
The Technological Emergence of AutoML
A Survey of Performant Software and Applications in the Context of Industry

ALEXANDER SCRIVEN, Complex Adaptive Systems Lab, Data Science Institute, University of Technology
Sydney, Australia
DAVID JACOB KEDZIORA, Complex Adaptive Systems Lab, Data Science Institute, University of
Technology Sydney, Australia
KATARZYNA MUSIAL, Complex Adaptive Systems Lab, Data Science Institute, University of Technology
Sydney, Australia
BOGDAN GABRYS, Complex Adaptive Systems Lab, Data Science Institute, University of Technology
Sydney, Australia

With most technical fields, there exists a delay between fundamental academic research and practical industrial
uptake. Whilst some sciences have robust and well-established processes for commercialisation, such as the
pharmaceutical practice of regimented drug trials, other fields face transitory periods in which fundamental
academic advancements diffuse gradually into the space of commerce and industry. For the still relatively
young field of Automated/Autonomous Machine Learning (AutoML/AutonoML), that transitory period is
under way, spurred on by a burgeoning interest from broader society. Yet, to date, little research has been
undertaken to assess the current state of this dissemination and its uptake. Thus, this reviewmakes two primary
contributions to knowledge around this topic. Firstly, it provides the most up-to-date and comprehensive survey
of existing AutoML tools, both open-source and commercial. Secondly, it motivates and outlines a framework
for assessing whether an AutoML solution designed for real-world application is ’performant’; this framework
extends beyond the limitations of typical academic criteria, considering a variety of stakeholder needs and
the human-computer interactions required to service them. Thus, additionally supported by an extensive
assessment and comparison of academic and commercial case-studies, this review evaluates mainstream
engagement with AutoML in the early 2020s, identifying obstacles and opportunities for accelerating future
uptake.
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1 INTRODUCTION
Societal interest in machine learning (ML), especially the subtopic of deep learning (DL), has surged
within recent years. This is partially driven by the continuing success of these approaches in many
application areas [240, 398, 424, 439], facilitated by both fundamental advances [147, 152, 323, 506]
and the increasing availability of computational resources. Unsurprisingly, on the academic side,
the field of artificial intelligence (AI) continues to dominate research outputs, as noted by the 2021
UNESCO Science Report [487]. However, it is the current level of ML engagement in industry
that is truly unprecedented. For instance, the 2021 Global AI Adoption Index, commissioned by
IBM, found that 80% of 5501 global businesses are either using automation software or planning
to within 12 months, and 74% are exploring or deploying AI [274]. The Gartner 2019 CIO Agenda
survey, with 3000 respondents from across the globe, agrees with this trend, revealing that the
proportion of firms deploying AI has increased from 10% in 2015 to 37% in 2019 [268]. Similar
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conclusions are echoed in the 2020 McKinsey ‘State of AI’ report [387]. Naturally, such a rate of
mainstream permeation is also accompanied by intensifying discussions on how to use ML, and AI
more broadly, in a socially responsible manner [284, 348, 375, 405, 535].

Nonetheless, despite the growing desire of industry to utilise ML, talent in data science remains
scarce [443, 516]. Both the Gartner and IBM studies agree that lack of expertise creates a barrier to
AI adoption [268, 274], especially as, by and large, ML technology still requires specialist skills to
implement and employ. Worse yet, in practice, deploying ML solutions for real-world applications
requires technical skills beyond the domain of data science. Any shortfall in these broader talents
will also adversely affect ML engagement in industry [230, 510]. So, faced with these realities,
a business may ponder: does ML really have to rely so heavily on humans? Enter ‘automated
machine learning’ (AutoML), a research endeavour that has become particularly popular over
the last decade [203, 204, 257, 273, 340, 485, 582], striving to mechanise as many high-level ML
operations as possible. The appeal of this emergent field is multi-faceted, driven by many of the
same motivations that inspire automation in general. These include not just democratisation,
enabling the broader public to leverage the power of ML approaches, but also efficiency boosts,
redistributing the time and effort of existing talent to more valuable functions.

Fig. 1. Schematic of a general machine learning (ML) workflow, which captures the phases involved in
designing, constructing, deploying and maintaining an ML model for a real-world application.

Notably, within the modern era of AutoML, academia has already made much progress. Admit-
tedly, it can be challenging to contain this ever-widening field within a simple overview, and various
works lean on taxonomies and categorical systems to aid this [195, 308, 313, 485]. Consider then a
conceptual representation of the processes that are involved in running a real-world ML application,
i.e. an ML workflow, as shown in Fig. 1. With respect to this depiction, the bulk of AutoML research
has traditionally focused on automating the model-development phase. Advances in Bayesian
optimisation, which continue to be employed [224, 315], are frequently credited for jump-starting
this process, reducing human involvement in hyperparameter optimisation (HPO) and chipping
away at the broader ‘combined algorithm selection and HPO’ (CASH) problem [532]. Since then,
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this undertaking has evolved in many ways, such as by encapsulating neural architecture search
(NAS) [196, 197, 460, 560], which now forms the core of the AutoML-subfield known as ‘automated
DL’ (AutoDL).
However, as previously hinted, the scope of AutoML – AutoDL included [195] – has itself

gradually expanded to encompass the rest of an ML workflow. For instance, data engineering has
received its own fair share of research attention. Some works in this space focus on the initial
stage of data preparation [311], which may involve sampling and cleaning, while others contribute
to the topic of automated feature engineering (AutoFE) [331], covering both feature generation
and selection. Then there are phase-agnostic methodologies, such as meta-learning [64, 216, 273,
344, 345, 546], that can theoretically be applied anywhere; these continue to free humans from
micro-managing ML systems and supplying domain knowledge. Of course, there is still much
further to go. Automating the phase of continuous monitoring and maintenance has recently been
highlighted as a crucial prerequisite for truly autonomous machine learning (AutonoML) [308],
where systems persist by adapting ML models to changes in data environment [287, 580]. Progress
in this space remains relatively nascent [146, 235, 361]. Additionally, rigorous efforts to survey
and benchmark state-of-the-art (SOTA) algorithms and approaches [204, 469] are relatively sparse.
Nevertheless, the key takeaway from all of this is that, academically, the field of AutoML is rich
with activity.

Unfortunately, the translation of pure theory to real-world practice is rarely smooth or one-to-
one. That is not to suggest that AutoML has been shunned by industry; to the absolute contrary, a
prior dearth of tools to assist with developing ML models – according to the IBM survey [274], one
of the top three obstacles for AI uptake – has actually led to an explosion of commercial AutoML
services. Alongside numerous open-source packages, these offerings provide businesses plenty
of options to choose from, as of the early 2020s, should they wish to apply ML approaches to
problems of interest. Yet a healthy scepticism remains warranted, especially where source code
is confidential and promotional material is inherently biased. It cannot be assumed that AutoML
algorithms and architectures, developed in experimental environments that are well-controlled and
sanitised, will deliver optimal outcomes once applied within messy real-world contexts. Certainly,
the academic case studies that exist [423, 425, 540], evaluating one or more AutoML solutions
within particular industrial domains, are too few in number to make broad claims. So, it is worth
asking the question: how are publicly available SOTA AutoML tools and services performing with
respect to the demands of industry?

The notion of ‘performant’ ML must be central to any pioneering survey that grapples with this
question. In most academic research, performance is usually gauged by purely technical metrics,
such as model accuracy and training efficiency. The focus is on how well a computer, in the
absence of any human, can generate predictions/prescriptions via ML techniques. On the other
hand, industrial contexts are much more human-centric, where stakeholders may have a diversity
of interests and obligations; the outcomes and impact of an ML application may only be very
loosely correlated with technical performance. Importantly, such matters cannot be ignored by
academic AutoML researchers either, as stakeholder requirements can affect the very foundations of
algorithms and architectures. For instance, a need for interpretability may force ML model-selection
pools to be constrained, a focus on fairness may require mechanisms for bias mitigation, and so on.
Simply put, the technological emergence of AutoML is driven by stakeholder need and the

human-computer interaction (HCI) required to service it. Correspondingly, it is impossible to
gauge the current state of AutoML technology, especially in terms of whether it can support the
needs of industry, without the careful development of an assessment framework anchored by a
comprehensive set of HCI-weighted criteria for ‘performant ML’. Certainly, the absence of such a
systematic appraisal may not only obscure future directions for progress but, if deficiencies are not
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identified, may also have an eventual chilling effect on technological engagement, especially in the
case of unmet expectations.

With all that stated, the primary goal of this review is to present a comprehensive snapshot of how
AutoML has permeated into mainstream use within the early 2020s. In contrast to two associated
monographs that examined fundamental algorithms and approaches behind AutoML/AutoDL [195,
308], this work surveys both their implementation and application in the context of industry. It also
defines what a ‘performant’ AutoML system is – HCI support is valued highly here – and assesses
how the current crop of available packages and services, as a whole, lives up to expectation. To do
so in a systematic manner, this review is structured as follows. Section 2 begins by elaborating on
the notion of an ML workflow, conceptually framing AutoML in terms of the high-level operations
required to develop, deploy and maintain an ML model. Section 3 uses this workflow to support the
introduction of industry-related stakeholders and their interests/obligations. These requirements
are unified into a comprehensive set of criteria, supported by methods of assessment, that determine
whether an AutoML system can be considered performant. Section 4 then launches the survey in
earnest, assessing the nature and capabilities of existing AutoML technology. This begins with
an examination of open-source AutoML packages; some of these are tools dedicated to a singular
purpose, e.g. HPO, while others are comprehensive systems that aim to automate a significant
portion of an ML workflow. The section additionally investigates AutoML systems that are designed
for specific domains, as well as commercial products. Subsequently, Section 5 assesses where
AutoML technology has been used and how it has fared. Academic work focusing on real-world
applications is surveyed, as are vendor-based case studies. All key findings and assessments are
then synthesised in Section 6, with commentary around how mature AutoML technology is, as
well as whether there are obstacles and opportunities for future uptake. Finally, Section 7 provides
a concluding overview on the technological emergence of AutoML.

2 THE MACHINE LEARNINGWORKFLOW
Many academic works have presented diagrams that attempt to encapsulate the high-level opera-
tions of ML within one consolidated workflow [198, 203, 257, 565], which we henceforth refer to
as an MLWF. One early forerunner in this endeavour, though not exclusive to ML, is the popular
CRoss Industry Standard Process for Data Mining (CRISP-DM) model [497], and several recent
efforts have built upon this basis, e.g. by additionally considering quality assurance [520]. In this
section, we extend this model further, diverging where necessary, to align even closer with the
modern practices of data science. Such a summary will not be unfamiliar to academics and prac-
titioners of data science, and many MLWFs found in AutoML literature are indeed similar, often
only expanding/compressing one or more aspects. Nonetheless, if this monograph is to grapple
with the notion of performant ML, particularly within organisational settings that operate beyond
pure experimental research, a robust characterisation of an MLWF is required.
Fundamentally, many papers that depict MLWFs agree that there are certain standard phases

of ML operation, as captured by the ‘ML Model Development Workflow’ component of Fig. 1.
Specifically, a typical ML application will flow from ‘Problem Formulation & Context Understand-
ing’ through ‘Data Engineering’ and ‘Model Development’ to ‘Deployment’. Some MLWFs also
incorporate some form of ‘Monitoring & Maintenance’, although this is often presented almost
as an afterthought. An academic focus on one-and-done projects, as well as the computational
expense of developing modern DL models, means that the challenge of dynamically changing data
environments is often ignored, either negligently or deliberately. However, there is a growing
awareness within industry that persistent learning is essential, and we thus highlight ‘Monitoring
& Maintenance’ as a unique phase within Fig. 1. Indeed, while many MLWFs, such as a CRISP-DM
representation [497], provide double-headed arrows or other depictions of circularity between the
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first four phases, we associate that continuum of updates with the ‘Monitoring & Maintenance’
phase. Granted, development during an ML project is frequently iterative, with previous phases of
operation being revisited prior to deployment, but the primary intent of the ‘ML Model Develop-
ment Workflow’ is to move forward and bring an ML solution to production. In contrast, it is the
intent of ‘Monitoring & Maintenance’ to continually reassess and keep that ML solution relevant,
even if – the dashed lines in Fig. 1 hint that this is rarely an academic concern – an ML problem
must be partially reformulated while keeping its present solution online.

Now, despite MLWF commonalities in the literature, it is essential to emphasise that perspectives
are not universal, and academia often ignores matters relevant to business applications. For instance,
several core AutoML papers ignore the deployment phase outright [198, 204, 257]. Others do not
dwell on this phase, associating it with the production of predictions [203, 582] or, via the display
of prominent social media and tech company logos, suggesting that organisations are interested in
this facet of ML [565]. Detail is scant. In contrast, it is noteworthy that, when presenting MLWFs on
websites, AutoML vendors frequently elaborate on aspects of deployment [457] and, also neglected
by academia, monitoring and maintenance [59, 365]. As already discussed, this is a matter of focus;
academia prioritises the development of high accuracy models, whereas industry cares equally, if
not more, for sustainable operation.

Fig. 2. Key tasks within an overarching MLWF. The lighter-coloured boxes represent the outcome of an
MLWF phase that is propagated onwards.
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Given this preface, we now present a deeper dive into the granular tasks that commonly constitute
an MLWF within a business environment, as displayed in Fig. 2. Admittedly, these tasks are unlikely
to be exhaustive for every ML application imaginable. Individual tasks may also be unnecessary in
various settings, even if good practice will likely still involve consideration ahead of rejection. For
instance, a financial project involving the approval/denial of credit via algorithmic means demands
a greater contemplation of bias and ethics than is likely needed for the manufacturing-based
prediction of machinery faults. All the same, the breakdown in Fig. 2 is sufficiently informative to
support a survey of ML tools and the extent to which they automate key tasks.
The first MLWF phase of problem formulation & context understanding seeks to estab-

lish an agreeable plan of action, accepted by all relevant stakeholders, for undertaking the rest
of an ML project. Although this certainly includes academic elements of developing/acquiring
expertise around a problem context and accumulating sufficient topical knowledge to support an
ML effort, much of this stage involves largely organisational considerations that ensure the ML
project is appropriately defined, scoped, and resourced. First, an organisation must establish its
project requirements, which are associated with why the ML application is being undertaken in
the first place. For example, a business may decide to leverage ML in predicting users at risk of
churn so that its customer support teams can intervene and prevent this from occurring. With
these requirements formalised, this is then a good opportunity to begin considering ‘prior art’.
In modern times, this might include academic references, reputable blog posts, and similar work
performed internally within the organisation. Prior art can indicate how tractable the ML problem
is, how best to approach solving it, and what kind of performance can be expected. At this point,
stakeholders can also determine whether a SOTA deep neural network is required or whether
a simpler approximator, e.g. a linear regressor, is sufficient for the established requirements. In
either case, whether appetite leans towards code reuse or pushing the frontiers of ML, resourcing
and feasibility checks typically ensue. Of course, the initial search for prior art already involves
ensuring an ML project is conceptually sound, but this collection of sub-tasks covers other logistical
matters. These considerations include identifying/acquiring people to undertake the work, techno-
logical tools to assist them, and raw data sources to form the basis of modelling work. As part of
establishing a project plan, an organisation must also define how one can know that the project
requirements have been satisfied, i.e. its success criteria. Determining this will generally attempt
to marry organisational/domain factors with technical ML objectives and outputs. For instance,
a churn-concerned business may decide that, within acceptable timelines and on the balance of
projected costs and rewards, a precision score of 85% may be a satisfactory outcome. Finally, an or-
ganisation must generally establish appropriate project-management controls to support a greenlit
ML application. This task includes considering governance and risk management, e.g. delegating
access permissions, task responsibilities, the authority to approve work, and so on. Additionally, an
organisation will typically use this phase to decide on communication channels and collaborative
tools for key team members while also setting expectations and reporting processes. Furthermore,
the finalisation of a project plan will often include more detailed planning and project-management
artefacts, such as Gantt charts or critical paths, but these nuances of organisational practices are
too varied to generalise.
The second MLWF phase of data engineering involves the initial exploration, processing

and enhancement of data for modelling purposes. It is often professed that this stage takes up a
significant portion of working time for any data scientist. Indeed, a 2016 CrowdFlower report [168]
claimed that the percentage was as high as 80%, summing ‘collecting data sets (19%)’ with ‘cleaning
and organising data (60%)’. However, providing limited details on the number of respondents
and methodology used, the report has been contested by other surveys, despite the widespread
mainstream adoption of its claims. For instance, the ‘2018 Kaggle Machine Learning & Data Science
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Survey’ [294], with 23859 responses, yielded 11% for gathering and 15% for cleaning. Of course,
caution is still necessary when assessing outcomes from an open and uncontrolled survey based on
volunteered self-reporting. The Kaggle survey responders were diverse in occupation, e.g. including
students (20%) and software engineers (13%), were dominantly skewed towards an early career,
i.e. 60% under 30 years of age, and heavily represented the United States (19%) and India (19%).
A 2020 version of the survey [295] could not reaffirm these claims as the question was absent;
in 2020, the focus was on tools, techniques, and other questions regarding respondent skills and
employment. Elsewhere, an Anaconda survey, ‘The State of Data Science 2020’ [74], found worktime
proportions of 19% for ‘data loading’ and 26% for ‘data cleansing’. It had a smaller sample size
of 2360 respondents, but these appeared to be more of a professional data-science background.
Regardless, whether at 80% or a more moderate value, the amount of time that goes into data
engineering is not insubstantial.

Regarding the task breakdown in Fig. 2, a common first step in data engineering is exploratory
data analysis (EDA). Data scientists will frequently assess the numerical properties of their datasets,
visually inspecting graphical representations and identifying quality issues, e.g. missing values
and anomalies. Different problem contexts will shape exactly what is undertaken in this section,
and many helpful guides are available in many books and blogs [385, 497, 499, 544, 556]. Crucially,
this is also an appropriate time to assess bias and fairness within the data inputs themselves; see
Section 4.1.2. Traditional EDA guides often ignore this facet, but recent years have seen a surge
of attention and concern around ML and trustworthiness. Correspondingly, matters of bias and
fairness are some of the key criteria for performant ML outlined in Section 3.2. Regardless, once
EDA equips a data scientist with a sufficient understanding of a supplied data environment, they
are then usually able to modify the data ahead of ML modelling. Nomenclature and ontologies
vary across the literature for the tasks involved in modifying data [125, 231, 461, 545], but here we
settle on the sequence of cleaning, preparing, augmenting, and feature engineering. Specifically,
we define cleaning in relation to handling erroneous data, while preparation involves formatting
input data so that an ML algorithm can access its information content. Accordingly, the imputation
of missing values is treated here as a cleaning task, while one-hot encoding categorical variables
could be considered a preparatory step. Data preparation also includes scaling, standardisation, and
any preprocessing related to data type or structure, e.g. handling timestamps or freeform text. Then
there is augmentation, where relevant ancillary data sources are joined to the current inputs. Within
this monograph, the novel data is considered entirely external, not engineered variations of existing
data as some DL literature may define it [195]. As an example of such augmentation, timestamped
store-utilisation data used to predict foot traffic to a retail shop may become more informative
when associated with public weather data. Finally, feature engineering aims to transform existing
variables in different ways, all in the hope that informative signals in the data may surface. This
task receives plenty of academic attention as it is arguably the least straightforward process.

Again, we stress that there are differing views in the data science community on how to categorise
and arrange all these data-engineering tasks. For instance, while we consider one-hot encoding as
a form of data preparation here, it is valid to argue that new features are being engineered, i.e. new
columns are being added to tabular data. Feature engineering is an even more complex notion
to organise, especially in light of the standard filter/wrapper perspective discussed in an earlier
AutonoML review [308]. For instance, if feature selection is done before considering an ML model,
i.e. in filter style, it would seem to belong in the data-engineering phase. An example is filtering
out features according to the outcomes of Pearson correlations or chi-squared tests. However, if
features are selected based on whether they improve the performance of a specific ML model, i.e. in
wrapper style, the algorithms that do so may be pipelined as part of the model-development phase.
An example is exclusion based on feature importance scores that the Random Forest ML algorithm
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provides. Ultimately, we highlight these nuances but persist with the arrangement in Fig. 2. The
tasks listed under data engineering are, in aggregate, holistically encompassing; minor variations
do not significantly perturb the framework proposed by this monograph for assessing performant
ML.
The third MLWF phase of model development is arguably the core of an ML application,

proceeding once a cleaned, prepared and enhanced dataset is in hand. As the task breakdown
suggests, a large-scale ML application often involves several preparatory steps. Beyond setting
up requisite model-training infrastructure, an organisation may need to establish tools that track
experimentation and model versioning while trials are being undertaken. Eventually, though, there
comes the actual process of fitting a mathematical model to a desirable function. Even in the
present time, AutoML literature predominantly focusses on selecting an ML algorithm and tuning
hyperparameters, i.e. solving the CASH problem [532], so we use the term CASH+ to be more
encompassing of ML solutions. Specifically, some ML applications and AutoML packages will
bundle feature-selection or predictor-ensembling methods as part of an ML pipeline they pursue.
Also, it is worth noting that many researchers have investigated how to ‘leverage experience’
when solving some subset of the CASH+ problem, e.g. using opportunistically derived predictor
rankings to constrain search spaces for ML algorithms [309, 413]. The leveraging of experience thus
covers the technical area of meta-learning [64, 65, 308, 344–346, 546], but it also refers to leaning
on domain experts for assistance in contextualising, understanding and making better decisions
with preliminary model results [287]. We note that prior experience can inform any phase of the
MLWF, but model development has most often been the focus of such research and development.
Notably, various metrics and visualisations may be produced throughout an ML application to

understand the modelling activity. However, once a preliminary final model has been produced,
contextually driven tasks may be carried out to uncover what work was undertaken and what
was ultimately produced. Here, revisiting the notions of bias and fairness is crucial in producing
models that meet trust-based requirements. Again, Section 4.1.2 elaborates on this topic, e.g. on
assessing data versus a model, but it is sufficient to note here that an ML model can be assessed and
remedied if it proves problematically biased or unfair. Another topic that is also deeply entwined
with trust in ML is that of explainable AI (XAI). Different organisational stakeholders will have
different needs concerning XAI, as discussed in Section 3.1. However, the model-development
phase of an MLWF is an appropriate time to understand how an ML solution was generated and
why it produces the outputs that it does. This process often includes visualising performance
metrics, global explainability artefacts such as feature importance, and the drivers of individual
predictions/prescriptions. Additionally, scenario planning tools may be made available here to
understand the impact of potential interventions on these metrics and visualisations. Finally,
the generated ML model and all related artefacts, e.g. XAI items, are assessed against the initial
requirements for the project. Some MLWFs consider this under an ‘evaluation’ phase that often
refers to simple technical metrics, e.g. model accuracy and training time, but industrial applications
often have many more requirements that an ML solution must satisfy before it can be approved for
deployment. The dearth of academic contemplation in this space is a primary motivation for this
monograph and its comprehensive framework for performant ML.

The fourth MLWF phase of deployment and the fifth MLWF phase of monitoring & mainte-
nance incorporate all the tasks required to turn an experimental modelling project into a sustainable
productionalised system embedded within some organisational process. Broadly, they encompass
much of what is nowadays referred to as ‘MLOps’. Specifically, one of the first steps in deploy-
ing an ML solution is to convert all relevant data transformations into a robust pipeline. This
pipeline must connect raw data sources to the ML models running inference, and this transmission
must be suitable for context, e.g. batched, real-time, constrained for the internet of things, and
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so on. Computational resources must also be provisioned to host the ML solution and support its
inferences. Now, one common practice in software engineering is undertaking user acceptance
testing (UAT) [124, 155], ensuring that a system meets the expectations of end users. Such practices
are similarly relevant in organisational applications of ML where model results are intended for
widespread consumption.

Eventually, once sufficiently tested and fully provisioned, an ML solution can be appropriately
placed in production. However, the performance of a static ML model can decay over time due to
environmental dynamics, such as data drift, concept drift [361, 373, 553, 581], and other system
disruptions. Ideally, monitoring processes are established for all metrics of relevance, including
technical performance, data properties of interest, and variables that assess deployed ML solution
outcomes, e.g. bias and fairness metrics. An adaptation process can then be triggered automatically
or after manual review if a monitored metric dips below a threshold. The simplest form of adaptation
is the full retraining of an ML model, but there are numerous redeployment techniques, e.g. blue-
green deployment, canary deployment [56], and many more [471]. Of course, as change occurs
within a deployed solution, implementing a version control system (VCS) is advisable to mitigate
the risks of unforeseen issues with updates; it is always helpful to roll back to prior safe versions.
In conclusion, we have schematised a general MLWF and, via Fig. 2, elaborated on the typical

tasks that an organisation may carry out in running an ML application. As already mentioned, not
everything here will be universally relevant. Some ML efforts are solely angled towards uncovering
data insights, and several vendors of automated tools operate within this market. However, standard
organisational use of ML involves taking a trained model from problem conceptualisation to
production, generally relying on consistent delivery of business value via long-term consumer
engagement. Thus, the more tasks within the full MLWF that an AutoML tool automates, accounting
for the standards of performant ML, the more appealing it is to industrial stakeholders. In fact, if
the extent and degree of automation sufficiently encompass the monitoring & maintenance phase,
such that an ML model learns persistently and autonomously, the era of AutonoML will have truly
arrived [308]. In short, the MLWF framework helps anchor assessments of AutoML tools and their
scope; this monograph will detail the broad spectrum of existing AutoML services. However, to
honestly assess the value of modern AutoML to industry, a simple question needs answering: who
cares?

3 PERFORMANT MACHINE LEARNING
Nuances aside, a common maxim in economics is that “demand creates supply”. Need and desire
drive interest, investment, and innovation. In complement to this rule, a product does not survive and
thrive in an industrial setting without serving a purpose and generating a positive impact. Indeed,
while the clientele for ML technology may be extensive, it is also finite. Over time, competition for
stakeholder attention and engagement is an optimisation process, impelling tools and systems that
support ‘performant ML’ to bubble up into prominence. Of course, as with biological evolution, this
process is not perfect; odd and even detrimental ‘genotypes/phenotypes’ could arise and become
entrenched within a ‘population’ of AutoML services. Nevertheless, by and large, the quest for
performant ML is the driving force behind AutoML technology.
So, what is performant ML? Who decides? Traditionally, academia has a very narrow scope

when defining ML performance, as exemplified by typical textbooks on the topic [281]. Its focus is
predominantly on metrics that judge how well an ML model approximates a desirable function,
such as classification accuracy and various ratios involving a confusion matrix, e.g. sensitivity,
specificity, recall, area under the curve (AUC), and the 𝐹1 score [213, 444]. Occasionally, thesemetrics
may also be paired with information on how long it took to optimise them, i.e. the time costs of
ML model training. These considerations are particularly pertinent within hardware-conscious
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research beyond pure algorithmic advancement, where performance measures must be mindful of
infrastructure [200, 486]. However, in industrial and applied contexts, it is reasonable to question
whether these alone are the only metrics that matter. One experimental investigation [582] asserts
that most CASH procedures perform reasonably similarly, at least in technical terms, concluding
that the suitability of deploying AutoML frameworks for real-world use cases should consider
factors beyond those of typical academic concern. This review supports such a perspective.
Thus, having already detailed what is typically involved in the practice of real-world ML, this

section delves into who would care for automating an MLWF and how they would judge the overall
process as performant. Specifically, in Section 3.1, we outline the key stakeholders involved in
ML tasks within an industrial context, detailing their needs and the potential benefits they may
realise from AutoML. Then, in Section 3.2, we propose a comprehensive set of criteria by which
the practical application of an MLWF can be evaluated. Finally, in Section 3.3, we synthesise these
considerations to assess the role that industry currently expects AutoML to play in supporting
performant ML.

3.1 Key Stakeholders and Requirements
Before establishing criteria for performant ML, one must first understand who would be involved
in applying an MLWF within the context of industry. Thus, Section 3.1.1 details the primary
stakeholders that would be, and presently are, most engaged with the usage and outputs of AutoML.
Essentially, the discussion lists what these groups care about and how AutoML may factor into
meeting these needs. Secondary stakeholders are also briefly noted in Section 3.1.2, as their desires
will likewise influence the continuing evolution of AutoML technology.

3.1.1 Primary Stakeholders. When discussing this collective, there are essentially two subcategories:
data scientists and other technical users. The latter term encompasses those who have the potential
to use AutoML technologies directly but are not expert data scientists. There naturally exists a
spectrum on which such potential users can fit, from the trained professional to the technophobe
with limited computer literacy. This type of stakeholder, therefore, represents users who may lack
technical skills but are valuable to an ML application due to their increased domain knowledge.
However, all primary stakeholders are still defined here by their close participation in ML analysis
rather than involvement with any general infrastructure/architecture. Thus, we exclude IT and
generic data-engineering roles that would not typically interface with an AutoML system. Also, it
is understood that modern organisations are fluid, and roles may be transitional or hybrid, but the
following categorisation should still be sufficient in encompassing the employment space related
to ML applications.

Data Scientists. This group of technicians represents the most prominent core stakeholder in
AutoML technology. Granted, democratisation is a central aim of the AutoML endeavour, but such
a process is gradual and ongoing. Realistically, data scientists remain the primary users interfacing
with ML tools, meaning their needs dominate any discussion of the requirements that AutoML
must satisfy. Such considerations can be summarised as follows:

• Efficiency. One of the key appeals of automation is that, ideally, it speeds up processes
substantially. After all, machines are generally better than humans at formulaic tasks, main-
taining high levels of consistency and endurance. The resulting procedural fluidity can be
valuable to data scientists in two main forms.
– Operational Efficiency. This concept refers to saving time and effort expended by the
staff of an organisation when managing a technical process. In context, data scientists will
often form their own personal workflows for expediently tackling ML problems, but the
manual application of these can still have high starting costs. For instance, template-driven
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approaches may need to be adjusted and tweaked per ML problem, while those who have
not invested in such practices will likely need to code from scratch. Accordingly, there are
many points along an MLWF where the automation of existing practices can speed up
operations substantially. Crucially, none of these involve the science of ML; operational
efficiency merely relates to the logistics that support an ML application.
Of course, the desire to streamline work processes is common throughout industries

focussed on maximising productivity and minimising cost. With the high salaries com-
manded by data science talent, there is an organisational impetus to mechanise operations
that are high-volume and low-value, e.g. via robotic process automation (RPA), so that data
scientists are employed where their technical skills will have the greatest impact. Indeed,
an IBM survey [274] found that, alongside saving costs (58%) and freeing valuable time for
employees (42%), driving greater efficiencies (58%) was a top reason for businesses using or
considering automation tools. Nonetheless, interviews with data scientists [550] indicate
that employees also appreciate the prospective benefits of increased operational efficiency
that AutoML may offer.

Admittedly, because the interplay between automation and ergonomics is complicated,
it can be challenging to draw bounds on the scope of AutoML under this requirement. For
instance, the automation of project maintenance via Git, a VCS that a 2021 Stackoverflow
developer survey [518] found was used by over 93% of 80000 respondents, will have had
an undeniable impact on supporting streamlined ML. Automating collaboration between
team members is another nuanced driver of efficient ML applications, almost ubiquitously
ignored by academia, and data scientists have expressed a desire for tools that enhance
communication and associated productivity [432].

– Technical Efficiency. This concept refers to a technical process running faster or with
fewer resources. In context, this generally relates to the time andmemory footprint involved
in developing, deploying and maintaining an ML solution. At one implementational level,
data scientists may appreciate efficiencies arising from reducing the time complexity of
algorithmic processes, e.g. by vectorising looped tasks. However, the development and
release of theoretically novel algorithms can also significantly impact the speed of ML. In
fact, the field of modern AutoML launched on the back of expedient ML model selection,
as reviewed previously [308]. Accordingly, while many data scientists will have some
degree of reticence when adopting unfamiliar techniques, sufficient technical efficiency,
exemplified by the history of convolutional neural networks, can overcome this barrier to
uptake.

• Technical Performance.While this review does not focus onmetrics related to the standard
‘correctness’ of MLmodels, this is primarily due to how heavily the concept has been discussed
elsewhere. Certainly, it is inescapable that data scientists and dependent stakeholders seek
ML solutions that are sufficiently representative of some desirable function, often a ground
truth. However, while academia often seeks to push the limits of model validity, the costs
and diminishing returns can be prohibitive within an industry setting. Research circles have
noted such concerns, with some discussing how good is good enough [222, 332, 531].

That stated, AutoML is yet to shrug off an association with mixed technical performance.
While developers of AutoML packages tend to promote the predictive power of their mecha-
nisms and frameworks, independent benchmarks vary. Some suggest automated techniques
achieve mediocre results compared to humans [582], some are more favourable [362], and
yet others sit in the middle, e.g. stating that AutoML performs equal or better on 7 out of
12 tasks [249]. Although not an academic work, a recent poll on KDNuggets [438] likewise
indicates this subdued outlook among data scientists more generally, asking the following
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question: “How well do current AutoML solutions work, in your opinion?” With a scaling
from 1 to 5, i.e. ‘badly’ to ‘super-human’, the poll returned an average score of 2.4. However,
there was a notable difference in average scores between those who tried AutoML (2.56) and
those with only preconceptions (2.29). Moreover, no consideration was given to which tool
was used. Ultimately, although the technical efficiency of AutoML does make it easier to
reach improved technical performance, which is generally appealing to data scientists, it is
not yet clear whether improved model validity should even be a primary selling point of
AutoML.

