 + 2u⊤

t (xt+1 − xt)
)
+ ηG2T

≤ 2

η

(
D2 +

T∑
t=2

x⊤
t (ut−1 − ut) + u⊤

T xT+1 − u⊤
1 x1

)
+ ηG2T

≤ 3

η

(
D2 +D

T∑
t=2

∥ut−1 − ut∥

)
+ ηG2T ut ∈ K

≤ 3D2

η
P(u1, ...,uT) + ηG2T.

The theorem now follows by choice of η.

This simple modification to the analysis of online gradient descent nat-
urally extends to online mirror descent, as well as to other notions of path
distance of the comparison sequence.

We now turn to another metric of performance that requires more ad-
vanced methods than we have seen thus far. This metric can be shown to
be more general than dynamic regret, in the sense that the bounds we prove
also imply low dynamic regret.

10.2 The Notion of Adaptive Regret

The main performance metric we consider in this chapter is designed to
measure the performance of a decision maker in a changing environment. It
is formally given in the following definition.

172 CHAPTER 10. ADAPTIVE REGRET

Definition 10.2. The adaptive regret of an online convex optimization al-
gorithm A is defined as the maximum regret it achieves over any contiguous
time interval. Formally,

AdaptiveRegretT (A)
def
= sup

I=[r,s]⊆[T]

{
s∑

t=r

ft(xt)− min
x∗
I∈K

s∑
t=r

ft(x
∗
I)

}
= sup

I=[r,s]⊆[T]

{
Regret[r,s](A)

}
.

As opposed to standard regret, the power of this definition stems from
the fact that the comparator is allowed to change. In fact, it is allowed to
change indefinitely with every interval of time.

For an algorithm with low adaptive regret, as opposed to standard regret,
how would its performance guarantee differ in a changing environment?
Consider the problem of portfolio selection, for which time can be divided
into disjoint segments with different characteristics: bear market in the first
T/2 iterations and bull market in the last T/2 iterations. A (standard)
sublinear regret algorithm is only required to converge to the average of both
optimal portfolios, clearly an undesirable outcome. However, an algorithm
with sublinear adaptive regret bounds would necessarily converge to the
optimal portfolio in both intervals.

Not only does this definition make intuitive sense, but it generalizes other
natural notions. For example, consider an OCO setting that can be divided
into k intervals, such that in each a different comparator is optimal. Then
an adaptive regret guarantee of AdaptiveRegretT = o(T) would translate
to overall regret of k × AdaptiveRegretT/k compared to the best k-shifting

comparator14.

10.2.1 Weakly and strongly adaptive algorithms

The Online Gradient Descent algorithm over general convex losses, with step
sizes O(1√

t
), attains an adaptive regret guarantee of

AdaptiveRegretT (OGD) = O(
√
T),

and this bound is tight. This is a simple consequence of the analysis we
have already seen in chapter 3, and left as an exercise. Unfortunately this
guarantee is meaningless for intervals of length o(

√
T).

Recall that for strongly convex loss functions, the OGD algorithm with
the optimal learning rate schedule attains O(log T) regret. However, it does

10.3. TRACKING THE BEST EXPERT 173

not attain any non-trivial adaptive regret guarantee: its adaptive regret can
be as large as Ω(T), and this is also left as an exercise.

An OCO algorithm A is said to be strongly adaptive if its adaptive regret
can be bounded by its regret over the interval up to logarithmic terms in T ,
i.e.

AdaptiveRegretT (A) = O(RegretI(A) · logO(1) T).

The natural question is thus: are there algorithms that attain the optimal
regret guarantee, and simultaneously the optimal adaptive regret guarantee?
As we shall see, the answer is affirmative in a strong sense: we shall describe
and analyze algorithms that are optimal in both metrics. Furthermore, these
algorithms can be implemented with small computational overhead over the
non-adaptive methods we have already studied.

10.3 Tracking the Best Expert

Consider the fundamental problem studied in the first chapter of this text,
prediction from expert advice, but with a small twist. Instead of a static
best expert, consider the setting in which different experts are the “best
expert” in different time intervals. More precisely, consider the situation in
which time [T] can be divided into k disjoint intervals such that each admits
a different “locally best” expert. Can we learn to track the best expert?

This tracking problem was historically the first motivation to study adap-
tivity in online learning. Indeed, as shown by Herbster and Warmuth (see
bibliographic section), there is a natural algorithm that attains optimal re-
gret bounds.

The Fixed Share algorithm, describe in Algorithm 30, is a variant of the
Hedge Algorithm 1. On top of the familiar multiplicative updates, it adds a
uniform exploration term whose purpose is to avoid the weight of any expert
from becoming too small. This provably allows a regret bound that tracks
the best expert in any interval.

In line with the notation we have used throughout this manuscript, we
denote decisions in a convex decision set by x ∈ K. An expert i suggests
decision xi

t, and suffers loss according to a convex loss function denoted
ft(x

i
t). The main performance guarantee for the Fixed Share algorithm is

given in the theorem below.

174 CHAPTER 10. ADAPTIVE REGRET

Algorithm 30 Fixed Share

1: Input: parameter δ < 1
2 . Initialize ∀i ∈ [N], p1i =

1
N .

2: for t = 1 to T do
3: Play xt =

∑N
i=1 p

i
tx

i
t.

4: After receiving ft, update for 1 ≤ i ≤ N
5:

p̂it+1 =
pite

−αft(xi
t)∑N

j=1 p
j
te

−αft(x
j
t)

6: Fixed-share step:

pit+1 = (1− δ)p̂it+1 +
δ

N

7: end for

Theorem 10.3. Given a sequence of α-exp-concave loss functions, the Fixed-
Share algorithm with δ = 1

2T guarantees

sup
I=[r,s]⊆[T]

{
s∑

t=r

ft(xt)− min
i∗∈[N]

s∑
t=r

ft(x
i∗
t)

}
= O

(
1

α
logNT

)
.

Notice that this is a different guarantee than adaptive regret as per Defi-
nition 10.2, as the decision set is discrete. However, it is a crucial component
in the adaptive algorithms we will explore in the next section.

As a direct conclusion from this theorem, it can be shown (see exercises)
that if the best expert changes k times in a sequence of length T , the overall
regret compared to the best expert in every interval is bounded by

O

(
k log

NT

k

)
.

To prove this theorem, we start with the following lemma, which is a
fine-grained analysis of the multiplicative weights properties:

Lemma 10.4. For all 1 ≤ i < N ,

ft(xt)− ft(x
i
t) ≤ α−1(log p̂it+1 − log p̂it − log(1− δ)).

Proof. Using the α-exp concavity of ft,

e−αft(xt) = e−αft(
∑N

j=1 p
j
tx

j
t) ≥

N∑
j=1

pjte
−αft(x

j
t).

10.3. TRACKING THE BEST EXPERT 175

Taking the natural logarithm,

ft(xt) ≤ −α−1 log

N∑
j=1

pjte
−αft(x

j
t)

Hence,

ft(xt)− ft(x
i
t) ≤ α−1(log e−αft(xi

t) − log
∑N

j=1 p
j
te

−αft(x
j
t))

= α−1 log e−αft(x
i
t)∑N

j=1 p
j
te

−αft(x
j
t)

= α−1 log

(
1
pit
· pite

−αft(x
i
t)∑N

j=1 p
j
te

−αft(x
j
t)

)
= α−1 log

p̂it+1

pit
= α−1(log p̂it+1 − log pit)

The proof is completed observing that:

log pit = log
(
(1− δ)p̂it +

δ
N

)
≥ log p̂it + log(1− δ).

Theorem 10.3 can now be derived as a corollary:

Theorem 10.3. By summing up over the interval I = [r, s], and using the
lower bound on pit, we have∑

t∈I ft(xt)−
∑

t∈I ft(x
i
t)

≤
∑

t∈I α
−1(log p̂it+1 − log p̂it − log(1− δ))

≤ 1
α

[
log 1

p̂ir
− |I| log(1− δ)

]
≤ 1

α

[
log N

δ + 2δ|I|
]

p̂ir ≥
δ

N
, δ <

1

2

≤ 1
α log 2NT + 1

α δ =
1

2T

176 CHAPTER 10. ADAPTIVE REGRET

10.4 Efficient Adaptive Regret for Online Convex
Optimization

The Fixed-Share algorithm described in the previous section is extremely
practical and efficient for discrete sets of experts. However, to exploit the
full power of OCO we require an efficient algorithm for continuous decision
sets.

Consider for example the problems of online portfolio selection and on-
line shortest paths: näıvely applying the Fixed-Share algorithm is compu-
tationally inefficient. Instead, we seek an algorithm which takes advantage
of the efficient representation of these problems in the language of convex
programming.

We present such a method called FLH, or Follow the Leading History.
The basic idea is to think of different online convex optimization algorithms
starting at different time points as experts, and apply a version of Fixed
Share to these experts.

Algorithm 31 Follow the Leading History

1: Let A be an OCO algorithm. Initialize p11 = 1
2: for t = 1 to T do
3: Set ∀j ≤ t , xj

t ← A(fj , ..., ft−1)

4: Play xt =
∑t

j=1 p
j
tx

j
t .

5: After receiving ft, update for 1 ≤ i ≤ t
6:

p̂it+1 =
pite

−αft(xi
t)∑t

j=1 p
j
te

−αft(x
j
t)

7: Mixing step: set pt+1
t+1 =

1
t+1 and

∀i ̸= t+ 1 , pit+1 =

(
1− 1

t+ 1

)
p̂it+1.

8: end for

The main performance guarantee is given in the following theorem.

Theorem 10.5. Let A be an OCO algorithm for α-exp-concave loss function
with RegretT (A). Then,

AdaptiveRegretT (FLH) ≤ RegretT (A) +O(
1

α
log T).

10.4. EFFICIENT ADAPTIVE REGRET FORONLINE CONVEXOPTIMIZATION177

In particular, taking A ≡ ONS guarantees

AdaptiveRegretT = O(
1

α
log T).

Notice that FLH invokes A at iteration t at most T times. Hence its
running time is bounded by T times that of A. This can still be prohibitive
as the number of iterations grows large. In the next section, we show how the
ideas from this algorithm can give rise to an efficient adaptive algorithm with
only O(log T) computational overhead and slightly worse regret bounds.

The analysis of FLH is very similar to that of Fixed Share, with the
main subtleties due to the fact that the time horizon T is not assumed to
be known ahead of time, and thus the number of experts varies with time.

Instead of giving the full analysis, which is deferred to the exercises, we
give a simplified version of FLH which does assume a-priory knowledge of
T , and whose analysis can be directly reduced to that of Theorem 10.3.

Algorithm 32 Simple-FLH

1: Let A be an OCO algorithm. Set N = T, δ = 1
2T .

2: for t = 1 to T do
3: For all i ≤ t, set xi

t ← A(fj , ..., ft−1). Otherwise, set xi
t = 0.

4: Apply the Fixed Share algorithm with expert predictions xi
t.

5: end for

The simplified version of FLH is given in Algorithm 32, and it guarantees
the following adaptive regret bound.

Theorem 10.6. Algorithm 32 guarantees:

AdaptiveRegretT (Simple-FLH) ≤ RegretT (A) +O(
1

α
log T).

Proof. Applying Theorem 10.3 to the experts defined in Simple FLH, guar-
antees for every interval in time I = [r, s], and by choice of N , for every
i ≤ s, ∑

t∈I
ft(xt)−

∑
t∈I

ft(x
i
t) ≤

1

α
log 2NT + 1 = O(

1

α
log T).

In particular, consider the sequence of predictions given by the r’th expert,
for which we have∑

t∈I
ft(x

r
t) = Regrets−r+1(A) ≤ RegretT (A).

The theorem now follows since this holds for every iterval I ⊆ [T].

178 CHAPTER 10. ADAPTIVE REGRET

10.5 * Computationally Efficient Methods

In the previous section we studied adaptive regret, introduced and analyzed
an algorithm that attains near optimal adaptive regret bounds. However,
FLH suffers from a significant computational and memory overhead: it re-
quires maintaining O(T) copies of an online convex optimization algorithm.
This computational overhead, which is proportional to the number of iter-
ations, can be prohibitive in many applications. In this section our goal is
to implement the algorithmic template of FLH efficiently and using little
space.

To be more precise, henceforth denote the running time per iteration
of algorithm A as Vt(A). Recall that at time t, FLH stores all predictions
{xi

t | i ∈ [t]} and has to compute weights for all of them. This requires
running time of at least O(Vt(A) · t).

The FLH2 algorithm, described in Algorithm 33, significantly cuts down
this running time to being only logarithmic in the current time iteration
parameter t. To achieve this, FLH2 applies a pruning method to cut down
the number of active online algorithms from t to O(log t). However, its
adaptive regret guarantee is slightly worse, and suffers a multiplicative factor
of O(log T) as compared to FLH.

Algorithm 33 FLH2

1: Let A be an OCO algorithm. Initialize p11 = 1, S1 = {1}
2: for t = 1 to T do
3: Set ∀j ∈ St , xj

t ← A(fj , ..., ft−1)

4: Play xt =
∑

j∈St
pjtx

j
t .

5: After receiving ft, perform update for i ∈ St:
6:

p̂it+1 =
pite

−αft(xi
t)∑

j∈St
pjte

−αft(x
j
t)

7: Pruning: set St+1 ← Prune(St)∪{t+1}. Set p̂t+1
t+1 to 1

t , and update:

∀i ∈ St+1 . pit+1 =
p̂it+1∑

j∈St+1
p̂jt+1

8: end for

Before giving the exact details of this pruning method, we state the
performance guarantee for FLH2.

10.5. * COMPUTATIONALLY EFFICIENT METHODS 179

Theorem 10.7. Given an OCO algorithm A with regret RegretT (A) and
running time VT (A), algorithm FLH2 guarantees: VT (FLH2) ≤ VT (A) log T
and

AdaptiveRegretT (FLH2) ≤ RegretT (A) log T +O(
1

α
log2 T).

The main conclusion from this theorem is obtained by using FLH2 with
A being the ONS algorithm from chapter 4. This gives adaptive regret of
O(1α log2 T) and running time which is polynomial in natural parameters of
the problem and poly-logarithmic in the number of iterations.

Before diving into the analysis, we explain the main new ingredient. At
the heart of this algorithm is a new method for incorporating history. We
will show that it suffices to store only O(log t) experts at time t, rather than
all t experts as in FLH.