• Methodological Currency. Essentially, other things being equal, data scientists prefer to
operate as close to SOTA as possible. However, the modern AI field is progressing fast, and
advances are constantly being made across the entire standard MLWF. This evolution is not
a monolithic affair either. For instance, novel auto-augmentation data-engineering methods
will likely have little reference to new deployment techniques for field-programmable gate
arrays (FPGAs), even if both may be relevant to a DL application [195]. Accordingly, the
so-called ‘unicorn’ data scientist that is an expert in all the niche skills and topics across an
MLWF is extremely rare, if not outright nonexistent [112, 205]. Even keeping abreast of ML
modelling alone can be challenging, noting that the industry-leading scikit-learn library – it
has Sklearn as an alias – has, in version 0.24.2, 191 available estimators in the form of classifiers,
regressors, clustering methods, and transformers [41]. Given the already amorphous role
of a data scientist at present [396], a standard representative of this stakeholder group is
likely to have varying degrees of expertise in different algorithms, HPO techniques, and
other technical processes. Thus, AutoML can provide value to a data scientist by supporting
access to unfamiliar techniques, whether brand new or renascent, subsequently improving
operational and technical efficiencies.

• Ease of Use. Regardless of efficiency, a technical or operational process in an ML application
loses its appeal if a data scientist cannot interface with it effectively. Of course, assessing
ease of use for any computational tool is somewhat subjective, depending on who is using it
and what they are using it for. Poor design or dependence on overly specialised skills can
immediately hamper uptake. However, data scientists also vary in their personal preferences.
Some are comfortable with code, some may seek a command-line interface (CLI) for its
perceived simplicity and accessibility, and yet others will desire a graphical user interface
(GUI) to interact with technical products [209]. This notion of a convenient user interface
(UI) within the context of AutoML is reviewed deeper elsewhere [313].

Beyond personal preferences, technical tools score higher with data scientists if they are
fit for purpose, integrating well into an existing MLWF and addressing specific use cases.
For instance, when using ML to predict purchasing propensity in e-commerce, a technical
stakeholder would likely appreciate any convenient method of accessing and manipulating
data related to sales, customer demographics, website activity, etc. Granted, this lies within the
purview of automated data engineering, but the emphasis here is on effectively configuring
operational/technical processes for a specific use case. As another example, consider a data
scientist working with a recommendation engine. Rather than composing a standard error
measure over all samples, the stakeholder may prefer to work with a precision evaluation on
some top-N recommendations [241], an exponential decay that notes users are less likely to
pick items down a ranked list [130], or some other non-standard metric [261]. As of the early
2020s, most AutoML packages strive to be as generally applicable as possible, but Section 5.2
does provide limited examples of modern tools that conveniently specialise.
As a final note, while an expansive set of programming approaches does exist, data sci-

entists have clustered around certain popular open-source languages and frameworks for
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ML. Developing in these spaces automatically improves ease of use. Specifically, a 2019
KDnuggets Software Poll [437] highlighted Python and R as preferred languages from 2017 to
2019, although with a yearly decrease for R. It also listed Keras, scikit-learn and TensorFlow
as popular ML libraries. These results were further corroborated by the Kaggle State of
Machine Learning and Data Science report in 2020 [295], which was notably more focussed
on practising data scientists. This report ranked scikit-learn, TensorFlow and Keras as the top
ML frameworks, while also revealing that the top three languages regularly used by respon-
dents – multiple selections were allowed – were Python (15530), SQL (7535), and R (4277).
Additionally, at a ratio of 14241 to 1259, respondents recommended Python over R as the
first language an aspiring data scientist should learn. Admittedly, it is unclear whether these
programming languages will maintain a stranglehold on the mainstream in the long-term,
with newer entrants like Julia acquiring small but growing fanbases [534].

• Explainability. Understanding how an ML solution came to be and why it says what it
says has surged in importance within academia over the last several years. However, this
is not an unfamiliar requirement to data scientists who regularly interact with business
stakeholders; part of the job is translating work and outputs into an understandable format.
Unsurprisingly, an ability to communicate well is often cited as a core component of the
skill profile for such a technician [111, 166]. Indeed, a seminal 2012 Harvard Business Review
article defined a data scientist as “a hybrid of data hacker, analyst, communicator, and trusted
adviser” [185]. Likewise, an IBM survey [274] found that 91% of businesses using AI say
their ability to explain how a decision was arrived at is critical. Accordingly, many data
scientists will appreciate computational tools that provide insight into what exactly they do.
Satisfying this requirement boosts operational efficiency, but it also improves trust in an ML
solution. This desire for transparency around data and ML modelling has been corroborated
by recent interviews [198], albeit limited both in number and to students. Another set of
interviews surveying 20 professional data scientists, limited by their association with the same
organisation, likewise found a consensus need to surface what was done, e.g. what algorithms
or preprocessing techniques were used, and how it was done, e.g. what hyperparameter values
were chosen. Clearly, explainability and associated trust are essential issues to stakeholders,
and a deeper dive into these topics is available elsewhere [313].

Analysts. This group of primary stakeholders is the first that can be considered to encompass
‘other’ technical users. Analysts typically have moderate exposure to techniques and technology
involving data, possessing strong skills with popular business software, e.g. Microsoft Excel, as
well as reasonable fluency in SQL and some exposure to R and Python [182, 511]. However, data
visualisation will generally be enacted via popular software applications such as Tableau and
PowerBI [230], rather than a technical coding library. Of course, this is a generalisation as the
spectrum of proficiency is broad. Now, while the requirements of an analyst cover the same scope
as a data scientist, priorities tend to differ. Rather than technical efficiencies, given that analysts do
not commonly practice ML and are thus unconcerned with optimising such processes, ease of use
becomes particularly important. Additionally, the core job function for an analyst requires proximity
to business stakeholders, so one would also seek tools with a high degree of explainability. Unlike
data scientists, who lean towards understanding ML processes to instil confidence in the rigour
and validity of an ML solution, analysts generally need explainability to bridge the gap between
technical and non-technical stakeholders, as required by business intelligence/analytics (BI/BA)
roles [140, 188, 561]. Naturally, analysts working with AutoML tools are still likely to desire strong
technical performance from an ML solution, but their standards will differ from that of a data
scientist, who is far more likely to have benchmarked such metrics and is aware of what is currently
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SOTA. Essentially, perspectives will be ‘anchored’ differently depending on stakeholder experience
with a technology thus far [225].

Business Users. This group is yet another step removed from the technical expertise generally
required for direct ML involvement. Admittedly, many existing AutoML vendors market themselves
as operable by ML novices; one could propose that any accountant, lawyer, line manager or other
business stakeholder could participate in loading data, undertaking ML and deploying performant
solutions as part of their decision-making workflow. However, this is a lofty ideal even before
considering the survey results in the rest of this review. Several factors also complicate matters.
Firstly, business users are unlikely to have confidence using ML tools, even if ease of use is
outstanding. Indeed, despite visualisation tools and other methods for supporting explainability,
AutoML-assisted technical operations, e.g. the deployment of an ML solution, are likely to remain
daunting. Secondly, this type of stakeholder is unlikely to consider direct ML involvement within
their remit. The creation and management of analytical models typically fall to data scientists or
analysts, and any organisational dearth of expertise here is probably better met by hiring talent to fill
the gap. In fact, it has been argued that enabling non-technical users to run an ML application may
even be harmful [126, 187, 324]. Nonetheless, business users remain critical stakeholders in an ML
application, often acting as both the driving force and beneficiaries of its outputs. Certainly, manager
functions within business units are those that commission bodies of work to be completed and
expect results from that expenditure of effort. Thus, technical performance and efficiency are
paramount, although more through a return-on-investment (ROI) lens that considers staffing time
and organisational resources. Conversely, any characteristic around interfacing with an AutoML
system, e.g. usability or explainability, is likely to be less of a direct concern, as organisations will
usually rely on data scientists and analysts for reporting. Indirectly, though, business users will still
benefit from such facets, as they require confidence in an ML product and its alignment to business
objectives.

DeploymentTechnicians.This group encompasses thosewhomove experimentalML solutions
into production. In smaller organisations, this role may blend with that of a data scientist, but
larger businesses or those dealing with more mature technical functions often have a separate
department dedicated to the policies, procedures and processes behind deploying technical products.
Normally, once an ML model has been created and is ready for consumption, it sits as an object
within the same technical scope as other business applications, i.e. ingesting data, writing data, and
interacting with other systems. How this solution is consumed will vary based on the intent behind
an ML application, but modern business practices have established standardised roles focussed on
deployment. Traditionally called DevOps [97], these functions, if specific to ML, are starting to
be referred to as MLOps [183, 393, 501]. For those tasked with associated responsibilities, an ML
pipeline is usually considered sacrosanct; its experimental accuracy is unquestioned, and matters
such as explainability are irrelevant. Instead, more technical considerations related to infrastructure
are essential, and these have been the focus of various studies [167, 200, 360, 486, 512, 513]. Like
data scientists, deployment technicians care about efficiency, albeit in matters of inference and
maintenance rather than model training, and they would also seek methodological currency
from AutoML packages, given how quickly hardware and deployment techniques can evolve,
e.g. FPGAs and federated ML. Other considerations relating to an ML application include the ability
to scale well [582], continously update [563], handle dirty data [246], and adapt robustly to concept
drift [373].

3.1.2 Secondary Stakeholders. This collective is not generally invested in a specific ML application
like the primary stakeholders listed above. However, the category remains important in discussing
AutoML, as its constituents have roles and responsibilities that will both impact and be impacted
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by intensifying uptake of associated technologies. Indeed, disregarding the requirements of the
following organisational stakeholders would render an incomplete understanding of the dynamics
that drive AutoML adoption in enterprise use cases. Importantly, as before, we do not consider
specific job titles here due to the fluidity of definitions within the modern workforce, instead
focussing on organisational roles and responsibilities.

Corporate Management. This group of secondary stakeholders encompasses the finance,
human resources and othermanagement units within an organisation, save for those includedwithin
a separate ‘risk and governance’ subcategory below. Crucially, for any organisation in the private
sector or elsewhere, the allocation of finite resources is a strongmotivator and constraint for business
decisions and activities; corporate management is closely tied to those considerations. Indeed, a
recent Boston Consulting Group survey of senior executives at 1034 large organisations [397] found
that the most significant driver for responsible AI use related to business benefits, as declared by
40% of respondents. This motivation was followed by customer expectations (20%), risk mitigation
(16%), and regulatory compliance (14%). Of course, maintaining the health of a business organisation
manifests in diverse requirements of a performant ML application, not all simple and direct. For
instance, an IBM survey, previously mentioned [274], found that explainability is important to
corporate management. In fact, a CapGemini survey reveals that the proportion of executives
interested in this area has increased from 32% in 2019 to 78% in 2020 [135]. However, such a
stakeholder is typically not interested in understanding a specific ML model; they are frequently
answerable to external entities, e.g. customers and regulatory bodies, and thus adopt their interests.
Then there is ease of use, which corporate management is unlikely to ever avail itself of directly,
but investing in accessible ML tools does benefit staff training and acquisition. Granted, other
requirements that AutoML could satisfy are more straightforwardly justified. Strong technical
performance ofML solutions can provide a competitive advantage within an industry and generate
revenue. Good efficiency can similarly savemoney, e.g. operational efficiency frees time for existing
staff and technical efficiency may save server costs.

Risk and Governance Entities. This group is essentially dedicated to avoiding harm related
to business practices, which, in context, refers specifically to the processes and outcomes of an
ML application. Given that conditions of uncertainty are inevitable within real-world settings, it
is up to these entities, alongside management, to understand and mitigate associated risks. Data
governance, for instance, is increasingly of corporate interest, with the biannual Information
Governance ANZ group survey finding in 2021 that 64% of organisations had adopted a formal
Information Governance (IG) framework, implementing associated policies and procedures, and
74% had IG projects underway or planned for the following year [82]. Two years earlier, only
51% were using a formal IG framework [81]. Evidently, there is a growing consensus that the
implementation of an advanced technology should be subject to IG considerations and risk-based
oversight. Specifically, ML applications and the automation of their higher-level processes are
expected to align with data governance and security practices via controllable access to data, models,
and technical functionality. Essentially, the running of an MLWF should be auditable.

Notably, there are many ways related to ML in which risk may arise, and some have nothing to do
with its technical processes. For instance, the field of data science is presently beset with significant
variability in the skills and preferred approaches of its practitioners. Admittedly, one could argue
this is an issue in any industry that is heavily dependent on human expertise, e.g. medicine or
law. However, the relative immaturity of industrial data science means that no educational or
experiential thresholds are commonly agreed upon to signify that someone is a data scientist [191,
262, 325, 555]. In fact, there is currently a proliferation of online courses and boot camps to assist
people transitioning into the field [139], many of debatable quality, and the absence of regulation
means that it is not uncommon for prospective employees to simply change their job titles. This
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inconsistency in skills and approaches can damage the quality of ML outputs, which is particularly
dangerous in high-stakes problem contexts. Moreover, even if every professional data scientist
were a genuine expert, the lack of standardisation can still cause issues with reproducibility,
which is a prominent concern across all sciences, including ML [116, 245, 435, 467]. Thus, for
stakeholders dedicated to risk and governance, AutoML has the appealing potential, in theory, to
provide consistency and transparency in the application of ML, establishing a robust baseline in the
practice of data science. On the other hand, AutoML packages must themselves have appropriate
safeguards for such an ideal to be realised, as ease of use erodes the accessibility barrier that
prevents non-experts from inducing errors and possible harm via their ignorance.
Now, when discussing overlapping requirements with a data scientist, a naive expectation is

that solid technical performance will stimulate trust in an ML solution simply by virtue of
generating valid ML predictions/prescriptions. However, the standard application of ML, even
with a substantially accurate model, does not consider many nuanced drawbacks that can make
an ML solution a poor fit for a real-world context. These nuances can be very subtle, which is
why any auditing bodies predominantly require explainability from the tools and processes used
in an MLWF, if only to seek trust through transparency [535]. Indeed, trust in AI has recently
surged in importance within both academic and industrial circles of discussion [198, 519, 535, 551].
Chief among the factors that can threaten trust are issues of bias and fairness, of which the public
has become more aware and critical as data science progressively seeps into the lives of common
people [410, 475]. The aforementioned IBM report [274] found 87% of respondents professed that
“ensuring applications and services minimise bias” is an essential aspect of AI. However, the report
also noted that skills shortages and a lack of assistive tools are the most considerable barriers
to developing/managing trust in AI. Naturally, this pressure for trustworthy ML has a financial
motivation for many businesses, passed on from customers; a recent CapGemini survey of 800
organisations and 2900 consumers [135] found that 71% of the latter want a clear explanation of
results and 66% expect AI to be fair and free of bias. This expectation has increased awareness
of AI discrimination among surveyed executives, from 35% in 2019 to 65% in 2020. Sure enough,
modelling in the literature posits that ignoring the societal requirement for debiasing can adversely
impact business demand and associated profits [541]. Additionally, surveys [388], taxonomies [401]
and instructional research [175] are accumulating on this topic, sometimes concerning specific
fields and applications, such as medicine [236] and hiring practices [184], respectively. Simply put,
risk and governance entities are likely to desire increasing capabilities of assessing/managing bias
and fairness within ML applications, and this will hold true of AutoML as well.

Finally, we note that this set of requirements, traditionally neglected by frontier ML theory and
technology, cannot be ignored for long. While extensive laws lag substantially behind the pace
of ML progress, calls for regulation are gaining political traction worldwide [234]. For instance,
consideration of the issue has appeared in the Australian 2021-2022 Budget Fact sheets [421], while
the US White House is launching a task force, i.e. the National AI Research Resource, with a partial
eye to such matters [267]. As some other examples, Standards Australia has recently developed a
roadmap related to AI practices [88] and the Office of the Australian Information Commissioner
has published a ‘Guide to data analytics and the Australian Privacy Principles’ [420]. Elsewhere,
in April 2021, the European Union released a proposal for the regulation of AI among member
states [161]. In essence, the societal context in which organisations employ ML is evolving, and
business leaders are highlighting trust and explainability in ML as vital for meeting regulatory and
compliance obligations [274]. This review will not delve deeper into the international laws and
policies being established for AI; the key takeaway is that an MLWF and its automation will be
subject to increasing regulatory oversight in the coming years, especially within industries such
as finance, law enforcement, and medicine. Accordingly, organisations would likely appreciate
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transparency from associated tools and processes, as well as considerations of bias and fairness,
should tension between business objectives and regulatory requirements ever arise.

3.2 Unified Criteria
Having established the core requirements of primary/secondary stakeholders that engage with an
ML application and associated tools, we can now distil and outline the key criteria by which AutoML
in an industry setting can be assessed as supporting performant ML. This proposed framework will
anchor the subsequent review of open-source packages, both specialised in Section 4.1 and holistic
in Section 4.2, as well as commercial offerings in Section 4.3. To best aid such an effort, each criterion
below has been broken down further into several questions and associated scoring methods. The
questions have been designed to be answerable with publicly available information, if it exists,
i.e. source code and documentation for open-source tools or vendor websites for commercial
products. Additionally, these questions are slanted to recognise major challenges that face the
ongoing uptake of AutoML technology, with one academic work [340] suggesting that obstacles fall
into three main areas: search, technical speed/performance, and HCI. In fact, given that grappling
with these challenges is a continuous process, the responses to the proposed questionnaire are
not always binary, e.g. ‘no automation’ or ‘full automation’. Convenience functions and features
that assist a user with an ML task, which suggest partial progress towards automation, warrant
acknowledgement. With that all stated, we now proceed to list the criteria.

• Technical Performance. Any AutoML product that supports performant ML will always
be judged by certain core metrics, i.e. its potential to set/improve the ‘correctness’ of an ML
model. This review aims to extend beyond such considerations, as necessary levels of solution
validity differ dramatically between industries, use cases, risk profiles, and organisational
agendas. Some businesses can operate at the SOTA frontier, while others are dabbling in
ML technologies for the first time. Likewise, 25% accuracy for a music recommendation
service may be fantastic, while 75% accuracy for a tumour classification system may be
abysmal. In short, predictive/prescriptive ‘correctness’ is undoubtedly essential, but it is
far from the be-all and end-all of ML requirements. It is also the criterion that we do not
delve into within this assessment framework for performant ML; experimental research is
required to validate the technical performance of any AutoML system, and this is out of
scope for this review. Such attempts at benchmarking are also already numerous within the
literature [114, 190, 237, 536, 582].

• Efficiency (22 Questions). As outlined in Section 3.1.1, the pace and cost of running an
MLWF are set on two fronts: operational and technical. The former relates to processes
that determine how effectively/productively the work of employees can be translated into
advancing tasks within an MLWF. The latter relates to the speed and resource consumption
involved in developing, deploying and maintaining the technical ML solution itself. Thus,
several categories of questions have been established to evaluate how well an AutoML tool
assists with overall efficiency. First, there is an assessment of the effort required in tracking
and managing experimentation during ML modelling. Second, there is consideration around
how easy it is to utilise prior art/work. Packages rate highly on this sub-criterion if they are (1)
capable of storing/managing a history of previousML applications and (2) able to leverage that
previous experience for future recommendation, e.g. via meta-learning. Efficient collaboration
also aids in awareness of prior art, so evaluating its presence is included in this category. Third,
there is a determination of how much effort can be saved along work-intensive portions of an
MLWF, i.e. data exploration/preparation, feature engineering/selection, and actual modelling.
Because data preparation is a particular time-sink, it merits an extended set of spin-off
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questions at this point. Finally, there is an appraisal of AutoML features, e.g. configuration
control, that may support technical efficiencies beyond those intrinsically linked to technical
performance. We now explicitly list the questions on efficiency.

Table 1. Assessment Framework for Efficiency. Questions: E1-E3.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency Effort in

experiment
management
& tracking

Does it provide a
model
repository?

E1 0/1 0: No
1: Yes

Efficiency Effort in
experiment
management
& tracking

Does it provide
model VCS?

E2 0/1 0: No
1: Yes

Efficiency Effort in
experiment
management
& tracking

Does it provide
experiment
tracking
features?

E3 Scale 0:2 0: No
1: Yes for log
storage/access,
but with limited
automation
and/or visuals
2: Yes, with
automatic log
visualisation

The sub-criteria in Table 1 can be mapped to the MLWF in Fig. 2 as follows: E1 to Find Prior
Art within Problem Formulation & Context Understanding and E2/E3 to Experiment Tracking
& VCS within Model Development and VCS within Monitoring & Maintenance.

Table 2. Assessment Framework for Efficiency. Questions: E4-E6.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency Effort in

leveraging
prior work &
collaboration

Does it offer a
template/code
repository?

E4 Scale 0:2 0: No
1: Yes,
templates/code
can be generated
by users
2: Yes,
templates/code
can automatically
kickstart projects

Efficiency Effort in
leveraging
prior work &
collaboration

Does it suggest
prior work?

E5 0/1 0: No
1: Yes
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Table 2. Assessment Framework for Efficiency. Questions: E4-E6.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency Effort in

leveraging
prior work &
collaboration

Does it facilitate
project
collaboration?

E6 Scale 0:2 0: No
1: Yes, with basic
features such as
shared access to
folders with
project artefacts
2: Yes, with
advanced
features

The sub-criteria in Table 2 can be mapped to the MLWF in Fig. 2 as follows: E4/E5 to Find
Prior Art within Problem Formulation & Context Understanding and E6 to Collaboration within
Problem Formulation & Context Understanding.

Table 3. Assessment Framework for Efficiency. Questions: E7–E13.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency MLWF Effort:

Data
Exploration

Does it
automatically
generate
visualisations to
assist in data
exploration?

E7 Scale 0:3 0: No
1: No, but
convenience
features are
available
2: Yes, to some
degree
3: Yes, and with
automatic
notification of
issues or points
of interest

Efficiency MLWF Effort:
Data
Preparation

Does it
automatically
prepare data for
modelling?

E8 Scale 0:2 0: No
1: No, but
convenience
features are
available
2: Yes, to some
degree

Efficiency MLWF Effort:
Feature
Engineering

Does it
automatically
engineer
features?

E9 Scale 0:2 0: No
1: No, but
convenience
features are
available
2: Yes, to some
degree
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Table 3. Assessment Framework for Efficiency. Questions: E7–E13.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency MLWF Effort:

Feature
Engineering

Does it store
features for later
use by others?

E10 0/1 0: No
1: Yes

Efficiency MLWF Effort:
Feature
Selection

Does it
automatically
select features?

E11 Scale 0:2 0: No
1: No, but
convenience
features are
available
2: Yes, to some
degree

Efficiency MLWF Effort:
Modelling

Does it specify
HPO search
spaces and
algorithms by
default?

E12 0/1 0: No
1: Yes

Efficiency MLWF Effort:
Modelling

Does it optimise
an entire ML
pipeline?

E13 0/1 0: No
1: Yes

The sub-criteria in Table 3 can be mapped to the MLWF in Fig. 2 as follows: E7 to Explore
& Assess Fairness within Data Engineering, E8 to Clean and Prepare within Data Engineering,
E9 to Feature Engineering within Data Engineering, E10 to Find Prior Art within Problem
Formulation & Context Understanding, E11 to Feature Selection within Model Development,
E12 to HPO within Model Development, and E13 to Data Engineering and Model Development
generally.

Table 4. Assessment Framework for Efficiency. Questions: E8A–E8F.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency MLWF Effort:

Data
Preparation

Does it automate
categorical
feature
Processing?

E8A 0/1 0: No
1: Yes

Efficiency MLWF Effort:
Data
Preparation

Does it automate
standardisation
and
normalisation?

E8B 0/1 0: No
1: Yes

Efficiency MLWF Effort:
Data
Preparation

Does it automate
bucketing and
binning?

E8C 0/1 0: No
1: Yes

Efficiency MLWF Effort:
Data
Preparation

Does it automate
text
preprocessing?

E8D 0/1 0: No
1: Yes
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Table 4. Assessment Framework for Efficiency. Questions: E8A–E8F.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency MLWF Effort:

Data
Preparation

Does it automate
time-period
extraction?

E8E 0/1 0: No
1: Yes

Efficiency MLWF Effort:
Data
Preparation

Does it assist
with class
imbalance via
sampling
techniques?

E8F 0/1 0: No
1: Yes

The sub-criteria in Table 4 can be mapped to the MLWF in Fig. 2 as follows: E8A–E8F to
Prepare within Data Engineering.

Table 5. Assessment Framework for Efficiency. Questions: E14–E16.

Criteria Sub-Criteria Question QCode Scoring Rubric
Efficiency Technical

Efficiency
Does it undertake
workload
optimisation?

E14 Scale 0:2 0: No
1: No, but
convenience
features are
available
2: Yes, to some
degree

Efficiency Technical
Efficiency

Does it allow
time limits for
modelling?

E15 0/1 0: No
1: Yes

Efficiency Technical
Efficiency

Does it allow
iteration/trial
limits for
modelling?

E16 0/1 0: No
1: Yes

The sub-criteria in Table 5 can be mapped to the MLWF in Fig. 2 as follows: E14 to Provision
Resources within Model Development and E15/E16 to CASH+ within Model Development.

• Dirty Data (5 Questions). This criterion specifically considers how robust an AutoML
system is in the face of messy data, e.g. format issues, missing values, outliers, etc. It deserves
its own category due to the considerable time and effort that tends to be invested into related
tasks; see Section 4.1.1. We now explicitly list the questions on dirty data.
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Table 6. Assessment Framework for Dirty Data. Questions: DD1–DD5.

Criteria Sub-Criteria Question QCode Scoring Rubric
Dirty Data Dirty Data Does it

automatically
clean dirty data?

DD1 Scale 0:2 0: No
1: No, but
convenience
features are
available
2: Yes, to some
degree

Dirty Data Dirty Data Does it
automatically
infer data types?

DD2 0/1 0: No
1: Yes

Dirty Data Dirty Data Does it
automatically
find and deal
with missing
values?

DD3 Scale 0:2 0: No
1: Partially, as it
finds missing
values
2: Yes

Dirty Data Dirty Data Does it
automatically
find and deal
with outliers?

DD4 Scale 0:2 0: No
1: Partially, as it
finds outliers
2: Yes

Dirty Data Dirty Data Does it undertake
other
domain-specific
or advanced data
cleaning
operations?

DD5 0/1 0: No
1: Yes

The sub-criteria in Table 6 can be mapped to the MLWF in Fig. 2 as follows: DD1–DD5 to
Clean within Data Engineering.

• Completeness & Currency (13 Questions). This criterion considers completeness through
the lens of technical domain coverage, i.e. the types of ML problems that an AutoML package
can handle. For instance, those constrained to binary classification tasks will only ever be
able to assist organisations with a subset of business problems. Thus, the major subset of
questions under this criterion determines the ML applications suitable for an AutoML system.
Admittedly, an associated low score is not a problem for specialist tools, but it reflects poorly
on any general applicability claims. The most ‘complete’ AutoML systems should additionally
be configurable for arbitrary business domains, i.e. by enabling custom evaluation metrics
for ML solutions. Beyond such a focus, there is an appraisal concerning the integration
of HPO methods and libraries, the latter being chosen for evaluation over individual ML
algorithms to ensure a degree of abstraction. After all, as mentioned earlier, an interface
to scikit-learn 0.24.2 immediately provides access to 191 estimators. Finally, this criterion
also assesses methodological currency, ensuring technical domain coverage uses up-to-date
techniques and approaches. However, notably, this monograph surveys only open-source
and commercial AutoML packages that are in popular use as of the early 2020s, meaning that



The Technological Emergence of AutoML 23

a lack of currency typically applies only to ‘faded’ tools; see Appendix A and Appendix B.
We now explicitly list the questions on completeness & currency.

Table 7. Assessment Framework for Completeness & Currency. Questions: CC1–CC13.

Criteria Sub-Criteria Question QCode Scoring Rubric
Completeness
& Currency

Technical
Domain
Coverage

How does it
handle
unsupervised
learning?

CC1 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Technical
Domain
Coverage

How does it
handle
regression on
tabular data?

CC2 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Technical
Domain
Coverage

How does it
handle
classification
on tabular
data?

CC3 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Technical
Domain
Coverage

How does it
handle
multi-class
classification
on tabular
data?

CC4 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Technical
Domain
Coverage

How does it
handle time
series and
forecasting?

CC5 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Technical
Domain
Coverage

How does it
handle
image-based
problems?

CC6 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Technical
Domain
Coverage

How does it
handle
text-based
problems?

CC7 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Technical
Domain
Coverage

Does it
handle
multi-modal
tasks?

CC8 0/1 0: No
1: Yes
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Table 7. Assessment Framework for Completeness & Currency. Questions: CC1–CC13.

Criteria Sub-Criteria Question QCode Scoring Rubric
Completeness
& Currency

Technical
Domain
Coverage

How does it
handle
ensemble
strategies?

CC9 Scale 0:2 0: Not at all
1: Via convenience
features or platform
extensions
2: Full AutoML

Completeness
& Currency

Customisation Does it allow
custom
evaluation
metrics?

CC10 0/1 0: No
1: Yes

Completeness
& Currency

HPO
Coverage

Which HPO
techniques
does it offer?

CC11 Points 1:N Grid
Random
Bayesian
Multi-Armed Bandit
Genetic
Meta-learning

Completeness
& Currency

Library
Coverage

Which
popular
libraries does
it interface
with?

CC12 Points 1:N Sklearn
Keras
TF
XGBoost
LightGBM
Catboost
Pytorch
Ax
R

Completeness
& Currency

Currency Is it actively
maintained?

CC13 0/1 0: No
1: Yes

The sub-criteria in Table 7 can be mapped to the MLWF in Fig. 2 as follows: CC1–CC10 to
Data Engineering and Model Development generally and CC11–CC13 to CASH+ and Require-
ments Review within Model Development.

• Explainability (7 Questions). This criterion is core to any assessment of an AutoML system,
even if the requirements manifest in different ways for different stakeholders [330]. Indeed,
for practising data scientists, this primarily encompasses explaining how an ML solution
arises, how it arrives at an output, and why its performance level is what it is. For other
technical users, that insight into drivers for technical performance, e.g. feature importance,
remains essential. As for corporate stakeholders, explainability must be present to ensure
compliance with governance, regulatory and corporate social-responsibility requirements.
Of course, beyond the standard questions, scenario-building capabilities are also essential
to note, as they expand the value of an ML solution beyond predictive power to insight
generation. Such a component would be especially desirable to semi-technical and business
users that care more about understanding a problem context than any particular deployed
model. Finally, this criterion includes an evaluation of whether an AutoML package considers
bias and fairness. Specific tools are dedicated to this topic, so any appraisal must not only
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consider the identification of associated flaws but also the capacity for their remediation; see
Section 4.1.2. We now explicitly list the questions on explainability.

Table 8. Assessment Framework for Explainability. Questions: EX1–EX7.

Criteria Sub-Criteria Question QCode Scoring Rubric
Explainability Data Lineage Are data

lineage &
processing
steps clear?

EX1 0/1 0: No
1: Yes

Explainability Model Under-
standing

Is it clear
what
modelling
steps were
undertaken?

EX2 0/1 0: No
1: Yes

Explainability Model Under-
standing

Does it
automatically
explain global
model charac-
teristics?

EX3 Scale 0:2 0: No
1: No, but
convenience features
are available
2: Yes, to some
degree

Explainability Model Under-
standing

Does it
automatically
explain local
prediction-
level
artefacts?

EX4 Scale 0:2 0: No
1: No, but
convenience features
are available
2: Yes, to some
degree

Explainability Scenario
Modelling

Does it
support
scenario
exploration?

EX5 0/1 0: No
1: Yes

Bias &
Fairness

Metrics Does it
automatically
generate
best-practice
bias/fairness
metrics for
the
model/data?

EX6 Scale 0:2 0: No
1: No, but
convenience features
are available
2: Yes, to some
degree

Bias &
Fairness

Metrics Does it
automatically
mitigate
and/or
remediate
bias/fairness
flaws in the
model/data?

EX7 Scale 0:2 0: No
1: No, but
convenience features
are available
2: Yes, to some
degree
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The sub-criteria in Table 8 can be mapped to the MLWF in Fig. 2 as follows: EX1–EX5 to Vi-
sualise & Explain and Requirements Review withinModel Development and EX6–EX7 to Explore
& Assess Fairness within Data Engineering and Assess Fairness within Model Development.

• Ease of Use (5 Questions). As with explainability, this criterion also manifests differently
for different stakeholders, primarily due to the variability in technical skills and operational
requirements. For instance, an AutoML tool only available via Python or R scripting immedi-
ately limits the userbase to technicians familiar with coding constructs, e.g. variables. Even
amongst technicians, programming languages and data-science libraries that are less common
will further restrict utility. Thus, one of the pertinent questions to ask is whether a CLI is
available, given that it is somewhat more accessible to general users. Indeed, a CLI ideally
requires nothing more than simple commands to be typed in and executed with a press of a
return key. Of course, future work may further evaluate the usability of individual UIs, but,
for this monograph, it is sufficiently informative to delineate between AutoML technologies
that have an accessible UI and those that do not. As an aside, any particular quirks that assist
with the translation of business problems to the system undertaking analytical work are also
worth noting under this criterion, e.g. natural language processing (NLP) engines and other
exotic forms of HCI. However, deeper discussions about HCI in AutoML are deferred to other
reviews [313]. We now explicitly list the questions on ease of use.

Table 9. Assessment Framework for Ease of Use. Questions: EU1–EU5.

Criteria Sub-Criteria Question QCode Scoring Rubric
Ease of
Use

Interface Can it be
interacted with
via coding?

EU1 0/1 0: No
1: Yes

Ease of
Use

Interface Is there a CLI
with simple
commands?

EU2 0/1 0: No
1: Yes

Ease of
Use

Interface Is there a GUI? EU3 0/1 0: No
1: Yes

Ease of
Use

Interface Is it
desktop-based or
browser-based?

EU4 Scale 0:2 0: Desktop only
1: Browser only
2: Both

Ease of
Use

Learning Is there clear and
extensive
documentation
and guidance
available?

EU5 Scale 0:2 0: No
1: Partially
2: Yes

The sub-criteria in Table 9 are not technically mappable to individual tasks/phases of the
MLWF in Fig. 2. They refer to the ways in which one can interact with an AutoML system, as
well as how convenient these forms of HCI are. Fundamentally, ease of use can impact every
aspect of an MLWF, i.e. wherever a user must interact with an AutoML system to complete a
task.

• Deployment & Management Effort (11 Questions). This criterion is perhaps the one
that most distinguishes industrial concerns from academic considerations. Indeed, once
experimentation results in an ML solution, it takes significant technical effort to embed the
object within a business decision-making process [491]. Often, a production environment
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must continue to feed an ML model with transformed data, potentially in real-time and/or
streaming fashion, then transfer generated predictions/prescriptions to an end user or other
downstream systems. Once deployed, an ML solution should also ideally be monitored for
changes in defined metrics [129], e.g. those related to technical performance and fairness.
Whether reactively, in response to monitored information, or proactively, optimal modelling
may additionally necessitate reapplying earlier MLWF processes as part of maintenance,
such as model retraining. Therefore, characteristics of an AutoML tool that assist or hinder
this important criterion are crucial to appraise here. We now explicitly list the questions on
deployment & management effort.

Table 10. Assessment Framework for Deployment & Management Effort. Questions: DM1–DM4.

Criteria Sub-Criteria Question QCode Scoring Rubric
Deployment

&
Management

Effort

Deployment Does it use
model
compression
techniques?

DM1 0/1 0: No
1: Yes

Deployment
&

Management
Effort

Deployment Can it be
deployed
on-premise
and/or in the
cloud?

DM2 Scale 0:2 0: No
1: Yes, only in the
cloud
2: Yes, both

Deployment
&

Management
Effort

Deployment Does it offer
advanced
deployment
testing
mechanisms,
e.g. A/B or
champion-
challenger?

DM3 0/1 0: No
1: Yes

Deployment
&

Management
Effort

Deployment Does it offer
advanced
deployment
update
mechanisms,
e.g. blue-
green or
canary?

DM4 0/1 0: No
1: Yes

The sub-criteria in Table 10 can be mapped to the MLWF in Fig. 2 as follows: DM1/DM2 to
Provision within Deployment, DM3 to Serving within Deployment and Proactive Training and
Reactive Training withinMonitoring and Maintenance, and DM4 to Serving within Deployment.
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Table 11. Assessment Framework for Deployment & Management Effort. Questions: DM5–DM11.

Criteria Sub-Criteria Question QCode Scoring Rubric
Deployment

&
Management

Effort

Management Does it
automatically
set up
monitoring?

DM5 Scale 0:2 0: No, not present at
all
1: No, manual setup
and/or configuration
is required
2: Yes

Deployment
&

Management
Effort

Management Does it
monitor
hardware
usage and
performance?

DM6 0/1 0: No
1: Yes

Deployment
&

Management
Effort

Management Does it
monitor
model
performance
metrics?

DM7 0/1 0: No
1: Yes

Deployment
&

Management
Effort

Management Does it
monitor
data/concept
drift?

DM8 0/1 0: No
1: Yes

Deployment
&

Management
Effort

Management Does it
monitor
bias/fairness
metrics?

DM9 0/1 0: No
1: Yes

Deployment
&

Management
Effort

Management Does it
reactively
retrain based
on
monitoring
triggers?

DM10 Scale 0:3 0: No
1: No, but
convenience features
can assist manual
retraining
2: Yes, with triggers
defined by user
3: Yes, with triggers
provided by
developers

Deployment
&

Management
Effort

Management Does it
proactively
retrain?

DM11 0/1 0: No
1: Yes

The sub-criteria in Table 11 can be mapped to the MLWF in Fig. 2 as follows: DM5–DM9 to
Monitoring withinMonitoring and Maintenance, DM10 to Reactive Training withinMonitoring
and Maintenance, and DM11 to Proactive Training within Monitoring and Maintenance.

• Governance (3 Questions). In an organisational context, an ML tool must align to exist-
ing data governance and security considerations to ensure regulatory and internal-policy
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compliance. Therefore, this brief but important category assesses whether an AutoML tool
aligns with relevant practices. Questions include whether data access is appropriately man-
aged [277], although, for ML, it is also essential to evaluate whether an organisation can
control access to functionality. Such system features are particularly pertinent during model
deployment, as this phase bears significant risks around exposing organisational artefacts
to external parties and inadvertently embedding immature projects into core business pro-
cesses/environments. Even with the best intentions to ensure security and controlled access,
the ability to audit activity on internal systems is likewise desirable to confirm that appropri-
ate activities are being undertaken by authorised entities [474]. We now explicitly list the
questions on governance.

Table 12. Assessment Framework for Governance. Questions: G1–G3.

Criteria Sub-Criteria Question QCode Scoring Rubric
Governance
& Security

Governance Does it offer
auditing of
activity?

G1 0/1 0: No
1: Yes

Governance
& Security

Security Does it offer
artefact
access
controls for
the
model/data?

G2 0/1 0: No
1: Yes

Governance
& Security

Security Does it offer
function
access
controls for
training,
deployment,
etc.?

G3 0/1 0: No
1: Yes

The sub-criteria in Table 12 are not technically mappable to individual tasks/phases of
the MLWF in Fig. 2. They refer to how an organisation integrates with and accesses an
AutoML system, as well as how secure these forms of HCI are. Fundamentally, governance
can impact every aspect of an MLWF, i.e. wherever a user can interact with an AutoML
system to influence a task.

3.3 The Role of AutoML
The assessment framework proposed in this monograph reflects the desires of major stakeholder
groups when engaging with ML in an industry setting. Although the constituent questions and
their measurement rubrics are diverse, there is a loose general trend: the higher an AutoML package
scores for the proposed criteria, the more it is seen to support performant ML. So, after such an
amalgamation of varied requirements, it is worth asking whether the framework can be condensed
into succinct insights about what drives AutoML uptake, now and in the future. Basically, what
does industry see as the role of AutoML, both present and prospective?

There appear to be several answers, as follows:
• Enhancing Data Science Practices. The use of AutoML provides the potential to engage
in ML processes that are, compared to manual efforts, more efficient, technically performant,
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robust, and explainable. Implementations with ongoing developer support will likely adopt
the best available approaches for relevant MLWF tasks and stay up-to-date with the lat-
est technologies. Moreover, beyond simply creating a model object, the ongoing AutoML
endeavour to be genuinely end-to-end promises scalable deployment capabilities and an
easier way to monitor/maintain performance subject to real-world data dynamics. Progress
in these directions represents advancement towards true AutonoML and next-generation
technical abilities [308, 313]. At the very least, from a purely financial perspective, efficiently
generating and conveniently deploying ML solutions that potentially perform better than
manual selections will offer both cost savings and revenue maximisation.

• Democratising Data Science Practices. Beyond pushing the limits of capabilities that ML
practitioners are familiar with, AutoML offers a gateway to ML techniques and approaches
for those who are not trained technicians. While not without risks and other implications, this
inclusive ‘democratisation’ stands to knock down existing skill barriers, with benefits flowing
both ways. Specifically, organisations will likely leverage the power of data science with
greater ease, while ML applications will profit from a more fluid influx of domain knowledge.

• Standardising Data Science Practices. Each AutoML system acts as a wrapper for a col-
lection of methods that deal with targeted phases of an MLWF. There may be many services
on offer as of the early 2020s, but there are still far fewer packages than individual tech-
niques. Thus, centralising work efforts into operations framed by a common system provides
many potential benefits, reproducibility among them. Standardisation of such practices also
supports stronger security mechanisms and access controls alongside enhanced auditability
and thus governance. Indeed, as society continues to expect increasingly more from its AI
engagement, particularly on the ethical front, the existence of AutoML may make it easier to
certify compliance. At the very least, the technology cannot exist at odds with data gover-
nance practices lest corporate decision makers lean towards caution, hindering industrial
uptake and successful business integration.

Table 13. Key criteria that an ML application should satisfy according to stakeholders. Considerations are
marked F for fundamental and C for contextual.

Criteria Data Scientist Analyst Deployment Technicians Corporate End Users
Technical Performance F F C F
Efficiency F F C
Dirty Data F C
Completeness & Currency F
Explainability C C C F
Bias / Fairness C C C F
Ease of Use F F
Deployment & Management Effort F F C

In light of these overarching industrial expectations of AutoML, it is worth presenting one last
condensed overview, specifically around which stakeholders care most about particular elements
of the aggregated framework presented in Section 3.2. Table 13 does so, marking criteria by F if
they are fundamental considerations to a stakeholder during engagement with an ML application.
Additionally, C denotes a contextual criterion, i.e. one that is conditionally important to a stakeholder
depending on organisational context. Of course, as discussed earlier, different stakeholders have
varying requirements and degrees thereof concerning each criterion; some will find certain concepts
virtually irrelevant to their role.

Unsurprisingly, data scientists care about the greatest number of listed criteria, given the ongoing
centrality of a technical role in an ML application. After all, a core purpose of AutoML is to assist
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such practitioners closely with their technical tasks. However, management is also broadly invested
in AutoML technology supporting performant ML. Beyond corporate stakeholders typically needing
to sign off on software purchases, they also act as the bridge between the fundamental work of
a data scientist or analyst and the business context in which an ML solution is to be deployed.
Thus, while managers usually do not operate AutoML technology, they still have wide-ranging
conditional requirements that must be satisfied.

As for deployment technicians, these stakeholders become interested in AutoML once associated
systems extend beyond the traditional core of ML model selection. Specifically, such technicians
will likely be keen to employ AutoML systems that incorporate and simplify MLOps processes.
Accordingly, their requirements are primarily infrastructural. In a large enough analytics team,
data scientists and deployment technicians will be distinct, so, while both care about technical
performance and efficiency, the foci of both groups are different. The former seeks to efficiently
train up an ML pipeline with a high degree of validity, while the latter seeks to ensure a deployed
solution services queries efficiently and maintains a baseline level of ‘correctness’.
Finally, end users may not interact directly with the development of an ML solution, but they

remain affected by the entire process. This statement holds whether the user is a target of low-stakes
product recommendation or a more impactful application, e.g. an AI-based hiring decision or loan
determination. Accordingly, trust – this requires explainability – is crucial for their engagement
with an organisation that delivers the product. If the end user is not satisfied that an ML solution is
technically performant, unbiased and fair, they remove their financial support or, depending on the
application, pursue recompense. In effect, a happy client/customer indirectly validates using an
AutoML service.

Notably, in the summation within Table 13, there is no explicit mention of the business user
detailed in Section 3.1.1. Such a stakeholder without technical skill can be considered to sit within
the corporate section, supplying domain knowledge and engaging with core technicians via an
analyst as required. In some framings of this structure, the role is considered a ‘domain expert’,
while others may refer to a ‘project sponsor’. Regardless of terminology, this stakeholder does
not traditionally have any direct involvement with an MLWF beyond perhaps the initial phase
of problem formulation & context understanding. However, given the potential of AutoML to
drive organisational value through democratisation, business users remain important; any AutoML
system that facilitates HCI for these technical non-experts accelerates technological adoption.
The question then is as follows: if industrial uptake of AutoML is contingent on how well it

enhances, democratises and standardises data science practices, how far along is the technology
when meeting expectations? In seeking to answer this question, incoming sections of the review
examine how well modern offerings support performant ML, additionally attempting to glean
whether AutoML has begun making a societal impact.

4 AUTOML SOFTWARE
The cataloguing of open-source and commercial AutoML services is splintered across various blogs,
tutorials, social media posts, and GitHub-based collections. Currently, there is no centralised index
for this technology that is both reliable and up-to-date. Thus, this review sifts through a compilation
of sources to present one such encompassing snapshot of AutoML products as of the early 2020s.
Investigations supporting this survey, both broad and deep, have involved, for instance, popular
search engines, blogs on data science and analytics [26], and curated repositories [218, 554].
First, however, we detail the constraints around the scope of the review, i.e. what software

packages can be considered under the banner of AutoML. Here, we define an AutoML ‘tool’ as a
computer program that, through some form of HCI, automates some element of the MLWF in Fig. 2.
Crucially, the initial high-level process to receive concerted focus under the banner of AutoML was
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model selection, specifically HPO. The field has gradually expanded its attention in the years since,
even though the model-development phase remains a strong priority. Given the variety of software
packages currently accessible to the public, a further categorisation is thus possible.
If an AutoML tool allows a user to train an ML model on a given dataset as one of its internal

functions, which is the core process of ML, we call it ‘comprehensive’. Such a tool will also
often be referred to here as an AutoML system, acknowledging the integrated nature of multiple
mechanisms [308]. This definition does not mean that all comprehensive tools are identical in scope.
Some may or may not include ensemble mechanisms, data cleaning, etc. However, they all act as
wrappers around an ML solution object and, in some way, manage it.

In contrast, if an AutoML tool automates an aspect of an MLWF without directly training an
ML model, we call it ‘dedicated’. The term is used because this survey finds these ancillary tools
predominantly focus on but a single element of the MLWF. The reasons for this specialisation are
numerous. For instance, manyHPO tools are actually built agnostically, such that they can be applied
to arbitrary optimisation problems as formulaically as to selecting hyperparameter configurations
for ML pipelines. Hence, the dedication to the HPO task is, in some sense, a fruitful application of
a more general theory. Other times, a dedicated tool is simply designed to prioritise challenges
beyond model development without becoming bogged down in unnecessarily comprehensive
implementation. Regardless, despite the diversity of dedicated tools in existence, this review finds
that they are most concentrated in three areas: (1) data and feature engineering, (2) bias, fairness
and explainability, and (3) HPO.
Naturally, whether dedicated or comprehensive, all AutoML tools were considered under ex-

clusion criteria to ensure a meaningful analysis of industrial uptake. The mere presence of a
GitHub repository did not automatically qualify a tool for this review. Exclusion criteria include
the following:

• A lack of open-source or commercial implementation ready for organisational use. This
criterion immediately cuts out numerous academic proposals and experiments. Of course,
this does not devalue the novel/interesting AutoML science that these projects engage in,
e.g. the reductivist evolutionary principles of AutoML-Zero [206, 459]. However, whether
such theoretical concepts gain greater traction in mainstream usage is a matter for future
assessment; it remains out of scope for this monograph.

• Association with a repository that possesses minimal commits and stars, often appearing as
a quick burst within a short window of time and paired with the publication of an academic
paper. Such a scenario suggests the repository serves more as an informational webpage
or code storage facility than a means of hosting genuinely usable software for the global
data-analytics community.

• Indication that a project is overly casual, i.e. done for personal interest or publicity by an
individual or small group.

• A lack of updates or maintenance activity for over 18 months, occasionally paired with an
announcement of the tool being deprecated. However, some of these ‘faded’ packages are
still useful to mention as part of historical commentary; see Appendix A and Appendix B.

In essence, these exclusion criteria all aim to reflect the subset of AutoML technology with which
industry is seriously engaging at present.

Finally, we make one more relevant note; this review treats AutoDL as largely out of scope. Here,
we define an AutoDL tool as being both (1) focussed on NAS and (2) not primarily designed for
tabular data. Fortunately, this exclusion has not been an issue for the most part. While AutoDL
receives substantial interest as a subtopic of DL, the extreme computational resources required have
stymied any significant dissemination of the technology throughout mainstream industry. Granted,
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this state of affairs may change quickly at any time, and some blur in the discussion within this
monograph is inescapable. However, at this point in the early 2020s, AutoDL remains extremely
focussed on the model-development phase of an MLWF and, overall, has not translated far beyond
the academic proof-of-principle stage. Deeper discussions are available elsewhere [195].

We now proceed to discuss the surveyed AutoML tools from the perspective of performant ML,
for which an assessment framework was introduced in Section 3.2. Open-source software is explored
first, with Section 4.1 for dedicated tools and Section 4.2 for comprehensive systems. Commercial
AutoML products, which tend to be relatively opaque, are then analysed within Section 4.3.

4.1 Dedicated AutoML Tools
This section surveys and discusses open-source tools that, to some degree, automate a specific
element of an MLWF. Several of these programs are occasionally incorporated as mechanisms
within other holistic software packages. However, in complete isolation, they do not enable an ML
application to be run; the core ML processes of model generation and management are typically
absent.
Broad exclusion criteria have already been listed, but it is still worth providing examples of

projects beyond the scope of this review. Doing so raises awareness of how much research and
development is ongoing within the field of AutoML. For instance, conceptual tools lacking a substan-
tive open-source implementation at the time of review include One Button Machine (OBM) [331],
Persistant [120], and BigDansing, a system for big data cleansing [311]. Then there are codebases
that, while existing, have been given limited developmental/maintenance attention, often serving to
supplement the publication of an academic paper. Examples include ExploreKit [305, 306], the Data
Civilizer System [193, 452], and NADEEF [176, 177]. In fairness, NADEEF exemplifies software that
appears to have been actively maintained at one point, but the lack of update in over five years
implies it has since ‘faded’. Finally, Cognito [158] is an example of exclusion based on appearing to
be a small-scale personal/group project. Such codebases tend to have lower levels of popularity,
quality or maintenance compared to software entrenched within industry, although there is no such
insinuation regarding Cognito specifically; some of these projects may eventually attain sufficient
recognition to be more broadly adopted by organisations and their stakeholders.
Now, the incoming discussion around dedicated AutoML tools has been organised into three

categories that encompass the majority of surveyed tools. Section 4.1.1 covers data and feature
engineering, Section 4.1.2 relates to bias, fairness and explainability, and Section 4.1.3 addresses
HPO. Notably, data visualisation, arguably essential throughout an MLWF, is conspicuous in its
absence. This omission is not because there is a dearth of tools dedicated to such a form of HCI.
In contrast, there are simply too many packages in this space to consider for this survey. Such
consideration is also inappropriate for scope, as designing visual representations for data can be
done entirely without ML in mind. There are exceptions, however, e.g. if a visualisation package
is customised to optimally communicate specific ML metrics. In practice, such products are still
commonly dedicated to specific tasks, such as evaluating bias and fairness, thus slotting organically
into one of the categories mentioned above.

4.1.1 Data and Feature Engineering. The first category of dedicated AutoML tools in this review
encompasses those that focus solely on data preparation tasks. The surveyed open-source packages
classified as such are listed in Table 14.
Arguably, the most well-known within this set of codebases is Featuretools [70], which can

generate numerous features for subsequent ML model training. As is typical for automated feature-
engineering efforts, Featuretools provides a pool of ‘primitives’, i.e. basic feature transformations,
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Table 14. Dedicated AutoML Tools: Data and Feature Engineering.

Name Categorisation Github Ref.
Compose Data Processing https://github.com/FeatureLabs/compose [68, 303]
Featuretools Feature Engineering https://github.com/FeatureLabs/featuretools [70, 304]
Feature-engine Feature Engineering https://github.com/solegalli/feature_engine [227]
Boruta Feature Engineering https://github.com/scikit-learn-contrib/boruta_py [68, 327]
tsfresh Feature Engineering https://github.com/blue-yonder/tsfresh [153, 239]

such as ‘mean’ and ‘sum’. These primitives can then be stacked into even more complex trans-
formations of data. In contrast, Feature-engine [227] avoids this form of deep feature synthesis,
but it does provide an expansive variety of operations for data cleaning and preparation alongside
feature generation. The package, however, does not automatically apply every operation, so some
manual involvement is still required in making appropriate choices.
In both cases, an ML model never has to enter the picture. Mechanisms that prioritise feature

generation are primarily sold on the basis of conveniently, and hopefully intelligently, providing
many new perspectives on a dataset. On the other hand, Boruta [265] is solely dedicated to
automated feature selection, which is often a more difficult task. The challenge is deciding which
features are actually helpful for generating an accurate ML solution. In the case of Boruta, the
package appears to act in wrapper style, as defined in Section 2. Specifically, it relies on the technical
performance of a model to guide the search for good features, although this dependence on an ML
model object does not mean the mechanism is considered a comprehensive AutoML system under
the definitions in this review.

The remaining two packages indicate the diversity of available dedicated tools operating at this
phase of an MLWF. The Compose program [68] deserves its own data-processing subcategory in
Table 14, operating upstream relative to the other tools. It assists a stakeholder in constructing a
training set from data, assuming one has not been previously prepared, and thus provides valuable
labelling and extraction operations. As for ‘tsfresh’ [239], it is unique for being dedicated not
only to a specific task, i.e. feature engineering, but also to a specific technical domain. The tool
essentially generates features for problems and data that involve time series. Such customisation
to distinguish an AutoML service from the rest of the pack is a recurrent theme and is examined
further in Section 5.2. However, despite the variety of dedicated tools on offer, it is still notable
that only a handful can arguably be considered adequate for organisational use. Certainly, there is
a lot of research activity in automating data preparation, but, as an endeavour trailing HPO and
automated model selection, perhaps it should not be surprising that technological translation here
is nascent.

4.1.2 Bias, Fairness and Explainability. The second category of dedicated AutoML tools in this
review encompasses those focussing solely on bias and fairness metrics, effectively grappling with
explainability. The surveyed open-source packages classified as such are listed in Table 15.
Given the recent surge in importance that the topic of ML trustworthiness has attained, this

section warrants a more extensive discussion than the other two categories of dedicated AutoML
tools. First, it is essential to note that the bias of societal concern does not refer to the typical
concept that technicians are familiar with, i.e. the bias-variance trade-off that explains the high-
bias underfitting and high-variance overfitting of ML models [232]. From an ethical standpoint,
bias is instead defined as an inclination/prejudice for or against a person or group, and several
academic works have attempted to further systematise this notion, e.g. categorising six sources of
bias [388, 522]. Unsurprisingly, bias is intrinsically linked to fairness, defined elsewhere as “the
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Table 15. Dedicated AutoML Tools: Bias and Fairness.

Name Categorisation Github Ref.
AI Fairness 360 Bias-Fairness https://github.com/Trusted-AI/AIF360 [350]
FairLearn Bias-Fairness https://github.com/fairlearn/fairlearn [122, 210]
Audit AI Bias-Fairness https://github.com/pymetrics/audit-ai [450]
aequitas Bias-Fairness https://github.com/dssg/aequitas [179, 478]
LIME Viz (Bias-Fairness) https://github.com/marcotcr/lime [464, 465]
SHAP Viz (Bias-Fairness) https://github.com/slundberg/shap [363, 364]
AIExplainability360 Viz (Bias-Fairness) https://github.com/Trusted-AI/AIX360 [83, 349]
What If Tool Viz (Bias-Fairness) https://github.com/PAIR-code/what-if-tool [436]

absence of any prejudice or favouritism toward an individual or a group based on their inherent or
acquired characteristics” [151]. In turn, a lack of fairness in ML can have adverse impacts, including
‘allocation harms’, where resources and opportunities are withheld from a particular group, and
‘quality-of-service harms’, where predictive/prescriptive outcomes may be relatively poor for a
particular group [210]. Of course, the topic of bias and fairness is highly complex, and a more
in-depth treatment of such issues in AutoML is available elsewhere [313]. It is sufficient to note that
bias can creep into an ML solution at many stages of an MLWF, e.g. within data, ML algorithms,
human decisions, and various processes. Accordingly, the tools in this category support, to varying
degrees, automatically diagnosing and mitigating bias-and-fairness issues.
The most popular of the dedicated tools in Table 15 is arguably AI Fairness 360 (AIF360) [350],

created by IBM. At the time of survey, AIF360 was able to calculate three ‘individual fairness’
metrics [221, 514, 574] and apply 13 bias mitigation algorithms based on external research [54,
55, 133, 141, 214, 250, 297–299, 307, 441, 566, 568]. The package also supports additional metrics
evaluating ‘group fairness’ and sample distortion. However, while these complex calculations and
procedures are automated, their selection is not. Sample tutorial notebooks are provided by AIF360,
but, within them, it is experts that decide on a metric and remedy. Likewise, befitting an AutoML
tool that is not considered comprehensive, integration into an ML application also requires manual
involvement. Additionally, this package has specific developer-environment requirements, which
can be a barrier to entry for stakeholders with alternative operational practices. However, this
particular comment is more of a general reminder than a specific critique, given that few software
applications approach genuine cross-platform universality.
Now, the way that HCI works for such a tool sparks a broader discussion: for an MLWF task

dedicated to the careful and deliberate review/amendment of bias/fairness flaws, how much of
the process should be automated? One might argue that, at the very least, a bias-and-fairness
tool should automatically calculate and visualise all relevant metrics, in much the same way as
automated feature engineers in Section 4.1.1 systematically generate multiple perspectives of a
dataset. The counterargument is that an embarrassment of riches may still not make it any easier
for a data scientist, let alone a non-technical user, to make the best operational decisions. Metric
and remedy selection is as important here as feature selection is to data engineering. Thus, if
full automation is deemed unwise in bias-and-fairness space, then some form of recommendation
prompts would still likely provide added value to a user. For now, the automation capability of
most dedicated tools in Table 15 does not extend far in this direction. FairLearn [210], developed
and released by Microsoft, is akin to AIF360 in the level of development, documentation, and
maintenance. The package contains some overlap in terms of mitigation algorithms [54, 55, 250],
but it also provides a dashboard with a more convenient overview of metrics and comparative
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analyses for both models and potentially discriminated groups. This UI, along with very detailed
documentation covering software usage and topical elaboration, probably marks the current limit
of mechanisation for this aspect of the MLWF, at least among non-comprehensive tools.
Comparatively, Audit AI [450] is a less mature library focussed solely on bias-and-fairness

diagnosis. It supports the calculation of several metrics under techniques named ‘4/5th’, ‘fisher’,
‘z-test’, ‘bayes factor’, and ‘chi squared’. Additionally, it provides ‘sim beta ratio’ and ‘classifier
posterior probabilities’ tests for classification tasks, as well as analysis of variance (ANOVA) and
a test of “group proportions at different thresholds” for regression tasks. Overall, the software is
light on documentation, which essentially comes as a readme file on GitHub. However, it is notable
for discussing regulatory needs in detail, e.g. referring to a set of guidelines for employee selection
procedures [419] while motivating its 4/5ths rule. Likewise, albeit without citation/justification,
the package mentions implementing the Cochran-Mantel-Hanzel statistical test [159, 378], which
is very common in regulatory practices. In effect, Audit AI highlights the surging importance of
governance to real-world ML, as stressed in Section 3.1.2. Finally, ‘aequitas’ [179] also makes the
cut for this survey, despite a relatively diminished amount of activity. It enables calculating metrics
derived from a confusion matrix, although applied to subgroups within data. Moreover, it can be
used as a code library or interacted with via a CLI, generating reports with simple graphs. Thus,
despite being relatively basic, it rounds out the tools dedicated directly to bias and fairness in this
section.

Of course, there is an inherent dependence of ML trustworthiness on explainability; one cannot
confidently assess bias and unfairness without understanding how an ML solution works. This
model-comprehension process is often best assisted by transforming technically arcane code
into a more interpretable format. Thus, although we keep the survey constrained, the handful of
visualisation (viz) tools in Table 15 is worthy of acknowledgement. For instance, LIME [464, 465] is a
package that pursues model-agnostic visualisations to assist in explaining black-box ML classifiers.
In turn, it is referenced by SHAP [363, 364], which allows users to visualise and better understand
numerous ML solutions, e.g. whether structured as a linear model, tree, or a DL network. Neither
of these two tools explicitly provide instructions for bias-and-fairness application; it is up to a
user to integrate these procedures into auditing operations. Nonetheless, the packages are well
maintained and documented, and the calculations/processes they automate simplify such tasks
for ML stakeholders. Indeed, AIExplainability360 [349] is an example of a tool leveraging both
LIME and SHAP alongside other software to promote explainability, despite not being updated
recently and facing the common issue of users needing to gauge the utility/appropriateness of
different functions themselves. Finally, the What If Tool [436] by Google does return focus to
fairness, allowing users to easily select and view five fairness metrics calculated for their ML model:
‘group unaware’, demographic parity, equal opportunity, equal accuracy, and group thresholds.
There is an obvious crossover with AIF360 and FairLearn, but the library does retain a performance
mindset alongside bias-and-fairness awareness, e.g. when enabling users to analyse comparative
statics for ML models.
One overall conclusion is that there is a surprising level of activity under this category of

dedicated AutoML tools. The survey already narrowly excludes several packages, such as Parity
Fairness [448], which appears to be an incremental wrapper of AIF360 and FairLearn, FairML [51],
which seems to be a personal project for feature-importance graphs that faded in 2017, and Scikit-
Fairness [170], which has been merged into FairLearn. However, only AIF360 and FairLearn, both
corporately sponsored, can be considered outliers in terms of maturity. There is also much overlap
amongst the packages. For instance, AIF360 lists both FairLearn and LIME as dependencies. Granted,
the motivations that drive development in this space are likely to ensure continued progress; both
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AIF360 and FairLearn appear to be driven by socioethical considerations, while Audit AI presages
the rise of regulatory obligations in industrial ML.
Nevertheless, all of the tools are presently constrained in terms of automation, requiring both

upskilling and careful manual interaction for full engagement with an ML auditing task. A thorough
review of some of these tools reaches similar conclusions [342], noting that, despite stakeholder
interest, it remains difficult to acquire the necessary skills/knowledge to make informed choices.
In essence, this topic is faced with the challenge of balancing accessibility with deep technicality.
The reviewing paper also found commonly held concerns around how to integrate these tools
with existing MLWFs and grant them appropriate coverage. Indeed, the challenge of integrating
any dedicated mechanism into a larger automated system is nontrivial [308]. Regardless, given
the increasing public awareness and scrutiny around ML trustworthiness, time will tell how this
technological subspace evolves.

Table 16. Dedicated AutoML Tools: HPO.

Name Requirements GUI CLI HPO Mechanisms Ref.
Auptimizer Sklearn Y Y Random, Grid,

Multi-armed Bandit
(MAB), Bayesian,
Evolutionary

[282, 356]

Bayesian
Optimisation

Sklearn N N Bayesian [416]

BayesOpt NONE N N Bayesian [379, 380]

BoTorch Torch N N Bayesian [106, 451]

BTB Sklearn N N Bayesian [84, 509]

DEAP NONE N N Evolutionary,
Particle Swarm
Optimisation (PSO)

[219, 220]

Dragonfly NONE N Y Bayesian [301, 302]

GPflowOpt TF N N Bayesian [316, 317]

Hyperopt Sklearn, Extras
(LightGBM)

N N Bayesian [117, 118]

mlrMBO NONE N N Bayesian [123, 529]

Nevergrad Bayesian
Optimisation, Torch,
TF, Keras

N Y Evolutionary,
Random, PSO,
Bayesian, Genetic,
Mathematical

[208]
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Table 16. Dedicated AutoML Tools: HPO.

Name Requirements GUI CLI HPO Mechanisms Ref.
Optuna Sklearn,

Scikit-Optimize,
MLflow, Extras
(LightGBM, Torch,
CatBoost, MXNet,
XGBoost, Keras, TF,
Dask-ML, BoTorch,
fastai)

N Y Bayesian,
Evolutionary, Grid,
Random, MAB

[60, 61]

RBFOpt NONE N Y Mathematical [160, 165]

Scikit-
Optimize

Sklearn N N Bayesian [489]

SMAC3 Sklearn N Y Bayesian [90, 272]

Tune-sklearn Sklearn, Ray[Tune] N N Random, Grid,
Bayesian

[458]

4.1.3 Hyperparameter Optimisation. The third category of dedicated AutoML tools in this review
encompasses those that focus solely on HPO. The surveyed open-source packages classified as such
are listed in Table 16.