At time t, there is a working set St of experts. In FLH, this set can be
thought of to contain E1, · · · , Et, where each Ei is the algorithm A starting
from iteration i. For the next round, a new expert Et+1 is added to get St+1.
The complexity and regret of FLH is directly related to the cardinality of
these sets.

The key to decreasing the sizes of the sets St is to also remove (or prune)
some experts. Once an expert is removed, it is never used again. The
algorithm will perform the multiplicative update and mixing steps (steps 5
and 7 in algorithm 33) only on the working set of experts.

The problem of maintaining the set of active experts can be thought
of as the following abstract data streaming problem. Suppose the integers
1, 2, · · · are being “processed” in a streaming fashion. At time t, we have
“read” the positive integers up to t and maintain a very small subset of
them in St. At time t we create St+1 from St: we are allowed to add to St

only the integer t + 1, and remove some integers already in St. Our aim is
to maintain a set St which satisfies:

1. For every positive s ≤ t, [s, (s+ t)/2] ∩ St ̸= ∅.

2. For all t, |St| = O(log T).

3. For all t, St+1\St = {t+ 1}.

The first property of the sets St intuitively means that St is “well spread
out” in a logarithmic scale. This is depicted in Figure 10.1. The second
property ensures computational efficiency.

Indeed, the procedure “Prune” maintains St with these exact properties,
and is detailed after we prove Theorem 10.7.

180 CHAPTER 10. ADAPTIVE REGRET

Time

current

Working set St

Figure 10.1: Illustration of the working set St

We proceed to prove the main theorem. We start with an analogue of
Lemma 10.4.

Proposition 10.8. The following holds for all i ∈ St,

1. ft(xt)− ft(x
i
t) ≤ α−1(log p̂it+1 − log p̂it + log t−1

t)

2. ft(xt)− ft(x
t
t) ≤ α−1(log p̂tt+1 + log t)

Proof. Using the α-exp concavity of ft -

e−αft(xt) = e−αft(
∑

j∈St
pjtx

j
t) ≥

∑
j∈St

pjte
−αft(x

j
t)

Taking the natural logarithm,

ft(xt) ≤ −α−1 log
∑
j∈St

pjte
−αft(x

j
t)

Hence,

ft(xt)− ft(x
i
t) ≤ α−1(log e−αft(xi

t) − log
∑

j∈St
pjte

−αft(x
j
t))

= α−1 log e−αft(x
i
t)∑

j∈St
pjte

−αft(x
j
t)

= α−1 log

(
1
pit
· pite

−αft(x
i
t)∑

j∈St
pjte

−αft(x
j
t)

)
= α−1 log

p̂it+1

pit

To complete the proof, we note the following two facts that are analogous
to the ones used in Claim 10.4:

10.5. * COMPUTATIONALLY EFFICIENT METHODS 181

1. For 1 ≤ i < t, log pit ≥ log p̂it + log t−1
t

2. log ptt ≥ − log t

Proving these facts is left as an exercise.

Using this we can prove the following Lemma.

Lemma 10.9. Consider some time interval I = [r, s]. Suppose that Er was
in the working set St, for all t ∈ I. Then the regret incurred in I is at most
1
α log(s) + RegretT (A).

Proof. Consider the regret in I with respect to expert Er,∑s
t=r(ft(xt)− ft(x

r
t))

= (fr(xr)− fr(x
r
r)) +

∑s
t=r+1(ft(xt)− ft(x

r
t))

≤ α−1
(
log p̂rr+1 + log r +

∑s
t=r+1(log p̂

r
t+1 − log p̂rt + log t

t−1)
)

Claim 10.8

= α−1(log r + log p̂rs+1 +
∑s

t=r+1 log
t

t−1)

= α−1(log(s) + log p̂rs+1)

Since p̂rs+1 ≤ 1, log p̂rs+1 ≤ 0. This implies that the regret w.r.t. expert
Er is bounded by α−1 log(s). Since Er has regret bounded by RegretI(A) ≤
RegretT (A) over I, the conclusion follows.

Given the properties of St, we can show that in any interval the regret
incurred is small.

Lemma 10.10. For any interval I the regret incurred by the FLH2 is at
most
(1α log(s) + RegretT (A))(log2 |I|+ 1).

Proof. Let |I| ∈ [2q, 2q+1), and denote for simplicity RT = 1
α log(s) +

RegretT (A). We will prove by induction on q.
base case: For q = 0 the regret is bounded by

fr(xr) ≤ RegretT (A) ≤ RT

induction step: By the properties of the St’s, there is an expert Ei in
the pool such that i ∈ [r, (r+s)/2]. This expert Ei entered the pool at time
i and stayed throughout [i, s]. By Lemma 10.9, the algorithm incurs regret
at most RT = 1

α log(s) + RegretT (A) in [i, s].

The interval [r, i− 1] has size at most |I|
2 ∈ [2q−1, 2q), and by induction

the algorithm has regret of at most RT · q on this interval. This gives a total
of RT (q + 1) regret on I.

182 CHAPTER 10. ADAPTIVE REGRET

We can now prove Theorem 10.7:

Theorem 10.7. The running time of FLH2 is bounded by |St| ·VT (A). Since
|St| = O(log t), we can bound the running time by O(VT (A) log T). This
fact, together with Lemma 10.10, completes the proof.

10.5.1 The pruning method

We now explain the pruning procedure used to maintain the set St ⊆
{1, 2, ..., t}.

We specify the lifetime of integer i - if i = r2k, where r is odd, then
the lifetime of i is 2k+2 + 1. Suppose the lifetime of i is m. Then for any
time t ∈ [i, i + m], integer i is alive at t. The set St is simply the set of
all integers that are alive at time t. Obviously, at time t, the only integer
added to St is t - this immediately proves Property (3). We now prove the
other properties.

Proof. (Property (1)) We need to show that some integer in [s, (s + t)/2]
is alive at time t. This is trivially true when t − s < 2, since t − 1, t ∈ St.
Let 2ℓ be the largest power of 2 such that 2ℓ ≤ (t − s)/2. There is some
integer x ∈ [s, (s + t)/2] such that 2ℓ|x. The lifetime of x is larger than
2ℓ × 2 + 1 > t− s, so x is alive at t.

Proof. (Property (2)) For each 0 ≤ k ≤ ⌊log t⌋, let us count the number of
integers of the form r2k (r odd) alive at t. The lifetimes of these integers are
2k+2+1. The only integers alive lie in the interval [t− 2k+2− 1, t]. Since all
of these integers of this form are separated by gaps of size at least 2k, there
are at most a constant number of such integers alive at t. In total, the size
of St is O(log t).

10.6. BIBLIOGRAPHIC REMARKS 183

10.6 Bibliographic Remarks

Dynamic regret bounds for online gradient descent were proposed by Zinke-
vich [2003], and further studied in [Besbes et al., 2015]. It was shown
in [Zhang et al., 2018] that adaptive regret bounds imply dynamic regret
bounds.

The study of learning in changing environments can be traced to the
seminal work of Herbster and Warmuth [1998] in the context of tracking
for the problem of prediction from expert advice. Their technique was later
extended to tracking of experts from a small pool [Bousquet and Warmuth,
2003].

The problem of tracking a large set of experts efficiently was studied
using the Fixed-Share technique in [Singer, 1998, Kozat and Singer, 2007,
György et al., 2005].

The deviation from Fixed-Share to the FLH technique and the notion
of adaptive regret were introduced in Hazan and Seshadhri [2007]. These
techniques were subject of later study and extensions [Adamskiy et al., 2016,
Zhang et al., 2019]. Daniely et al. [2015] study adaptive regret for weakly
convex loss functions and introduced the term “strongly adaptive”, which
differentiates the weakly and strongly convex settings. They note that FLH
is a strongly adaptive algorithm.

The use of an exponential look-back for prediction has roots in informa-
tion theory [Willems and Krom, 1997, Shamir and Merhav, 2006]. Efficient
methods for streaming, that were used in this chapter to maintaining a
small set of active experts, were studied in the steaming algorithms litera-
ture [Gopalan et al., 2007].

Adaptive regret algorithms were motivated by applications involving
changing environments, such as the portfolio selection problem. More re-
cently they were applied for time series prediction [Anava et al., 2013] and
the control of dynamical systems [Gradu et al., 2020].

184 CHAPTER 10. ADAPTIVE REGRET

10.7 Exercises

1. Consider an OCO setting that can be divided into k intervals, such that in
each a different comparator is optimal. Let A be an algorithm that has an adaptive
regret guarantee of AdaptiveRegretT (A) = o(T). Prove that the regret of A vs.
the best k-shifting comparator is bounded by k ×AdaptiveRegretT .

2. Prove that the OGD algorithm for convex functions, with step sizes O(1√
t
),

has an adaptive regret guarantee of O(
√
T), and that this is tight. Prove that the

lazy version of OGD, from chapter 5, behaves differently and has an adaptive regret
bound of Ω(T).

3. Prove that the OGD algorithm with step size O(1t) for strongly convex
functions, has adaptive regret which is lower bounded by Ω(T).

4. Consider the problem of prediction from expert advice with α-exp-concave
loss functions, where the best expert switches k times. That is, time can be divided
into k segments I1, ..., Ik, such that the best expert in each segment is different.
Show that the regret of the Fixed Share algorithm vs. the best k-switching expert
(a strategy that is allowed to change experts k times) is bounded by

O

(
k log

NT

k

)
.

5. Spell out a choice of δ parameter for the Fixed Share algorithm that does not
require knowledge of the number of iterations T in advance. Prove an analogue of
Theorem 10.3 with your choice of δ.

6. Complete the proof of Theorem 10.5.

7. Prove the following facts used in the proof of Proposition 10.8:

(a) For 1 ≤ i < t, log pit ≥ log p̂it + log t−1
t

(b) log ptt ≥ − log t

8. Implement meta-algorithms FLH and FLH2 with the ONS algorithm, and

apply the resulting method on the portfolio selection problem. Benchmark your

results and compare to ONS and OGD.

Chapter 11

Boosting and Regret

In this chapter we consider a fundamental methodology of machine learning:
boosting. In the statistical learning setting, roughly speaking, boosting refers
to the process of taking a set of rough “rules of thumb” and combining them
into a more accurate predictor.

Consider for example the problem of Optical Character Recognition
(OCR) in its simplest form: given a set of bitmap images depicting hand-
written postal-code digits, classify those that contain the digit “1” from
those of “0”.

Figure 11.1: Distinguishing zero versus one from a single pixel

Seemingly, discerning the two digits seems a difficult task taking into

185

186 CHAPTER 11. BOOSTING AND REGRET

account the different styles of handwriting, inconsistent styles even for the
same person, label errors in the training data, etc. However, an inaccurate
rule of thumb is rather easy to produce: in the bottom-left area of the picture
we’d expect many more dark bits for “1”s than if the image depicts a “0”.
This is, of course, a rather inaccurate classifier. It does not consider the
alignment of the digit, thickness of the handwriting, and numerous other
factors. Nevertheless, as a rule of thumb - we’d expect better-than-random
performance and some correlation with the ground truth.

The inaccuracy of the crude single-bit predictor is compensated by its
simplicity. It is not hard to implement a classifier based upon this rule of
thumb, which is very efficient indeed. The natural and fundamental question
which now arises is: can several such rules of thumb be combined into a
single, accurate and efficient classifier?

In the rest of this chapter we shall formalize this question in the sta-
tistical learning theory framework. We then proceed to use the technology
developed in this manuscript, namely regret minimization algorithms for
online convex optimization, to answer this question in the affirmative. Our
development will be somewhat non-standard: we’ll describe a black-box re-
duction from regret-minimization to boosting. This allows any of the OCO
methods previously discussed in this text to be used as the main component
of a boosting algorithm.

11.1 The Problem of Boosting

Throughout this chapter we use the notation and definitions of chapter 9
on learning theory, and focus on statistical learnability rather than agnostic
learnability. More formally, we assume the so called “realizability assump-
tion”, which states that for a learning problem over hypothesis class H there
exists some h⋆ ∈ H such that its generalization error is zero, or formally
error(h⋆) = 0.

Using the notations of the previous chapter, we can define the following
seemingly weaker notion than statistical learnability.

Definition 11.1 (Weak learnability). The concept class H : X 7→ Y is said
to be γ-weakly-learnable if the following holds. There exists an algorithm A
that accepts Sm = {(x, y)} and returns an hypothesis in A(Sm) ∈ H that
satisfies:
for any δ > 0 there exists m = m(δ) large enough such that for any distribu-
tion D over pairs (x, y), for y = h⋆(x), and m samples from this distribution,

11.2. BOOSTING BY ONLINE CONVEX OPTIMIZATION 187

it holds that with probability 1− δ,

error(A(Sm)) ≤ 1

2
− γ

This is an apparent weakening of the definition of statistical learnability
that we have described in chapter 9: the error is not required to approach
zero. The standard case of statistical learning in the context of boosting
is called “strong learnability”. An algorithm that achieves weak learning is
referred to as a weak learner, and respectively we can refer to a strong learner
as an algorithm that attains statistical learning, i.e., allows for generalization
error arbitrarily close to zero, for a certain concept class.

The central question of boosting can now be formalized: are weak learn-
ing and strong learning equivalent? In other words, is there an (efficient?)
procedure that has access to a weak oracle for a concept class, and returns
a strong learner for the class?

Miraculously, the answer is affirmative, and gives rise to one of the most
effective paradigms in machine learning.

11.2 Boosting by Online Convex Optimization

In this section we describe a reduction from OCO to boosting. The tem-
plate is similar to the one we have used in chapter 9: using one of the
numerous algorithms for online convex optimization we have explored in
this manuscript, as well as access to a weak learner, we create a procedure
for strong learning.

11.2.1 Simplification of the setting

Our derivation focuses on simplicity rather than generality. As such, we
make the following assumptions:

1. We restrict ourselves to the classical setting of binary classification.
Boosting to real-valued losses is also possible, but outside our scope.
Thus, we assume the loss function to be the zero-one loss, that is:

ℓ(ŷ, y) =

0, y = ŷ

1, 0/w

2. We assume that the concept class is realizable, i.e., there exists an
h⋆ ∈ H such that error(h⋆) = 0. There are results on boosting in

188 CHAPTER 11. BOOSTING AND REGRET

the agnostic learning setting, these are surveyed in the bibliographic
section.