Given that the birthplace of modern AutoML is set in the topic of HPO [308], with plenty of prior
discussion about optimisation methods and their implementations in the literature, an extensive
commentary is not needed here. Every tool in the table is considered dedicated, so they do not
house an ML solution during its life cycle in an end-to-end MLWF. Instead, the typical operation is
for a user to provide a searchable hyperparameter space to the HPO package, then iteratively try
out recommended configurations and update the package on how well those choices technically
perform. Even speed-up mechanisms such as successive halving are often presented to technicians
as cues for when they need to train their ML models on larger subsets of data. It is noted here that
whilst Early Stopping can be applied to a variety of HPO mechanisms, it is also included given it is
offered as a method by which an end user aims to arrive at an optimal set of hyperparameters. As a
definitional note, those which fall under numerical optimisation are grouped as ’Mathematical’.
This includes, for example, Covariance matrix adaptation evolution strategy (CMA-ES). Essentially,
integrating these detached mechanisms into an automated model-development process requires
some manual labour from stakeholders.

Tools that internalise ML models/algorithms, e.g. ones wrapping scikit-learn or other packages,
are naturally excluded from this section on account of leaning towards being comprehensive
systems, i.e. allowing a user to convert raw data into a trained ML solution. Other exclusions are
due to a lack of currency, often because meaningful activity has not been present in the repository
within the last 18 months. Sometimes, as with GPyOpt [528], the software has been explicitly
announced as deprecated. Consequently, given that the first popularised systems of the modern
AutoML era were developed around ten years ago, Appendix A notes a relatively long history of
faded HPO tools compared to other dedicated categories.

Several insights can be gleaned from Table 16, which notes package names and associated charac-
teristics. For instance, the table lists package dependencies, often pulled from a requirements.txt or
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setup.py file in a GitHub repository. Notably, despite the efforts of this review to avoid delving into
AutoDL, DL frameworks such as TensorFlow (TF), Keras and PyTorch (Torch) occasionally appear
as such dependencies. However, half of the packages operate around scikit-learn, even though a
user must still manually code the training of an ML model. A couple of subsequent columns in the
table then assess how stakeholders interact with these packages. In all cases beyond Auptimizer,
the technical threshold for users is high; dedicated HPO tools are overwhelmingly designed to be
paired with coding scripts. That said, several packages do provide CLIs, which eases accessibility
slightly. Stakeholders avoid serious programming in such cases, simply editing a configuration file
instead.

Finally, we note that the dedicated tools cover a range of HPO procedures in Table 16. However, it
is clear that Bayesian optimisation techniques have embedded themselves in widespread usage, even
if this is partially a consequence of promotion by the research groups that initially researched this
space, i.e. a first-mover advantage. For the same reason, bandit-based methods also have a strong
representation, e.g. via an associated Hyperband implementation offered by Auptimizer and Optuna.
In fact, recent years have seen research groups fuse the benefits of both strategies, such as with the
Bayesian optimisation and Hyperband (BOHB) algorithm that Auptimizer and Optuna both provide.
Naturally, different implementations do attempt to improve upon existing methods, so there are
often a variety of efficiency-based tweaks augmenting the fundamental techniques. For instance,
Tune-sklearn employs early stopping, while Auptimizer leverages successive halving, iteratively
testing smaller sets of hyperparameter configurations on larger training-data samples. Optuna does
both. Then, moving beyond these most popular mechanisms, evolutionary algorithms and particle
swarm optimisation are also available, as well as other techniques termed ‘mathematical’. These
remnants include the use of radial basis functions in RBFOpt and sequential quadratic programming
(SQP) in Nevergrad. Ultimately, it is evident that the HPO category of dedicated AutoML tools is
substantially mature. Although the average non-technical stakeholder is unlikely to engage with
such software, the technical user will probably appreciate the flexibility associated tools provide in
their ‘detachable’ form.

4.2 Comprehensive AutoML Systems: Open-Source
While dedicated tools certainly have their place in industrial use, the holy grail of AutoML is
arguably to develop a framework that comprehensively automates every relevant task from one
end of an MLWF to the other [308]. The field is nowhere near that goal yet. Nonetheless, within
the last decade, many implementations have arisen that can automate the core facet of automated
model development, i.e. CASH, while managing the fundamental ML process of model training. It
is this internalised operation of converting data into an ML model that differentiates such packages
from the dedicated HPO tools in Section 4.1.3. Some of these architectures have even extended
their scope further out to neighbouring tasks and phases within an MLWF.

Table 17. The list of surveyed comprehensive AutoML systems that are open-source and active.

Name Ref.
Auto_ViML [495]
AutoGluon [72]
AutoKeras [310]
AutoML Alex [343]
Auto-PyTorch [92]
auto-sklearn [93]
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Table 17. The list of surveyed comprehensive AutoML systems that are open-source and active.

Name Ref.
carefree-learn [258]
FLAML [395]
GAMA [238]
HyperGBM [181]
Hyperopt-sklearn [321]
Igel [98]
Lightwood [399]
Ludwig [353]
Mljar [402]
mlr3automl [121]
OBOE [562]
PyCaret [449]
TPOT [527]

In this section, we analyse 19 open-source tools, listed in Table 17, that the survey found to be
comprehensive AutoML systems. Each tool is assessed according to the criteria for performant
ML introduced in Section 3.2, with information sourced from both available documentation and
associated codebases. Importantly, not all parts of the evaluation framework apply to every tool,
e.g. if the system is provided in the form of Python libraries, and these cases are highlighted by
commentary when relevant. Furthermore, this review finds a broad spectrum of capability, ranging
from holistic implementations that assist stakeholders for several MLWF phases to those that
barely meet the definition of comprehensive. Additionally, we re-emphasise that the listed tools are
considered current; historically notable faded projects are included in Appendix B for completeness.
With that context provided, the following findings are typically presented in tabular format.

They may note:

• How each tool scores across a grouped set of criteria, thus providing a comparison between
tools. Scores are also summed across all tools, thus assessing the general maturity of the
AutoML ‘market’ per sub-criterion.

• The number of tools that score at different levels for a particular sub-criterion. This aggrega-
tion is another insight into ‘market’ maturity.

As Section 3.2 details, all scores are usually binary, i.e. 1/0 for yes/no, or on an integer scale.
Occasionally, a sub-criterion involves listing tool features instead, and these are expanded into
their own tables.
We now proceed to discuss the criteria, organised as follows: efficiency in Section 4.2.1, dirty

data in Section 4.2.2, completeness & currency in Section 4.2.3, explainability in Section 4.2.4, ease
of use in Section 4.2.5, and the remaining elements of the assessment framework in Section 4.2.6.

4.2.1 Efficiency. Most open-source AutoML tools arise from academic research. So, concerning
the assessment framework for performant ML, it is almost immediately evident that operational
efficiency is not the highest of priorities. Table 18 shows that none of the surveyed systems provides
a model repository (E1) or model VCS (E2), which would require a persistent data storage of
some sort. As for experiment tracking (E3), Table 19 affirms that only two tools have considered
this notion, namely AutoML Alex and HyperGBM. Both are automated to the point of providing
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Table 18. Scores for open-source comprehensive AutoML systems (E1–E3). Evaluates the existence of a model
repository (E1), a model VCS (E2), and experiment tracking (E3). See Table 1 for rubric.

Name E1 E2 E3 Sum (out of 4)
AutoML Alex 0 0 2 2
HyperGBM 0 0 2 2
Auto_ViML 0 0 0 0
AutoGluon 0 0 0 0
AutoKeras 0 0 0 0
Auto-PyTorch 0 0 0 0
auto-sklearn 0 0 0 0
carefree-learn 0 0 0 0
FLAML 0 0 0 0
GAMA 0 0 0 0
Hyperopt-sklearn 0 0 0 0
Igel 0 0 0 0
Lightwood 0 0 0 0
Ludwig 0 0 0 0
Mljar 0 0 0 0
mlr3automl 0 0 0 0
OBOE 0 0 0 0
PyCaret 0 0 0 0
TPOT 0 0 0 0

Sum 0/19 0/19 4/38

Table 19. Distribution of scores for open-source comprehensive AutoML systems (E3). Evaluates the exis-
tence of experiment tracking. Scores: 0 for none, 1 for storage/access with limited automation/visuals, 2 for
storage/access with automatic log visualisation, and U for unclear.

E3
Score # Tools
0 17
1 0
2 2
U 0

convenient visuals of experimental logs. However, AutoML Alex benefits here by plugging into the
Optuna dashboard, a dedicated tool covered in Section 4.1.3.

Now, because all surveyed open-source systems lack a centralised form of persistent data storage,
they cannot provide several other features for operational efficiency. For instance, we identified
no repository of templates/code generated either by users or developers that could automatically
kickstart an ML application (E4). That is not to say that tutorials are unavailable; all packages
were found to provide example code that a stakeholder can manually leverage. They vary in
substance and quality from minimal working examples to extensive end-to-end notebooks. Next,
the suggestion of prior work (E5), which essentially requires a recommendation mechanism on top
of a template/code repository, is also absent. Admittedly, a few surveyed systems claim to offer
meta-learning capabilities, such as warm-starting, but such procedures do not typically kickstart the
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operational side of an ML application, nor do they have flexible VCS in mind. Thus, meta-learning
commentary is deferred until criterion CC11. Finally, if there is no centralised framework for storing
project artefacts, it is understandably hard to automate shared access and collaboration (E6).

Table 20. Scores for open-source comprehensive AutoML systems (E7/E8). Evaluates the extent of automation
for assisted data exploration (E7) and data preparation (E8). See Table 3 for rubric.

Name E7 E8 Sum (out of 5)
Auto_ViML 0 2 2
AutoGluon 0 2 2
AutoKeras 0 2 2
AutoML Alex 0 2 2
Auto-PyTorch 0 2 2
auto-sklearn 0 2 2
carefree-learn 0 2 2
FLAML 0 2 2
GAMA 0 2 2
HyperGBM 0 2 2
Hyperopt-sklearn 0 2 2
Igel 0 2 2
Lightwood 0 2 2
Ludwig 0 2 2
Mljar 0 2 2
mlr3automl 0 2 2
OBOE 0 2 2
PyCaret 0 2 2
TPOT 0 2 2

Sum 0/57 38/38

Moving on to discussions of effort minimisation during phases of an MLWF, this survey could
not identify any significant assistance with data exploration (E7) among open-source packages.
Such a result is likely due to their primary focus on model development, with general assumptions
that input datasets are essentially predetermined. Accordingly, in the open-source domain, the onus
for exploring/understanding data remains on the ML stakeholder. Supplementary tools explicitly
dedicated to EDA must be sourced externally. In contrast, Table 20 indicates that all surveyed
comprehensive AutoML systems do automate some form of data preprocessing (E8).
Of course, data preparation can involve many processes, so it is insufficiently informative to

merely state that a comprehensive AutoML system assists or automates this MLWF phase. Therefore,
we also assess the coverage of each tool across several common forms of data preprocessing:

A. Categorical processing, e.g. dummy and one-hot encoding.
B. Standardisation/normalisation, i.e. feature rescaling.
C. Bucketing/binning, i.e. for continuous variables.
D. Text preparation, e.g. tokenising or embedding.
E. Time-period extraction, e.g. determining day of week from dates.
F. Class-imbalance management, i.e. sampling techniques.
As Table 21 reveals, there appears to be plenty of variability in the scope of automated data

preparation. The only consistency is that all comprehensive AutoML systems manipulate categorical
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Table 21. Coverage of data-preparation processes for open-source comprehensive AutoML systems (E8A–E8F).
Evaluates categorical processing (E8A), standardisation/normalisation (E8B), bucketing/binning (E8C), text
processing (E8D), time-period extraction (E8E), and management of class imbalance (E8F). Scores: 0 for absent
and 1 for present.

Name E8-A E8-B E8-C E8-D E8-E E8-F Sum (out of 6)
Auto_ViML 1 1 1 1 1 1 6
Ludwig 1 1 0 1 1 0 4
Mljar 1 1 0 1 1 0 4
PyCaret 1 1 1 0 0 1 4
AutoGluon 1 0 0 1 1 0 3
auto-sklearn 1 1 0 0 0 1 3
FLAML 1 0 0 1 0 1 3
HyperGBM 1 1 0 0 0 1 3
Hyperopt-sklearn 1 1 0 1 0 0 3
Igel 1 1 0 0 1 0 3
Lightwood 1 1 0 0 1 0 3
AutoKeras 1 1 0 0 0 0 2
AutoML Alex 1 1 0 0 0 0 2
Auto-PyTorch 1 1 0 0 0 0 2
carefree-learn 1 1 0 0 0 0 2
mlr3automl 1 0 0 0 0 1 2
OBOE 1 1 0 0 0 0 2
TPOT 1 1 0 0 0 0 2
GAMA 1 0 0 0 0 0 1

Sum 19/19 15/19 2/19 6/19 6/19 6/19

features (E8A). Most also simplify feature rescaling (E8B), although, as exemplified by the Ludwig
package, this may sometimes need a flag to be set when employing AutoML techniques. We did
not consider toggle buttons as invalidating the presence of automation, provided that, once set,
users do not need to configure the procedure manually, i.e. the system takes care of it.

On the other end of the availability spectrum, only PyCaret and Auto_ViML assist with binning
continuous variables (E8C). Granted, this process is not essential for many ML problems, but it does
highlight the differentiation between tools. As for text (E8D) and temporal data (E8E), both formats
provide their own challenges. It is clear from their correlated coverage in Table 21 – four out of six
tools that can process one can also process the other – that a small subset of comprehensive AutoML
systems is prioritising problem extensibility, e.g. supporting NLP and time-series forecasting. Finally,
there is the matter of class imbalance (E8F). The statistics of observable data in real-world settings
can be highly skewed, leading to flawed ML models and issues with fairness. Hence, the dearth
of open-source AutoML packages that assist with or automate sampling-based corrections is
somewhat surprising, suggesting a mismatch between academic and industrial expectations of
ML challenges. Whatever the reason, class imbalance remains a risk for non-technical users, both
in terms of detection and mitigation, that can stymie satisfactory outcomes and, consequently,
AutoML democratisation.

Admittedly, some of the above processes blur with the phase of feature engineering. The nuance
here is perhaps intent; data preparation aims to establish a baseline of information, while feature
engineering seeks to improve the quality of this baseline via further transformation. With that
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Table 22. Scores for open-source comprehensive AutoML systems (E9–E13). Evaluates the extent of automation
for dataset feature generation (E9), reuse (E10), and selection (E11). Also evaluates whether HPO is completely
specified by default (E12) and whether optimisation involves an entire ML pipeline (E13). See Table 3 for
rubric.

Name E9 E10 E11 E12 E13 Sum (out of 7)
TPOT 2 0 2 1 1 6
Auto_ViML 1 0 2 1 1 5
AutoML Alex 2 0 2 1 0 5
HyperGBM 2 0 2 1 0 5
auto-sklearn 0 0 2 1 1 4
mlr3automl 0 0 2 1 1 4
PyCaret 1 0 2 1 0 4
Mljar 0 0 2 1 0 3
GAMA 0 0 0 1 1 2
Hyperopt-sklearn 0 0 0 1 1 2
OBOE 0 0 0 1 1 2
AutoGluon 0 0 0 1 0 1
AutoKeras 0 0 0 1 0 1
Auto-PyTorch 0 0 0 1 0 1
carefree-learn 0 0 0 1 0 1
FLAML 0 0 0 1 0 1
Igel 0 0 0 1 0 1
Lightwood 0 0 0 1 0 1
Ludwig 0 0 0 1 0 1
Sum 8/38 0/19 16/38 19/19 7/19

Table 23. Distribution of scores for open-source comprehensive AutoML systems (E9). Evaluates the extent of
automation for dataset feature generation. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear.

E9
Score # Tools
0 14
1 2
2 3
U 0

perspective, Table 22 reveals which comprehensive open-source systems embrace the generative half
of AutoFE. It turns out, as Table 23 attests, there are not many. Only three tools incorporate feature
generation as part of their core automation: AutoML Alex, HyperGBM, and TPOT. Another two,
namely Auto_ViML, and PyCaret, assist users in manually configuring/running feature generation.
Naturally, certain transformations may be relevant/applicable to more than one ML application,
so, for the sake of consistency and effort minimisation, e.g. ensuring that all departments in an
organisation agree on a ‘sales’ calculation, it would also be valuable to retain such knowledge
for reuse (E10). However, as already discussed for other criteria, no open-source system has
implemented the level of persistence required to support such a mechanism.
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Table 24. Distribution of scores for open-source comprehensive AutoML systems (E11). Evaluates the extent
of automation for dataset feature selection. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear.

E11
Score # Tools
0 11
1 0
2 8
U 0

Now, every system that touches feature generation in Table 22 also has procedures for their
sampling. In fact, Table 24 shows that feature selection (E11) is sometimes available even when
generation is not. Moreover, all eight systems that support feature selection tend to do so at a
substantially automated level. This outcome means that an interested stakeholder can potentially
mix and match the surveyed comprehensive AutoML systems with the dedicated tools in Sec-
tion 4.1.1. We also stress that, just because a system offers a specific capability, this review does
not necessarily judge the quality and granular extent of that capability. So, for instance, TPOT can
explore ‘polynomial’ features, but requirements for deeper feature synthesis are better satisfied
elsewhere.

Table 25. Distribution of scores for open-source comprehensive AutoML systems (E13). Evaluates whether
optimisation involves an entire ML pipeline. Scores: 0 for no, 1 for yes, and U for unclear.

E13
Score # Tools
0 12
1 7
U 0

Finally, although later criteria address the topic in greater depth, an operational-efficiency
assessment also has to consider the model-development phase. Indeed, it can be daunting for a
user to specify HPO search spaces or algorithms, so ensuring that a comprehensive system has a
default procedure for undertaking CASH (E12) is paramount. Unsurprisingly, given that this review
defines comprehensive systems to revolve around model development, exceptions that force a user
to configure HPO are virtually nonexistent. In contrast, optimising an extended ML pipeline (E13),
complete with data preprocessing and model postprocessing components, is still relatively rare.
Table 25 shows only seven out of 19 open-source packages do so. Such a state of the ‘market’ makes
sense, as CASH+ involves managing a much more expansive hyperparameter space; this requires
implementing even more advanced theoretical techniques.

Switching from operational to technical efficiency, this monograph notes that the computational
load of the model-development stage is mostly intrinsic to the algorithms implemented by an
AutoML developer team. It is beyond the scope of this review to benchmark which packages take
less time and memory than others to tackle any specific ML problem. However, we do note that
none of the surveyed open-source comprehensive AutoML systems offers workload optimisation
(E14). Such an absence may be noticeable to large-scale enterprise deployments, which wrestle with
many non-negligible costs, e.g. those of cloud computing. Likewise, it is arguable that workload op-
timisation could also benefit ML applications on local hardware, where an experimental/production
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Table 26. Scores for open-source comprehensive AutoML systems (E14–E16). Evaluates the availability of
workload optimisation (E14), modelling time limits (E15), and modelling iteration limits (E16). See Table 5 for
rubric.

Name E14 E15 E16 Sum (out of 4)
FLAML 0 1 1 2
HyperGBM 0 1 1 2
Hyperopt-sklearn 0 1 1 2
AutoKeras 0 0 1 1
AutoML Alex 0 1 0 1
Auto-PyTorch 0 1 0 1
auto-sklearn 0 1 0 1
GAMA 0 1 0 1
Mljar 0 1 0 1
mlr3automl 0 1 0 1
OBOE 0 1 0 1
TPOT 0 1 0 1
Auto_ViML 0 0 0 0
AutoGluon 0 0 0 0
carefree-learn 0 0 0 0
Igel 0 0 0 0
Lightwood 0 0 0 0
Ludwig 0 0 0 0
PyCaret 0 0 0 0

Sum 0/38 11/19 4/19

Table 27. Distribution of scores for open-source comprehensive AutoML systems (E15). Evaluates the avail-
ability of modelling time limits. Scores: 0 for absent, 1 for present, and U for unclear.

E15
Score # Tools
0 8
1 11
U 0

Table 28. Distribution of scores for open-source comprehensive AutoML systems (E16). Evaluates the avail-
ability of modelling iteration limits. Scores: 0 for absent, 1 for present, and U for unclear.

E16
Score # Tools
0 15
1 4
U 0

environment may be highly constrained. Managing costs and resources for ML work can be chal-
lenging even for a technician. Fortunately, Table 27 shows that more than half of the surveyed
tools allow users to limit model development by time. Trial limits are also offered, although, as
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Table 28 shows, not as broadly. This disparity is understandable, as iteration limits tend to be a
step more technical than time limits, requiring a configurer to understand what is being iterated,
i.e. they need to know the algorithms involved in model development.

Table 29. Scores for open-source comprehensive AutoML systems (DD1). Evaluates the extent of automation
for cleaning dirty data. See Table 6 for rubric.

Name DD1
Auto_ViML 2
AutoGluon 2
AutoKeras 2
AutoML Alex 2
Auto-PyTorch 2
auto-sklearn 2
carefree-learn 2
FLAML 2
GAMA 2
HyperGBM 2
Hyperopt-sklearn 2
Igel 2
Lightwood 2
Ludwig 2
Mljar 2
mlr3automl 2
OBOE 2
PyCaret 2
TPOT 2

Sum 38/38

4.2.2 Dirty Data. At this point, open-source comprehensive AutoML systems have been assessed
primarily on how they enhance operational efficiency. Part of that analysis has examined the extent
of automation during the preparation and subsequent engineering of dataset features. However,
this review defines such tasks under the assumption that incoming data is essentially clean, if
perhaps sampled awkwardly, e.g. with a class imbalance. In contrast, real-world data has to contend
with many gaps and formatting issues. In fact, the ‘dirtiness’ of these inputs is a significant and
ubiquitous challenge in industrial applications, relatively avoidable for many academic research
projects, which is why its management warrants a distinct criterion. Given that context, it is perhaps
surprising then that every surveyed tool in Table 29 automates, at least to some extent, the cleaning
of dirty data (DD1).

Naturally, the cleaning capabilities of the surveyed open-source systems are varied, as indicated
by Table 30. There is only one quasi-consistency that Table 31 shows, in that almost all tools can infer
the types of data passed into the system (DD2), potentially enabling specialised cleaning/processing.
The Ludwig package is a rare exception. In fact, Ludwig appears to serve as a platform that is
almost fully controlled via configuration files. This reliance on manual specification means that the
system barely scrapes into consideration as AutoML software. Granted, required configurability
is not an immediate disqualification, provided that the finer details of a process are sufficiently
mechanised.
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Table 30. Scores for open-source comprehensive AutoML systems (DD2–DD5). Evaluates the extent of
automation for data-type inference (DD2), missing-value imputation (DD3), and outlier management (DD4).
Also evaluates the existence of domain-specific/advanced cleaning operations (DD5). See Table 6 for rubric.

Name DD2 DD3 DD4 DD5 Sum (out of 6)
PyCaret 1 2 2 0 5
AutoML Alex 1 1 2 0 4
OBOE 1 1 2 0 4
auto-sklearn 1 2 0 0 3
Igel 1 2 0 0 3
TPOT 1 2 0 0 3
Auto_ViML 1 1 0 0 2
Auto-PyTorch 1 1 0 0 2
carefree-learn 1 1 0 0 2
HyperGBM 1 1 0 0 2
Ludwig 0 2 0 0 2
Mljar 1 1 0 0 2
mlr3automl 1 1 0 0 2
AutoGluon 1 0 0 0 1
AutoKeras 1 0 0 0 1
FLAML 1 0 0 0 1
GAMA 1 0 0 0 1
Hyperopt-sklearn 1 0 0 0 1
Lightwood 1 0 0 0 1

Sum 18/19 18/38 6/38 0/19

Table 31. Distribution of scores for open-source comprehensive AutoML systems (DD2). Evaluates the extent
of automation for data-type inference. Scores: 0 for absent, 1 for present, and U for unclear.

DD2
Score # Tools
0 1
1 18
U 0

In any case, the treatment of missing values (DD3) is an example of varied capability, with
open-source packages scoring a summed 18 out of a maximal 38. The distribution in Table 32
reveals that this is simply a result of statistical spread, with AutoML developers almost uniformly
choosing between ignorance, automated detection alone, and automated detection/resolution.
Where applicable, packages often differ in imputation strategy, regardless of whether they employ
convenience features or outright automation. For instance, TPOT, Mljar and AutoML Alex prefer
taking a median of observed values, while Igel, PyCaret, Auto-PyTorch and mlr3automl replace
missing values with a mean. Both auto-sklearn and OBOE are a little more sophisticated, as
imputation methods are considered part of an ML pipeline with optimisable hyperparameters. As
for the Ludwig package, it curiously defaults to replacement by zero values. Additionally, this
survey could not easily determine the technical details employed by HyperGBM, carefree-learn,
and Auto_ViML.
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Table 32. Distribution of scores for open-source comprehensive AutoML systems (DD3). Evaluates the extent
of automation for missing-value imputation. Scores: 0 for none, 1 for automatic detection, 2 for automatic
detection/resolution, and U for unclear.

DD3
Score # Tools
0 6
1 8
2 5
U 0

Table 33. Distribution of scores for open-source comprehensive AutoML systems (DD4). Evaluates the
extent of automation for outlier management. Scores: 0 for none, 1 for automatic detection, 2 for automatic
detection/resolution, and U for unclear.

DD4
Score # Tools
0 16
1 0
2 3
U 0

Outlier management (DD4) is a far rarer capability among open-source systems, which makes
sense when considering that a missing value is easier to identify than a statistical anomaly. For
the same reason, Table 33 shows that if an AutoML developer bothers with detection, they will
likely pursue full resolution. Admittedly, the solution is typically a simple excision of anomalous
data instances. Regardless, minor notes for this sub-criterion include PyCaret requiring the user
to set a flag when seeking to find/process anomalies, AutoML Alex employing the interquartile
range (IQR) method, and OBOE exploring various techniques for outlier management. Beyond
these mechanisms, this survey found nothing else among the assessed tools that might qualify as
advanced or domain-specific cleaning (DD5).

4.2.3 Completeness and Currency. While the ability to polish data and enhance its information
content is crucial to ML applications, end-to-end AutoML will probably always revolve most tightly
around the model-development phase of an MLWF. Stakeholders deciding on which software to
engage with will likely ask a fundamental question: what problems can these ML models solve?
The answer, at least for the surveyed open-source systems, is provided in Table 34.

Of all the assessed capabilities, unsupervised learning (CC1) would appear to be the most
unusual. While the process can still be expressed under the regular aims of finding a mathematical
model that best approximates a desirable function, this desirable function has no prior supervisory
hints as to what it may be. Indeed, what typically happens is that principled techniques, such as
clustering methods that minimise intra-cluster distances or inertia, are thrown at a problem in an
exploratory fashion with the hope of teasing out patterns/insights that may satisfy stakeholders.
Accordingly, there is rarely any consistent way to apply CASH, as the objective function to maximise
is human interest, with arcane dependencies on real-world context. The only real exception is if the
outcomes of an unsupervised-learning process help train subsequent ML predictors/prescriptors,
the performances of which can be tested and validated. In this case, automated unsupervised
learning can be seen as a sophisticated form of feature generation. Given all these nuances, Table 35
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Table 34. Scores for open-source comprehensive AutoML systems (CC1–CC9). Evaluates capabilities for
unsupervised learning (CC1), regression on tabular data (CC2), standard classification on tabular data (CC3),
multi-class classification on tabular data (CC4), time-series forecasting (CC5), image-based problem solving
(CC6), text-based problem solving (CC7), multi-modal problem solving (CC8), and ensemble techniques (CC9).
See Table 7 for rubric.

Name CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 Sum
(out of 17)

TPOT 2 2 2 2 2 2 2 0 2 16
AutoKeras 0 2 2 2 2 2 2 1 2 15
auto-sklearn 1 2 2 2 2 1 1 0 2 13
Ludwig 2 2 2 2 1 1 1 0 2 13
AutoGluon 0 2 2 2 2 2 2 0 0 12
Igel 1 2 2 2 1 1 2 0 1 12
PyCaret 2 2 2 2 2 2 0 0 0 12
FLAML 2 1 2 2 1 1 1 0 1 11
Mljar 1 2 2 2 2 0 2 0 0 11
Auto-PyTorch 1 2 2 2 1 1 1 0 0 10
Auto_ViML 0 2 2 2 2 0 0 0 0 8
AutoML Alex 0 2 2 2 2 0 0 0 0 8
carefree-learn 2 2 2 2 0 0 0 0 0 8
GAMA 1 1 2 2 1 0 1 0 0 8
HyperGBM 0 2 2 2 0 0 0 0 2 8
Hyperopt-sklearn 0 2 2 2 1 1 0 0 0 8
Lightwood 0 2 2 2 1 0 1 0 0 8
OBOE 1 1 1 1 1 1 1 0 1 8
mlr3automl 1 1 1 1 1 1 1 0 U 7

Sum 17/38 34/38 36/38 36/38 25/38 16/38 18/38 1/19 13/38

Table 35. Distribution of scores for open-source comprehensive AutoML systems (CC1). Evaluates capabilities
for unsupervised learning. Scores: 0 for none, 1 for convenience features, 2 for substantial automation, and U
for unclear.

CC1
Score # Tools
0 7
1 7
2 5
U 0

is therefore notable for showing that unsupervised learning still has a healthy representation among
surveyed tools, both in terms of convenience features and automation.

Nonetheless, as expected, supervised learning is the predominant ML process that all comprehen-
sive AutoML systems prioritise. Tabular data tends to be the most simple structure to deal with, so
regression (CC2) and classification (CC3) capabilities are well represented, as shown by Table 36 and
Table 37, respectively. Only two packages constitute the difference, not quite automating regression
while still doing so with classification. As for multi-class classification (CC4), both the detailed
Table 34 and the aggregated Table 38 indicate that it seems just as easy to offer as the standard
binary version.
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Table 36. Distribution of scores for open-source comprehensive AutoML systems (CC2). Evaluates capabilities
for regression on tabular data. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

CC2
Score # Tools
0 0
1 4
2 15
U 0

Table 37. Distribution of scores for open-source comprehensive AutoML systems (CC3). Evaluates capabilities
for standard classification on tabular data. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear.

CC3
Score # Tools
0 0
1 2
2 17
U 0

Table 38. Distribution of scores for open-source comprehensive AutoML systems (CC4). Evaluates capabilities
for multi-class classification on tabular data. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear.

CC4
Score # Tools
0 0
1 2
2 17
U 0

Table 39. Distribution of scores for open-source comprehensive AutoML systems (CC5). Evaluates capabilities
for time-series forecasting. Scores: 0 for none, 1 for convenience features, 2 for substantial automation, and U
for unclear.

CC5
Score # Tools
0 2
1 9
2 8
U 0

Problems based on time-series forecasting (CC5) are not too exotic, and Table 39 shows their
coverage is moderate, with slightly fewer packages providing full automation over convenience
features. However, once stakeholder aims move to text-based problems (CC6) and image-based
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Table 40. Distribution of scores for open-source comprehensive AutoML systems (CC6). Evaluates capabilities
for image-based problem solving. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

CC6
Score # Tools
0 7
1 8
2 4
U 0

Table 41. Distribution of scores for open-source comprehensive AutoML systems (CC7). Evaluates capabilities
for text-based problem solving. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

CC7
Score # Tools
0 6
1 8
2 5
U 0

Table 42. Distribution of scores for open-source comprehensive AutoML systems (CC8). Evaluates capabilities
for multi-modal problem solving. Scores: 0 for absent, 1 for present, and U for unclear.

CC8
Score # Tools
0 18
1 1
U 0

problems (CC7), there is a substantial drop-off in automated capability, as reflected in Table 40 and
Table 41, respectively. Around a third of the surveyed systems do not support NLP tasks, image
recognition, and the like. Understandably, the data structures involved tend to be more complex,
usually warranting DL techniques that are more commonly found in AutoDL software. As for
multi-modal problems (CC8), they are essentially a more challenging target of such capabilities,
combining data sources in different formats, e.g. tabular information, free-form text, and images. It is
not overly surprising that Table 42 depicts only one package operating in this space, i.e. AutoKeras.
Finally, although ensemble techniques (CC9) represent not an ML problem but a way to solve

them, their inclusion in an ML application can dramatically change the relationship between an
ML solution and a constituent ML model [308]. In short, depending on context/implementation,
leveraging ensembles may well feel like tackling a different type of ML problem. Overall, Table 43
suggests that most open-source comprehensive systems avoid these techniques, with only five
offering significant automation. Given that ensemble approaches are well known to be powerful
in ML, e.g. reducing predictive variance without increasing bias, one reason for this may be the
computational complexity of robustly tuning solutions with multiple predictors. How to do so
effectively remains an open research question.
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Table 43. Distribution of scores for open-source comprehensive AutoML systems (CC9). Evaluates capabilities
for ensemble techniques. Scores: 0 for none, 1 for convenience features, 2 for substantial automation, and U
for unclear.

CC9
Score # Tools
0 10
1 3
2 5
U 1

Table 44. Coverage of model-selection processes for open-source comprehensive AutoML systems
(CC10/CC11). Evaluates capabilities for custom evaluation metrics (CC10). Also evaluates the existence
of HPO techniques (CC11), i.e. grid search (GR), random search (RA), Bayesian optimisation (BA), multi-
armed bandit strategies (MAB), genetic/evolutionary algorithms (GE), andmeta-learning (M). For convenience,
additionally classifies whether HPO mechanisms beyond grid/random search (GR+) are provided. Scores: 0
for absent and 1 for present.

Name CC10 GR RA BA MAB GE M SUM (out of 7) GR+
AutoML Alex 1 1 1 0 1 1 0 5 1
carefree-learn 1 1 1 1 1 0 0 5 1
PyCaret 0 1 1 1 1 0 0 4 1
AutoGluon 1 0 1 1 1 0 0 4 1
auto-sklearn 1 0 0 1 0 0 1 3 1
FLAML 1 0 1 1 0 0 0 3 1
HyperGBM 1 0 1 0 0 1 0 3 1
mlr3automl 0 1 1 0 1 0 0 3 1
Auto_ViML 0 1 1 0 0 0 0 2 0
AutoKeras 1 0 0 1 0 0 0 2 1
GAMA 0 0 1 0 0 1 0 2 1
Hyperopt-sklearn 1 0 0 1 0 0 0 2 1
Igel 0 1 1 0 0 0 0 2 0
Lightwood 1 0 0 1 0 0 0 2 1
Mljar 0 1 1 0 0 0 0 2 0
TPOT 1 0 0 0 0 1 0 2 1
Auto-PyTorch 0 0 0 0 1 0 0 1 1
Ludwig 0 0 0 1 0 0 0 1 1
OBOE 0 0 0 0 0 0 1 1 1
Sum 10/19 7/19 11/19 9/19 6/19 4/19 2/19 16/19

Now, regardless of ML application, a core focus of comprehensive AutoML is finding the best
ML solution for an ML problem; this involves optimising hyperparameters, which may or may
not include the type of ML model itself. Optimisation, both at the low level of parameters –
this is known as model training – and the high level of hyperparameters, is driven by objective
functions. Customising such evaluation metrics (CC10) can prove very attractive to industry
stakeholders, allowing them to define success for specific contexts and domains. For instance,
recommendation engines may prefer to optimise accuracy for their top N suggestions rather than
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Table 45. Distribution of scores for open-source comprehensive AutoML systems (CC10). Evaluates capabilities
for custom evaluation metrics. Scores: 0 for absent, 1 for present, and U for unclear.

CC10
Score # Tools
0 9
1 10
U 0

deal with a thorough aggregate, even if the recommendation quality rapidly falls outside this top-N
selection. After all, end-users are unlikely to scroll very far through a list of suggestions [241].
Accordingly, acknowledging the benefits, around half of the surveyed open-source systems offer
metric customisability, as detailed by Table 44 and summed within Table 45.

As for HPO strategies (CC11), Table 44 elaborates on which types have currently found purchase
amongst open-source software. The most basic form, grid search (GR), is provided by approximately
a third of the surveyed tools. Of course, grid search is not renowned for its performance, partially
because a regularly defined grid is somewhat arbitrary. A comical package namedHungaBunga [433]
exemplifies this, offering users the ‘power’ of grid-search HPO at extreme granularity. Random
search (RA) is then an alternative, although it is often lumped in with grid search as another
unsophisticated approach. Such a perspective is why this review finds that 16 of 19 open-source
systems go beyond grid/random search (GR+). In fairness, though, random search has proven
to be remarkably competitive, especially for its simplicity and within highly dimensional spaces.
Unsurprisingly, the technique is the most widely covered in this space, offered by ten packages.

Out of the more sophisticated methods, Bayesian approaches (BA) prove to be the most popular,
offered by nine open-source systems. This result mimics their prevalence for dedicated HPO tools,
discussed in Section 4.1.3. It remains challenging to determine whether Bayesian techniques are
truly theoretically and implementationally optimal for the modern era of hardware or whether
they simply profit from a first-mover advantage. Most likely, both factors play a part. The same
goes for the popularity of multi-armed bandit strategies (MAB), represented by the Hyperband
implementation, which has been embraced by the Bayesian optimisation community in the form of
BOHB and associated methods. Finally, genetic algorithms and other evolutionary approaches (GE)
have minor representation in four systems, although this relative sparsity may arguably be due to
modern hardware still failing to leverage their relative robustness. Naturally, there are also other
HPO techniques on offer that do not fit in the categories above, but they are typically confined to
one AutoML framework each, e.g. fine-tuning based on hill-climbing for Mljar and BlendSearch for
FLAML.
Optimisation strategies for AutoML are, of course, constantly evolving. Meta-learning (M), the

ability to accelerate model development based on prior experience, is a noticeable gap in this space.
Only two tools claim to provide such a capability, i.e. auto-sklearn and OBOE. Admittedly, effective
meta-learning requires a challenging infrastructure to be in place. Local long-term storage is unlikely
to be sufficiently informative, as a single user may not generate enough history to benefit their future
ML applications. Instead, meta-learning is ideally fuelled by a hive repository that services many
users, and developing/managing this may be out of reach for most open-source developers. Granted,
the theory behind the concept is also continuously being explored and refined [64, 309, 344, 413].
Nonetheless, other innovations have surfaced around HPO implementations, primarily relating
to configurability. For instance, AutoGluon allows users to toggle the ‘quality’ of an AutoML
run, limiting fit/inference time. Likewise, FLAML has a ‘low_cost_partial_config’ parameter that
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enables the quick generation of low-cost models. In the meantime, Mljar provides multiple modes
of operation that tune the balance of expected technical performance and explainability from the
desired ML solution, i.e. ‘explain’, ‘perform’, ‘compete’, and ‘Optuna’. This review finds that such
customisability is more frequent among vendor-based AutoML products, as seen in Section 4.3, so
the provision of such services among open-source systems suggests the acknowledgement that
model validity is not everything; some users and scenarios prioritise speed or explainability.

Table 46. Coverage of popular libraries for open-source comprehensive AutoML systems (CC12).

Name Sklearn Keras TF XGBoost LightGBM CatBoost PyTorch Ax R
Auto_ViML 1 1 1
AutoGluon 1 1 1
AutoKeras 1
AutoML Alex 1 1 1 1
Auto-PyTorch 1
auto-sklearn 1
carefree-learn 1
FLAML 1 1 1
GAMA 1
HyperGBM 1 1 1
Hyperopt-sklearn 1
Igel 1
Lightwood 1
Ludwig 1
Mljar 1 1 1 1
mlr3automl 1
OBOE 1
PyCaret 1 1 1 1
TPOT 1

Sum 12/19 1/19 1/19 6/19 6/19 6/19 2/19 1/19 1/19

The final major sub-criterion under completeness & currency notes which major algorithmic
libraries each comprehensive system interfaces with (CC12). As Table 46 shows, Sklearn is dominant,
which accords with the widespread modern uptake of Python for scientific programming. Such
a concentration can be risky, as problems in an oversubscribed dependency will propagate to
numerous AutoML packages. However, in practice, the community is large enough that any issues
should be rapidly fixed. There is also a smaller but still notable presence of boosting libraries
referenced within the open-source codebases, such as XGBoost, LightGBM, and CatBoost. Less
well represented are the DL packages, i.e. Keras, TF, and Torch. Only one or two systems interface
with each one. Of course, such a result would likely change if this review intended to dive deeper
into NAS software. Finally, as outliers, one open-source system operates with the Facebook Ax
library, while mlr3automl is linked with the R ecosystem. We use the programming language R to
refer to this latter category, as, unlike with the Pythonic concentration of ML algorithms into a
package like Sklearn, the dependencies of mlr3automl are splintered and hard to group.

As a side note, there is a sub-criterion dedicated to whether a piece of AutoML software is being
actively maintained (CC13). However, as mentioned when discussing exclusions at the beginning
of Section 4, every package in the main body of this review has seen significant activity in recent
times. Faded systems of interest are listed in Appendix B.

4.2.4 Explainability. Despite research and debate stretching back decades, trust in AI has only
really become of critical mainstream interest in recent years. This surge is partially driven by the
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Table 47. Scores for open-source comprehensive AutoML systems (EX3–EX7). Evaluates capabilities for enhanc-
ing global interpretability (EX3), enhancing local interpretability (EX4), scenario analysis (EX5), bias/fairness
assessment (EX6), and bias/fairness management (EX7). See Table 8 for rubric.

Name EX3 EX4 EX5 EX6 EX7 Sum (out of 9)
Auto_ViML 2 0 0 0 0 2
AutoGluon 2 0 0 0 0 2
GAMA 2 0 0 0 0 2
Lightwood 2 0 0 0 0 2
Ludwig 2 0 0 0 0 2
Mljar 2 0 0 0 0 2
PyCaret 2 0 0 0 0 2
AutoKeras 0 0 0 0 0 0
AutoML Alex 0 0 0 0 0 0
Auto-PyTorch 0 0 0 0 0 0
auto-sklearn 0 0 0 0 0 0
carefree-learn 0 0 0 0 0 0
FLAML 0 0 0 0 0 0
HyperGBM 0 0 0 0 0 0
Hyperopt-sklearn 0 0 0 0 0 0
Igel 0 0 0 0 0 0
mlr3automl 0 0 0 0 0 0
OBOE 0 0 0 0 0 0
TPOT 0 0 0 0 0 0
Sum 14/38 0/38 0/19 0/38 0/38

Table 48. Distribution of scores for open-source comprehensive AutoML systems (EX3). Evaluates capabilities
for enhancing global interpretability. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

EX3
Score # Tools
0 12
1 0
2 7
U 0

accelerating uptake of ML technologies within broad sectors of industry and society, as well as
the increasing friction between model outcomes and real-world nuances. Thus, with many open-
source implementations of AutoML hailing from academic roots, it is not surprising that developers
have been slow to prioritise the explainability requirements of non-technical users. Indeed, we
found little evidence of facilities among the surveyed tools that help clarify data lineage (EX1) and
modelling steps (EX2), although TPOT does produce pipeline visualisations and HyperGBM does
provide experimental progress graphs via a dashboard. Overall, as indicated by Table 47, the only
mechanisms related to explainability that have a significant presence among open-source systems
are those related to global model interpretability (EX3). The provision of such services varies in
quality and extensiveness, but Table 48 asserts that seven tools do so with sufficient automation.
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At one end of the spectrum, AutoGluon provides a table of global feature importance, while, at the
other, PyCaret supplies a dashboard and extensive graphs.
For now, no tool appears to enhance local interpretability (EX4), i.e. by allowing specific pre-

dictions to be analysed for the forces that drive them. Capabilities for scenario analysis (EX5)
are similarly missing. This absence is likely to be keenly felt by stakeholders wishing to employ
ML for prescriptive analytics, where the expected impact of an action is best evaluated against a
counterfactual prediction, i.e. the outcome that occurs when the action is not taken. As for bias
and fairness issues, the survey found no notable presence of mechanisms for either identification
(EX6) or mitigation (EX7). Accordingly, the current open-source ‘market’ of AutoML limits itself
in terms of appeal to industry stakeholders, at least from an explainability perspective. However,
technically savvy users do have the option of integrating the dedicated tools listed in Section 4.1.2,
once their own limitations have been acknowledged. Such a workaround may patch any relevant
gaps within an MLWF. Furthermore, the dearth of explainability services in the open-source space
needs to be seen in the context of ongoing trends; the next generation of AutoML software will
likely have had more time to react to the current societal focus on trust in AI.

Table 49. Scores for open-source comprehensive AutoML systems (EU1–EU5). Evaluates the availability of
interactions via coding (EU1), CLI (EU2), and GUI (EU3). Also evaluates software client type (EU4) and level
of documentation (EU5). See Table 9 for rubric.

Name EU1 EU2 EU3 EU4 EU5 Sum (out of 7)
GAMA 1 1 1 2 2 7
HyperGBM 1 1 1 2 1 6
Igel 1 1 1 2 1 6
Ludwig 1 1 0 0 2 4
TPOT 1 1 0 0 2 4
AutoGluon 1 0 0 0 2 3
AutoKeras 1 0 0 0 2 3
AutoML Alex 1 0 0 0 2 3
auto-sklearn 1 0 0 0 2 3
carefree-learn 1 0 0 0 2 3
Mljar 1 0 0 0 2 3
PyCaret 1 0 0 0 2 3
Auto_ViML 1 0 0 0 1 2
Auto-PyTorch 1 0 0 0 1 2
FLAML 1 0 0 0 1 2
Hyperopt-sklearn 1 0 0 0 1 2
Lightwood 1 0 0 0 1 2
mlr3automl 1 0 0 0 1 2
OBOE 1 0 0 0 1 2
Sum 19/19 5/19 3/19 6/38 29/38

4.2.5 Ease of Use. Assessing open-source comprehensive AutoML systems for their problem-
solving capabilities is all fine and well, but even the most mechanised frameworks will be avoided
if stakeholders struggle to interface with them. Thus, the ease-of-use criterion aims to gauge
accessibility to some degree, although deeper discussions of HCI are better reserved for another
review [313]. Of course, the codebases of all open-source tools are, by definition, open to the public,
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Table 50. Distribution of scores for open-source comprehensive AutoML systems (EU2). Evaluates the avail-
ability of interactions via CLI. Scores: 0 for absent, 1 for present, and U for unclear.

EU2
Score # Tools
0 14
1 5
U 0

Table 51. Distribution of scores for open-source comprehensive AutoML systems (EU3). Evaluates the avail-
ability of interactions via GUI. Scores: 0 for absent, 1 for present, and U for unclear.

EU3
Score # Tools
0 16
1 3
U 0

so Table 49 starts off by highlighting that all surveyed systems can be used via scripting. Most
of the packages are written in Python, so the technical barrier is arguably lower than it could be.
Nonetheless, for non-technical users, a simple CLI (EU2) is the next step in accessibility. Immediately,
support for this kind of HCI drops from 19 packages to five, as Table 50 shows. Furthermore, only
three of these five, as aggregated by Table 51, bother to develop a GUI (EU3).

Table 52. Distribution of scores for open-source comprehensive AutoML systems (EU4). Evaluates software
client type. Scores: 0 for desktop only, 1 for browser only, 2 for desktop or browser, and U for unclear.

EU4
Score # Tools
0 16
1 0
2 3
U 0

Table 53. Distribution of scores for open-source comprehensive AutoML systems (EU5). Evaluates level of
documentation. Scores: 0 for none, 1 for partial, 2 for extensive, and U for unclear.

EU5
Score # Tools
0 0
1 9
2 10
U 0

Given these results, it will become evident in Section 4.3 that commercial AutoML products
are much more concerned with accessibility. Here, this contrast immediately suggests that the
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notion of democratisation remains a buzzword in the academically rooted open-source sphere, at
least compared to the goal of ‘data-science enhancement’ specified in Section 3.3. This reasoning
also explains why few non-commercial packages are designed for accessible clients (EU4), e.g. as
a browser-based application rather than desktop software. Only the rare GUI providers do so,
i.e. GAMA, HyperGBM, and Igel. To their credit, as noted in Table 52, they support both browser
and desktop access. In any case, Table 53 indicates that all surveyed systems are reasonably well
documented on average, although the breadth and detail vary considerably. For instance, at the
time of review, mlr3automl provided only a readme file on its GitHub page, admittedly including a
vignette, whereas PyCaret was supported by comprehensive and sectioned documentation hosted
on a separate website.

At this point, we highlight two open-source packages that did not make the cut for the core survey
but still exemplify the diversity of developmental efforts in AutoML. In particular, they implement
unique approaches to HCI. First is Libra [496], which contains an NLP engine intending to translate
naturally stated queries into machine-understandable instructions. Such a framework marks a
rare case of an AutoML tool tackling automation at the earliest stages of an MLWF, i.e. problem
formulation & context understanding. Significant advances of this type would make it easier for
stakeholders beyond data scientists to translate a business objective into an ML problem, e.g. by
establishing whether an intended task can be reframed as unsupervised clustering or supervised
classification/regression. The other noteworthy package is Otto [154], which operates as a chatbot.
A user essentially answers a series of questions and is returned a scikit-learn script that can be
run to generate desired ML models. While not technically a ‘comprehensive’ system, as an ML
model is not explicitly created and managed, Otto thus demonstrates an alternative way to view ML
applications. Ultimately, time will tell whether Libra and Otto are simply anomalies or whether they
are early forerunners to a future wave of HCI innovation in the technological space of AutoML.

4.2.6 Remaining Criteria. By and large, this review found that open-source AutoML systems do
not address the last criteria related to performant ML. Specifically, none of the surveyed tools
has invested in the automation of any deployment & management effort (DM1–DM11), while
mechanisms for governance & security (G1–G3) are likewise absent. This result may be partially
due to all packages operating primarily offline. That stated, some of the software does offer assistance
for deployment, which is worth noting. For instance, AutoGluon and PyCaret both provide tutorials
on how to productionise their generated ML models. Additionally, research run by the AutoGluon
team has also investigated model compression [211]. Given its close links to Amazon Web Services
(AWS), the former unsurprisingly promotes SageMaker for deployment, while the latter suggests
various options. As for Ludwig and Igel, both wrap FastAPI within assistive functions to build
an API endpoint for a trained model. Then there is the carefree-learn package, which seemingly
has a sister ‘deployment’ repository [259], albeit with little detail and documentation. Ultimately
though, while governance & security can presently be excused as luxury features, the gap in
automated coverage along the latter stages of an MLWF is glaring, at least for organisations that
rely on running real-world ML applications regularly. Perhaps managing deployment and ongoing
maintenance, i.e. MLOps, is too costly and out of scope for most open-source developers. However,
as will be seen, once money gets involved, the status quo for AutoML services shifts.

4.3 Comprehensive AutoML Systems: Commercial
As reviewed at length, interested stakeholders have numerous open-source tools available that can
automate parts of an ML application. A decent amount is ‘comprehensive’ in that the packages can
manage many core tasks around generating a good ML model without any human involvement.
However, there are apparent gaps in their coverage and priorities relating to performant ML. For
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instance, there is very little in the way of deploying and maintaining an ML solution, i.e. the
latter phases of an MLWF. Additionally, open-source UIs are not typically designed with general
accessibility in mind. Thus, one may argue that, with its academic roots, open-source AutoML
software is almost intended as an optional addendum to an ML application; its focus is to enhance
the productivity of already technically capable data scientists. However, as Section 3.1 detailed,
there are many non-technical stakeholders who are keen to leverage ML but are unwilling to spend
time and money on data-science training. At the broader scale, it is not even feasible to satiate
the surging demand for robust data-driven decision-making by educating more data scientists
alone. Ideally, autonomously operating ML systems will be what meets these industry-wide needs.
Nevertheless, the point here is that lay users require a far greater degree of hand-holding through
the processes of an ML application. Accordingly, there is a profit to be made for any vendors willing
to provide services in this market, but, for that coin to be earned, some product differentiation must
necessarily exist. In light of this, we review the commercial comprehensive AutoML systems that
have arisen to meet the broader demand of industries and organisations.

Now, to some extent, this survey collated a list of commercial packages in the same manner as for
open-source software, i.e. via popular search engines, blogs, and other relevant websites. Examples
of common information sources include AnalyticsVidhya [75], KDNuggets [26], Gartner [16], and
Wikipedia [557]. However, the commercial sphere does introduce novel nuances. For instance, with
vendors competing for clientele, some summary software details could be inspected on comparison
sites, such as G2 [46] and AlternativeTo [3].
Another consequence of competition is that developers in this space have seemingly sought to

find and occupy niches with greater intensity than in the open-source market. Sometimes, this
differentiation appears at the fringes of the provided AutoML services, given that most vendors still
aim to supply ‘comprehensive’ coverage of an MLWF. However, there are ‘dedicated’ commercial
tools as well, even if they are a mix of too few and too opaque to warrant the extended discussion
their open-source counterparts received in Section 4.1. As examples of such dedicated commercial
tools, Hazy [24] and MostlyAI [30] both focus on data preparation, fleshing out model-training
inputs with statistically similar synthetic data. There is an added business benefit: using fake data
maintains privacy around the real instances. Elsewhere, provided that a user does all the preliminary
coding and modelling, there are platforms for logging, sorting, viewing and assessing experiments.
These include Neptune [32], Comet [11], and DeterminedAI [19]. Then there is MLOps, another area
of AutoML tool dedication. The associated packages that only focus on this facet are limited and do
not qualify under a review of comprehensive systems, but they highlight that the deployment and
maintenance phases of an MLWF are of surging interest.

Table 54. The list of surveyed comprehensive AutoML systems that are commercial and active.

Name Ref.
Alteryx [4]
Auger [5]
SageMaker (AWS) [40]
B2Metric [6]
Big Squid [7]
BigML [8]
cnvrg.io [10]
Compellon [12]
D2iQ [13]
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Databricks [14]
Dataiku [15]
DataRobot [17]
Deep Cognition [18]
Einblick [23]
Cloud AutoML (Google) [9]
H2O [242]
Watson Studio (IBM) [48]
Knime [27]
Azure AutoML (Microsoft) [29]
MyDataModels [31]
Number Theory [34]
RapidMiner [39]
Viya (SAS) [47]
Spell [43]
TIMi [45]

Of course, to keep the survey feasible and maximally relevant to the aims of this review, a
number of packages were further excluded. Some products appear to wrap around other AutoML
software and thus do not contribute to unique commentary, e.g. Iguazio [25], Domino [21], and
Qubole [38]. However, we also cannot overstate the challenge – completely expected – of analysing
closed-source software, i.e. its opacity. Specifically, while a shortlist of 37 commercial products
was compiled, only the 25 comprehensive AutoML systems in Table 54 supplied enough details
for meaningful assessment. For completeness, the remaining 12 are listed in Appendix C. Even
then, information on the selected 25 packages is replete with gaps, at least to the public eye, and
many more ‘unclear’ scores are to be expected from their evaluation. Incidentally, Table 54 notes,
in places, both the AutoML product and the overseeing organisation. We will often refer to the
vendor names in the incoming analysis rather than a product name, as some software effectively
operates within a grander ecosystem, implemented with deep connectivity to features drawn from
a suite of other applications.

Before proceeding, it is worth making a few prefacing comments. First, it is interesting to consider
the incoming assessment in the context of a 2020 Kaggle State of Machine Learning and Data
Science report [295], which asked about the use of enterprise ML tools. The question sampled
data scientists who use the dominant AWS, Google Cloud and Microsoft Azure platforms, so
it is no surprise that the flagships SageMaker (16.5%), Google Cloud ML (14.8%) and Azure ML
Studio (12.9%) received strong responses. However, 55.2% of the respondents claimed to use no
ML tool on the cloud. The report also found that 33% of data scientists, presumably unbound
by the platform-related subsampling, do not use AutoML tools. The remaining usage statistics
were listed as 13.9% for Google Cloud AutoML, 9.5% for H2O Driverless AI, 8.4% for DataRobot
AutoML, and 6.5% for Databricks AutoML. The takeaway is that, while AutoML has made definite
inroads, the technology is still far from indispensable to ML practitioners. At the same time, its
potential, alongside data science as a whole, is becoming increasingly recognised by industry every
year. There has been a noteworthy spate of acquisitions in recent times, e.g. Sigopt by Intel in
October 2020 [365], BigSquid and Compellon by Qlik and Clearsense, respectively, in September
2021 [454, 558], Ople.AI by Aktana in October 2021 [109], and Spell by Reddit in 2022 [253]. In
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essence, large BI and data-processing companies appear to be chasing the competitive advantage
that such capabilities can provide, which aligns very well with the democratising goal of AutoML.
With those perspectives in mind, the following findings are presented in a virtually identical

fashion to the open-source software analysis in Section 4.2. Accordingly, we now proceed to discuss
the criteria, organised as follows: efficiency in Section 4.3.1, dirty data in Section 4.3.2, completeness
& currency in Section 4.3.3, explainability in Section 4.3.4, ease of use in Section 4.3.5, deployment &
management effort in Section 4.3.6, and governance & security in Section 4.3.7. A final overarching
commentary on commercial comprehensive AutoML systems is provided in Section 4.3.8.

Table 55. Scores for commercial comprehensive AutoML systems (E1–E3). Evaluates the existence of a model
repository (E1), a model VCS (E2), and experiment tracking (E3). See Table 1 for rubric.

Name E1 E2 E3 Sum (out of 4)
cnvrg.io 1 1 2 4
Databricks 1 1 2 4
Dataiku 1 1 2 4
DataRobot 1 1 2 4
Microsoft 1 1 2 4
SageMaker 1 1 2 4
SAS 1 1 2 4
Spell 1 1 2 4
Alteryx 1 0 2 3
Auger 1 0 2 3
Big Squid 1 0 2 3
BigML 1 1 1 3
Deep Cognition 0 1 2 3
Google 1 0 2 3
H2O 1 0 2 3
MyDataModels 1 0 2 3
RapidMiner 1 1 1 3
D2iQ 0 0 2 2
Einblick U U 2 2
IBM 1 0 1 2
Number Theory 1 0 1 2
KNIME 0 0 1 1
B2Metric U U U 0
Compellon 0 0 0 0
TIMi 0 0 0 0

Sum 18/25 11/25 39/50

4.3.1 Efficiency. Differentiation between open-source and commercial AutoML products is imme-
diately evident from the moment effort in tracking and management during experimentation is
assessed. The details are provided in Table 55. Indeed, vendors are geared for real-world applications,
where the generation and refinement of ML models, before and after deployment, are expected to
be iterative and exploratory. Thus, as summed by Table 56, 18 out of 25 commercial development
teams have identifiably elected to incorporate some form of persistence via an ML model repository
(E1). Such a mechanism typically serves as a basis for a model VCS (E2); sure enough, this direct
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Table 56. Distribution of scores for commercial comprehensive AutoML systems (E1). Evaluates the existence
of a model repository. Scores: 0 for absent, 1 for present, and U for unclear.

E1
Score # Vendors
0 5
1 18
U 2

Table 57. Distribution of scores for commercial comprehensive AutoML systems (E2). Evaluates the existence
of a model VCS. Scores: 0 for absent, 1 for present, and U for unclear.

E2
Score # Vendors
0 12
1 11
U 2

Table 58. Distribution of scores for commercial comprehensive AutoML systems (E3). Evaluates the exis-
tence of experiment tracking. Scores: 0 for none, 1 for storage/access with limited automation/visuals, 2 for
storage/access with automatic log visualisation, and U for unclear.

E3
Score # Vendors
0 2
1 5
2 17
U 1

upgrade is the case for ten packages. Overall, Table 57 highlights that 11 out of 25 surveyed systems
provide the capability for stakeholders to roll back model iterations automatically. Although far
from ubiquitous, this integration of robust software-development practices shows growing market
maturity. At the very least, almost all AutoML products provide some form of experiment tracking
(E3), and, as Table 58 shows, 17 out of these 22 do so at sophisticated levels, enabling users to
inspect the history of an ML application conveniently.

Naturally, the 25 surveyed commercial systems have already attained a spectrum of scores at this
point. Those ranked highest tend to have more of an MLOps focus, e.g. Databricks and cnvrg.io.
A couple positioned lower in the rankings are trickier to assess, such as Einblink, previously
Northstar, which has a unique modelling approach. Nonetheless, on average, the commercial
AutoML sector cares more about this space than open-source developers. One possible interpretation
is that academically sourced implementations are focussed on pushing the limits of full black-box
automation, while vendors, maybe sensitive to business/legal ramifications, are much keener on
allowing stakeholders to be as involved in an ML application, within reason, as they want.

The next sub-criteria of assessment revolve around the acceleration of an ML application via the
leveraging of prior work and collaboration. In contrast to open-source systems, Table 59 indicates
that commercial products have some decent coverage here. Perhaps appreciating that lay users
do not have a background in ML to lean on, more than half of the surveyed systems provide
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Table 59. Scores for commercial comprehensive AutoML systems (E4–E6). Evaluates the existence of a
template/code repository (E4). Also evaluates capabilities for prior-work recommendation (E5) and project
collaboration (E6). See Table 2 for rubric.

Name E4 E5 E6 Sum (out of 5)
Databricks 2 0 2 4
Dataiku 2 0 2 4
cnvrg.io 2 0 1 3
DataRobot 2 0 1 3
H2O 2 0 1 3
Microsoft 1 0 2 3
SageMaker 2 0 1 3
SAS 2 0 1 3
Deep Cognition 2 0 0 2
IBM 1 0 1 2
KNIME 2 0 0 2
Number Theory 1 0 1 2
Alteryx 0 0 1 1
Einblick U 0 1 1
Google 1 0 0 1
RapidMiner 1 0 0 1
Spell 0 0 1 1
Auger U U U 0
B2Metric U 0 U 0
Big Squid 0 0 0 0
BigML 0 0 0 0
Compellon 0 0 0 0
D2iQ 0 0 0 0
MyDataModels 0 0 0 0
TIMi 0 0 0 0

Sum 23/50 0/25 16/50

Table 60. Distribution of scores for commercial comprehensive AutoML systems (E4). Evaluates the existence
of a template/code repository. Scores: 0 for none, 1 for manual generation, 2 for automatic leveraging, and U
for unclear.

E4
Score # Vendors
0 7
1 5
2 9
U 4

repositories for templates or coded scripts (E4), as aggregated by Table 60. In many of these cases,
the frameworks are set up to support users in generating and sharing these documents. However,
some packages, exemplified by SageMaker and its Jumpstart mechanism [96], allow projects to
be automatically kickstarted by templates for common use cases. That stated, none of the 25
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surveyed vendors seems to have a more sophisticated means of suggesting prior art (E5). This
result is interesting to note, given the long-running academic focus on meta-learning and the era
of intelligent discovery assistants (IDAs) that preceded the current wave of AutoML [64, 308, 344].
Admittedly, a deeper examination of other survey-excluded systems may be warranted ahead
of any strident conclusions. For instance, TAZI [44], Iguazio [25] and Kortical [28] all claim to
support off-the-shelf use cases, and Domino [21] does so similarly via its Domino Knowledge
Center. However, within the survey sample, only Auger hints at possible meta-learning; a blog
post mentions that its optimiser is selected appropriately for a given dataset, perhaps leveraging a
history of similar ML problems [87].

Table 61. Distribution of scores for commercial comprehensive AutoML systems (E6). Evaluates capabilities
for project collaboration. Scores: 0 for none, 1 for basic features, 2 for advanced features, and U for unclear.

E6
Score # Vendors
0 10
1 10
2 3
U 2

Mechanisms to support collaboration on a project (E6) are present in around half of the commer-
cial AutoML systems. Most have been assessed by Table 61 to be fairly rudimentary, e.g. simply
allowing project folders to be shared. For some instances, e.g. SageMaker [95] and IBM [48], a
score of 1 was granted because, while notebooks themselves could be shared, each user had to
work with a unique copy of the code, thus risking desynchronisation issues. In contrast, Microsoft
and Databricks [180] exemplify a score of 2 being granted for the presence of live co-editing. That
stated, there is a discussion to be had around the utility of such a feature, as it is unlikely to become
a common software practice when such a robust industry-standard VCS such as Git exists. In the
meantime, Einblick, the commercialisation of the academic product Northstar [324], supports a
unique collaboration model via a whiteboard-style ‘visual analytics’ interface upon which users
drag and drop connectable nodes. This form of non-standard HCI has obvious benefits but also
several drawbacks. For one thing, the unusual approach means it is more difficult to assess the
system for certain functions, e.g. around deployment and management. The jury is also out on
whether such a hands-on UI, advocated in promotional material, will actually live up to its aims of
enhancing productivity for data-science teams at scale. Granted, this uncertainty is to be expected
for a nascent technology; the long-term success of radical innovations in AutoML will probably
not be evident for many years.

Moving on to matters of effort reduction across an MLWF, we begin by assessing how a dataset
ready for ML arises. Immediately evident, there is a stark contrast between Table 62 and the
previous analysis for open-source tools: EDA (E7). Again, most vendors are geared for real-world
applications run by relatively non-academic stakeholders, meaning that data sources are likely
to be messy and, initially, poorly understood. Thus, most surveyed commercial systems facilitate
some form of exploration, allowing issues, insights, structures and patterns in data to be sought
out. However, Table 63 indicates varying levels of support, with nine packages still requiring users
to click about with convenience features. Another nine go a step further into actual automation,
generating visualisations to guide user interpretations, e.g. histograms, charts, and graphs. Only
two, DataRobot and Compellon, advise a user how best to sift through these visuals, thus earning
the highest score of 3. Indeed, it is a reoccurring theme in this review that automation is not binary,



66 Scriven et al.

Table 62. Scores for commercial comprehensive AutoML systems (E7/E8). Evaluates the extent of automation
for assisted data exploration (E7) and data preparation (E8). See Table 3 for rubric.