3. We denote the distribution over examples X × Y = {(x, y)}, where
y = h⋆(x), as a point in ∆X . That is, a point p ∈ ∆X is a non-
negative vector that integrates to one over all examples. For simplicity,
we think of X ,Y as a finite, and therefore p ∈ ∆m belongs to the m
dimensional simplex, i.e., is a discrete distribution over m elements.

4. We henceforth denote the weak learning algorithm by W, and denote
by W(p, δ) a call to the weak learning algorithm over distribution p
that satisfies

Pr[error
p

(W(p, δ)) ≥ 1

2
− γ] ≤ δ.

With these assumptions and definitions we are ready to prove the main
result: a reduction from weak learning to strong learning using an online
convex optimization algorithm with a sublinear regret bound. Essentially,
our task would be to find a hypothesis which attains zero error on a given
sample.

11.2.2 Algorithm and analysis

Pseudocode for the boosting algorithm is given in Algorithm 34. This reduc-
tion accepts as input a γ-weak learner and treats it as a black box, returning
a function which we’ll prove is a strong learner.

The reduction also accepts as input an online convex optimization algo-
rithm denoted AOCO. The underlying decision set for the OCO algorithm
is the m-dimensional simplex, where m is the sample size. Thus, its de-
cisions are distributions over examples. The cost functions are linear, and
assign a value of zero or one, depending on whether the current hypothesis
errs on a particular example. Hence, the cost at a certain iteration is the
expected error of the current hypothesis (chosen by the weak learner) over
the distribution chosen by the low-regret algorithm.

It is important to note that the final hypothesis h̄ which the algorithm
outputs does not necessarily belong to H - the initial hypothesis class we
started off with.

Theorem 11.2. Algorithm 34 returns a hypothesis h̄ such that with proba-
bility at least 1− δ,

error
S

(h̄) = 0.

11.2. BOOSTING BY ONLINE CONVEX OPTIMIZATION 189

Algorithm 34 Reduction from Boosting to OCO

Input: H, δ, OCO algorithm AOCO, γ-weak learning algorithm W, sam-
ple Sm ∼ D.
Set T such that 1

T RegretT (A
OCO) ≤ γ

2
Set distribution p1 =

1
m1 ∈ ∆m to be the uniform distribution.

for t = 1, 2 . . . T do
Find hypothesis ht ←W(pt,

δ
2T)

Define the loss function ft(p) = r⊤t p, where the vector rt ∈ Rm is
defined as

rt(i) =

1, ht(xi) = yi

0, o/w

Update pt+1 ← AOCO(f1, ..., ft)
end for
return h̄(x) = sign(

∑T
t=1 ht(x))

Proof. Given h ∈ H, we denote its empirical error on the sample S, weighted
by the distribution p ∈ δm, by:

error
S,p

(h) =
m∑
i=1

p(i) · 1h(xi)̸=yi .

Notice that by definition of rt we have r⊤t pt = 1− errorS,pt(ht). Since ht is
the output of a γ-weak-learner on the distribution pt, we have for all t ∈ [T],

Pr[r⊤t pt ≤
1

2
+ γ] = Pr[1− error

S,pt

(ht) ≤
1

2
+ γ]

= Pr[error
S,pt

(ht) ≥
1

2
− γ]

≤ δ

2T
.

This applies for each t separately, and by the union bound we have

Pr[
1

T

T∑
t=1

r⊤t pt ≥
1

2
+ γ] ≥ 1− δ

Denote by Sϕ ⊆ S be the set of all missclassified examples by h̄. Let p∗

190 CHAPTER 11. BOOSTING AND REGRET

the uniform distribution over Sϕ.

T∑
t=1

r⊤t p
∗ =

T∑
t=1

1

|Sϕ|
∑

(x,y)∈Sϕ

1ht(x)=y

=
1

|Sϕ|
∑

(x,y)∈Sϕ

T∑
t=1

1ht(xj)=yj

≤ 1

|Sϕ|
∑

(x,y)∈Sϕ

T

2
h̄(xj) ̸= yj

=
T

2
.

Combining the previous two observations, we have with probability at least
1− δ that

1

2
+ γ ≤ 1

T

∑T
t=1 r

⊤
t pt

≤ 1
T

∑T
t=1 r

⊤
t p

∗ + 1
T RegretT (A

OCO) low regret of AOCO

≤ 1
2 + 1

T RegretT (A
OCO)

≤ 1
2 + γ

2 .

This is a contradiction. We conclude that a distribution p∗ cannot exist,
and thus all examples in S are classified correctly.

11.2.3 AdaBoost

A special case of the template reduction we have described is obtained when
the OCO algorithm is taken to be the Multiplicative Updates method we
have come to know in the manuscript.

Corollary 5.7 gives a bound of O(
√
T logm) on the regret of the EG

algorithm in our context. This bounds T in Algorithm 34 by O(1
γ2 logm).

Closely related is the AdaBoost algorithm, which is one of the most useful
and successful algorithms in Machine Learning at large (see bibliography).
Unlike the Boosting algorithm that we have analyzed, AdaBoost doesn’t
have to know in advance the parameter γ of the weak learners. Pseudo code
for the AdaBoost algorithm is given in 35.

11.2. BOOSTING BY ONLINE CONVEX OPTIMIZATION 191

Algorithm 35 AdaBoost

Input: H, δ, γ-weak-learner W, sample Sm ∼ D.
Set p1 ∈ ∆m be the uniform distribution over Sm.
for t = 1, 2 . . . T do

Find hypothesis ht ←W(pt,
δ
T)

Calculate εt = errorS,pt(ht), αt =
1
2 log(

1−εt
εt

)
Update,

pt+1(i) =
pt(i)e

−αtyiht(i)∑m
j=1 pt(j)e−αtyjht(j)

end for
return h̄(x) = sign(

∑T
t=1 αtht(x))

11.2.4 Completing the picture

In our discussion so far we have focused only on the empirical error over
a sample. To show generalization and complete the Boosting theorem, one
must show that zero empirical error on a large enough sample implies ε
generalization error on the underlying distribution.

Notice that the hypothesis returned by the Boosting algorithms does not
belong to the original concept class. This presents a challenge for certain
methods of proving generalization error bounds that are based on measure
concentration over a fixed hypothesis class.

Both issues are resolved using the implication that compression implies
generalization, as given in Theorem 9.9. We sketch the argument below,
and the precise derivation is left as an exercise.

Roughly speaking, boosting algorithm 34 runs on m examples for T =
O(logm

γ2) rounds, returns a final hypothesis h̄ that is the majority vote of T
hypothesis, and classifies correctly all m examples of the training set.

Suppose that the weak learning algorithm has sample complexity of size
k(γ, δ): given k = k(γ, δ) examples, it returns a hypothesis with generaliza-
tion error at most 1

2 − γ with probability at least 1 − δ. Further, suppose
the original training set of m examples was sampled from distribution D.

Since h̄ classifies correctly the entire training set, it follows that the
distribution D has a compression scheme of size

Tk = O

(
k(γ, δ

T) logm

γ2

)
.

192 CHAPTER 11. BOOSTING AND REGRET

Therefore, using Theorem 9.9, we have that,

error
D

(h̄) ≤ O

(
k log2 m

δ

γ2m

)
.

Now one can obtain an arbitrary small generalization error by choosing
m as a function of k, δ, γ. Notice that this argument makes an assumption
only about the sample complexity of the weak learning algorithm, rather
than the hypothesis class H.

11.3. BIBLIOGRAPHIC REMARKS 193

11.3 Bibliographic Remarks

The theoretical question of Boosting and posed and addressed in the work
of Schapire [1990], Freund [1995]. The AdaBoost algorithm was proposed
in the seminal paper of Freund and Schapire [1997]. The latter paper also
contains the essential ingredients for the reduction from general low-regret
algorithms to boosting.

Boosting has had significant impact on theoretical and practical data
analysis as described by the statistician Leo Breiman [Olshen, 2001]. For a
much more comprehensive survey of Boosting theory and applications see
the recent book [Schapire and Freund, 2012].

The theory for agnostic boosting is more recent, and several different
definitions and settings exist, see [Kalai et al., 2008, Kalai and Servedio,
2005, Kanade and Kalai, 2009, Feldman, 2009, Ben-David et al., 2001], the
most general of which is perhaps by Kanade and Kalai [2009].

A unified framework for realizable and agnostic boosting, for both the
statistical and online settings, is given in [Brukhim et al., 2020].

The theory of boosting has been extended to real valued learning via the
theory of gradient boosting [Friedman, 2002]. More recently it was extended
to online learning [Leistner et al., 2009, Chen et al., 2012, 2014, Beygelzimer
et al., 2015a,b, Agarwal et al., 2019, Jung et al., 2017, Jung and Tewari,
2018, Brukhim and Hazan, 2020].

194 CHAPTER 11. BOOSTING AND REGRET

11.4 Exercises

1. Describe a boosting algorithm based on the online gradient descent algorithm.
Give a bound on its running time.

2. Download the MNIST dataset from the web. Implement weak learners to
differentiate a pair of digits of your choice according to a single bit. Implement
AdaBoost and apply it to your weak learners. Summarize your results and conclu-
sions.

3. ∗ Consider the problem of agnostic boosting, in which the existence of a
zero-error hypothesis is not assumed.

(a) Write down an alternative definition of a weak learning algorithm for the
agnostic setting.

(b) Write down a reasonable goal for a boosting algorithm.

(c) Write down an analogue of Theorem 11.2 for agnostic boosting (without
proof).

4. Compute the number of samples required to achieve a generalization error of ε,

using boosting algorithm 34 and a weak learning algorithm with sample complexity

bound k(γ, δ).

Chapter 12

Online Boosting

This text considers online optimization and learning, and it is a natural
question to ask whether the technique of boosting has an analogue in the
online world? What is a “weak learner” in online convex optimization, and
how can one strengthen it? This is the subject of this chapter, and we shall
see that boosting can be extremely powerful and useful in the setting of
online convex optimization.

12.1 Motivation: Learning from a Huge Set of Ex-
perts

Recall the classical problem of prediction from expert advice from the first
chapter of this text. A learner iteratively makes decisions and receives loss
according to an arbitrarily chosen loss function. For its decision making,
the learner is assisted by a pool of experts. Classical algorithms such as the
Hedge algorithm 1, guarantees a regret bound of O(

√
T logN), where N is

the number of experts, and this is known to be tight.

However, in many problems of interest, the class of experts is too large to
efficiently manipulate. This is particularly evident in contextual learning, as
formally defined below, where the experts are policies – functions mapping
contexts to action. In such instances, even if a regret bound of O(

√
T logN)

is meaningful, the algorithms achieving this bound are computationally in-
efficient; their running time is linear in N . This linear dependence is many
times unacceptable: the effective number of policies mapping contexts to
actions is exponential in the number of contexts.

The boosting approach to address this computational intractability is
motivated by the observation that it is often possible to design simple rules-

195

196 CHAPTER 12. ONLINE BOOSTING

of-thumb that perform slightly better than random guesses. Analogously to
the weak learning oracles from chapter 11, We propose that the learner has
access to an “online weak learner” - a computationally cheap mechanism
capable of guaranteeing multiplicatively approximate regret against a base
hypotheses class.

In the rest of this chapter we describe efficient algorithms that when
provided weak learners, compete with the convex hull of the base hypotheses
class with near-optimal regret.

12.1.1 Example: boosting online binary classification

As a more precise example to the motivation we just surveyed, we formalize
online boosting for binary prediction from expert advice. At iteration t, a set
of experts denoted h ∈ H, observe a context at, and predict a binary outcome
h(at) ∈ {−1, 1}. The loss of each expert is taken to be the binary loss,
−h(at) · yt for a true label yt ∈ {−1, 1}. The Hedge algorithm from the first
chapter applies to this problem, and guarantees a regret of O(

√
T log |H|)

for a finite H. However, the case in which H is extremely large, maintaining
the weights is prohibitive computationally.

A weak online learner W in this setting is an algorithm which is guar-
anteed to attain at most a factor γ loss from the best expert in class, for
some γ ∈ [0, 1], up to an additive sublinear regret term. Formally, for any
sequence of contexts and labels {at, yt},

T∑
t=1

yt · W(at) ≤ γ ·min
h∈H

T∑
t=1

yt · h(at) + RegretT (W).

The online boosting question can now be phrased as follows: given access
to a weak online learning algorithm W, can we design an efficient online
algorithm A that guarantees vanishing regret over H? More formally, let

RegretT (A) =
T∑
t=1

yt · W(at)−min
h∈H

T∑
t=1

yt · h(at).

Can we design an algorithm A that has RegretT (A)
T 7→ 0, without explicit

access to H? As we will see, the answer to this question is affirmative in
a strong sense: boosting does have an online analogue which is a powerful
technique in online learning. In the next section we describe a more pow-
erful notion of boosting that applies to the full generality of online convex
optimization. This in turn implies an affirmative answer to this question for
online binary classification.

12.2. THE CONTEXTUAL LEARNING MODEL 197

12.1.2 Example: personalized article placement

In the problem of matching articles to visitors of a web-page on the Internet,
a number of articles are available to be placed in a given web-page for a
particular visitor. The goal of the decision maker, in this case the article
placer, is to find the most relevant article that will maximize the probability
of a visitor click.

It is usually the case that context is available, in the form of user profile,
preferences surfing history and so forth. This context is invaluable in terms
of placing the most relevant article. Thus, the decision of the article-placer
is to choose from a policy: a mapping from context to article.

The space of policies is significantly larger than the space of articles
and space of contexts: its size is the power of articles to the cardinality
of contexts. This motivates the use of online learning algorithms whose
computational complexity is independent of the number of experts.

The natural formulation of this problem is not binary prediction, but
rather multi-class prediction. Formulating this problem in the language of
online convex optimization is left as an exercise.

12.2 The Contextual Learning Model

Boosting in the context of online convex optimization is most useful for the
contextual learning problem which we now describe.

Let us consider the familiar OCO setting over a general convex decision
set K ⊆ Rd, and adversarially chosen convex loss functions f1, ..., ft : K 7→ R.
Boosting is particularly important in settings that we have a very large
number of possible experts that makes running one of the algorithms we
have considered thus far infeasible. Concretely, suppose we have access to a
hypothesis class H ⊆ {a} 7→ K, that given a sequence of contexts a1, ...,at,
produces a new point h(at+1) ∈ K.

We have studied numerous methods capable of minimizing regret for
this setting in this text, all assumed that we have access to the set H, and
depend on its diameter in some way.