Name E7 E8 Sum (out of 5)
DataRobot 3 2 5
Auger 2 2 4
Big Squid 2 2 4
Dataiku 2 2 4
H2O 2 2 4
Microsoft 2 2 4
Compellon 3 0 3
IBM 2 1 3
Number Theory 2 1 3
Alteryx 1 1 2
cnvrg.io 1 1 2
D2iQ 2 0 2
Databricks 1 1 2
Einblick 1 1 2
Google 0 2 2
KNIME 1 1 2
MyDataModels 2 U 2
RapidMiner 1 1 2
SageMaker 1 1 2
SAS 1 1 2
B2Metric 0 1 1
BigML 0 1 1
Deep Cognition 0 1 1
TIMi 1 0 1
Spell 0 0 0

Sum 33/75 27/50

Table 63. Distribution of scores for commercial comprehensive AutoML systems (E7). Evaluates the extent
of automation for assisted data exploration. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, 3 for substantial automation with useful alerts, and U for unclear.

E7
Score # Vendors
0 5
1 9
2 9
3 2
U 0

and the mechanised generation of information alone is not ideal for effort reduction without being
accompanied by some form of mechanised selection/emphasis. Nonetheless, given that contextual
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insights are usually the domain of BI, with ML more focussed on the actual models, it is noteworthy
that EDA has already been integrated so substantially into commercial AutoML.

Table 64. Distribution of scores for commercial comprehensive AutoML systems (E8). Evaluates the extent of
automation for data preparation. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

E8
Score # Vendors
0 4
1 13
2 7
U 1

In contrast, there is less excuse for a comprehensive AutoML system to neglect the automation
of data preparation (E8), given the substantial burden it places on a data scientist. Thus, the fact
that Table 64 indicates more than half of the surveyed services provide only convenience features,
with four vendors appearing to ignore the topic outright, suggests an oversight in the market.
Stakeholders essentially need to be mindful of this hidden ‘upstream’ cost that an otherwise
appealing product may neglect. That stated, while this review has systematised an MLWF that
suggests an organic evolution of AutonoML technology, i.e. steadily outwards from the model-
development phase, it is worth remembering that vendors pursuing business benefits need not
subscribe to an academic view of AutoML. Indeed, Compellon and TIMi exemplify frameworks
leaning towards exploratory analytics over the deployment of ML models, seemingly targeting
business users with their messaging. Ignoring data preparation may be intentional on their part,
and Section 4.3.8 provides some extended commentary on this fragmentation of the ‘commercial
AutoML agenda’. Of course, it is also possible that the tools do undertake data-preparation work
but simply do not promote it, possibly because it is not a priority.

Table 65. Coverage of data-preparation processes for commercial comprehensive AutoML systems (E8A–E8F).
Evaluates categorical processing (E8A), standardisation/normalisation (E8B), bucketing/binning (E8C), text
processing (E8D), time-period extraction (E8E), and management of class imbalance (E8F). Scores: 0 for absent
and 1 for present.

Name E8-A E8-B E8-C E8-D E8-E E8-F Sum (out of 6)
Dataiku 1 1 1 1 1 1 6
DataRobot 1 1 1 1 1 1 6
Google 1 1 1 1 1 0 5
Auger 1 1 0 0 1 1 4
H2O 1 0 1 1 1 0 4
Microsoft 1 1 0 1 1 0 4
Big Squid 1 1 0 0 0 0 2

Sum 7/7 6/7 4/7 5/7 6/7 3/7

This closed-source opacity becomes murkier as analysis becomes steadily more granular, and the
Table 65 breakdown of what is included under data preparation (E8A–E8F) can only be applied to a
handful of packages. It is also no surprise that the table only lists the seven commercial systems that
boast an automated form of this capability; the details effectively become part of their promotion.
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In any case, it is notable that industry-heavyweight SageMaker Autopilot does not provide any
automatic assistance with data preparation. Another minor comment is that the data-preparation
mechanism employed by Google does work with weighted arrays, which no other vendors consider.

Table 66. Scores for commercial comprehensive AutoML systems (E9–E11). Evaluates the extent of automation
for dataset feature generation (E9), reuse (E10), and selection (E11). See Table 3 for rubric.

Name E9 E10 E11 Sum (out of 5)
DataRobot 2 1 2 5
Dataiku 1.5 1 2 4.5
B2Metric 2 0 2 4
H2O 2 0 2 4
RapidMiner 2 0 2 4
IBM 1 0 2 3
Microsoft 2 0 1 3
Alteryx 1.5 0 1 2.5
Compellon 0 0 2 2
Databricks 1 1 0 2
Einblick 1 0 1 2
KNIME 1 0 1 2
Number Theory 1 0 1 2
SageMaker 1 1 0 2
Auger 0 0 1 1
Big Squid 0 0 1 1
BigML 0 1 0 1
Deep Cognition 0 0 1 1
Google 0 0 1 1
MyDataModels 0 0 1 1
SAS 0 0 1 1
cnvrg.io 0 0 U 0
D2iQ 0 0 0 0
Spell 0 0 0 0
TIMi 0 0 0 0
Sum 19/50 4/25 25/50

Table 67. Distribution of scores for commercial comprehensive AutoML systems (E9). Evaluates the extent of
automation for dataset feature generation. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear. The 1.5 denotes existence of convenience plugins enabling automation.

E9
Score # Vendors
0 12
1 6
1.5 2
2 5
U 0
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Turning to AutoFE, Table 66 shows that the surveyed vendors have a moderate coverage of this
space. In fact, commercial systems are granted a higher average score for dataset feature generation
(E9) than open-source systems in Section 4.2.1, i.e. 19/25 versus 8/19. However, Table 67 indicates
that half of the surveyed systems still do not bother with this aspect, and half again of those that
do choose to stick with convenience features, e.g. manually triggered functions that sum/average
dataset columns. Notably, two AutoML services, Alteryx and Dataiku, are unique in that they
support the automated generation of dataset features via an optional plugin. For this reason, they
are marked with scores of 1.5, reflecting the blur between a convenience feature and an automated
mechanism. As for the operator ‘nodes’ of KNIME, they are considered feature transformations
that require a degree of user manipulation, so the associated system scores a 1.

Table 68. Distribution of scores for commercial comprehensive AutoML systems (E10). Evaluates the extent
of automation for dataset feature reuse. Scores: 0 for absent, 1 for present, and U for unclear.

E10
Score # Vendors
0 20
1 5
U 0

Now, generating useful features can be a complex affair, so it would make sense to store them for
future reuse (E10). This reasoning is especially the case where an organisation may use the same
datasets for numerous ML projects run by different teams. Such a notion is similar to construct-
ing/managing data marts in a data warehouse with corporately controlled metric registers, thus
ensuring consistency and accelerating preparatory processes. Admittedly, one could argue that
this is a luxury compared to other priorities, likely only to become more valuable as the AutoML
market further matures. Nonetheless, Table 68 shows that four reviewed vendors have already
considered the innovation.

Table 69. Distribution of scores for commercial comprehensive AutoML systems (E11). Evaluates the extent
of automation for dataset feature selection. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear.

E11
Score # Vendors
0 6
1 11
2 7
U 1

Of course, whether they are generated or recalled, dataset features must be chosen carefully
from the pool of available options when used in modelling. Overall, commercial systems assist
strongly with dataset feature selection (E11), much more than generation, which mimics the trend
seen for open-source tools. However, this varies substantially between packages, and Table 69
reveals that a majority of 11 offer convenience features, e.g. the ability to manually drop features
via a checkbox/widget, sometimes assisted by an informed view of what to select. Another seven
packages then go further and provide substantial automation. Interestingly, BigML, Auger, Microsoft
and RapidMiner exemplify services that approach this process from a perspective of exclusion
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rather than inclusion, advising which dataset features are ‘bad’. For instance, Microsoft avoids high
cardinality, while RapidMiner targets those of ‘low quality’ and redundancies revealed by high
correlations. Crucially, most of these selection processes, whether automated or not, are applied
prior to the existence of any ML model, i.e. they are filter-style, not wrapper-style.

As a side note, this review could not make determinations for two sub-criteria regarding commer-
cial AutoML, namely whether HPO search spaces and algorithms are already specified by default
(E12) and whether HPO operates on anML pipeline of components (E13). It is very likely that, for the
former sub-criterion, all packages should be marked ‘yes’ with a 1, as model selection processes are
generally obscured from users in a comprehensive system; they should not lock up in the absence
of manual specification. Such a result would subsequently mean that the sub-criterion does not
differentiate between any of the open-source and closed-source software presented in this review.
However, there are open-source tools excluded from this survey that do force users to make choices
prior to HPO, so the question on specification remains valid to ask. As for the latter sub-criterion, it
is difficult to guess the structure of ML solutions under the hood of a commercial system. However,
optimising extended pipelines is challenging from a theoretical/implementational standpoint. It
is already rare among the more technically driven open-source offerings, even being elevated as
a core innovation within a package named AutoWEKA4MCPS [162, 414, 481, 482]. Thus, most
probably, few commercial systems, if any, will presently lump preprocessors and postprocessors
into an HPO space.

Finally, on matters of technical efficiency, Table 70 shows that the commercial space of workload
management is not too dissimilar from that of open-source AutoML systems. However, as aggregated
by Table 71, there are uniquely a few packages that assist with workload optimisation (E14). Most of
these provide only convenience features and notably have a promotional focus on MLOps, e.g. Spell,
cnvrg.io and D2iQ. Granted, via the AWS ecosystem, SageMaker also has the option of plugging
into Auto Scaling to manage relevant EC2 server instances. A similar capability may be possible
for Google and Microsoft as well, but it has not been explicitly promoted in their cases.

Naturally, time limits (E15) and trial limits (E16) are available amongAutoML systems, highlighted
by Table 72 and Table 73, respectively. However, support for such modelling control is surprisingly
rare, and providers of one are often those offering the other. It is also notable that, barring DataRobot,
any packages supporting workload management facilitate either infrastructural optimisation or
algorithmic constraints, but never both. This hints that there is a divide in the approach to resource
management between vendors focussed on MLOps and those leaning into user-driven model
development. As for DataRobot, it is the only commercial system that appears to substantially
automate workload optimisation, iteratively increasing data size and computational resources as it
reduces the number of candidate models during a search. This process, of course, is very similar to
successive halving, so other products may do so, too, without explicitly promoting it. Whatever the
case, the takeaway is that resource management has not yet received significant attention from
either open-source or closed-source AutoML tools. Perhaps fine-tuning the technical efficiency
of an ML application is not yet a priority compared with ensuring that training and deploying
ML models are robust functions. Indeed, given reasonable cloud-computing prices and supplied
operational efficiencies elsewhere, the sub-criteria above may not become vital differentiators until
the market matures further.

4.3.2 Dirty Data. As already assessed for open-source tools, this criterion examines whether
commercial AutoML systems can aid stakeholders with the initial cleaning of data (DD1) prior
even to its preparation for ingestion by an ML model. Accordingly, the evaluations are displayed
in Table 74. Further elaborated in Table 75, we find that most vendors only supply convenience
features for this task; users still need to make decisions and take explicit action. However, eight
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Table 70. Scores for commercial comprehensive AutoML systems (E14–E16). Evaluates the availability of
workload optimisation (E14), modelling time limits (E15), and modelling iteration limits (E16). See Table 5 for
rubric.

Name E14 E15 E16 Sum (out of 4)
DataRobot 2 1 0 3
Auger 0 1 1 2
BigML 0 1 1 2
Databricks 0 1 1 2
Dataiku 0 1 1 2
Alteryx 0 0 1 1
cnvrg.io 1 0 0 1
D2iQ 1 0 0 1
H2O 0 1 0 1
IBM 0 0 1 1
Microsoft 0 1 0 1
SageMaker 1 0 0 1
Spell 1 0 0 1
B2Metric 0 0 0 0
Big Squid 0 0 0 0
Compellon 0 U U 0
Deep Cognition 0 0 0 0
Einblick 0 0 0 0
Google 0 0 0 0
KNIME 0 0 0 0
MyDataModels 0 U U 0
Number Theory 0 0 0 0
RapidMiner 0 0 0 0
SAS 0 0 0 0
TIMi 0 0 0 0

Sum 6/50 7/25 6/25

Table 71. Distribution of scores for commercial comprehensive AutoML systems (E14). Evaluates the avail-
ability of workload optimisation. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

E14
Score # Vendors
0 20
1 4
2 1
U 0

packages do provide substantial automation, and seven of these were the same that also scored
highest for the automation of data preparation in Table 62. This outcome is not surprising. If
development effort is to be expended on the data-engineering phase of an MLWF, it makes sense to
support cleaning and preparation simultaneously.
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Table 72. Distribution of scores for commercial comprehensive AutoML systems (E15). Evaluates the avail-
ability of modelling time limits. Scores: 0 for absent, 1 for present, and U for unclear.

E15
Score # Vendors
0 16
1 7
U 2

Table 73. Distribution of scores for commercial comprehensive AutoML systems (E16). Evaluates the avail-
ability of modelling iteration limits. Scores: 0 for absent, 1 for present, and U for unclear.

E16
Score # Vendors
0 17
1 6
U 2

Of course, opacity remains an issue here as it did for data preparation, so Table 76 only breaks
down capabilities for commercial systems that claim significant automation. As summarised by
Table 77, almost all packages can identifiably infer data types (DD2). Likewise, Table 78 indicates
that almost all packages can detect and resolve missing values (DD3), even though the preferred
processes differ. For instance, Microsoft, DataRobot, Big Squid and Auger all appear solely to impute.
Dataiku and H2O additionally provide an option to drop missing values. Embedding approaches
are also viable, being supported by both Dataiku and Google. The latter vendor even seems capable
of assessing the severity of a null value, which may suggest leaving it alone. Essentially, handling
missing values appears to be a standard offering for automated data cleaning.
In contrast, outlier management (DD4) is a rarity. The reasons are the same as discussed in

Section 4.2.2, and, sure enough, Table 79 finds only three services handling automatic detection of
anomalies. Notably, the one that claims to automatically resolve outliers, i.e. DataRobot, is also the
only comprehensive system within this review that supplies advanced cleaning operations (DD5).
Scoring 1 in Table 80, the software is seemingly able to identify ‘inliers’, i.e. erroneous data points
within the interior of a statistical distribution. Naturally, such an analysis is more complex than
simply highlighting distant outliers.

4.3.3 Completeness and Currency. When assessing the types of ML problems that commercial
comprehensive AutoML systems are designed for, Table 81 reveals a spectrum of coverage. The
survey results are not entirely dissimilar to the evaluations in Section 4.2.3, although, for the
summed scores, commercial software does have a less generalist/automated tail that goes below
the open-source range of 7 to 16. Admittedly, opacity makes it harder to judge a couple of these
outlying vendor products.

In any case, Table 82 suggests that it is almost a coin flip whether a package will assist/automate
unsupervised learning (CC1) or ignore it entirely. Understandably, a lack of a clearly defined target
can make it harder to provide case studies or business pitches that objectively highlight superior ML
model validity. On the other hand, unsupervised learning meshes well with EDA for the systems
that lean more in that direction. So, its provision ultimately depends on the agenda of a vendor.
Supervised learning, however, is almost compulsory to offer. Noted by Table 83, which considers
regression on tabular data (CC2), the vast majority of packages provide significant automation in
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Table 74. Scores for commercial comprehensive AutoML systems (DD1). Evaluates the extent of automation
for cleaning dirty data. See Table 6 for rubric.

Name DD1
Auger 2
Big Squid 2
Dataiku 2
DataRobot 2
Google 2
H2O 2
Microsoft 2
MyDataModels 2
Alteryx 1
B2Metric 1
BigML 1
cnvrg.io 1
Databricks 1
Deep Cognition 1
Einblick 1
IBM 1
KNIME 1
Number Theory 1
RapidMiner 1
SageMaker 1
SAS 1
Compellon 0
D2iQ 0
Spell 0
TIMi 0

Sum 29/50

Table 75. Distribution of scores for commercial comprehensive AutoML systems (DD1). Evaluates the extent of
automation for cleaning dirty data. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

DD1
Score # Vendors
0 4
1 13
2 8
U 0

this space. Given that supervised learning is the fundamental task that innovations in ML model
selection originally targeted, comprehensive systems struggle to be labelled as AutoML if they
do not even automate this core process. Scores for classification capabilities on tabular data, both
standard (CC3) and multi-class (CC4), affirm this argument. They are summarised in Table 84 and
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Table 76. Scores for commercial comprehensive AutoML systems (DD2–DD5). Evaluates the extent of au-
tomation for data-type inference (DD2), missing-value imputation (DD3), and outlier management (DD4).
Also evaluates the existence of domain-specific/advanced cleaning operations (DD5). See Table 6 for rubric.

Name DD2 DD3 DD4 DD5 Sum (out of 6)
DataRobot 1 2 2 1 6
H2O 1 2 1 0 4
Auger 1 2 0 0 3
Big Squid 1 2 0 0 3
Dataiku 1 2 0 0 3
Google 1 2 0 0 3
Microsoft 1 2 0 0 3
MyDataModels U 1 1 0 2

Sum 7/8 15/16 4/16 1/8

Table 77. Distribution of scores for commercial comprehensive AutoML systems (DD2). Evaluates the extent
of automation for data-type inference. Scores: 0 for absent, 1 for present, and U for unclear.

DD2
Score # Vendors
0 0
1 7
U 1

Table 78. Distribution of scores for commercial comprehensive AutoML systems (DD3). Evaluates the extent
of automation for missing-value imputation. Scores: 0 for none, 1 for automatic detection, 2 for automatic
detection/resolution, and U for unclear.

DD3
Score # Vendors
0 0
1 1
2 7
U 0

Table 79. Distribution of scores for commercial comprehensive AutoML systems (DD4). Evaluates the ex-
tent of automation for outlier management. Scores: 0 for none, 1 for automatic detection, 2 for automatic
detection/resolution, and U for unclear.

DD4
Score # Vendors
0 5
1 2
2 1
U 0
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Table 80. Distribution of scores for commercial comprehensive AutoML systems (DD5). Evaluates the existence
of domain-specific/advanced cleaning operations. Scores: 0 for absent, 1 for present, and U for unclear.

DD5
Score # Vendors
0 7
1 1
U 0

Table 81. Scores for commercial comprehensive AutoML systems (CC1–CC9). Evaluates capabilities for
unsupervised learning (CC1), regression on tabular data (CC2), standard classification on tabular data (CC3),
multi-class classification on tabular data (CC4), time-series forecasting (CC5), image-based problem solving
(CC6), text-based problem solving (CC7), multi-modal problem solving (CC8), and ensemble techniques (CC9).
See Table 7 for rubric.

Name CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 Sum
(out of 17)

DataRobot 2 2 2 2 2 2 2 1 2 17
H2O 2 2 2 2 2 2 2 0 2 16
Dataiku 2 2 2 2 2 2 1 0 2 15
Microsoft 1 2 2 2 2 1 1 0 2 13
BigML 2 2 2 2 2 2 0 0 0 12
Google 0 2 2 2 2 2 2 0 0 12
Number Theory 1 2 2 2 1 1 2 0 1 12
Einblick 1 2 2 2 2 0 2 0 0 11
RapidMiner 2 1 2 2 1 1 1 0 1 11
SageMaker 1 2 2 2 1 1 1 0 0 10
Alteryx 0 2 2 2 1 1 0 0 0 8
Auger 0 2 2 2 0 0 0 0 2 8
B2Metric 2 2 2 2 0 0 0 0 0 8
Big Squid 0 2 2 2 2 0 0 0 0 8
Databricks 0 2 2 2 2 0 0 0 0 8
IBM 0 2 2 2 1 0 1 0 0 8
KNIME 1 1 1 1 1 1 1 0 1 8
SAS 1 1 2 2 1 0 1 0 0 8
cnvrg.io 1 1 1 1 1 1 1 0 U 7
Deep Cognition 0 0 2 2 0 2 0 0 U 6
MyDataModels 0 2 2 2 0 0 0 0 U 6
Spell 0 1 1 1 1 1 1 0 0 6
TIMi 0 2 2 0 0 0 0 0 U 4
Compellon U U 2 U U U U U U 2
D2iQ U U U U U U U U 0 0

Sum 19/50 39/50 45/50 41/50 27/50 20/50 19/50 1/25 13/50

Table 85, respectively. Arguably, classification is slightly easier than regression, so it has even better
coverage in terms of automation.

Again, as with open-source tools, Table 86 reveals a drop in coverage for time-series forecasting
(CC5). Similarly, by the time discussion moves to image-based tasks (CC6) and NLP (CC7), Table 87
and Table 88 suggest, respectively, that these capabilities are now relatively niche. This result is
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Table 82. Distribution of scores for commercial comprehensive AutoML systems (CC1). Evaluates capabilities
for unsupervised learning. Scores: 0 for none, 1 for convenience features, 2 for substantial automation, and U
for unclear.

CC1
Score # Vendors
0 10
1 7
2 6
U 2

Table 83. Distribution of scores for commercial comprehensive AutoML systems (CC2). Evaluates capabilities
for regression on tabular data. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

CC2
Score # Vendors
0 1
1 5
2 17
U 2

Table 84. Distribution of scores for commercial comprehensive AutoML systems (CC3). Evaluates capabilities
for standard classification on tabular data. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear.

CC3
Score # Vendors
0 0
1 3
2 21
U 1

Table 85. Distribution of scores for commercial comprehensive AutoML systems (CC4). Evaluates capabilities
for multi-class classification on tabular data. Scores: 0 for none, 1 for convenience features, 2 for substantial
automation, and U for unclear.

CC4
Score # Vendors
0 1
1 3
2 19
U 2

not surprising, as the more complex data inputs are typically reserved for AutoDL approaches,
which, beyond being out of scope for this review, are currently nowhere near the technological
maturity of standard AutoML. Consequently, if handling a single source of non-tabular data is a rare
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Table 86. Distribution of scores for commercial comprehensive AutoML systems (CC5). Evaluates capabilities
for time-series forecasting. Scores: 0 for none, 1 for convenience features, 2 for substantial automation, and U
for unclear.

CC5
Score # Vendors
0 5
1 9
2 9
U 2

Table 87. Distribution of scores for commercial comprehensive AutoML systems (CC6). Evaluates capabilities
for image-based problem solving. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

CC6
Score # Vendors
0 9
1 8
2 6
U 2

Table 88. Distribution of scores for commercial comprehensive AutoML systems (CC7). Evaluates capabilities
for text-based problem solving. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

CC7
Score # Vendors
0 9
1 9
2 5
U 2

Table 89. Distribution of scores for commercial comprehensive AutoML systems (CC8). Evaluates capabilities
for multi-modal problem solving. Scores: 0 for absent, 1 for present, and U for unclear.

CC8
Score # Vendors
0 22
1 1
U 2

capability, the result shown in Table 89 is also not unexpected; only one commercial system claims
to handle multi-modal tasks (CC8), i.e. DataRobot. Granted, AutoML frameworks that optimise ML
pipelines could theoretically merge multiple preprocessing components dedicated to different data
modalities, but it is unclear whether any existing implementation can genuinely support such a
process. Finally, Table 90 shows that only eight vendors identifiably confront the nuances of tackling
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Table 90. Distribution of scores for commercial comprehensive AutoML systems (CC9). Evaluates capabilities
for ensemble techniques. Scores: 0 for none, 1 for convenience features, 2 for substantial automation, and U
for unclear.

CC9
Score # Vendors
0 12
1 3
2 5
U 5

ML problems with ensemble techniques (CC9), although the quantity of U scores is uniquely high,
as methodological details tend to be obfuscated for closed-source software. It is possible that, in
the early days of ML adoption by the business community, basic models are sufficient to provide
substantial benefits already. The power of ensembles may not yet be warranted, especially given
their typical complexity and associated adverse impact on explainability.
Now, as previously emphasised, an increasingly granular review of commercial AutoML con-

fronts decreasing transparency around system details. Thus, while it is reasonably clear which
ML problems can be addressed by the ML solutions provided by a package, it is far less obvious
how these solutions are derived. Accordingly, over a third of the systems surveyed in Table 91
have information gaps regarding their mechanical processes around CASH. However, what is
clear from Table 92, is that vendors are evenly split around whether they support customisable
metrics (CC10). Recalling Section 4.3.1, an interpretation was suggested that many commercial
AutoML features appear to favour the primacy of user control when compared to open-source
tools, possibly to minimise potential liability, but the result here implies that there is still a broad
range of how much freedom is genuinely supplied. For instance, in this particular space, DataRobot
and Microsoft exemplify vendors making the decisions, while Google and SageMaker support
user-driven customisation. Of course, a cynical perspective might be that it benefits commercial
systems to sell the impression of user control while still making the choices where they actually
matter. However, in fairness, there is a diversity of agendas and intended audiences within the
AutoML marketplace, as discussed in Section 4.3.8; these can determine how much technical control
can be safely granted to a stakeholder.
Turning to the HPO methods employed (CC11), a couple of commercial systems involve users

pipelining ML processes by connecting operator ‘nodes’, e.g. RapidMiner and KNIME. It is difficult
to determine whether the manual installation of associated HPO nodes aligns with the spirit of
full AutoML, so they have been represented here with values of 0.5. Regardless, wherever details
can be extracted, most AutoML products supply the basic algorithms of grid search (GR) and
random search (RA). In fact, beyond these methods (GR+), heavyweight Microsoft goes no further.
However, the remaining packages that can be commented about almost ubiquitously support
Bayesian optimisation (BA).

That stated, the sparsity of multi-armed bandit techniques (MAB) – 3/16 identifiable commercial
providers versus 6/19 open-source offerings – hints that the technical depth of the commercial
market may be somewhat limited. This outcome may be due to a lag in how quickly theoretical
advances disseminate into the commercial sphere. Alternatively, if this is a genuine indicator of
the marketplace, vendors may simply find no need to implement more sophisticated methods if
strong operational performance is available elsewhere, e.g. via experiment tracking, a decent UI,
convenience features, and so on. The H2O package, for instance, is one of the earlier entrants into the
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Table 91. Coverage of model-selection processes for commercial comprehensive AutoML systems
(CC10/CC11). Evaluates capabilities for custom evaluation metrics (CC10). Also evaluates the existence
of HPO techniques (CC11), i.e. grid search (GR), random search (RA), Bayesian optimisation (BA), multi-
armed bandit strategies (MAB), genetic/evolutionary algorithms (GE), andmeta-learning (M). For convenience,
additionally classifies whether HPO mechanisms beyond grid/random search (GR+) are provided. Scores: 0
for absent, 1 for present, and U for unclear. The 0.5 denotes the HPO technique can be manually included as
an operator ‘node’.

Name CC10 GR RA BA MAB GE M SUM (out of 7) GR+
D2iQ 1 1 1 1 1 0 0 5 1
Dataiku 1 1 1 1 0 0 0 4 1
H2O 1 1 1 0 0 1 0 4 1
SAS U 1 1 1 0 1 0 4 1
Spell 1 1 1 1 0 0 0 4 1
B2Metric 0 1 1 1 0 0 0 3 1
Databricks 1 0 0 1 0 1 0 3 1
KNIME 1 0.5 0.5 0.5 0.5 0 0 3 1
SageMaker 1 0 1 1 0 0 0 3 1
RapidMiner U 0.5 0.5 0.5 0.5 0.5 0 2.5 1
BigML 1 0 0 1 0 0 0 2 1
cnvrg.io 1 1 0 0 0 0 0 2 0
Microsoft 0 1 1 0 0 0 0 2 0
Auger 0 0 0 1 0 0 0 1 1
Einblick 0 0 0 1 0 0 0 1 1
Google 1 U U U U U 0 1 U
Number Theory 1 U U U U U 0 1 U
Alteryx 0 U U U U U 0 0 U
Big Squid 0 U U U U U 0 0 U
Compellon U U U U U U 0 0 U
DataRobot 0 U U U U U 0 0 U
Deep Cognition 0 U U U U U 0 0 U
IBM 0 0 0 0 0 0 0 0* 0
MyDataModels 0 U U U U U 0 0 U
TIMi 0 U U U U U 0 0 U
Sum 11/25 9/25 9/25 11/25 2/25 3.5/25 0/25 13/25

Table 92. Distribution of scores for commercial comprehensive AutoML systems (CC10). Evaluates capabilities
for custom evaluation metrics. Scores: 0 for absent, 1 for present, and U for unclear.

CC10
Score # Vendors
0 11
1 11
U 3

AutoML sphere that eschewed popular Bayesian techniques for more straightforward grid/random
search methods; evidently, the implementation was sufficiently performant to maintain its existence.
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Notably, it has since become one of the few commercial adopters of genetic/evolutionary algorithms
(GE). Finally, other than Auger perhaps hinting at meta-learning, there is no evidence that any
vendor explores this functionality, so its mention is excluded from Table 91. Additionally, as a
side note, while IBM scores zero on the standard forms of HPO, it appears unique in employing
derivative-free optimisation via the RBFOpt package.

Moving on to the last sub-criteria, this review finds that closed-source opacity prevents any clear
overview of which popular ML libraries are interfaced with (CC12). Proprietary algorithms may
have been developed in-house, which further limits their exposure. We do note though that Google
uses TF, D2iQ employs TF and Torch, and Dataiku interfaces with Sklearn, XGBoost, and H2O.
As for the sub-criterion on currency (CC13), we re-emphasise that all the surveyed tools in this
analysis were found to be active at the time of survey.

4.3.4 Explainability. As has been reiterated many times, evaluating the detailed mechanics of
a commercial AutoML system is challenging. For one thing, unlike open-source software, there
are financial costs to fully exploring the routine processes of a tool; a product trial is unlikely to
be sufficiently informative. Moreover, even with full access, the detailed code underlying these
services remains obscured. Thus, this review, primarily a collation of published material about
current AutoML software, cannot assess every sub-criterion. For instance, we could not adequately
gauge whether vendors provide facilities to clarify data lineage (EX1) and modelling steps (EX2).
Naturally, the value of such an assessment for judging performant ML does remain, and deeper
investigations are recommended in the future.
Nonetheless, once considerations of explainability move from system mechanics to system

inputs/outputs, evaluations are easier to make, and these are detailed in Table 93. Indeed, if existent,
the interpretability features discussed here are often well integrated into a UI and strongly promoted.
Accordingly, Table 94 reveals that it is almost standard among vendors to explain global aspects
of a model (EX3) automatically. Most of the time, this is identifying the importance of each input
dataset feature to the potentially complex input-output mapping that a user receives. In contrast,
Table 95 shows that local interpretability at the level of individual predictions (EX4) is mostly
overlooked, though its enhancement is often well automated when addressed. Given that individual
predictions/prescriptions are often associated with unique entities, e.g. choosing whether a loan is
approved, businesses typically cannot afford to make complacent decisions even at this granular
level. Thus, a lack of improvement in this area could stifle industrial uptake.

The distribution of scores only continues to worsen for each subsequent sub-criterion. Table 96
indicates that less than a third of surveyed vendors identifiably support scenario capabilities (EX5),
which would allow a user to simulate the impact of changing variables on model outputs at a
global/local level. Granted, similar to sensitivity analysis in other fields, this functionality leans more
towards leveraging ML for exploration and insights rather than model production. Its provision
may well depend on how a vendor markets its AutoML product. For a churn-related example of how
scenario analysis may function, BigSquid claims its simulation tool allows stakeholders to see (1)
the probability of a person churning, (2) the features that locally drive this churn, and (3) how this
probability changes when certain variables are tuned. Compellon has a similar offering, but it goes
a step further in allowing a user to specify a desired reduction in churn, which the tool responds
to by highlighting both impactful features to target and the expected drop in churn associated
with their variation. Such a comparison suggests a distinction between manual exploration and
automatic optimisation, but judging the effectiveness of these scenario-based offerings is out of
scope for this review. Elsewhere, while not included within the 25 comprehensive systems here,
Ople.AI notably promotes a scenario tool with a unique ‘ROI’ tab that converts model metrics into
financial values, aiming to translate technical outputs into a business understanding efficiently.
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Table 93. Scores for commercial comprehensive AutoML systems (EX3–EX7). Evaluates capabilities for enhanc-
ing global interpretability (EX3), enhancing local interpretability (EX4), scenario analysis (EX5), bias/fairness
assessment (EX6), and bias/fairness management (EX7). See Table 8 for rubric.

Name EX3 EX4 EX5 EX6 EX7 Sum (out of 9)
Dataiku 2 2 1 2 0 7
IBM 2 0 1 2 2 7
SageMaker 2 2 0 2 1 7
DataRobot 2 2 0 2 0 6
Google 2 2 1 1 0 6
Big Squid 2 2 1 0 0 5
H2O 2 2 0 1 0 5
Microsoft 2 2 0 1 0 5
RapidMiner 2 0 1 1 0 4
SAS 2 2 0 0 0 4
MyDataModels 2 0 1 0 0 3
BigML 2 0 0 0 0 2
Compellon 1 0 1 0 0 2
Databricks 1 1 0 0 0 2
Deep Cognition 2 0 0 0 0 2
Einblick 1 1 0 0 0 2
Number Theory 2 0 0 0 0 2
TIMi 2 0 0 0 0 2
cnvrg.io 1 0 0 0 0 1
D2iQ 1 0 0 0 0 1
Spell 1 0 0 0 0 1
Alteryx 0 0 0 0 0 0
Auger U U U 0 0 0
B2Metric U U U 0 0 0
KNIME 0 0 0 0 0 0
Sum 36/50 18/50 7/25 12/50 3/50

Table 94. Distribution of scores for commercial comprehensive AutoML systems (EX3). Evaluates capabilities
for enhancing global interpretability. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

EX3
Score # Vendors
0 2
1 6
2 15
U 2

Regarding bias and fairness issues, their identification (EX6) and management (EX7) have not
yet convincingly found their way into AutoML implementations within the commercial sphere.
This state of affairs starkly contrasts the volume of discussion held within the media, business
community, and academic literature. Indeed, only a third of surveyed vendors, half of these via
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Table 95. Distribution of scores for commercial comprehensive AutoML systems (EX4). Evaluates capabilities
for enhancing local interpretability. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

EX4
Score # Vendors
0 13
1 2
2 8
U 2

Table 96. Distribution of scores for commercial comprehensive AutoML systems (EX5). Evaluates capabilities
for scenario analysis. Scores: 0 for absent, 1 for present, and U for unclear.