To avoid this dependence, we consider an alternative access model to H.
A weak learner for the OCO setting is defined as follows.

Definition 12.1. An online learning algorithmW is a γ-weak OCO learner
(WOCL) for H and γ ∈ (0, 1), if for any sequence of contexts {at} and
linear loss functions f1, ..., fT , for which maxx∈K ft(x)−miny∈K ft(y) ≤ 1

198 CHAPTER 12. ONLINE BOOSTING

15, we have

T∑
t=1

ft(W(at)) ≤ γ·min
h∈H

T∑
t=1

ft(h(at))+(1−γ)
T∑
t=1

ft(x̄)+RegretT (W), (12.1)

where x̄ =
∫
x∈K x is the center of mass of K.

This definition differs in two aspects from the types of regret minimiza-
tion guarantees we have seen thus far. For one, the algorithm competes
with a γ-multiple of the best comparator in hindsight, and is “weak” in this
precise manner.

Secondly, a multiplicative guarantee is not invariant for a constant shift.
This is the reason for the existence of an additional component,

∑
t ft(x̄), in

the regret bound. This can be thought of as the cost of a random, or naive
predictor. A weak learner must, at the very least, perform better than this
naive and non-anticipating predictor!

It is convenient to henceforth assume that the loss functions are shifted
such that ft(x̄) = 0. Under this assumption, we can rephrase γ-WOCL as

T∑
t=1

ft(W(at)) ≤ γ ·min
h∈H

T∑
t=1

ft(h(at)) + RegretT (W). (12.2)

12.3 The Extension Operator

The main difficulty is coping with the approximate guarantee that the
WOCL provides. Therefore the algorithm we describe henceforth scales
the predictions returned by the weak learner by a factor of 1

γ . This means
that the scaled decisions do not belong to the original decision set anymore,
and need to be projected back.

Here lies the main challenge. First, we assume that the loss functions
f ∈ F are defined over all of Rd to enable valid decisions outside of K.
Next, we need to be able to project onto K without increasing the cost. It
can be seen that some natural families of functions, i.e., linear functions,
do not admit any such projection. To remedy this situation, we define the
extension operator of a function over a convex domain K as follows.

First, denote the Euclidean distance function to a set K as (see also
section 13.2),

Dist(·,K) , Dist(x,K) = min
y∈K
∥y − x∥.

12.3. THE EXTENSION OPERATOR 199

Definition 12.2 ((K, κ, δ)-extension). The extension operator over K ⊆ Rd

is defined as:

XK,κ,δ[f] : Rd 7→ R , X[f] = Sδ[f + κ ·Dist(·,K)],

where the smoothing operator Sδ was defined as per Lemma 2.8.

The important take-away from these operators is the following lemma,
whose importance is crucial in the OCO boosting algorithm 36, as it projects
infeasible points that are obtained from the weak learners to the feasible
domain.

Lemma 12.3. The (K, κ, δ)-extension of a function f̂ = X[f] satisfies the
following:

1. For every point x ∈ K, we have ∥f̂(x)− f(x)∥2 ≤ δG.

2. The projection of a point, whose gradient is bounded by G, onto K
improves the (K, κ, δ)-extension function, for κ = G, value up to a
small term,

f̂

(∏
K
(x)

)
≤ f̂(x) + δG.

Proof. 1. Since Dist(x,K) = 0 for all x ∈ K, this follows immediately
from Lemma 2.8.

2. Denote xπ =
∏

K(x) for brevity. Then

f̂(xπ)− f̂(x)

≤ f(xπ)− f(x)− κDist(x,K) + δG part 1

≤ f(xπ)− f(x)− κ∥x− xπ∥+ δG

= ∇f(x)(x− xπ)− κ∥x− xπ∥+ δG

≤ ∥∇f(x)∥∥x− xπ∥ − κ∥x− xπ∥+ δG Cauchy-Schwartz

≤ G∥x− xπ∥ − κ∥x− xπ∥+ δG

≤ δG choice of κ.

200 CHAPTER 12. ONLINE BOOSTING

12.4 The Online Boosting Method

The online boosting algorithm we describe in this section is closely related to
the online Frank-Wolfe algorithm from chapter 7. Not only does it deliver in
boosting WOCL to strong learning, but it gives an even stronger guarantee:
low regret over the convex hull of the hypothesis class.

Algorithm 36 efficiently converts a weak online learning algorithm into
an OCO algorithm with vanishing regret in a black-box manner. The idea is
to apply the weak learning algorithm on linear functions that are gradients
of the loss. The algorithm then recursively applies another weak learner on
the gradients of the residual loss, and so forth.

Algorithm 36 Boosting for Online Convex Optimization

1: Input: N copies of the γ-WOCL W1,W2, . . . ,WN , parameters
η1, ..., ηT ,δ, κ = G.

2: for t = 1 to T do
3: Receive context at, choose x0

t = 0 arbitrarily.
4: for i = 1 to N do
5: Define xi

t = (1− ηi)x
i−1
t + ηi

1
γW

i(at).
6: end for
7: Predict xt =

∏
K[x

N
t], suffer loss ft(xt).

8: Obtain loss function ft, create f̂t = XK,κ,δ[ft].
9: for i = 1 to N do

10: Define and pass to W i the linear loss function f i
t ,

f i
t (x) = ∇f̂t(xi−1

t) · x.

11: end for
12: end for

However, the Frank-Wolfe method is not applied directly to the loss func-
tions, but rather to a proxy loss which defined using the extension operation
in 12.2. Importantly, algorithm 36 has a running time that is independent
of |H|.

Notice that if γ = 1, the algorithm stills gives a significant advantage as
compared to the weak learner: the regret guarantee is vs. the convex hull
of H, as compared to the best single hypothesis.

Theorem 12.4 (Main). The predictions xt generated by Algorithm 36 with

12.4. THE ONLINE BOOSTING METHOD 201

δ =
√

D2

γN , ηi = min{2i , 1} satisfy

T∑
t=1

ft(xt) − min
h⋆∈CH(H)

T∑
t=1

ft(h
⋆(at)) ≤

5dGDT

γ
√
N

+
2GD

γ
RegretT (W).

Remark 1: It is possible to obtain tighter bounds by a factor of the di-
mension, and other constant terms, using a more sophisticated smoothing
operator. References for these tighter results are given in the bibliographic
section at the end of this chapter.

Remark 2: The regret bound of Theorem 12.4 is nearly as good as we
could hope for. The first term approaches zero as the number of weak
learners N grows. The second term is sublinear as the regret of the weak
learner. It is scaled by a factor of 1

γ , which we can expect due to the
approximate guarantee of the weak learner.

Before proving the theorem, let us define some notations we use. The
algorithm defines the extension of the loss functions as

f̂t = X[ft] = Sδ[ft +G ·Dist(x,K)].

We apply the setting of κ = G, as required by Lemma 12.3, and by Lemma
2.8, f̂t is

dG
δ -smooth. Also, denote by CH(H) = {

∑
h∈H phh|p ∈ ∆H} the

convex hull of the set H, and let

h⋆ = argmin
h⋆∈CH(H)

T∑
t=1

ft(h
⋆(at))

to be the best hypothesis in the convex hull of H in hindsight, i.e., the
best convex combination of hypothesis from H. Notice that since the loss
functions are generally convex and non-linear, this convex combination is
not necessarily a singleton. We define x⋆

t = h⋆(at) as the decisions of this
hypothesis.

The main crux of the proof is given by the following lemma.

Lemma 12.5. For smoothed loss functions {f̂t} that are β-smooth and Ĝ
Lipschitz, it holds that

T∑
t=1

f̂t(x
N
t) −

T∑
t=1

f̂t(x
⋆
t) ≤

2βD2T

γ2N
+

ĜD

γ
RegretT (W).

202 CHAPTER 12. ONLINE BOOSTING

Proof. Define for all i = 0, 1, 2, . . . , N ,

∆i =

T∑
t=1

(
f̂t(x

i
t)− f̂t(x

⋆
t)
)
.

Recall that f̂t is β smooth by our assumption. Therefore:

∆i =
T∑
t=1

[
f̂t(x

i−1
t + ηi(

1

γ
W i(at)− xi−1

t))− f̂t(x
⋆
t)

]

≤
T∑
t=1

[
f̂t(x

i−1
t)− f̂t(x

⋆
t) + ηi∇f̂t(xi−1

t) · (1
γ
W i(at)− xi−1

t)

+
η2i β

2
∥1
γ
W i(at)− xi−1

t ∥2
]
.

By using the definition and linearity of f i
t , we have

∆i ≤
T∑
t=1

[
f̂t(x

i−1
t)− f̂t(x

⋆
t) + ηi(f

i
t (
1

γ
W i(at))− f i

t (x
i−1
t)) +

η2i βD
2

2γ2

]

=∆i−1 +
T∑
t=1

ηi(
1

γ
f i
t (W i(at))− f i

t (x
i−1
t)) +

T∑
t=1

η2i βD
2

2γ2
.

Now, note the following equivalent restatement of the WOCL guarantee,
which again utilizes linearity of f i

t to conclude: linear loss on a convex
combination of a set is equal to the same convex combination of the linear
loss applied to individual elements.

1

γ

T∑
t=1

f i
t (W i(at)) ≤ min

h⋆∈H

T∑
t=1

f i
t (h

⋆(at)) +
ĜDRegretT (W)

γ

= min
h⋆∈CH(H)

T∑
t=1

f i
t (h

⋆(at)) +
ĜDRegretT (W)

γ
.

Using the above and that h⋆ ∈ CH(H), we have

∆i

≤ ∆i−1 +

T∑
t=1

[ηi∇f̂t(xi−1
t) · (x⋆

t − xi−1
t) +

η2i βD
2

2γ2
] + ηi

ĜD

γ
RegretT (W)

≤ ∆i−1(1− ηi) +
η2i βD

2T

2γ2
+ ηiRT .

12.4. THE ONLINE BOOSTING METHOD 203

where the last inequality uses the convexity of f̂t and we denote RT =
ĜD
γ RegretT (W). We thus have the recurrence

∆i ≤ ∆i−1(1− ηi) + η2i
βD2T

2γ2
+ ηiRT .

Denoting ∆̂i = ∆i −RT , we are left with

∆̂i ≤ ∆̂i−1(1− ηi) + η2i
βD2T

2γ2
.

This is a recursive relation that can be simplified by applying Lemma

7.2 from chapter 7. We obtain that ∆̂N ≤ 2βD2T
γ2N

.

We are ready to prove the main guarantee of Algorithm 36.

Proof of Theorem 12.4. Using both parts of Lemma 12.3 in succession, we
have

T∑
t=1

ft(xt) −
T∑
t=1

ft(x
⋆
t) ≤

T∑
t=1

f̂t(xt) −
T∑
t=1

f̂t(x
⋆
t) + 2δGT

≤
T∑
t=1

f̂t(x
N
t) −

T∑
t=1

f̂t(x
⋆
t) + 3δGT.

Next, recall by Lemma 2.8, that f̂t is
dG
δ -smooth. By applying Lemma 12.5,

and optimizing δ, we have

T∑
t=1

ft(xt) −
T∑
t=1

ft(x
⋆
t) ≤ 3δGT +

2dGD2T

δγ2N
+

ĜD

γ
RegretT (W)

=
5
√
dGDT

γ
√
N

+
ĜD

γ
RegretT (W)

≤ 5dGDT

γ
√
N

+
ĜD

γ
RegretT (W),

where the last inequality is only to obtain a nicer expression.
It remains to bound Ĝ, and we claim that Ĝ ≤ 2G. To see this, notice

that the function Dist(x,K) is 1-Lipschitz, since

Dist(x,K)−Dist(y,K)
= ∥x−ΠK(x)∥ − ∥y −ΠK(y)∥
≤ ∥x−ΠK(y)∥ − ∥y −ΠK(y)∥ ΠK(y) ∈ K
≤ ∥x− y∥. ∆-inequality

204 CHAPTER 12. ONLINE BOOSTING

Thus, by the definition of the extension operator and the functions f i
t , we

have that ∥∇f i
t (x

i
t)∥ = ∥∇f̂t(xi

t)∥ ≤ 2G.

12.5. BIBLIOGRAPHIC REMARKS 205

12.5 Bibliographic Remarks

The theory of boosting, which we have surveyed in chapter 11, originally
applied to binary classification problems. Boosting for real-valued regression
was studied in the theory of gradient boosting by Friedman [2002].

Online boosting, for both the classification and regression settings was
studied much later [Leistner et al., 2009, Chen et al., 2012, 2014, Beygelzimer
et al., 2015a,b, Agarwal et al., 2019, Jung et al., 2017, Jung and Tewari, 2018,
Brukhim and Hazan, 2020]. The relationship to the Frank-Wolfe method
was explicit in these works, and also studied in [Freund et al., 2017, Wang
et al., 2015]. A framework which encapsulates both agnostic and realizable
boosting, for both offline and online settings, is given in [Brukhim et al.,
2020].

Boosting for the full online convex optimization setting, with a multi-
plicative approximation and general convex decision set, was obtained in
[Hazan and Singh, 2021]. The latter also give tighter bounds by a factor of
the dimension than those presented in this text using a more sophisticated
smoothing technique known as the Moreau-Yoshida regularization [Beck,
2017].

The contextual experts and bandits problems have been proposed by
Langford and Zhang [2008] as a decision making framework with large num-
ber of policies. In the online setting, several works study the problem
with emphasis on efficient algorithms given access to an optimization or-
acle [Rakhlin and Sridharan, 2016, Syrgkanis et al., 2016a,b, Rakhlin and
Sridharan, 2016]. For surveys on contextual bandit algorithms and applica-
tions of this model see [Zhou, 2015, Bouneffouf and Rish, 2019].

206 CHAPTER 12. ONLINE BOOSTING

12.6 Exercises

1. Derive, from Algorithm 36, an algorithm for online binary classification. Spell
out its regret guarantee.

2. Formulate the online personalized article placement problem in the language
of online convex optimization (what is the decision set?). Define a weak learner in
this context, and the final boosting guarantee from Theorem 12.4.

3. ∗ Define the Moreau-Yoshida regularization (or smoothing operator) as:

Mδ[f](x) = inf
y∈Rd

{
f(y) +

1

2δ
∥x− y∥2

}
.

Prove that given any G-Lipschitz f , the smoothed function f̂δ = Mδ[f] satisfies:

(a) f̂δ is 1
δ -smooth, and G-Lispchitz.