EX5
Score # Vendors
0 16
1 7
U 2

Table 97. Distribution of scores for commercial comprehensive AutoML systems (EX6). Evaluates capabilities
for bias/fairness assessment. Scores: 0 for none, 1 for convenience features, 2 for substantial automation, and
U for unclear.

EX6
Score # Vendors
0 17
1 4
2 4
U 0

Table 98. Distribution of scores for commercial comprehensive AutoML systems (EX7). Evaluates capabilities
for bias/fairness management. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

EX7
Score # Vendors
0 23
1 1
2 1
U 0

convenience features, are shown by Table 97 to surface associated metrics. Mitigation and remedia-
tion, either assisted or automated, are shown by Table 98 to be virtually nonexistent. This absence
of functionality provides an ongoing risk for current AutoML providers, especially as regulations
and policies for compliance continue to build, all aiming to safeguard trust in AI. However, even if
the liability for unfair outcomes rests solely with the client, this feature gap is not ideal. For most
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options, stakeholders presently need to undertake their own bias/fairness analysis, yet understand-
ing how and why relevant metrics are calculated is an advanced skill in its own right [342]. Only
IBM thus far seems to assess and handle such issues automatically, and the processes involved are
not well detailed. That all stated, some lag is always to be expected between the time a concern
rises into mainstream consciousness and the time it is pragmatically addressed. There is no current
indication that the AutoML marketplace will not adapt to meet these evolving requirements held
by industrial organisations and broader society.

Table 99. Scores for commercial comprehensive AutoML systems (EU1–EU5). Evaluates the availability of
interactions via coding (EU1), CLI (EU2), and GUI (EU3). Also evaluates software client type (EU4) and level
of documentation (EU5). See Table 9 for rubric.

Name EU1 EU2 EU3 EU4 EU5 Sum (out of 7)
BigML 1 0 1 2 2 6
cnvrg.io 1 1 1 1 2 6
Dataiku 1 1 1 1 2 6
Google 1 1 1 1 2 6
H2O 1 0 1 2 2 6
KNIME 1 0 1 2 2 6
Microsoft 1 1 1 1 2 6
RapidMiner 1 0 1 2 2 6
SageMaker 1 1 1 1 2 6
Alteryx 0 0 1 2 2 5
Auger 1 1 1 1 1 5
D2iQ 1 1 0 1 2 5
DataRobot 1 0 1 1 2 5
Deep Cognition 1 0 1 1 2 5
IBM 1 0 1 1 2 5
SAS 1 1 1 1 1 5
Spell 1 1 0 1 2 5
Big Squid 0 0 1 1 2 4
Databricks 1 0 0 1 2 4
Einblick 0 0 1 1 2 4
MyDataModels 0 0 1 1 1 3
B2Metric 0 0 1 1 0 2
Compellon 0 0 1 1 0 2
Number Theory 0 0 1 1 0 2
TIMi 0 0 1 0 0 1
Sum 17/25 9/25 22/25 29/50 39/50

4.3.5 Ease of Use. This survey does not assess the effectiveness of HCI options employed by
comprehensive AutoML systems, leaving broader commentary to another review [313]. However, it
can highlight how users are expected to interface with these tools, which correlates with intended
audiences and accessibility. Unsurprisingly, reflecting the diverging slants of free and commercial
software towards technicians and lay users, respectively, the open-source evaluations in Section 4.2.5
end up markedly different from those in Table 99. This assertion about divergence is, of course, a
generalisation, as all AutoML implementations strive to serve as many stakeholders as possible,
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Table 100. Distribution of scores for commercial comprehensive AutoML systems (EU1). Evaluates the
availability of interactions via coding. Scores: 0 for absent, 1 for present, and U for unclear.

EU1
Score # Vendors
0 8
1 17
U 0

but the trends are nonetheless apparent. For instance, Table 100 shows that eight surveyed vendors
do not even support text-based coding (EU1). This outcome contrasts with the overwhelming
expectation that users, presumably data scientists, are meant to script with the functions provided
in open-source software. After all, few free tools even provide alternative forms of HCI.

Table 101. Distribution of scores for commercial comprehensive AutoML systems (EU2). Evaluates the
availability of interactions via CLI. Scores: 0 for absent, 1 for present, and U for unclear.

EU2
Score # Vendors
0 16
1 9
U 0

Table 102. Distribution of scores for commercial comprehensive AutoML systems (EU3). Evaluates the
availability of interactions via GUI. Scores: 0 for absent, 1 for present, and U for unclear.

EU3
Score # Vendors
0 3
1 22
U 0

Now, while some vendors provide a CLI (EU2), as indicated by Table 101, such a form of UI
does not seem fashionable for either open-source or closed-source software. Instead, with three
exceptions, Table 102 confirms that GUIs (EU3) are the go-to within the commercial sphere of
AutoML. Of course, designing an effective graphical interface takes extra effort beyond what is
needed for the core AutoML engine, so developing such a UI is more likely to be spurred on when
financial incentives are involved. However, the resulting benefits are clear: convenient controls,
aesthetic appeal, and broader accessibility. The downside is that GUIs form a layer of abstraction,
constraining user freedom to whatever functions have been encapsulated by graphical widgets.
Broad accessibility and deep access are rarely both supported by the same UI, meaning that data
scientists, in the absence of low-level coding, may struggle to fully/flexibly leverage the technical
power a closed-source framework could provide.

Another indicator that commercial AutoML and open-source AutoML diverge in their intended
audience is the client type of its software (EU4). Specifically, while all open-source comprehensive
systems tend to be hosted on a desktop, potentially requiring technical know-how around their
installation, Table 103 shows vendors prefer browser-based access. This trend aligns with the
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Table 103. Distribution of scores for commercial comprehensive AutoML systems (EU4). Evaluates software
client type. Scores: 0 for desktop only, 1 for browser only, 2 for desktop or browser, and U for unclear.

EU4
Score # Vendors
0 1
1 19
2 5
U 0

Table 104. Distribution of scores for commercial comprehensive AutoML systems (EU5). Evaluates level of
documentation. Scores: 0 for none, 1 for partial, 2 for extensive, and U for unclear.

EU5
Score # Vendors
0 4
1 3
2 18
U 0

software-as-a-service (SaaS) movement that has recently become popular. In fact, commercial
packages that support both browsers and desktops are often older entrants to themarket, e.g. KNIME,
RapidMiner, and Alteryx. As for the level of documentation (EU5) available, Table 104 suggests
that vendors are more diligent on the whole than open-source developers, potentially needing to
robustly support users with minimal ML expertise. That stated, there are a few services with low
scores here, although the associated vendors may simply reserve shielded documentation for paid
customers.
Whatever the case, ease of use is rarely considered when evaluating AutoML technology, at

least compared with technical performance metrics. This criterion is currently associated with few
research papers, and each only examines a small sample size of stakeholders [198, 550]. Accordingly,
this review welcomes future systematic treatments of this topic, as they may shed further light on
how much usability influences AutoML adoption by industrial organisations.

4.3.6 Deployment and Management Effort. Open-source comprehensive AutoML systems appear
to focus heavily on developing the best ML models possible. Although they are still intended for
general use, including by enterprises, such software is often closely linked to academic endeavours
and thus prioritises exploiting technical innovations in ML. Commercial software, on the other hand,
appears to care less about enhancing an ML solution and more about how to make it pragmatically
useful to the paying client. The degree of this differentiation is debatable, but the concrete outcome
is clear: commercial comprehensive AutoML systems distinguish themselves from free tools by
investing heavily in MLOps capabilities.
However, as with all the preceding stages of the MLWF displayed in Fig. 2, the deployment

phase and subsequent monitoring and maintenance are clusterings of various possible tasks. For
instance, one process of interest in the academic literature is model compression (DM1), where a
predictor with a complicated structure is simplified into a much smaller ML model that faithfully
approximates the original function. This procedure ideally trades a negligible amount of solution
validity for massive savings in computational space and inference time. Nonetheless, despite
occasional associated research [211], we could not find this feature promoted by any AutoML
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implementation. Seemingly, general concerns about model size remain negligible. For one thing,
businesses may still be leveraging enough value from classic ML models to leave compression
techniques unwarranted. The cheapening costs of cloud usage may also be limiting the pressure
of computational constraints on all but the highest-volume vendors. That all said, as businesses
begin to leverage more complicated ML solutions for their possible added value, perhaps even with
AutoDL maturing as a technology, model compression may become particularly appealing.

Table 105. Scores for commercial comprehensive AutoML systems (DM2–DM4). Evaluates capabilities for
deployment in specific environments (DM2). Also evaluates the existence of advanced mechanisms for
deployment tests (DM3) and deployment updates (DM4). See Table 10 for rubric.

Name DM2 DM3 DM4 Sum (out of 4)
cnvrg.io 2 1 1 4
Dataiku 2 1 0 3
DataRobot 2 1 0 3
H2O 2 1 0 3
Number Theory 2 1 0 3
RapidMiner 2 1 0 3
SAS 2 1 0 3
Alteryx 2 U 0 2
Big Squid 2 0 0 2
BigML 2 0 0 2
D2iQ 2 0 0 2
Deep Cognition 2 0 0 2
IBM 2 0 0 2
KNIME 2 0 0 2
Microsoft 2 0 0 2
Spell 2 0 0 2
B2Metric U 1 0 1
Databricks 1 U 0 1
Google 1 0 0 1
SageMaker 1 0 0 1
Auger U 0 0 0
Compellon 0 0 0 0
Einblick 0 0 0 0
MyDataModels 0 0 0 0
TIMi 0 0 0 0
Sum 35/50 8/25 1/25

For now, some standard questions can be asked of commercial AutoML systems, especially
around deployment. They and their evaluated answers are detailed in Table 105. First, a commercial
service must be assessed for whether it even supports the productionisation of an ML solution.
If yes, it is essential to know where that product is deployed (DM2). It turns out, as Table 106
shows, that the vast majority of vendors are flexible with their production environments; only four
surveyed packages identifiably ignore this element of an MLWF. However, stakeholders should
still be mindful that a few commercial heavyweights are restricted solely to the cloud, e.g. Google
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Table 106. Distribution of scores for commercial comprehensive AutoML systems (DM2). Evaluates capabilities
for deployment in specific environments. Scores: 0 for none, 1 for cloud only, 2 for cloud or on-premise, and U
for unclear.

DM2
Score # Vendors
0 4
1 3
2 16
U 2

and SageMaker. This constraint may be too limiting for organisations that, for security reasons,
desire on-premise deployments for their ML applications.

Table 107. Distribution of scores for commercial comprehensive AutoML systems (DM3). Evaluates the
existence of advanced mechanisms for deployment tests. Scores: 0 for absent, 1 for present, and U for unclear.

DM3
Score # Vendors
0 15
1 8
U 2

Table 108. Distribution of scores for commercial comprehensive AutoML systems (DM4). Evaluates the
existence of advanced mechanisms for deployment updates. Scores: 0 for absent, 1 for present, and U for
unclear.

DM4
Score # Vendors
0 24
1 1
U 0

Next up, once automated deployment support is identified, the most pertinent question is how this
deployment works in practice. For a real-world ML application, an organisation may iterate through
numerous ML solutions, so Table 107 summarises whether commercial systems have advanced
methods of testing deployments (DM3), particularly in relation to models that are presently online.
Such procedures include A/B testing and champion-challenger setups; they also tend to form the
basis of monitoring approaches, which will be discussed shortly. The takeaway here is that, while
vendors do overwhelmingly assist in deploying ML solutions, only a small number automatically
check how a prospective deployment compares against a previous one. As for sophisticated means
of shifting to that new deployment (DM4), which can be critical if end-users are actively employing
predictions/prescriptions from an existingMLmodel, Table 108 notes that only one service explicitly
provides. Specifically, cnvrg.io supports a canary deployment strategy, where a new ML solution
can be rolled out incrementally to subsets of users. Evidently, while enthusiastic, the embrace of
MLOps by the commercial AutoML marketplace is still very nascent.
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Table 109. Scores for commercial comprehensive AutoML systems (DM5–DM11). Evaluates the setup proce-
dure for solution monitoring (DM5). Also evaluates capabilities for monitoring hardware performance (DM6),
model performance (DM7), data/concept drift (DM8), and bias/fairness metrics (DM9). Additionally evaluates
the existence of reactive retraining (DM10) and proactive retraining (DM11). See Table 11 for rubric.

Name DM5 DM6 DM7 DM8 DM9 DM10 DM11 Sum (out of 10)
DataRobot 2 1 1 1 1 2 0 8
Microsoft 1 1 1 1 1 2 0 7
SageMaker 2 1 1 1 1 1 0 7
cnvrg.io 2 1 1 0 0 2 0 6
Dataiku 2 0 1 1 0 2 0 6
H2O 2 0 1 1 0 2 0 6
IBM 2 0 1 1 1 1 0 6
Auger 2 0 1 0 0 2 0 5
B2Metric 2 U U U U 2 1 5
Number Theory 2 0 1 0 0 2 0 5
Alteryx 2 1 1 0 0 U 0 4
Google 1 1 1 1 0 0 0 4
KNIME 2 1 0 0 0 1 0 4
RapidMiner 1 0 1 1 0 1 0 4
SAS 1 0 1 0 0 2 0 4
D2iQ 2 1 0 0 0 0 0 3
Spell 1 1 1 0 0 0 0 3
Databricks 1 1 0 0 0 U 0 2
BigML 1 U U U U 0 0 1
Big Squid U U U U U 0 0 0
Compellon 0 0 0 0 0 0 0 0
Deep Cognition 0 0 0 0 0 0 0 0
Einblick 0 0 0 0 0 0 0 0
MyDataModels 0 0 0 0 0 0 0 0
TIMi 0 0 0 0 0 0 0 0
Sum 31/50 10/25 14/25 8/25 4/25 22/75 1/25

Deployment capabilities, of course, are broadly applicable, i.e. equally relevant to one-and-done
ML projects. Iterations can also be warranted simply for implementational reasons, e.g. fine-tuning
end-user access to ML solution outputs. Thus, the notion of deployment alone does not capture the
sense of continuous learning, which is a crucial prerequisite to AutonoML and next-generation
frameworks [308]. This concept is not just a topic of intellectual curiosity either; many businesses
during the COVID pandemic have wised up to the need for adaptation. Hence, the remaining sub-
criteria here assess commercial comprehensive systems for the other important facets of MLOps:
monitoring and maintenance. The evaluations are detailed in Table 109.

First, this review finds that a moderate number of vendors do support some form of monitoring.
As summarised by Table 110, half of the commercial tools automate its setup (DM5), with many
others supplying convenience features. Curiously, although the field of MLOps tends to care
about how best to manage infrastructure around an ML model object, Table 111 reveals that less
than half of the sampled systems use this monitoring to keep a close eye on hardware usage and
performance (DM6). In contrast, it is somewhat more common, as shown by Table 112, to track
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Table 110. Distribution of scores for commercial comprehensive AutoML systems (DM5). Evaluates the setup
procedure for solution monitoring. Scores: 0 for none, 1 for convenience features, 2 for substantial automation,
and U for unclear.

DM5
Score # Vendors
0 5
1 7
2 12
U 1

Table 111. Distribution of scores for commercial comprehensive AutoML systems (DM6). Evaluates capabilities
for monitoring hardware performance. Scores: 0 for absent, 1 for present, and U for unclear.

DM6
Score # Vendors
0 12
1 10
U 3

Table 112. Distribution of scores for commercial comprehensive AutoML systems (DM7). Evaluates capabilities
for monitoring model performance. Scores: 0 for absent, 1 for present, and U for unclear.

DM7
Score # Vendors
0 8
1 14
U 3

Table 113. Distribution of scores for commercial comprehensive AutoML systems (DM8). Evaluates capabilities
for monitoring data/concept drift. Scores: 0 for absent, 1 for present, and U for unclear.

DM8
Score # Vendors
0 14
1 8
U 3

technical metrics for model performance (DM7). However, even if 14 out of 25 packages do watch
for model deterioration, such a practice is relatively basic. Indeed, indicative that few commercial
systems genuinely exploit more advanced theoretical innovations, Table 113 notes that less than a
third identifiably bother to inspect the data itself for deleterious dynamics. Preemptively catching
data/concept drift (DM8) is understandably more complicated than simply noticing that the validity
of an ML model is decreasing over time, but it is also much more informative. As for monitoring
bias/fairness metrics (DM9), Table 114 supports previous discussion in Section 4.3.4. Specifically, if
so few AutoML tools even calculate these variables to begin with, it is no surprise that examining
their time dependence is very rare.
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Table 114. Distribution of scores for commercial comprehensive AutoML systems (DM9). Evaluates capabilities
for monitoring bias/fairness metrics. Scores: 0 for absent, 1 for present, and U for unclear.

DM9
Score # Vendors
0 18
1 4
U 3

Table 115. Distribution of scores for commercial comprehensive AutoML systems (DM10). Evaluates the
existence of reactive retraining. Scores: 0 for none, 1 for manual with convenience features, 2 for automatic
with user-defined triggers, 3 for automatic with developer-defined triggers, and U for unclear.

DM10
Score # Vendors
0 10
1 4
2 9
3 0
U 2

Table 116. Distribution of scores for commercial comprehensive AutoML systems (DM11). Evaluates the
existence of proactive retraining. Scores: 0 for absent, 1 for present, and U for unclear.

DM11
Score # Vendors
0 24
1 1
U 0

Finally, maintenance is the follow-up to monitoring, a process during which AutoML systems
ideally attend to the accumulated flaws they have identified. In theory, any framework that employs
mechanisms to compare/update deployedML solutions is already geared to be adaptive. Thus, it is no
surprise that Table 115 finds 13 surveyed commercial services identifiably support stakeholders with
reactive model retraining (DM10). Sometimes the user is only provided with a convenient pathway
to enact this procedure, but most of these AutoML systems take care of updates automatically
based on user-specified triggers. As for the proactive form of retraining (DM11), where an ML
solution is constantly being improved after deployment rather than simply being preserved against
detrimental data dynamics, it is shown by Table 116 to be much rarer. Admittedly, there are AutoML
tools not included within this analysis that claim to support such capabilities. For instance, TAZI
[44] states it has a mechanism, i.e. ‘TAZI Hunt’, that is continuously looking for better models.
Elsewhere, Pecan notes on its website that “our platform continuously monitors and optimizes your
models”. This review cannot verify the effectiveness of either due to a lack of publicly available
detail.
As a concluding comment, while reactive retraining is reasonably common in the commercial

AutoML sphere, the technical sophistication of these mechanisms should not be presumed. Indeed,
not one surveyed comprehensive system counted in Table 115 takes full responsibility for retraining,
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i.e. via developer-provided triggers, although, granted, this may again be a consequence of vendors
limiting their liability for poor outcomes. Furthermore, the standard champion-challenger setupmay
be interpreted as comparing various ML ‘experts’, but it does not ensemble them in any meaningful
way to preserve local information. Indeed, model retraining tends to be all-or-nothing, facing
risks such as catastrophic interference/forgetting. There are definitely more potent algorithms and
frameworks to be found in the academic literature, and these may be required for next-generation
AutonoML systems [102, 287, 308, 313, 472, 538]. However, it is also an open question regarding
when adaptation should be triggered, and cost-benefit analyses are required [583]. Server prices in
cloud infrastructures are usage-based, so model updates have a direct and quantifiable monetary
cost; proactive retraining may not be worthwhile. Ultimately, the best practices for persistent
AutoML and adaptation to data dynamics will continue to be hashed out on both the academic and
technological fronts.

Table 117. Scores for commercial comprehensive AutoML systems (G1–G3). Evaluates capabilities for auditing
(G1). Also evaluates the existence of access controls for model/data artefacts (G2) andML application processes
(G3). See Table 12 for rubric.

Name G1 G2 G3 Sum (out of 3)
BigML 1 1 1 3
Databricks 1 1 1 3
Dataiku 1 1 1 3
DataRobot 1 1 1 3
Google 1 1 1 3
IBM 1 1 1 3
KNIME 1 1 1 3
Microsoft 1 1 1 3
RapidMiner 1 1 1 3
SageMaker 1 1 1 3
SAS 1 1 1 3
Alteryx 1 1 0 2
B2Metric 1 1 U 2
D2iQ 0 1 1 2
Einblick 0 1 1 2
Spell 0 1 1 2
cnvrg.io 0 1 0 1
Auger U U U 0
Big Squid 0 0 0 0
Compellon U U U 0
Deep Cognition 0 0 0 0
H2O 0 0 0 0
MyDataModels U U U 0
Number Theory U U U 0
TIMi 0 0 0 0
Sum 13/25 17/25 14/25

4.3.7 Governance and Security. Enterprise application of ML exists within a different environment
of concerns to that of a hobbyist seeking low-stakes ML models for personal use. Businesses caring
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Table 118. Distribution of scores for commercial comprehensive AutoML systems (G1). Evaluates capabilities
for auditing. Scores: 0 for absent, 1 for present, and U for unclear.

G1
Score # Vendors
0 8
1 13
U 4

about regulatory compliance and privacy matters may therefore be reluctant to employ free AutoML
tools, which do not seem to support such safeguards. Accordingly, as for the case ofMLOps, Table 117
shows that this criterion is a significant differentiator between the commercial and open-source
markets. There is, however, a range of aggregate scores among the vendors. Large corporations are
already very familiar with the operational requirements of businesses, so the AutoML services of
certain heavyweights score well in this area, e.g. Google, Microsoft, and SageMaker. Furthermore,
much infrastructure supporting performant ML with governance and security does not need to be
overly specialised, so vendors with existing mature frameworks in place for other applications can
benefit here. For instance, when considering auditability (G1), corporations that supply general
cloud access already tend to have suitable governance mechanisms to leverage. In combination with
other packages that specifically emphasise suitability for regulatory requirements, such as BigML,
it turns out that over half of the surveyed commercial systems identifiably support auditability.
This result is shown in Table 118.

Table 119. Distribution of scores for commercial comprehensive AutoML systems (G2). Evaluates the existence
of access controls for model/data artefacts. Scores: 0 for absent, 1 for present, and U for unclear.

G2
Score # Vendors
0 4
1 17
U 4

Table 120. Distribution of scores for commercial comprehensive AutoML systems (G3). Evaluates the existence
of access controls for ML application processes. Scores: 0 for absent, 1 for present, and U for unclear.

G3
Score # Vendors
0 6
1 14
U 5

As for security involving the data and model (G2), Table 119 highlights that at least 17 vendors
have installed some artefact access controls in their AutoML services. Furthermore, if there are
protection mechanisms for objects, then functions are also typically safeguarded (G3), e.g. to prevent
unauthorised users from overwriting existing ML deployments. Only a few exceptions make up the
differing distribution of scores in Table 120, e.g. Alteryx and cnvrg.io. Of course, as policies around
responsible AI continue to evolve internationally, this criterion may warrant expansion into other
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detailed questions in the future. However, for now, these evaluations should help emphasise that
there are many facets to the smooth operation of a performant ML application; not all of them are
technical.

4.3.8 Discussion. In hindsight [308] and with foresight [313], many aspects regarding the progres-
sion of AutoML may appear expected. It can thus be tempting to ascribe a singular pathway to
the field along which developments tread, especially given an academic community that is largely
collaborative. This sense of a convergent roadmap is further prompted by the modern realities of
scientific funding and popular fervour; it is usually not a good academic career move to be too
radical. However, when it comes to the competitive commercial sphere, this review finds that, by
and large, all bets are off. The only guaranteed driving force shared across all AutoML vendors is
money, which requires engagement from stakeholder clients. Accordingly, in this unusual swarm
optimisation of performant ML, it is contrastingly desirable for vendor entities to diverge and
differentiate, seeking their own profitable niches. They, of course, remain grouped by the survey
requirement that they supply a ‘comprehensive’ AutoML system. Nonetheless, such an environment
supports the fragmentation of agendas, each with its own power to influence the ongoing evolution
of AutoML technology. Therefore, we highlight specific trends and clusters that have surfaced as
part of this survey.

A licence to explore. Relevant systems:
• Einblick
• Compellon
• MyDataModels
• TIMi

Some AutoML systems are developed and promoted to dive deep into data. They tend to score
lower for deployment-related criteria while solidly supporting EDA and related auxiliary functions.
So, for example, they will likely not productionise an MLmodel that automatically identifies users at
risk of churn. Instead, an intended use case may be a marketing manager (1) uploading a spreadsheet
of customers, (2) seeking to examine the driving features of churn, and (3) experimenting with
various scenarios. Moreover, as the listed tools focus on harvesting and understanding insights
from data, they tend to prioritise clear visualisations and explainability.

The primacy of MLOps. Relevant systems:
• Google
• SageMaker
• cnvrg.io
• D2iQ
• Databricks
• SPELL

On the other end of the MLWF to EDA, it is often apparent which AutoML services prioritise
MLOps. These commercial systems score well on deployment and management metrics, but they
often support other core functions of an ML application in a more rudimentary manner, if at all.
Amidst this list, Google and SageMaker are particularly interesting. The associated corporations
already had a business in providing cloud services and DevOps before touching AutoML, so their
entrance into the marketplace may be a logical extension of supplying MLOps support to developers.
Essentially, their services have grown from the opposite direction to teams that started automating
model selection and now focus on productionisation. As a side note, heavyweight Microsoft has not
been included here, given that the AutoML framework seems more suited to less-technical users,
often providing a GUI rather than relying on users to code around convenience features. These
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factors suggest a ‘from-scratch’ approach to AutoML instead of a gradual expansion originating in
DevOps.

Some assembly required. Relevant systems:
• KNIME (open marketplace)
• RapidMiner (open marketplace)
• cnvrg.io (semi-open marketplace)
• Alteryx (closed marketplace)
• Deep Cognition (closed marketplace)
• Einblick (closed marketplace)
• Number Theory (closed marketplace)

Several commercial AutoML frameworks are designed under a ‘building block’ paradigm, where
users typically fashion a network of nodes to represent and process anML application. Depending on
the implementation, these nodes may be ML pipeline components, i.e. specific data transformations,
or higher-level ML operations. A mix of the two may even be possible. Whatever the case, it has
occasionally been challenging to assess associated systems for their automated capabilities. Indeed,
the flexibility of free assembly has a drawback that, without appropriate defaults/constraints, users
need to manually find and vet these building blocks before integrating them into modelling work.
Additionally, under this paradigm, the supply of possible nodes can vary. Closed marketplaces, noted
in the list of relevant systems, tend to have restricted offerings with assurances of functionality by
the developer. In contrast, the open marketplaces of KNIME and RapidMiner, where community
members submit their own building blocks, can stimulate high scores for completeness and currency.
This boost, however, comes with the cost of further complicating trust in ML. Both approaches
have pros and cons.

The legacy experience. Relevant systems:
• BigML
• MyDataModels
• TIMi

The topics of design and aesthetics are somewhat subjective; individual user responses to various
developer decisions cannot easily be predicted. However, some trends drive the software industry,
and many vendors have embraced the paradigm of SaaS. Present-day products are often easily
accessible to general stakeholders via a browser, exhibiting UI artefacts generated by Bootstrap
and other modern front-end web development frameworks. The tools listed here are thus notable
for not existing within the same design sphere as many others. Nonetheless, it remains an open
question whether a legacy user experience (UX) influences their uptake and, if so, by how much.

Degrees of transparency. Relevant systems:
• Dataiku (highly performant + highly transparent)
• DataRobot (highly performant + moderately transparent)
• H2O (moderately performant + highly transparent)
• IBM (moderately performant + moderately transparent)
• Auger (moderately performant + minimally transparent)
• B2Metric (moderately performant + minimally transparent)
• BigSquid (moderately performant + minimally transparent)

All commercial AutoML tools analysed within this section have been ‘comprehensive’, automat-
ing key model-development processes central to traditional AutoML while also, in many cases,
supporting other tasks along an MLWF. Under this definition, the tools listed here are those within
the analysis that have scored reasonably well across a breadth of criteria for performant ML. They
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are not necessarily ‘better’ than their competitors, but, at the same time, it does not hurt to be so
thorough. Indeed, some sub-criteria can be ‘make or break’ for potential clients, including whether
on-premise deployment is supported, whether a system is auditable, whether business-appropriate
data can be easily prepared, and so on.
That all said, transparency also matters when stakeholders consider their options. Such an

assertion needs to be emphasised as, zero-scoring unknowns aside, the assessment framework
for performant ML did not penalise commercial systems for every obscured detail. In fact, several
tools at the bottom of the list above were often given the benefit of the doubt regarding promoted
claims. Admittedly, this lack of transparency is common among smaller organisations. A cynical
perspective may be that a commercial fog allows gaps in services to be veiled. More charitably,
one could argue that smaller vendors must be especially defensive of their competitive advantages
within a business environment. Whatever the case, it is likely that stakeholders will increasingly
lean towards more transparent offerings as the commercial sphere becomes progressively more
populated. Ultimately, the future will tell whether the AutoML marketplace will remain as diverse
and fragmented as it currently is or whether an effective oligopoly driven by consensus consumer
desires will emerge.

5 AUTOML APPLICATIONS
At this point, it is worth recalling that a core purpose of this review is to comment on the translation
of AutoML theory/design into AutoML implementation/technology as of the early 2020s. Crucially,
Section 4.3.8 acknowledged that both academia and the commercial sphere have varying levels of
freedom to explore/generate new innovations in the field. On the academic side, public funding –
we refer to fundamental-research grants – necessarily hews to some degree of conservatism, so
that taxpayer money is not ‘wasted’. However, once endowed, these resources can often allow
researchers to pursue threads of interest without immediate applicability. In contrast, a privately
funded startup can be as radical as it wants, subject to the approval of its investors, but its survival
depends on the ability to maintain a healthy income, i.e. those radical choices need to pay off. Thus,
it is the consumers that primarily determine whether a provider stays in business and continues
to influence the marketplace. The implication here is that, while innovation and experimentation
will always influence AutoML products, the assertion in Section 3 continues to hold merit within
industry settings and broader society: “demand creates supply”.

Unfortunately, the problem with evaluating a nascent technology is that it is often unclear what
the demand profile for its use is, let alone how it will eventually look once it stabilises. For instance,
recent years have witnessed debates around internet access becoming enshrined as a human right,
whereas, a century ago, virtually no one could predict that this non-existent concept would become
a need. So, to get a handle on the demand that drives AutoML technology, present and expected,
this review has pursued a combination of several approaches. In Section 3.1, we reasoned at a
granular level what target stakeholders want from an ML application to claim that it is ‘performant’.
In Section 4, we surveyed extant AutoML software, following the logic that its supply is an oblique
reflection of its demand.
Here, we examine the final piece of the puzzle: ML applications that have been processed via

AutoML practices and systems. After all, stakeholder desires and the tools developed to satiate
them are both symbols of hypothesis; they suggest AutoML will be helpful to industry without
ever proving this to be true. Of course, such forecasting is still valuable in these early years of
the technology, especially while the evidence of industrial use is still building up. Nonetheless,
a survey of applications finds that there is already enough content to, in a preliminary fashion,
directly analyse the ‘fulfilled’ demand for AutoML. Accordingly, with appropriate constraints,
Section 5.1 investigates what academic literature reveals about the real-world use of this technology.
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Then, acknowledging that some AutoML software has been preemptively designed for specific
applications, Section 5.2 discusses the phenomenon of domain specialisation. Finally, although
the associated narrative must be approached carefully, Section 5.3 examines commentary on
applications according to the vendors of AutoML.