(b)
∣∣∣f̂δ(x)− f(x)

∣∣∣ ≤ δG2

2 for all x ∈ Rd.

4. ∗ Use the Moreau-Yoshida regularization to improve the bounds of Theorem
12.4 by a factor of the dimension.

Chapter 13

Blackwell Approachability
and Online Convex
Optimization

The history of adversarial prediction started with the seminal works of math-
ematicians David Blackwell and James Hannan. In most of the text thus far,
we have presented the viewpoint of sequential prediction and loss minimiza-
tion, taken by Hannan. This was especially true in chapter 5, as the FPL
algorithm dates back to his work. In this chapter we turn to a dual view
of regret minimization, called “Blackwell approachability”. Approachability
theory originated in the work of Blackwell, and was discovered simulta-
neously to that of Hannan. A short historical account is surveyed in the
bibliographic materials at the end of this chapter.

For decades the relationship between regret minimization in general con-
vex games and Blackwell approachability was not fully understood. The
common thought was, in fact, that Blackwell approachability is a stronger
notion. In this chapter we show that approachability and online convex op-
timization are equivalent in a strong sense: an algorithm for one task implies
an algorithm for the other with no loss of computational efficiency.

As a side benefit to this equivalence, we deduce a proof of Blackwell’s
approachability theorem using the existence of online convex optimization
algorithms. This proof applies to a more general version of approachabilty,
over general vector games, and comes with rates of convergence that are
borrowed from the OCO algorithms we have already studied.

While previous chapters had a practical motivation and introduced meth-
ods for online learning, this chapter is purely theoretical, and devoted to give

207

208 CHAPTER 13. BLACKWELL APPROACHABILITY

an alternate viewpoint of online convex optimization from a game theoretic
perspective.

13.1 Vector-Valued Games and Approachability

Von Neumann’s minimax theorem, that we have studied in chapter 8, es-
tablishes a central result in the theory of two-player zero-sum games by
providing a prescription to both players. This prescription is in the form
of a pair of optimal mixed strategies: each strategy attains the optimal
worst-case value of the game without knowledge of the opponent’s strat-
egy. However, the theorem fundamentally requires that both players have a
utility function that can be expressed as a scalar.

In 1956, in response to von Neumann’s result, David Blackwell posed an
intriguing question: what guarantee can we hope to achieve when playing a
two-player game with a vector-valued payoff ?

A vector-valued game is defined similarly to zero-sum games as we have
defined in Definition 8.2, with reward/loss vectors replacing the scalar re-
wards/losses.

Definition 13.1. A two-player vector game is given by a set of n × m
vectors {u(i, j) ∈ Rd}. The reward vector for the row player playing strategy
i ∈ [n], and column player playing strategy j ∈ [m], is given by the vector
u(i, j) ∈ Rd.

Similar to scalar games, we can define mixed strategies as distributions
over pure strategies, and denote the expected reward vector for playing
mixed strategies by

∀x ∈ ∆n,y ∈ ∆m . u(x,y) = E
i∼x,j∼y

[u(i, j)] .

We henceforth consider more general vector games than originally con-
sidered in the literature. The additional generality allows for uncountably
many strategies for both players, and allows the strategies to originate from
bounded convex and closed sets in Euclidean space.

Definition 13.2. A generalized two-player vector game is given by a set of
vectors {u ∈ Rd}, and two bounded convex and closed decision sets K1,K2.
The reward vector for the row player playing strategy x ∈ K1, and column
player playing strategy y ∈ K2, is given by the vector u(x,y) ∈ Rd.

13.1. VECTOR-VALUED GAMES 209

The goal of a zero-sum game is clear: to guarantee a certain loss/reward.
What should be the vector game generalization? Blackwell proposed to ask
“can we guarantee that our vector payoff lies in some closed convex set S?”

It is left as an exercise at the end of this chapter to show that an imme-
diate analogue of Von Neumann’s theorem does not exist: there is no single
mixed strategy that ensures the vector payoff lies in a given set. However,
this does not rule out an asymptotic notion, if we allow the game to repeat
indefinitely, and ask whether there exists a strategy to ensure that the av-
erage reward vector lies in a certain set, or at least approaches it in terms
of Euclidean distance. This is exactly the solution concept that Blackwell
proposed as defined formally below.

Using the notation we have used throughout this text, we denote the
(Euclidean) distance to a bounded, closed and convex set S as

Dist(w, S) = min
x∈S
∥w − x∥.

Definition 13.3. Given a generalized vector game K1,K2, {u(·, ·)}, we say
that a set S ⊆ Rd is approachable if there exists some algorithm A, called
an approachability algorithm, which iteratively selects points K1 ∋ xt ←
A(y1,y2, . . . ,yt−1), such that, for any sequence
y1,y2, . . . ,yT ∈ K2, we have

Dist
(

1
T

∑T
t=1 u(xt,yt), S

)
→ 0 as T →∞.

Under this notion, we can now allow the player to implement an adaptive
strategy for a repeated version of the game, and we require that the average
reward vector comes arbitrarily close to S. Blackwell’s theorem character-
izes which sets in Euclidean space are approachable. We give it below in
generalized form,

Theorem 13.4 (Blackwell’s Approachability Theorem). For any vector
game K1,K2, {u(·, ·)}, the closed, bounded and convex set S ⊆ Rd is ap-
proachable if and only if the following condition holds:

∀y ∈ K2 , ∃x ∈ K1 , s.t. u(x,y) ∈ S.

The approachability condition spelled out in the equation above is both
necessary and sufficient. The necessity of this condition is left as an exer-
cise, and the more interesting implication is that any set that satisfies this
condition is, in fact, approachable. Our reductions henceforth give an ex-
plicit proof of Blackwell’s theorem, and we leave it as an exercise to draw
the explicit conclusion of this theorem from the first efficient reduction.

210 CHAPTER 13. BLACKWELL APPROACHABILITY

The relationship between Blackwell approachability in vector games and
OCO may not be evident at this point. However, we proceed to show that
the two notions are in fact algorithmically equivalent.

In the next section we show that any algorithm for OCO can be efficiently
converted to an approachability algorithm for vector games. Following this,
we show the other direction as well: an approachability algorithm for vector
games gives an OCO algorithm with no loss of efficiency!

13.2 From Online Convex Optimization to Approach-
ability

In this section we give an efficient reduction from OCO to approachability.
Namely, assume that we have an OCO algorithm denoted A, that attains
sublinear regret. Our goal is to design a Blackwell approachability algo-
rithm for a given vector game and closed, bounded convex set S. Thus,
the reduction in this section shows that OCO is a stronger notion than ap-
proachabiliy. This direction is perhaps the more surprising one, and was
discovered more recently, see bibliographic section for an historical account
of this development.

Since we are looking to approach a given set, it is natural to consider
minimizing the distance of our reward vector to the set. Recall we denote
the (Euclidean) distance to a set as Dist(w, S) = minx∈S ∥w − x∥. The
support function of closed convex set S is given by

hS(w) = max
x∈S
{w⊤x}.

Notice that this function is convex, since it is a maximum over linear func-
tions.

Lemma 13.5. The distance to a set can be written as

Dist(u, S) = max
∥w∥≤1

{
w⊤u− hS(w)

}
. (13.1)

Proof. Using the definition of the support function,

max∥w∥≤1

{
w⊤u− hS(w)

}
= max∥w∥≤1

{
w⊤u−maxx∈S w⊤x

}
= max∥w∥≤1minx∈S

{
w⊤u−w⊤x

}
negation

= minx∈S max∥w∥≤1

{
w⊤u−w⊤x

}
minimax theorem

= minx∈S ∥x− u∥
= Dist(u, S).

13.2. OCO TO APPROACHABILITY 211

Blackwell’s theorem characterizes approachable sets: it is necessary and
sufficient to be able to find a best response x ∈ K1, to any y ∈ K2, such
that u(x,y) ∈ S. To proceed with the reduction, we need an equivalent
condition stated formally as follows.

Lemma 13.6. For a generalized vector game K1,K2, {u}, the following to
conditions are equivalent:

1. There exists a feasible best response,

∀y ∈ K2 , ∃x ∈ K1 , s.t. u(x,y) ∈ S.

2. For all w ∈ Rd, ∥w∥ ≤ 1, there exists x ∈ K1 such that

∀y ∈ K2 , w⊤u(x,y)− hS(w) ≤ 0.

Proof. Consider the scalar zero sum game

min
x

max
y

Dist(u(x,y), S) = λ.

Blackwell’s theorem asserts that λ = 0 if and only if S is approachable.
Using Sion’s generalization to the Von Neumann minimax theorem from
chapter 8,

λ = minxmaxy Dist(u(x,y), S)

= minxmaxy max∥w∥≤1

{
w⊤u(x,y)− hS(w)

}
Lemma 13.5

= max∥w∥≤1minxmaxy
{
w⊤u(x,y)− hS(w)

}
minimax

Thus, the second statement of the lemma is satisfied if and only if λ = 0.

As mentioned previously, the necessity of Blackwell’s condition is left as
an exercise. To prove sufficiency, we assume that form (2) of Blackwell’s
condition as in Lemma 13.6 is satisfied. Formally, we henceforth assume
that the vector game and set S are equipped with a best response oracle O,
such that

∀y ∈ K2 , w⊤u(O(w),y)− hS(w) ≤ 0. (13.2)

We proceed with the formal proof of sufficiency, constructively specified
in Algorithm 37. Notice that in this reduction, the functions ft are concave,
and the OCO algorithm is used for maximization.

212 CHAPTER 13. BLACKWELL APPROACHABILITY

Algorithm 37 OCO to Approachability reduction

1: Input: generalized vector game K1,K2, {u(·, ·)}, set S, best response
oracle O, OCO algorithm A

2: Set K = B ∈ Rd to be the unit Euclidean ball, as decision set for A.
3: for t = 1, . . . , T do
4: set ft(w) = w⊤ut−1 − hS(w)
5: Query A: wt ← A(f1, . . . , ft−1)
6: Query O: xt ← O(wt)
7: Observe yt and let ut = u(xt,yt)
8: end for
9: return ūT = 1

T

∑T
t=1 u(xt,yt)

Theorem 13.7. Algorithm 37, with input OCO algorithm A, returns the
vector ūT = 1

T

∑T
t=1 u(xt,yt) that approaches the set S at a rate of

Dist(ūT , S) ≤
RegretT (A)

T

Proof. Notice that equation (13.2) implies that for wt as defined in the
algorithm, we have

∀y ∈ K2 , w⊤
t u(O(wt),y)− hS(wt) ≤ 0.

This implies that for any t,

ft(wt) = w⊤
t u(O(wt),yt)− hS(wt) ≤ 0. (13.3)

Therefore we have, using Lemma 13.5,

Dist(ūT , S) = max∥w∥≤1

{
w⊤ūT − hS(w)

}
= maxw⋆∈K

1
T

∑
t ft(w

⋆) definition of ft

≤ 1
T

∑
t ft(wt) +

RegretT (A)
T OCO guarantee of A

≤ RegretT (A)
T equation (13.3)

This theorem explicitly relates OCO with approachability, and since we
have already proved the existence of efficient OCO algorithms in this text, it
can be used to formally prove Blackwell’s theorem. Completing the details
is left as an exercise.

13.3. FROMAPPROACHABILITY TOONLINE CONVEXOPTIMIZATION213

13.3 From Approachability to Online Convex Op-
timization

In this subsection we show the converse reduction: given an approachabil-
ity algorithm, we design an OCO algorithm with no loss of computational
efficiency. This direction was essentially shown by Blackwell for discrete
decision problems, as described in more detail in the bibliographic section.
We prove it here in the full generality of OCO.

Formally, given an approachability algorithm A, denote by DistT (A)
an upper bound on its rate of convergence to the set S as a function of
the number of iterations T . That is, for a given vector game, denote by
ūT = 1

T

∑T
t=1 u(xt,yt) the average reward vector. Then A guarantees

Dist(ūT , S) ≤ DistT (A) , lim
T 7→∞

DistT (A) = 0.

Given an approachability algorithm A, we henceforth create an OCO algo-
rithm with vanishing regret.

13.3.1 Cones and polar cones

Approachability is in a certain geometric sense a dual to OCO. To see this,
we require several geometric notions, that are explicitly required for the
reduction from approachability to OCO.

For a given convex set K ⊆ Rd, we define its cone as the set of all vectors
in K multiplied by a non-negative scalar,

cone(K) = {c · x | x ∈ K, 0 ≤ c ∈ R}.

The notion of a convex cone is not strictly required for the proofs below,
but they are commonly used in the context of approachability. The polar
set to a given set K ⊆ Rd is defined to be

K0 def
= {y ∈ Rd s.t. ∀x ∈ K , x⊤y ≤ 0}.

It is left as an exercise to prove that K0 is a convex set, and that for cones,
the polar to the polar is the original set.

Henceforth we need the extension of a convex set defined as follows.
Denote by 1 ⊕ K as the direct sum of the scalar one and the set K, i.e.,
all vectors of the form x̃ = 1 ⊕ x for x ∈ K. Denote the bounded polar
extension of a set K by

Q(K) = (1⊕K)0.

214 CHAPTER 13. BLACKWELL APPROACHABILITY

That is, we take all points in the polar set to the direct sum 1⊕K.
This definition of the polar set gives rise to the following quantitative

characterization.

Lemma 13.8. Let y ∈ Rd+1 be such that Dist(y, Q(K)) ≤ ε. Then, denot-
ing by D the diameter of K,

∀x̃ ∈ 1⊕K , y⊤x̃ ≤ ε(D + 1).

Proof. By definition of distance to a set, we have that Dist(y, Q(K)) ≤ ε,
implies the existence of a point z ∈ Q(K) such that ∥y − z∥ ≤ ε. Thus, for
all x̃ ∈ 1⊕K, we have

y⊤x̃ = (y − z+ z)⊤x̃

≤ ∥y − z∥∥x̃∥+ z⊤x̃ Cauchy-Schwartz

≤ ε∥x̃∥+ z⊤x̃ ∥y − z∥ ≤ ε

≤ ε∥x̃∥+ 0 x̃ ∈ 1⊕K, z ∈ (1⊕K)0

≤ ε(1 +D).

13.3.2 The reduction

Algorithm 38 takes as an input a Blackwell approachability algorithm that
guarantees, under the necessary and sufficient condition, convergence to a
given set. It also takes as an input a set K for OCO.

The reduction considers a vector game with decision sets K,F and ap-
proachability set S = Q(K), and generates a sequence of decisions that
guarantee low regret as we prove next.

Since this reduction creates the approachability set S as a function of
K, we need to prove that indeed the set S is approachable. We show this in
the next subsection.

Theorem 13.9. The reduction defined in Algorithm 38, for any input al-
gorithm A, produces an OLO algorithm L such that

Regret(L) ≤ T (D + 1) ·DistT (A).

Proof. The approachability algorithm guarantees Dist(ūT , S) ≤ DistT (A).
Using the definition of S and Lemma 13.8 we have

13.3. FROMAPPROACHABILITY TOONLINE CONVEXOPTIMIZATION215

Algorithm 38 Conversion of Approachability Alg. A to Online Convex
Optimization Alg. L
1: Input: closed, bounded and convex decision set K ⊂ Rd, approachability

oracle A.
2: Let: vector game w. K1 = K, K2 = F , and set S := Q(K).
3: for t = 1, . . . , T do
4: Query A: xt ← A(f1, . . . , ft−1)
5: Let: L(f1, . . . , ft−1) := xt

6: Receive: cost function ft
7: Construct reward vector u(xt, ft) := ∇⊤

t xt ⊕ (−∇t)
8: end for

∀x̃ ∈ Q(K) . (D + 1) ·DistT (A)
≥ (1

T

∑T
t=1 u(xt, ft))

⊤x̃

≥ (1
T

∑T
t=1 u(xt, ft))

⊤(1⊕ x⋆)

= 1
T

∑T
t=1∇⊤

t xt − 1
T

∑T
t=1∇⊤

t x
⋆

≥ 1
T RegretT (L),

where the second inequality holds since the first inequality holds for every
x̃, in particular for the vector 1⊕ x⋆.

13.3.3 Existence of a best response oracle

Notice that the reduction of this section from approachability to OCO does
not require the best response oracle. However, Blackwell’s approachability
theorem does require this oracle as sufficient and necessary, and thus for the
set S we constructed to be approachable at all, such an oracle needs to exist.
This is what we show next.

Consider the vectors ut constructed in the reduction. A best response
oracle finds, for every vector y, a vector x that guarantees u(x,y) ∈ S. In
our case, this translates to the condition

∀f ∈ F , ∃x ∈ K , ∇f(x)⊤x⊕ (−∇f(x)) ∈ (1⊕K)0.

By definition of the polar set, this implies that for all x̃ ∈ K, we have

∇f(x)⊤x−∇f(x)⊤x̃ ≤ 0.

216 CHAPTER 13. BLACKWELL APPROACHABILITY

In other words, the best response oracle corresponds to a procedure that
given f , finds a vector x⋆ such that

∀x ∈ K . f(x⋆)− f(x) ≤ ∇f(x⋆)⊤(x⋆ − x) ≤ 0.

This is an optimization oracle for the set K!

13.4. BIBLIOGRAPHIC REMARKS 217

13.4 Bibliographic Remarks

David Blackwell’s celebrated Approachability Theorem was published in
[Blackwell, 1956]. The first no-regret algorithm for a discrete action set-
ting was given in a seminal paper by James Hannan in [Hannan, 1957] the
next year. That same year, Blackwell pointed out [Blackwell, 1954] that
his approachability result leads, as a special case, to an algorithm with es-
sentially the same low-regret guarantee proven by Hannan. For Hannan’s
account of events see [Gilliland et al., 2010].

Over the years several other problems have been reduced to Blackwell
approachability, including asymptotic calibration [Foster and Vohra, 1998],
online learning with global cost functions [Even-Dar et al., 2009] and more
[Mannor and Shimkin, 2008]. Indeed, it has been presumed that approach-
ability, while establishing the existence of a no-regret algorithm, is strictly
more powerful than regret-minimization; hence its utility in such a wide
range of problems.

However, this was recently shown not to be the case. Abernethy et al.
[2011] showed that approachability is in fact equivalent to OCO. This result
is the basis of the material presented in this chapter. One side of their
reduction was simplified and generalized in [Shimkin, 2016].

218 CHAPTER 13. BLACKWELL APPROACHABILITY

13.5 Exercises

1. Prove that Von Neumann’s theorem does not hold for vector games, i.e., give
an example of a vector game such that there is no single mixed strategy that ensures
the vector payoff lies in a given set. Show that this is true even for approachable
sets.

2. Prove that the polar set to a given convex set K ∈ Rd is convex.

3. Prove that Blackwell’s condition is necessary, i.e., prove that for a set S to be
approachable in a given vector game, there must exist an oracle O such that

∀y ∈ ∆m , u(O(y),y) ∈ S.

4. Complete the proof of Blackwell’s theorem using the first reduction of this
chapter and the existence of OCO algorithms. That is, prove that for a given vector
game, the existence of an oracle as per the previous question, is sufficient for a set
S ⊆ Rd to be approachable.

NOTES 219

Notes

1Alternatively and equivalently, any performance metric for this setting should depend
on the magnitude of the largest loss. This is the viewpoint taken later in the rest of this
book.

2Here and henceforth, we denote as [n] the set of integers {1, ..., n}.
3 We will discuss projections with respect to other distance notions in chapter 5.
4this notation stands for the arguments that minimize the expression inside the brakets,

which are a subset in Rd.
5That a0 ≤ 1 follows from Lemma 2.4. For t = 1, a1 ≤ 1

2
since a1 ≤ a0(1 − a0) and

0 ≤ a0 ≤ 1. For the induction step, at ≤ at−1(1− at−1) ≤ 1
t
(1− 1

t
) = t−1

t2
= 1

t+1
(t

2−1
t2

) ≤
1

t+1
.
6This assumes T is even. T odd leads to the same constants.
7Such a representation may seem näıve at first as it completely ignores the words’ order

of appearance and their context. Extensions to capture these features are indeed studied
in the Natural Language Processing literature.

8see bibliography for references to these results.
9see exercises.

10Historically, this lemma is known as the “FTL-BTL,” which stands for follow-the-
leader vs. be-the-leader. BTL is a hypothetical algorithm that predicts xt+1 at iteration
t, where xt is the prediction made by FTL. These terms were coined by Kalai and Vempala
[Kalai and Vempala, 2005].

11In harmonic analysis of Boolean functions, a similar quantity is called “average sensi-
tivity”.

12One such example is the self-concordant barrier regularization which we shall explore
in the next chapter.

13Taken from [Gass, 2006]
14In certain cases this can be k × AdaptiveRegretT , depending on the particular algo-

rithm used.
15The results henceforth hold with a different constant if we replace one by a different

scaling.

220 NOTES

Bibliography

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games.
Cambridge University Press, 2006.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, March 2004. ISBN 0521833787.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. Applied Optimization. Springer, 2004.

Arkadi S. Nemirovski and David B. Yudin. Problem Complexity and Method
Efficiency in Optimization. John Wiley UK/USA, 1983.

A.S. Nemirovskii. Interior point polynomial time methods in convex pro-
gramming, 2004. Lecture Notes.

J.M. Borwein and A.S. Lewis. Convex Analysis and Nonlinear Optimiza-
tion: Theory and Examples. CMS Books in Mathematics. Springer,
2006. ISBN 9780387295701. URL http://books.google.fr/books?id=

TXWzqEkAa7IC.

R.T. Rockafellar. Convex Analysis. Convex Analysis. Princeton University
Press, 1997. ISBN 9780691015866. URL http://books.google.co.il/

books?id=1TiOka9bx3sC.

Elad Hazan. A survey: The convex optimization approach to regret min-
imization. In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright,
editors, Optimization for Machine Learning, pages 287–302. MIT Press,
2011.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foun-
dations and Trends in Machine Learning, 4(2):107–194, 2011.

Alexander Rakhlin. Lecture notes on online learning. Lecture Notes, 2009.

221

http://books.google.fr/books?id=TXWzqEkAa7IC
http://books.google.fr/books?id=TXWzqEkAa7IC
http://books.google.co.il/books?id=1TiOka9bx3sC
http://books.google.co.il/books?id=1TiOka9bx3sC

222 BIBLIOGRAPHY

Alexander Rakhlin and Karthik Sridharan. Theory of statistical learning
and sequential prediction. Lecture Notes, 2014.

Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th International Conference on
Machine Learning, pages 928–936, 2003.

Elad Hazan. Efficient Algorithms for Online Convex Optimization and Their
Applications. PhD thesis, Princeton University, Princeton, NJ, USA, 2006.
AAI3223851.

N. Littlestone and M. Warmuth. The weighted majority algorithm. In Pro-
ceedings of the 30th Annual Symposium on the Foundations of Computer
Science, pages 256–261, 1989.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-
rithm. Information and Computation, 108(2):212–261, 1994.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Comput-
ing, 8(6):121–164, 2012. doi: 10.4086/toc.2012.v008a006. URL http:

//www.theoryofcomputing.org/articles/v008a006.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst. Sci., 55
(1):119–139, August 1997.

Thomas Cover. Universal portfolios. Math. Finance, 1(1):1–19, 1991.

Adam Kalai and Santosh Vempala. Efficient algorithms for universal port-
folios. J. Mach. Learn. Res., 3:423–440, March 2003. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=944919.944942.

Amit Agarwal, Elad Hazan, Satyen Kale, and Robert E. Schapire. Algo-
rithms for portfolio management based on the newton method. In Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML
’06, pages 9–16, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms
for online convex optimization. In Machine Learning, volume 69(2–3),
pages 169–192, 2007.

Avrim Blum and Adam Kalai. Universal portfolios with and without trans-
action costs. Mach. Learn., 35(3):193–205, June 1999. ISSN 0885-6125.

http://www.theoryofcomputing.org/articles/v008a006
http://www.theoryofcomputing.org/articles/v008a006
http://dl.acm.org/citation.cfm?id=944919.944942

BIBLIOGRAPHY 223

doi: 10.1023/A:1007530728748. URL http://dx.doi.org/10.1023/A:

1007530728748.

Elad Hazan and Satyen Kale. On stochastic and worst-case models for
investing. In Advances in Neural Information Processing Systems 22. MIT
Press, 2009.

Baruch Awerbuch and Robert Kleinberg. Online linear optimization and
adaptive routing. J. Comput. Syst. Sci., 74(1):97–114, 2008. ISSN 0022-
0000. doi: http://dx.doi.org/10.1016/j.jcss.2007.04.016.

Stephen Boyd. Lecture notes: Subgradient methods, January 2014.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foun-
dations and Trends in Machine Learning, 8(3–4):231–357, 2015.

Elad Hazan. Lecture notes: Optimization for machine learning. arXiv
preprint arXiv:1909.03550, 2019.

Zeyuan Allen-Zhu and Elad Hazan. Optimal black-box reductions between
optimization objectives. CoRR, abs/1603.05642, 2016.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and
Trends in optimization, 1(3):127–239, 2014.

Boris T. Polyak. Introduction to optimization. Optimization Software, Inc.,
New York, 1987.

Elad Hazan and Sham Kakade. Revisiting the polyak step size. arXiv
preprint arXiv:1905.00313, 2019.

Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Com-
putational Geometry. MIT Press, Cambridge, MA, USA, 1969.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, COLT ’92, pages 144–152,
1992.

http://dx.doi.org/10.1023/A:1007530728748
http://dx.doi.org/10.1023/A:1007530728748

224 BIBLIOGRAPHY

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. MIT
Press, 2002.

Amit Daniely. Complexity theoretic limitations on learning halfspaces. In
Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 105–117, 2016.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, USA, 1st edition, 2009. ISBN
0521424267.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus
gradient descent for linear predictors. Inf. Comput., 132(1):1–63, 1997.

Herbert Robbins and Sutton Monro. A stochastic approximation method.
The Annals of Mathematical Statistics, 22(3):400–407, 09 1951. doi:
10.1214/aoms/1177729586. URL http://dx.doi.org/10.1214/aoms/

1177729586.

Léon Bottou. Online learning and stochastic approximations. On-line learn-
ing in neural networks, 17(9):142, 1998.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In
Advances in neural information processing systems, pages 161–168, 2008.

Guanghui Lan. An optimal method for stochastic composite optimization.
Mathematical Programming, 133(1-2):365–397, 2012.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter.
Pegasos: primal estimated sub-gradient solver for svm. Math. Program.,
127(1):3–30, 2011a.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an
optimal algorithm for stochastic strongly-convex optimization. Journal of
Machine Learning Research - Proceedings Track, pages 421–436, 2011.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient
descent optimal for strongly convex stochastic optimization. In ICML,
2012.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth
optimization: Convergence results and optimal averaging schemes. In
ICML, 2013.

http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1214/aoms/1177729586

BIBLIOGRAPHY 225

Louis Bachelier. Théorie de la spéculation. Annales Scientifiques de l’École
Normale Supérieure, 3(17):21–86, 1900.

M. F. M. Osborne. Brownian motion in the stock market. Operations Re-
search, 2:145–173, 1959.

Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. Journal of Political Economy, 81(3):637–654, 1973.

Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic
regret algorithms for online convex optimization. In Gábor Lugosi and
Hans-Ulrich Simon, editors, COLT, volume 4005 of Lecture Notes in Com-
puter Science, pages 499–513. Springer, 2006. ISBN 3-540-35294-5.

Jacob Abernethy, Rafael M. Frongillo, and Andre Wibisono. Minimax
option pricing meets black-scholes in the limit. In Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, STOC
’12, pages 1029–1040, New York, NY, USA, 2012. ACM. URL http:

//doi.acm.org/10.1145/2213977.2214070.

Peter DeMarzo, Ilan Kremer, and Yishay Mansour. Online trading algo-
rithms and robust option pricing. In STOC ’06: Proceedings of the thirty-
eighth annual ACM symposium on Theory of computing, pages 477–486,
2006. ISBN 1-59593-134-1.

Jyrki Kivinen and ManfredK. Warmuth. Averaging expert predictions.
In Paul Fischer and HansUlrich Simon, editors, Computational Learn-
ing Theory, volume 1572 of Lecture Notes in Computer Science, pages
153–167. Springer Berlin Heidelberg, 1999.

Volodimir G Vovk. Aggregating strategies. Proc. of Computational Learning
Theory, 1990, 1990.

Dylan J Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik
Sridharan. Logistic regression: The importance of being improper. In
Conference On Learning Theory, pages 167–208. PMLR, 2018.

Tim van Erven, Peter D Grünwald, Nishant A Mehta, Mark D Reid, and
Robert C Williamson. Fast rates in statistical and online learning. Journal
of Machine Learning Research, 16(54):1793–1861, 2015.

Katy S. Azoury and M. K. Warmuth. Relative loss bounds for on-line density
estimation with the exponential family of distributions. Mach. Learn., 43
(3):211–246, June 2001. ISSN 0885-6125.

http://doi.acm.org/10.1145/2213977.2214070
http://doi.acm.org/10.1145/2213977.2214070

226 BIBLIOGRAPHY

Kurt Riedel. A sherman-morrison-woodbury identity for rank augmenting
matrices with application to centering. SIAM J. Mat. Anal., 12(1):80–95,
January 1991.

A. Grove, N. Littlestone, and D. Schuurmans. General convergence results
for linear discriminant updates. Machine Learning, 43(3):173–210, 2001.

Jyrki Kivinen and Manfred K. Warmuth. Relative loss bounds for multidi-
mensional regression problems. Machine Learning, 45(3):301–329, 2001.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307, 2005.

James Hannan. Approximation to bayes risk in repeated play. In M. Dresher,
A. W. Tucker, and P. Wolfe, editors, Contributions to the Theory of
Games, volume 3, pages 97–139, 1957.

Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online
learning algorithms. Machine Learning, 69(2-3):115–142, 2007.

Shai Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applica-
tions. PhD thesis, The Hebrew University of Jerusalem, 2007.

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the
dark: An efficient algorithm for bandit linear optimization. In Proceedings
of the 21st Annual Conference on Learning Theory, pages 263–274, 2008.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret
bounded by variation in costs. In The 21st Annual Conference on Learning
Theory (COLT), pages 57–68, 2008.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. In COLT 2010 - The
23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010,
pages 257–269, 2010.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159, 2011.

H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimiza-
tion for online convex optimization. In COLT 2010 - The 23rd Conference
on Learning Theory, Haifa, Israel, June 27-29, 2010, pages 244–256, 2010.

BIBLIOGRAPHY 227

Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adap-
tive regularization in online and stochastic optimization. arXiv preprint
arXiv:1706.06569, 2017.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning, 4(2):26–31, 2012.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Jacob Abernethy, Chansoo Lee, Abhinav Sinha, and Ambuj Tewari. Online
linear optimization via smoothing. In Proceedings of The 27th Conference
on Learning Theory, pages 807–823, 2014.

Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. Perturbation techniques
in online learning and optimization. In Tamir Hazan, George Papandreou,
and Daniel Tarlow, editors, Perturbations, Optimization, and Statistics,
Neural Information Processing Series, chapter 8. MIT Press, 2016. to
appear.

Herbert Robbins. Some aspects of the sequential design of experiments.
Bull. Amer. Math. Soc., 58(5):527–535, 1952.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends in
Machine Learning, 5(1):1–122, 2012.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):
48–77, 2003. doi: http://dx.doi.org/10.1137/S0097539701398375.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial
and stochastic bandits. In COLT 2009 - The 22nd Conference on Learning
Theory, Montreal, Quebec, Canada, June 18-21, 2009, 2009.

Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. On-
line convex optimization in the bandit setting: Gradient descent without
a gradient. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 385–394, 2005.

http://www.deeplearningbook.org

228 BIBLIOGRAPHY

Sébastien Bubeck, Ofer Dekel, Tomer Koren, and Yuval Peres. Bandit con-
vex optimization:\sqrtt regret in one dimension. In Conference on Learn-
ing Theory, pages 266–278. PMLR, 2015.

Elad Hazan and Yuanzhi Li. An optimal algorithm for bandit convex opti-
mization. arXiv preprint arXiv:1603.04350, 2016.

Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods
for bandit convex optimization. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 72–85, 2017.

Varsha Dani, Thomas Hayes, and Sham Kakade. The price of bandit infor-
mation for online optimization. In J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems
20. MIT Press, Cambridge, MA, 2008.

Y. E. Nesterov and A. S. Nemirovskii. Interior Point Polynomial Algorithms
in Convex Programming. SIAM, Philadelphia, 1994.

Ohad Shamir. On the complexity of bandit linear optimization. In Confer-
ence on Learning Theory, pages 1523–1551. PMLR, 2015.

Jacob Abernethy and Alexander Rakhlin. Beating the adaptive bandit with
high probability. In Proceedings of the 22nd Annual Conference on Learn-
ing Theory, 2009.

Ofer Dekel, Ambuj Tewari, and Raman Arora. Online bandit learning
against an adaptive adversary: from regret to policy regret. In Proceedings
of the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

Gergely Neu, András György, Csaba Szepesvári, and András Antos. On-
line markov decision processes under bandit feedback. IEEE Trans. Au-
tomat. Contr., 59(3):676–691, 2014. doi: 10.1109/TAC.2013.2292137.
URL http://dx.doi.org/10.1109/TAC.2013.2292137.

Jia Yuan Yu and Shie Mannor. Arbitrarily modulated markov decision
processes. In Proceedings of the 48th IEEE Conference on Decision and
Control, pages 2946–2953, 2009.

E. Even-Dar, S. Kakade, and Y. Mansour. Online markov decision processes.
Mathematics of Operations Research, 34(3):726–736, 2009.

http://dx.doi.org/10.1109/TAC.2013.2292137

BIBLIOGRAPHY 229

S. Mannor and N. Shimkin. The empirical bayes envelope and regret min-
imization in competitive markov decision processes. Mathematics of Op-
erations Research, 28(2):327–345, 2003.

J. Y. Yu, S. Mannor, and N. Shimkin. Markov decision processes with
arbitrary reward processes. Mathematics of Operations Research, 34(3):
737–757, 2009.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge Uni-
versity Press, 2020.

Nathan Srebro. Learning with Matrix Factorizations. PhD thesis, Mas-
sachusetts Institute of Technology, 2004.

Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix fac-
torization for collaborative prediction. In Proceedings of the 22Nd Inter-
national Conference on Machine Learning, ICML ’05, pages 713–719, New
York, NY, USA, 2005. ACM. ISBN 1-59593-180-5. doi: 10.1145/1102351.
1102441. URL http://doi.acm.org/10.1145/1102351.1102441.

R. Salakhutdinov and N. Srebro. Collaborative filtering in a non-uniform
world: Learning with the weighted trace norm. In NIPS, pages 2056–2064,
2010.

J. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and J. A. Tropp. Practi-
cal large-scale optimization for max-norm regularization. In NIPS, pages
1297–1305, 2010.

E. Candes and B. Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9:717–772, 2009.

O. Shamir and S. Shalev-Shwartz. Collaborative filtering with the trace
norm: Learning, bounding, and transducing. JMLR - Proceedings Track,
19:661–678, 2011.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3:149–154, 1956.

Elad Hazan. Sparse approximate solutions to semidefinite programs. In
LATIN, pages 306–316, 2008.

Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm
regularized problems. In ICML, pages 471–478, 2010.

http://doi.acm.org/10.1145/1102351.1102441

230 BIBLIOGRAPHY

Simon Lacoste-Julien, Martin Jaggi, Mark W. Schmidt, and Patrick
Pletscher. Block-coordinate frank-wolfe optimization for structural svms.
In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 53–61, 2013.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex opti-
mization. In ICML, 2013.

Miroslav Dud́ık, Zäıd Harchaoui, and Jérôme Malick. Lifted coordinate
descent for learning with trace-norm regularization. Journal of Machine
Learning Research - Proceedings Track, 22:327–336, 2012.

Zäıd Harchaoui, Matthijs Douze, Mattis Paulin, Miroslav Dud́ık, and
Jérôme Malick. Large-scale image classification with trace-norm regu-
larization. In CVPR, pages 3386–3393, 2012.

Elad Hazan and Satyen Kale. Projection-free online learning. In ICML,
2012.

Shai Shalev-Shwartz, Alon Gonen, and Ohad Shamir. Large-scale convex
minimization with a low-rank constraint. In ICML, pages 329–336, 2011b.

Francis Bach, Simon Lacoste-Julien, and Guillaume Obozinski. On the
equivalence between herding and conditional gradient algorithms. In John
Langford and Joelle Pineau, editors, Proceedings of the 29th International
Conference on Machine Learning (ICML-12), ICML ’12, pages 1359–1366,
New York, NY, USA, July 2012. Omnipress. ISBN 978-1-4503-1285-1.

Ambuj Tewari, Pradeep D. Ravikumar, and Inderjit S. Dhillon. Greedy
algorithms for structurally constrained high dimensional problems. In
NIPS, pages 882–890, 2011.

Dan Garber and Elad Hazan. Approximating semidefinite programs in sub-
linear time. In NIPS, pages 1080–1088, 2011.

Dan Garber and Elad Hazan. Playing non-linear games with linear oracles.
In FOCS, pages 420–428, 2013.

Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina
Balcan, and Fei Sha. Distributed frank-wolfe algorithm: A unified frame-
work for communication-efficient sparse learning. CoRR, abs/1404.2644,
2014.

BIBLIOGRAPHY 231

Dan Garber. Faster projection-free convex optimization over the spectra-
hedron. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 874–882, 2016.

Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, and Yuanzhi Li. Linear convergence
of a frank-wolfe type algorithm over trace-norm balls. In Proceedings of the
31st International Conference on Neural Information Processing Systems,
pages 6192–6201, 2017.

Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex opti-
mization. SIAM Journal on Optimization, 26(2):1379–1409, 2016.

Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochas-
tic optimization. In International Conference on Machine Learning, pages
1263–1271. PMLR, 2016.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional
gradient methods: From convex minimization to submodular maximiza-
tion. arXiv preprint arXiv:1804.09554, 2018.

Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi.
Projection-free online optimization with stochastic gradient: From con-
vexity to submodularity. In International Conference on Machine Learn-
ing, pages 814–823, 2018.

Jiahao Xie, Zebang Shen, Chao Zhang, Hui Qian, and Boyu Wang. Stochas-
tic recursive gradient-based methods for projection-free online learning.
arXiv preprint arXiv:1910.09396, 2019.

Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigen-
value by the power and lanczos algorithms with a random start. SIAM
journal on matrix analysis and applications, 13(4):1094–1122, 1992.

Zeyuan Allen-Zhu and Yuanzhi Li. Lazysvd: even faster svd decomposition
yet without agonizing pain. In Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, pages 982–990, 2016.

Cameron Musco and Christopher Musco. Randomized block krylov meth-
ods for stronger and faster approximate singular value decomposition. In
Proceedings of the 28th International Conference on Neural Information
Processing Systems-Volume 1, pages 1396–1404, 2015.

John Von Neumann and Oskar Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton University Press, 1944. ISBN 0691119937.

232 BIBLIOGRAPHY

L.V. Kantorovich. A new method of solving some classes of extremal prob-
lems. Doklady Akad Sci USSR, 28:211–214, 1940.

G. B. Dantzig. Maximization of a Linear Function of Variables Subject
to Linear Inequalities, in Activity Analysis of Production and Allocation,
chapter XXI. Wiley, New York, 1951.

Donald J. Albers, Constance Reid, and George B. Dantzig. An interview
with george b. dantzig: The father of linear programming. The College
Mathematics Journal, 17(4):292–314, 1986.

Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1st edition, 1997. ISBN 1886529191.

Jiri Matousek and Bernd Gärtner. Understanding and using linear program-
ming. Springer Science & Business Media, 2007.

Yoav Freund and Robert E. Schapire. Adaptive game playing using mul-
tiplicative weights. Games and Economic Behavior, 29(1–2):79 – 103,
1999.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading
to correlated equilibrium. Econometrica, 68(5):1127–1150, 2000.

Eyal Even-dar, Yishay Mansour, and Uri Nadav. On the convergence of
regret minimization dynamics in concave games. In Proceedings of the
Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 523–532, 2009.

Tim Roughgarden. Intrinsic robustness of the price of anarchy. Journal of
the ACM, 62(5):32:1–32:42, November 2015.

Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation
algorithms for fractional packing and covering problems. Mathematics of
Operations Research, 20(2):257–301, 1995.

Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff. Sublinear op-
timization for machine learning. J. ACM, 59(5):23:1–23:49, November
2012. ISSN 0004-5411.

Elad Hazan, Tomer Koren, and Nati Srebro. Beating sgd: Learning svms in
sublinear time. In Advances in Neural Information Processing Systems,
pages 1233–1241, 2011.

BIBLIOGRAPHY 233

Ilan Adler. The equivalence of linear programs and zero-sum games. Inter-
national Journal of Game Theory, 42(1):165–177, 2013.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
November 1984.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computa-
tional Learning Theory. MIT Press, Cambridge, MA, USA, 1994. ISBN
0-262-11193-4.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014. doi: 10.
1017/CBO9781107298019.

Nick Littlestone. From on-line to batch learning. In Proceedings of the
Second Annual Workshop on Computational Learning Theory, COLT ’89,
pages 269–284, 1989.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability
of on-line learning algorithms. IEEE Trans. Inf. Theor., 50(9):2050–2057,
September 2006. ISSN 0018-9448.

N. Cesa-Bianchi and C. Gentile. Improved risk tail bounds for on-line algo-
rithms. Information Theory, IEEE Transactions on, 54(1):386–390, Jan
2008.

Tong Zhang. Data dependent concentration bounds for sequential prediction
algorithms. In Proceedings of the 18th Annual Conference on Learning
Theory, COLT’05, pages 173–187, 2005.

Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

Nick Littlestone and Manfred Warmuth. Relating data compression and
learnability. 1986.

Avi Wigderson. Mathematics and Computation: A Theory Revolutionizing
Technology and Science. Princeton University Press, 2019. URL http:

//www.jstor.org/stable/j.ctvckq7xb.

Shay Moran and Amir Yehudayoff. Sample compression schemes for vc
classes. Journal of the ACM (JACM), 63(3):1–10, 2016.

http://www.jstor.org/stable/j.ctvckq7xb
http://www.jstor.org/stable/j.ctvckq7xb

234 BIBLIOGRAPHY

Ofir David, Shay Moran, and Amir Yehudayoff. On statistical learning via
the lens of compression. arXiv preprint arXiv:1610.03592, 2016.

Steve Hanneke, Aryeh Kontorovich, and Menachem Sadigurschi. Sample
compression for real-valued learners. In Algorithmic Learning Theory,
pages 466–488. PMLR, 2019.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Near-optimal
sample compression for nearest neighbors. IEEE Transactions on Infor-
mation Theory, 64(6):4120–4128, 2018.

Aryeh Kontorovich, Sivan Sabato, and Roi Weiss. Nearest-neighbor sample
compression: efficiency, consistency, infinite dimensions. In Proceedings
of the 31st International Conference on Neural Information Processing
Systems, pages 1572–1582, 2017.

Olivier Bousquet, Steve Hanneke, Shay Moran, and Nikita Zhivotovskiy.
Proper learning, helly number, and an optimal svm bound. In Conference
on Learning Theory, pages 582–609. PMLR, 2020.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic
optimization. Operations research, 63(5):1227–1244, 2015.

Lijun Zhang, Tianbao Yang, Zhi-Hua Zhou, et al. Dynamic regret of strongly
adaptive methods. In International conference on machine learning, pages
5882–5891. PMLR, 2018.

Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Mach.
Learn., 32(2):151–178, 1998. ISSN 0885-6125. doi: http://dx.doi.org/10.
1023/A:1007424614876.

Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of experts
by mixing past posteriors. J. Mach. Learn. Res., 3:363–396, 2003. ISSN
1533-7928.

Yoram Singer. Switching portfolios. In UAI, pages 488–495, 1998.

S.S. Kozat and A.C. Singer. Universal constant rebalanced portfolios with
switching. In IEEE International Conference on Acoustics, Speech and
Signal Processing, (ICASSP), volume 3, pages 1129–1132, 2007.

András György, Tamás Linder, and Gábor Lugosi. Tracking the best of many
experts. In in Proceedings of the 18th Annual Conference on Learning
Theory, COLT 2005, pages 204–216. Springer, 2005.

BIBLIOGRAPHY 235

Elad Hazan and Comandur Seshadhri. Adaptive algorithms for online de-
cision problems. In Electronic colloquium on computational complexity
(ECCC), volume 14, 2007.

Dmitry Adamskiy, Wouter M Koolen, Alexey Chernov, and Vladimir Vovk.
A closer look at adaptive regret. The Journal of Machine Learning Re-
search, 17(1):706–726, 2016.

Lijun Zhang, Tie-Yan Liu, and Zhi-Hua Zhou. Adaptive regret of convex
and smooth functions. arXiv preprint arXiv:1904.11681, 2019.

Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive
online learning. In International Conference on Machine Learning, pages
1405–1411. PMLR, 2015.

F.M.J. Willems and M. Krom. Live-and-die coding for binary piecewise i.i.d.
sources. In Proc. 1997 IEEE International Symposium on Information
Theory, page 68, 1997.

G. I. Shamir and N. Merhav. Low-complexity sequential lossless coding for
piecewise-stationary memoryless sources. IEEE Trans. Inf. Theor., 45(5):
1498–1519, September 2006. ISSN 0018-9448. doi: 10.1109/18.771150.
URL http://dx.doi.org/10.1109/18.771150.

Parikshit Gopalan, TS Jayram, Robert Krauthgamer, and Ravi Kumar.
Estimating the sortedness of a data stream. In SODA, volume 7, pages
318–327. Citeseer, 2007.

Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning
for time series prediction. In Conference on learning theory, pages 172–
184. PMLR, 2013.

Paula Gradu, Elad Hazan, and Edgar Minasyan. Adaptive regret for control
of time-varying dynamics. arXiv preprint arXiv:2007.04393, 2020.

Robert E. Schapire. The strength of weak learnability. Mach. Learn., 5(2):
197–227, July 1990.

Yoav Freund. Boosting a weak learning algorithm by majority. Information
and computation, 121(2):256–285, 1995.

Richard Olshen. A conversation with Leo Breiman. Statistical Science, 16
(2):184–198, 2001.

http://dx.doi.org/10.1109/18.771150

236 BIBLIOGRAPHY

R.E. Schapire and Y. Freund. Boosting: Foundations and Algo-
rithms. Adaptive computation and machine learning. MIT Press, 2012.
ISBN 9780262017183. URL http://books.google.co.uk/books?id=

blSReLACtToC.

Adam Tauman Kalai, Yishay Mansour, and Elad Verbin. On agnostic boost-
ing and parity learning. In Proceedings of the fortieth annual ACM sym-
posium on Theory of computing, pages 629–638, 2008.

Adam Tauman Kalai and Rocco A. Servedio. Boosting in the presence of
noise. J. Comput. Syst. Sci., 71(3):266–290, 2005. doi: 10.1016/j.jcss.
2004.10.015. URL https://doi.org/10.1016/j.jcss.2004.10.015.

Varun Kanade and Adam Kalai. Potential-based agnostic boosting. In
Advances in neural information processing systems, 2009.

Vitaly Feldman. Distribution-specific agnostic boosting. arXiv preprint
arXiv:0909.2927, 2009.

Shai Ben-David, Philip M Long, and Yishay Mansour. Agnostic boosting.
In International Conference on Computational Learning Theory, pages
507–516. Springer, 2001.

Nataly Brukhim, Xinyi Chen, Elad Hazan, and Shay Moran. Online agnostic
boosting via regret minimization, 2020.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics
& data analysis, 38(4):367–378, 2002.

Christian Leistner, Amir Saffari, Peter M Roth, and Horst Bischof. On
robustness of on-line boosting-a competitive study. In IEEE 12th Inter-
national Conference on Computer Vision Workshops, ICCV Workshops,
pages 1362–1369. IEEE, 2009.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting
algorithm with theoretical justifications. In Proceedings of the 29th In-
ternational Coference on International Conference on Machine Learning,
pages 1873–1880, 2012.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. Boosting with online
binary learners for the multiclass bandit problem. In International Con-
ference on Machine Learning, pages 342–350, 2014.

http://books.google.co.uk/books?id=blSReLACtToC
http://books.google.co.uk/books?id=blSReLACtToC
https://doi.org/10.1016/j.jcss.2004.10.015

BIBLIOGRAPHY 237

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive
algorithms for online boosting. In International Conference on Machine
Learning, pages 2323–2331, 2015a.

Alina Beygelzimer, Elad Hazan, Satyen Kale, and Haipeng Luo. Online
gradient boosting. In Advances in neural information processing systems,
pages 2458–2466, 2015b.

Naman Agarwal, Nataly Brukhim, Elad Hazan, and Zhou Lu. Boosting for
dynamical systems. arXiv preprint arXiv:1906.08720, 2019.

Young Hun Jung, Jack Goetz, and Ambuj Tewari. Online multiclass boost-
ing. In Advances in neural information processing systems, pages 919–928,
2017.

Young Hun Jung and Ambuj Tewari. Online boosting algorithms for multi-
label ranking. In International Conference on Artificial Intelligence and
Statistics, pages 279–287, 2018.

Nataly Brukhim and Elad Hazan. Online boosting with bandit feedback.
arXiv preprint arXiv:2007.11975, 2020.

Robert M. Freund, Paul Grigas, and Rahul Mazumder. A new perspective
on boosting in linear regression via subgradient optimization and relatives.
The Annals of Statistics, 45(6):2328 – 2364, 2017.

Chu Wang, Yingfei Wang, Robert Schapire, et al. Functional frank-wolfe
boosting for general loss functions. arXiv preprint arXiv:1510.02558,
2015.

Elad Hazan and Karan Singh. Boosting for online convex optimization,
2021.

Amir Beck. First-order methods in optimization. SIAM, 2017.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-
armed bandits with side information. In Advances in neural information
processing systems, pages 817–824, 2008.

Alexander Rakhlin and Karthik Sridharan. Bistro: An efficient relaxation-
based method for contextual bandits. In ICML, pages 1977–1985, 2016.

Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, and Robert E
Schapire. Improved regret bounds for oracle-based adversarial contextual

238 BIBLIOGRAPHY

bandits. In Advances in Neural Information Processing Systems, pages
3135–3143, 2016a.

Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert Schapire. Efficient al-
gorithms for adversarial contextual learning. In International Conference
on Machine Learning, pages 2159–2168, 2016b.

Li Zhou. A survey on contextual multi-armed bandits. arXiv preprint
arXiv:1508.03326, 2015.

Djallel Bouneffouf and Irina Rish. A survey on practical applications of
multi-armed and contextual bandits. arXiv preprint arXiv:1904.10040,
2019.

D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific
Journal of Mathematics, 6(1):1–8, 1956.

D. Blackwell. Controlled random walks. In Proceedings of the International
Congress of Mathematicians, volume 3, pages 336–338, 1954.

Dennis Gilliland, RV Ramamoorthi, and James Hannan. A conversation
with james hannan. Statistical Science, pages 126–144, 2010.

D. P Foster and R. V Vohra. Asymptotic calibration. Biometrika, 85(2):
379, 1998.

E. Even-Dar, R. Kleinberg, S. Mannor, and Y. Mansour. Online learning
for global cost functions. In 22nd Annual Conference on Learning Theory
(COLT), 2009.

S. Mannor and N. Shimkin. Regret minimization in repeated matrix games
with variable stage duration. Games and Economic Behavior, 63(1):227–
258, 2008. ISSN 0899-8256.

Jacob Abernethy, Peter L Bartlett, and Elad Hazan. Blackwell approach-
ability and no-regret learning are equivalent. In Proceedings of the 24th
Annual Conference on Learning Theory, pages 27–46, 2011.

Nahum Shimkin. An online convex optimization approach to blackwell’s
approachability. The Journal of Machine Learning Research, 17(1):4434–
4456, 2016.

Saul I. Gass. Ifors’ operational research hall of fame: John von neumann.
International Transactions in Operational Research, 13(1):85–90, 2006.

	Preface
	Acknowledgements
	List of Symbols
	Introduction
	The Online Convex Optimization Setting
	Examples of Problems That Can Be Modeled via Online Convex Optimization
	Prediction from expert advice
	Online spam filtering
	Online shortest paths
	Portfolio selection
	Matrix completion and recommendation systems

	A Gentle Start: Learning from Expert Advice
	The weighted majority algorithm
	Randomized weighted majority
	Hedge

	Bibliographic Remarks
	Exercises

	Basic Concepts in Convex Optimization
	Basic Definitions and Setup
	Projections onto convex sets
	Introduction to optimality conditions

	Gradient Descent
	The Polyak stepsize
	Measuring distance to optimality
	Analysis of the Polyak stepsize

	Constrained Gradient/Subgradient Descent
	Basic gradient descent—linear convergence

	Reductions to Non-smooth and Non-strongly Convex Functions
	Reduction to smooth, non strongly convex functions
	Reduction to strongly convex, non-smooth functions
	Reduction to general convex functions

	Example: Support Vector Machine Training
	Bibliographic Remarks
	Exercises

	First-Order Algorithms for Online Convex Optimization
	Online Gradient Descent
	Lower Bounds
	Logarithmic Regret
	Online gradient descent for strongly convex functions

	Application: Stochastic Gradient Descent
	Example: stochastic gradient descent for SVM training

	Bibliographic Remarks
	Exercises

	Second-Order Methods
	Motivation: Universal Portfolio Selection
	Mainstream portfolio theory
	Universal portfolio theory
	Constant rebalancing portfolios

	Exp-Concave Functions
	Exponentially Weighted Online Convex Optimization
	The Online Newton Step Algorithm
	Bibliographic Remarks
	Exercises

	Regularization
	Regularization Functions
	The RFTL Algorithm and its Analysis
	Meta-algorithm definition
	The regret bound

	Online Mirror Descent
	Equivalence of lazy OMD and RFTL
	Regret bounds for Mirror Descent

	Application and Special Cases
	Deriving online gradient descent
	Deriving multiplicative updates

	Randomized Regularization
	Perturbation for convex losses
	Perturbation for linear cost functions
	Follow-the-perturbed-leader for expert advice

	* Adaptive Gradient Descent
	Analysis of adaptive regularization

	Bibliographic Remarks
	Exercises

	Bandit Convex Optimization
	The Bandit Convex Optimization Setting
	The Multiarmed Bandit (MAB) Problem
	EXP3: simultaneous exploration and exploitation

	A Reduction from Limited Information to Full Information
	Part 1: using unbiased estimators
	Part 2: point-wise gradient estimators

	Online Gradient Descent without a Gradient
	* Optimal Regret Algorithms for Bandit Linear Optimization
	Self-concordant barriers
	A near-optimal algorithm

	Bibliographic Remarks
	Exercises

	Projection-Free Algorithms
	Review: Relevant Concepts from Linear Algebra
	Motivation: Recommender Systems
	The Conditional Gradient Method
	Example: matrix completion via CG

	Projections versus Linear Optimization
	The Online Conditional Gradient Algorithm
	Bibliographic Remarks
	Exercises

	Games, Duality, and Regret
	Linear Programming and Duality
	Zero-sum Games and Equilibria
	Equivalence of von Neumann Theorem and LP duality

	Proof of von Neumann Theorem
	Approximating Linear Programs
	Bibliographic Remarks
	Exercises

	Learning Theory, Generalization, and Online Convex Optimization
	Statistical Learning Theory
	Overfitting
	No free lunch?
	Examples of learning problems
	Defining generalization and learnability

	Agnostic Learning using Online Convex Optimization
	Reminder: measure concentration and martingales
	Analysis of the reduction

	Learning and Compression
	Bibliographic Remarks
	Exercises

	Learning in Changing Environments
	A Simple Start: Dynamic Regret
	The Notion of Adaptive Regret
	Weakly and strongly adaptive algorithms

	Tracking the Best Expert
	Efficient Adaptive Regret for Online Convex Optimization
	* Computationally Efficient Methods
	The pruning method

	Bibliographic Remarks
	Exercises

	Boosting and Regret
	The Problem of Boosting
	Boosting by Online Convex Optimization
	Simplification of the setting
	Algorithm and analysis
	AdaBoost
	Completing the picture

	Bibliographic Remarks
	Exercises

	Online Boosting
	Motivation: Learning from a Huge Set of Experts
	Example: boosting online binary classification
	Example: personalized article placement

	The Contextual Learning Model
	The Extension Operator
	The Online Boosting Method
	Bibliographic Remarks
	Exercises

	Blackwell Approachability and Online Convex Optimization
	Vector-Valued Games and Approachability
	From Online Convex Optimization to Approachability
	From Approachability to Online Convex Optimization
	Cones and polar cones
	The reduction
	Existence of a best response oracle

	Bibliographic Remarks
	Exercises