5.1 Academic Reports
The most reliable evidence of successfully completed AutoML applications is likely to be found
within the academic literature, thanks to an enforced degree of peer review by independent experts.
Naturally, the downside is that this perspective is also very limited, likely overlooking the more
mundane usage of AutoML by commercial clients. Academic publications need to be of sufficient
scientific importance. A further possible complication is that AutoML is meant to be an instrument
for stakeholders to achieve other aims. Ideally, it should not be the promotional point of any
research, making it harder to identify relevant applications. Nonetheless, this is not presently an
obstacle. Given that much AutoML literature within the past decade is on theory and design, its
practical use is relatively novel and expected to be highlighted. After all, the field is still looking to
build an authoritative portfolio of archetypal examples to demonstrate rigorous proof of principle.
So, having acknowledged the nuances of an academic perspective, this section presents results

from a literature survey. However, because this monograph is focussed on the broader use of
AutoML technology, stringent constraints on the scope were necessary. First of all, the use of
AutoML software by its own development team, without any significant industrial collaboration,
did not make the cut any more than a self-citation would be considered a sign of broader research
impact. Also, general benchmark papers, of which there are many [144, 358], were likewise excluded.
For instance, testing experiments on UCI datasets [357] is not necessarily representative of real-
world uptake. Publications deemed suitable for this survey need to target a specific industrial
problem and associated dataset, proposing a solution obtained via AutoML. High-level reviews
were thus similarly ignored, even though one such article is notable for considering adaptivity in
real-world contexts [515]; this is both rare and increasingly recognised as important.
Naturally, such a tightly constrained survey of academic literature is not trivial to undertake.

Citations of a publication that marks the release of an AutoML package cannot be blindly collated.
For instance, the seminal Auto-WEKA [532] has been referenced numerous times to justify employ-
ing Bayesian optimisation [169, 559] without any concurrent use of the implementation. Similarly,
perusing the literature with keywords related to ML and automation throws up many irrelevant
results. As an example, in doing so, one may encounter a manuscript titled “automated staff as-
signment for building maintenance using natural language processing” [403]. This publication and
others [263] employ ML to mechanise a manual operation; they do not automate the higher-level
processes of ML. Of course, conversely to these false positives, such keywords can also miss valid
applications that are not explicitly cognisant of the AutoML aspect but still use associated software.
As previously mentioned, these examples are presently rare, but they do exist.

Another challenge with an application survey is deciding how to treat the history of AutoML.
Particularly in earlier years, several proposed methods and advancements were not given names.
Others that were named cannot presently be linked to an open-source repository or extant software
product, e.g. SABLE [103], FLASH [573], Learn-O-Matic [492], Predict-ML [367], Net-Net [110],
and HyperSPACE [248]. While this means exclusion from the earlier analyses of tools, many such
AutoML approaches have a legitimate presence in an industry use case. They may not be employed
again with ease, but they still prototypically demonstrate how organisations may leverage AutoML
in pursuing real-world business objectives. So, in general, applications based on faded techniques
and frameworks have been included in this survey. At the same time, to provide a current lens for
this review, only a ten-year window for academic reports has been considered, ending on the 3rd
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of August 2022. This restriction should not be seen as diminishing the importance of earlier works.
For instance, a series of publications involving the chemical process industry is noteworthy for
its prescient and sophisticated focus on automated adaptation [287–293], i.e. a crucial element of
monitoring and maintenance within an MLWF.

Table 121. References to surveyed academic publications detailing AutoML applications. The references are
grouped by major industries, subfields, and sub-subfields.

Industry Subfield Sub-Subfield Ref.

Health & Biomedical (63)

Diagnosis (32)

Breast Cancer (6) [383, 394, 456, 462, 504, 505]
Mental Health (6) [172, 173, 269, 338, 473, 543]

Other (20)
[62, 99, 107, 119, 134, 194, 212, 275,
276, 280, 389, 425, 466, 468, 488, 507,
517, 523, 567, 573]

Condition Management (19)
[108, 131, 150, 171, 247, 266, 271, 319,
337, 352, 354, 370, 372, 434, 463, 493,
503, 533, 552]

Genetics & Biomarker Research (8) [115, 164, 339, 374, 376, 407, 423, 539]
Processing Medical Data (4) [248, 367, 369, 422]

Transport & Logistics (15)

Transport Demand (6) [78, 79, 136, 207, 440, 537]
Transport Infrastructure Management (5) [260, 318, 341, 453, 455]

Optimising Logistics (2) [186, 264]
Road Accidents (2) [77, 498]

Chemical & Material Science (15)

Chemical Process (7) [103–105, 479, 480, 482, 581]
Electrical and Photovoltaic Compounds (3) [366, 415, 431]

Other - Material Science (3) [192, 392, 426]
Other - Chemistry (2) [243, 548]

Information Technology (13)
Cybersecurity (10) [149, 251, 278, 334–

336, 447, 476, 500, 542]
Software Development (2) [226, 404]
System Robustness (1) [576]

Energy & Utilities (12)

Water (5) [312, 408, 524, 547, 569]

Power Generation (4)

Solar (1) [174]
Hydrocarbons (1) [564]

Wind (1) [446]
Other (1) [477]

Power Grid Optimisation (2) [373, 549]
Waste Management (1) [368]

Agriculture (8) [80, 296, 314, 320, 351, 418, 430, 570]
Education (7) [202, 228, 286, 322, 417, 484, 540]

Meteorological (5) [377, 391, 492, 521, 577]
Radiography & Physics (5) [359, 384, 427, 442, 571]

Finance (5) [52, 53, 270, 285, 381]
Manufacturing & Machinery (5) [132, 233, 333, 382, 390]

Robotics (3) [67, 138, 201]
Aviation (3) [58, 163, 347]
Telecom (2) [215, 572]
Ecology (2) [110, 217]
Retail (2) [143, 279]

Advertising (1) [148]
Professional Services (1) [508]

Sport (1) [229]
Media (1) [50]
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In total, 169 papers have been included in this survey. They are cited within Table 121; discussion
around the listed groupings is deferred to later. For each report, the following elements were
extracted:

• The tools used
• The application domain
• The metrics used in the experimental work
• The justifications given for the use of AutoML technology
• The stages of an MLWF involved in the study
• The year of publication

Fig. 3. The yearly numbers of academic publications reporting on AutoML applications.

To begin the analysis based on this curated information, Fig. 3 charts howmany publications have
reported on AutoML applications each year. Given the early August survey cut-off, the projection for
2022 should at least be on par with 2021. So, it is evident that the practical use of AutoML is surging,
even in the eyes of academia. Granted, the overall volume of work in this space is increasing, but
this result also highlights that the AutoML field is no longer purely in the fundamental research
stage. Efforts to leverage its technological benefits within various domains are accumulating.
Now, while the surveyed applications have employed numerous AutoML frameworks, only a

few have found repeat use. These are listed in Fig. 4. Accordingly, the chart of yearly reporting can
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Fig. 4. The AutoML tools associated with at least two application papers.

be broken down further to investigate the most popular tools, at least by publication volume. It can
immediately be seen from Fig. 5 that there is a ‘first mover’ effect in play. Despite the increasing
amount and diversity of AutoML tools, many of which are likely to be more technically advanced
and generally performant, Auto-WEKA and TPOT are still dominant in usage as of 2021. Both open-
source packages were very early entrants into the AutoML ‘marketplace’. Accordingly, there may
be a couple of factors involved. Firstly, a system without competitors has the luxury of cultivating
a solid reputation, assuming it meets a minimum threshold of functionality. By the time there are
competitors, the snowball effect is complete; prospective users are drawn to industry standards.
Secondly, whether or not a stakeholder buys into the reputation of an established system, it does
serve as a consistent baseline for comparative performance, especially where ML applications might
try a few AutoML frameworks.

Of course, there are many more reasons why stakeholders may have turned to some of the listed
AutoML frameworks. For instance, the rise of TPOT is likely supported by its relatively extensive
coverage of an MLWF, e.g. in terms of data preparation and feature generation/selection. Other
AutoML systems are also gradually developing a solid presence as of 2021, including auto-sklearn,
AutoGluon, and PyCaret. These tools benefit from strong communities, good documentation, and
high levels of active development/maintenance.



100 Scriven et al.

Fig. 5. The yearly numbers of academic publications reporting on AutoML applications associated with
popular AutoML tools.

Turning to broader trends, this review notes that many of the popular AutoML systems are
considered generalist, e.g. Auto-WEKA, auto-sklearn, TPOT, and AutoGluon. Within the limits of
their technical coverage, they are designed to be agnostic in terms of domain and dataset. However,
most application contexts are highly specialised. Some examples are as follows:

• Using AutoML to predict medical outcomes for diabetes patients [319].
• Applying AutoML to the domain of traffic forecasting [78, 79].
• Testing the ability of AutoML to anticipate crash severity in Colombia [77].

Admittedly, the core ML processes remain the same for many of these specialised applications,
e.g. model selection for supervised learning. Thus, with the technological evolution of AutoML, it
is clear why there is a gathering proliferation of publications testing AutoML in different domains.
The technical hurdles of ML have been lowered, providing a prime opportunity for enterprising
stakeholders to exploit associated techniques in numerous fields.
Nonetheless, applying generalist AutoML packages to varying domains is not trivial. There is

undoubtedly differentiation that needs to be accounted for, the majority involving the preparation
of data and the translation of model outcomes. The former, in particular, is an intense time sink for
a typical data scientist. Perhaps this will eventually be ameliorated by the continuing evolution of
general AutoML frameworks [308], but, in the meantime, developers of some AutoML software
have vaulted ahead by specialising in a particular domain. Arguably, this might indeed be an
appropriate way forward. Fine-tuning AutoML technology for the realities and demands of a
specific context could avoid any software bloat that generality requires. However, ancillary features
aside, specialised tools are no more revolutionary than generalist AutoML. Further discussion on
this topic is reserved for Section 5.2.
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Fig. 6. The number of academic publications reporting on AutoML applications associated with each major
industry.

Next, examining the major industries associated with AutoML applications renders the results
in Fig. 6. They are essentially aggregations of the finer subfield breakdown, which was applied
where possible, in Table 121. Overwhelmingly, if 63 out of 169 academic publications are to be
seen as a reflection of broader use, AutoML appears to be predominantly employed in the Health
& Biomedical sectors. The second place is shared between Transport & Logistics and Chemical
& Material Science, with 15 reports each. Then comes Information Technology at 13 references,
Energy & Utilities at 12 references, and many other domains in the long tail of the distribution.
Here, it is tricky to identify why AutoML use has been concentrated in the way it has. Chance

likely plays some part, as there is little fundamental reason why the health sector was chosen as a
backdrop for some of the earliest practical use of the technology. Of course, once proof of principle
is established, other interested stakeholders can better see how to use AutoML in such a context.
Perhaps the medical domain has simply had one of the most extended times since preliminary
successes to cultivate a bandwagon effect. Nonetheless, in practice, some factors probably do
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weight the probability of a domain receiving attention from AutoML entrepreneurs. For instance,
there is the availability and quality of data, as well as the legal authorisation to use it and publish
work around it. It is also arguable that several of the best-represented sectors in a survey of
academic literature are themselves proximal to academia, i.e. Health & Biomedical, Chemical &
Material Science, and Information Technology. The research, trials, investments and advancements
in these fields are all better suited for scientific dissemination than ML problems in advertising
or professional services, e.g. law, accounting, consulting, etc. Indeed, if a view of AutoML uptake
is instead based on vendor reports, as discussed in Section 5.3, the top domains for applications
are expected to be driven by commercial interests, e.g. Finance, Retail, Marketing, and Insurance.
Simply put, perspective matters.

Fig. 7. The number of academic publications reporting on AutoML applications associated with each stage of
an MLWF. Abbreviations: PF for problem formulation & context understanding, DE for data engineering, MD
for model development, D for deployment, and MM for monitoring & maintenance.

Beyond domains, academic publications can also be categorised by the stages of an MLWF that
are involved in their reported AutoML applications. Accordingly, acknowledging that one article
can be associated with multiple phases, the resulting distribution is depicted in Fig. 7. Two expected
details immediately stand out. Firstly, no academic report focusses on the preliminary stage of an
MLWF; all applications begin with a well-defined and well-scoped problem. Secondly, almost all
applications involve model development, primarily HPO, as this is widely seen as the core offering
of AutoML.
More informatively, 67 papers, around 40% of the survey, discuss data engineering, i.e. prepro-

cessing and feature generation/selection. Sometimes, this element appears as a direct by-product of
an AutoML package, e.g. TPOT. In one particular case [127], the data-engineering discussion is
even the central focus, as the associated application involves assessing AutoFE. Specifically, the
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report examines the comparative utility of features generated by human experts, Featuretools, and
tsfresh. In contrast, while data engineering receives a reasonable amount of attention, the last two
stages of an MLWF are relatively ignored, with no more than about 10% coverage. This result may
be because, as mentioned earlier, many applications reported in academia are seminal proof-of-
principle works. They are typically one-and-done projects, often used to harvest contextual insights
rather than establish long-term productionised models. That said, the automation of MLOps is also
nascent, especially in terms of continuous learning, so time will tell whether the progression of
these capabilities, as applied to real-world contexts, will receive commensurate academic interest.

Fig. 8. The number of academic publications reporting on AutoML applications associated with evaluation
metrics of interest.

At this point, it is worth recalling a central tenet to this monograph: performant ML, from the
perspective of industry and broader society, relies on much more than model validity. So, as part
of the current application survey, academic publications have been dissected for the metrics they
care about. The resulting breakdown is shown in Fig. 8, where the ‘traditional’ term represents
evaluations based on a confusion matrix, e.g. accuracy, sensitivity, specificity, AUC, the 𝐹1 score,
etc. Evidently, the academic lens is still firmly fixated on model error. In fact, it is remarkable that
computation ‘time’, a metric for technical efficiency related to model training, is only considered by
22 papers, i.e. 13% of surveyed works. This result suggests deficiencies in scientific thoroughness
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and rigour, even in the absence of loftier contemplations on the nature of ML performance. In
fairness, a few works do focus more on data preparation or deployment; many reports that do not
name specific evaluation metrics fall in this category. Nonetheless, the preoccupation with model
validity in academia remains clear.

Now, even though only 23 reports, 13.6% of the surveyed academic publications, consider non-
traditional metrics beyond computation time, it is still instructive to see where the attention falls.
For instance, as a consequence of domain specialisation, several ML applications are judged by
custom criteria related to context [143, 148, 164, 372, 500]. These projects include one that uses
metrics associated with protein folding [164] and another that evaluates advertising relevance [148].
Then there are performance measures that lean towards ROI. These are not always concretely
quantified, such as the vague ‘business benefits’ discussed by one publication [569]. Nonetheless,
as exemplified by the expected benefit ratio (EBR) defined within another report [233], commercial
metrics have a definite presence. The only oddity is that this presence is so small, despite the volume
of papers dedicated to exploring AutoML in applied industrial settings. Again, perhaps discussions
around business benefits are not considered of academic interest; any financial exploitation of
uncovered contextual insights may occur subsequently to their reporting.
The remaining tail of the distribution in Fig. 8 gives tiny glimpses that suggest the criteria

proposed in this monograph for performant ML are well founded. Granted, they do also highlight
the challenge of quantification, especially where subjectivity is involved. For instance, the one
application that explores ease of use does so by working with stakeholders to develop an associated
score [217]. Regardless, finding some form of representation for these facets of performant ML is still
worthwhile. Operational efficiency, for example, is captured by the notion of ‘human time’, i.e. how
many hours it takes for a human to generate an ML solution with an AutoML tool. Two of the
surveyed academic publications record and tabulate this metric [372, 425]. One of the applications
even goes further by assessing efficiencies based on lines of code [425].

Table 122. Possible justifications for using AutoML for an ML application.

Reason Explanation
Computational Cost AutoML reduces the computational cost of

running/optimising ML models.
Data Prep AutoML can assist with data preparation,

including preprocessing and feature engineering.
Deployment Considerations AutoML can assist with deployment and/or

monitoring & maintenance.
Domain (or Existing Process) Utility AutoML might be useful in a new domain or in

comparison with an existing process.
Expertise (Difficulty) AutoML compensates for ML being difficult and

requiring special expertise.
Explainability of AutoML AutoML can assist with enhancing the

explainability of ML work.
Guesswork (Human Error) AutoML eliminates human error and guesswork

involved in manual ML.
Model Simplicity AutoML creates simple models.
N - Justifying ML None. AutoML is used without justification, but

the use of ML is justified.
N - No Justification None. AutoML is used without justification.
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Table 122. Possible justifications for using AutoML for an ML application.

Reason Explanation
Open Source A specific AutoML tool is open-source.
Package is SOTA (Popular) A specific AutoML tool is the current state of the

art (SOTA) or popular.
Reference Layperson (Democratisation) AutoML can be used by a layperson, helping to

democratise ML.
Reproducibility AutoML can ensure ML work is reproducible.
Running Many Models A specific AutoML tool can run many models at

once.
Technical Power (Accuracy) of AutoML AutoML provides superior technical

power/performance, e.g. in terms of model
validity.

Time (Effort) AutoML significantly reduces the time/effort a
human must invest in ML.

Admittedly, many of the exotic forms of evaluation metrics would perhaps be considered irrele-
vant if the primary motivation for using AutoML was enhanced predictive/prescriptive accuracy.
To better gauge how true this is, a list of possible reasons for why one might employ AutoML was
curated, detailed in Table 122. The 169 academic reports were then dissected for any mention of
the listed justifications, with the resulting counts of associations charted in Fig. 9. It is immediately
apparent that, according to academia, the technical proficiency of AutoML is neither first nor
second in the mind of an average stakeholder when considering its use. Granted, the fact that it
ranks third is still an interesting outcome, given that there is an ongoing debate about whether
the outputs of AutoML, in terms of accuracy, significantly/consistently outperform ML models
handcrafted by experts [249, 362, 582]. Nonetheless, nothing here supports the seeming obsession
with model-validity metrics revealed by Fig. 8. One may thus contemplate the discrepancy: why are
the benefits espoused about AutoML seemingly left unsubstantiated? An optimist may infer that
the community already holds these truths to be self-evident. A cynic may question the sincerity
of the assertions, perhaps seeing them exploited to elevate the importance of an otherwise rote
ML publication. Ultimately, the pragmatic truth may lie somewhere in the middle. Of course, in
fairness, every published AutoML application need not grapple with the challenge of quantifying
the utility of the technology. However, this monograph hopes to encourage a greater degree of
concrete analysis to support/refute broader performance claims about AutoML.

Returning to the chart of justifications in Fig. 9, the twomost common assertions among academic
publications posit that AutoML reduces the effort and expertise needed to employ ML. Obviously,
there is a caveat here. Stakeholders who publish AutoML applications in academic journals are
typically technically experienced individuals, and the tools involved often require code to be written.
Therefore, academically published judgements on the utility of AutoML may not be representative
for lay users. Indeed, one report talks explicitly in terms of “the researcher” [136] and another
promotes AutoML as a time-saving technology for data scientists [119]. Nonetheless, various
publications are more inclusive in how they perceive AutoML [547], and 12 specifically espouse the
democratisation angle. A handful of the surveyedML applications even discuss closely working with
non-technical stakeholders [150, 217]. For instance, one acknowledges that selecting evaluation
metrics is a technical process; it proposes personalising AutoML better by iteratively assisting users
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Fig. 9. The number of academic publications reporting on AutoML applications associated with each justifi-
cation for AutoML use.

in making this choice [326]. Another example contemplates a similar stakeholder engagement
process called ‘exploratory model analysis’ [137].

Next up, the fourth most popular reason for AutoML use, following faith in its technical prowess,
is that the technology may be able to crack unsolved problems in new domains and improve upon
existing processes that have not previously involved ML. Essentially, stakeholders that embrace
this view are not primarily looking to push the limits of ML accuracy. They instead seek to pursue
interdisciplinary endeavours, forging fruitful connections between methodology and context that
provide ‘good enough’ preliminary outcomes. Certainly, when the barrier-to-use for ML techniques
and approaches is reduced, interested researchers in other fields are freed up to focus on domain
insights and otherwise accelerate their paper-publishing workflow.
As for the remaining justifications, several skew more towards explicit functionality rather

than high-level motivations. For instance, one AutoML application is connected with the claim
that automated processes can produce simpler ML models than a human [446]. This argument is
somewhat contentious and depends very much on both implementation and problem context. What
is much more uncontroversially appreciated is that AutoML software allows many possible models
to be sampled, e.g. Auto-WEKA [52, 131, 164, 171, 186, 415, 455, 505, 533] and PyCaret [260, 322, 336].
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In fact, for some AutoML applications, even the baseline offerings are seemingly insufficient for
CASH; one project supplements Auto-WEKA with additional ML algorithms [67]. Finally, it is
worth noting that a moderate amount of papers do not justify the use of AutoML, with a large
portion of these not even bothering to rationalise employing ML for a particular domain. This result
is interesting because it suggests AutoML may have already generated a reasonably authoritative
reputation among prospective users. Unfortunately, assessing whether this reputation is warranted
would require much deeper post hoc analyses of ML application outcomes as perceived by their
stakeholders.
To some extent, a more balanced appraisal of AutoML usage is at least possible by noting any

challenges reported while employing the technology. For instance, a couple of publications identify
issues arising from small datasets [425, 569]. Of course, these complications are less likely to be
problematic within larger enterprise environments, where the difficulty lies in extracting value
from big data, not accumulating it. However, the more pertinent point here is that sparse data is a
challenge for ML overall, not just AutoML. Presumably, the takeaway is that automation is not a
magic solution for limitations intrinsic to an ML problem. Elsewhere, a couple of ML applications
dwell on the inability to customise certain tools for domain-specific metrics and nuances [269, 423].
This matter seems to be a common concern, which is, again, why there has been a movement by
some AutoML developers to cater for domain specialisation; see Section 5.2.
Occasionally, aligning closely with the interests of this review, some academic reports on Au-

toML applications have provided deeper commentary about potential obstacles to AutoML uptake.
For example, a few papers consider a lack of explainability as a possible hindrance to broader
user engagement [389, 571]. This recognition supplements current industry concerns and stake-
holder requirements, legitimising the inclusion of the associated criteria for performant ML within
Section 3.2. However, one publication stands out in particular for its fine-grained focus on small-to-
medium enterprise (SME) and its uptake of AutoML technology [113]. The report cites a lack of
expertise and funding to hire data-science talent – this implicitly rejects AutoML being sufficiently
democratised – as obvious obstacles, but it also asserts that identifying business use cases for
the technology may also be challenging. Such a concern is a rare and thus notable reference to
the initial stage of an MLWF: problem formulation and context understanding. Until AutonoML
becomes exceptionally advanced [313], supporting the translation of business objectives into ML
tasks will need to be addressed in other ways.
Ultimately, a survey of AutoML applications published within academic literature reveals that

the utilisation phase of the technology has begun in earnest. Many industries are proving fruitful
for automated exploration, although, given this academic perspective, there is an obvious selection
bias for observability that leans towards the research-heavy fields. In any case, this surge has only
occurred within the last few years, so, while the proliferation is noteworthy, AutoML technology is
far from being exploited to the limits of its capability. Partially, these constraints are governed by
the software available at any particular time, which explains why few applications go far beyond
the model-selection stage of an MLWF. However, among potential users, there is also perhaps a
limited understanding of what AutoML truly promises regarding its roles and benefits. Indeed, this
suggestion is most starkly supported by a disproportionate obsession with model-validity metrics
that does not reflect what the application runners themselves claim to be the advantages of AutoML.
Thus, the literature survey results end up serving as the perfect justification for bringing communal
attention to this monograph and its more comprehensive definition of ‘performant ML’.

5.2 Domain Specialisation
In the course of reviewing AutoML software and applications for Section 4 and Section 5.1, respec-
tively, it became apparent that several tools have been designed for highly specialised use cases.
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This statement does not refer to the packages discussed in Section 4.1, which are specialised only
in that they are ‘dedicated’ to particular tasks and stages within an MLWF. For instance, software
that focusses on HPO in Section 4.1.3 is still general, developed to optimise – ideally – arbitrary
functions, so long as they are both parameterisable and evaluable. This section, instead, examines
the specialisation of AutoML tools/applications for particular technical problems and industrial
domains.

Table 123. Specialised AutoML Tools. Notes the technical/industrial domain and whether the following
mechanisms are included: Exp. for explainability, Viz. for visualisation, DP for data preparation, FG for feature
generation, and FS for feature selection. Also details UI modes, HPO mechanisms, and library dependencies.

Name Domain Exp. Viz. UI DP FG FS HPO Wraps Ref.
Auto_TS Time Series N N Code Y Y N NONE [Algorithms]

Sklearn, FB
Prophet,
XGBoost,
pmdarima

[494]

Luminaire Outlier
(Time Series)

N Y Code Y N N Bayesian [HPO] Hyperopt [142, 579]

TODS Outlier
(Time Series)

N N Code Y Y N NONE [Algorithms]
Sklearn,
Tensorflow (TF),
Keras, PyOD

[178, 329]

AlphaPy Finance,
Sport

N Y Code/CLI Y N Y Grid,
Random

[Algorithms]
Sklearn, Keras,
XGBoost,
LightGBM,
CatBoost

[490]

Cardea Medical
Documents

N N Code Y Y N NONE [Other] Compose,
Featuretools

[66, 85]

ChemML Chemistry N N Code/GUI N N N Active
Learning,
Genetic

NONE [86, 244]

EvalML Fraud, Lead
Scoring

N Y Code Y N N Bayesian,
Grid,
Random

[Algorithms]
CatBoost,
Sklearn,
LightGBM,
XGBoost, [HPO]
skopt

[69]

Accordingly, the first lens through which to examine specialisation considers niche forms of
data analysis. For instance, there is the objective of outlier detection. Certain AutoML tools, some
discussed in Section 4.2.2, identify/manage obvious anomalies on the path to constructing better-
fitting ML solutions, but this is not what is being referred to here. Instead, we highlight that some
ML applications and their models are entirely dedicated to predicting unusual patterns of behaviour
within select data environments. Academic examples of these applications have examined financial
fraud [412], medical information about patients [254], and issues with machine maintenance [300].
Of course, there are many techniques that one may leverage in such a use case, with the Python
library PyOD [575] implementing 33 algorithms from various sources at the time of this review.
However, the tool itself is not considered AutoML, as substantial manual effort is needed to employ
its offerings. In contrast, Luminaire [579] and TODS [178], both dissected in Table 123, offer outlier-
detection capabilities for time series data with significant automation, e.g. in terms of feature
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extraction and running/optimising algorithms. Both packages use scikit-learn, with the former
depending on Hyperopt and the latter leveraging Keras, TF, and PyOD.
Incidentally, from a broader perspective, working exclusively with time-series data is itself a

form of analytical specialisation. The Auto_ts package [494], also in the table, is one example
that does so, automating many related processes. It supports users in generating ML solutions
based on a limited but diverse pool of techniques, e.g. a random forest supplied by scikit-learn, an
autoregressive integrated moving average (ARIMA) [128], or the Facebook Prophet [525].

Continuing onwards, the second lens through which to examine specialisation considers devel-
opments for particular industrial domains. Now, crucially, configuring for a specific problem setting
typically has less of an impact on core ML processes than configuring for a specific problem type. For
instance, in the AutoDL case, planning for time-series forecasting or image recognition tasks may
suggest limiting CASH, specifically NAS, to recurrent or convolutional neural networks. In contrast,
CASH designed for supervised ML on tabular data does not significantly change whether the data
is financial, medical, and so on. Admittedly, if a problem type is virtually intrinsic to a problem
setting, e.g. image recognition and the field of radiography, then the model-development phase of
an MLWF can be configured appropriately in advance. However, in most cases, specialisation for
an industrial domain predominantly impacts the input-output edges of an ML application, i.e. how
data is prepared/engineered and how results are used/interpreted. In other words, convenience
features are developed for the transition boundary between domain insights and computational
data.

One of the earliest examples of AutoML software specialised in such a way is PredicT-ML [367],
designed to performML on meaningful features that it extracts from big clinical data. Unfortunately,
it cannot be robustly assessed beyond its associated publication, lacking either a public repository
or any extensive follow-up. However, its existence does align well with the trend identified in
Section 5.1, i.e. the heavy use of AutoML in the health & biomedical domains. Another more recent
example also adhering to this trend is GenoML [374], designed explicitly for genomics, although it
is too early to determine whether it will find significant purchase in academia.
Arguably exhibiting more uptake is ChemML [548], an open-source tool that has been cited

in several chemistry investigations and applications [243, 431]. It can manipulate chemical data
conveniently, e.g. by encoding and visualising molecules, and supports automated pathways to
generating ML models based on relevant features. A similar package designed to work with
RNA/DNA data is PyFeat [406], which has likewise seen decent use [57, 73, 371, 578]. It first
constructs features from RNA/DNA sequences according to domain-specific options that a user
can select, then optionally runs ML classifiers on the associated feature-enriched dataset. That said,
the package is not particularly current in developer activity and only offers a CLI as an advanced
UI, with which arguments are specified.
Here, the definition of AutoML already starts to blur, as the scope of ChemML and PyFeat is

dictated more by the domain than by the practices of automating high-level ML operations. They
can still solidly be classified as AutoFE packages, at the very least, but the priorities involved further
colour the discussion in Section 4.3.8 on the ‘AutoML agenda’. An interesting question thus arises:
in an age of closely integrated software, how rigid will the bounds on AutoML remain? For instance,
Cardea [85] is an open-source tool designed to work with electronic health records. It does not
intrinsically provide AutoML capability but does so holistically by wrapping other packages such
as Featuretools, Compose, and MLBlocks. This software contrasts with another implementation in
a similar space, i.e. AutoPrognosis [62, 63], which, although it has not been tended to in a while,
was explicitly developed to construct ML pipelines for clinical prognoses automatically. The point
here is that some packages broadly dedicated to data analytics for a specific domain have begun to
integrate, either optionally or immediately, automated high-level ML processes.
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The inverse, then, to a domain-specific package that includes AutoML functions is an AutoML
package that includes domain-specific functions. Both are valid manifestations of specialisation,
even if each prioritises one characteristic over the other. Accordingly, AlphaPy [490] is an example
of this inverse, offering generic AutoML functionality at its base and wrapping around popular ML
libraries such as XGBoost, LightGBM, CatBoost, and scikit-learn.What makes the software stand out
is its supplementary ‘MarketFlow’ and ‘SportFlow’ pipelines, which are geared for financial analysis
and sporting-event predictions, respectively. Interestingly, the AlphaPy framework seemingly
sticks to grid/random search for its optimisations, which suggests the industry-proximal project
is either (1) unaware of theoretical advances in AutoML, (2) incapable of implementing them,
or (3) dismissive of their utility. Given finite developmental resources, the last option could be
well justified if leveraging domain insights has more impact than employing SOTA techniques.
Elsewhere, EvalML [69] similarly provides general AutoML functions, this time including Bayesian
HPO via wrapping up the Scikit-Optimize library [489]. However, it too offers specially designed
capabilities for industrial applications, i.e. fraud detection and lead scoring. These two use cases
happen to be among the most recurrent according to vendor perspectives of AutoML; see Section 5.3.
So, for the many stakeholders solely interested in these particular domains, EvalML likely holds a
unique appeal, allowing users to avoid the brunt of system configuration and data formulation.

Fig. 10. A well-known diagram [428] linking startups to popular niches on Craigslist, which acts as an analogy
to how AutoML developers may similarly pursue vertical growth strategies.

Ultimately, domain specialisation is still a nascent trend, even given the technological evolution
of AutoML and its overall recency. After all, there is no point in investing substantial resources
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into fine-tuning software for a particular purpose/industry until the associated demand profile is
evident. Accordingly, this phenomenon is closely tied with, if not reactive to, the body of AutoML
applications that arises. Nonetheless, considering the speculation in Section 4.3.8 that, fragmented
agendas aside, the general AutoML marketplace might eventually become an oligopoly, domain
specialisation is one possible pathway to accommodate ongoing competition and differentiation.
Indeed, analogised by Fig. 10 to how many startups grow vertically from existing niches, the
future of AutoML technology may heavily involve prospective developers catering to specific tasks
and industries. Such a process would undoubtedly contribute to the overall aims of the AutoML
endeavour. For instance, consider a sports analyst lacking an understanding of general ML, let
alone the skills to run an application without falling into common traps, e.g. data leakage [483].
While generic AutoML software might suffice for advancing their analytical ambitions, a closely
assistive tool like AlphaPy could prove much less daunting, accelerating overall industrial uptake
of the technology. Essentially, domain specialisation promises to further weaken the barriers to
ML democratisation. Of course, only time will tell whether enterprising developers have both the
domain expertise and academic skills to capably satisfy any emerging niche demand.

5.3 Vendor Reports
While academic literature tends to be transparent and peer-reviewed, it biases observability around
AutoML applications towards those with apparent scientific benefits. However, a core tenet of
the AutoML endeavour is that ML should ideally be made accessible wherever it can be found
useful, including as part of far more mundane decision-making processes. So, short of exhaustively
surveying ML stakeholders, the best way to assess the broader uptake of AutoML technology is
to see what vendors have to say about it. Of course, all the usual caveats of taking commercial
commentary at face value apply. There is no reliable window into sales volume or industrial activity;
case studies and portfolios of services may be aspirational rather than representative. Nonetheless,
this section collates promotional material from numerous vendors to gain at least a surface-level
insight into the industries/problems the commercial AutoML sector targets.

Now, many AutoML vendors tend to use websites to list the domains in which they prioritise the
targeting of their services. One example is shown in Fig. 11. Such summaries are often the result of
two calculations: where a particular implementation is likely to have the most significant impact
and, simply put, where the money is. Granted, while commercial income is a decent proxy for
demand, other nuances can drive commercial agendas, e.g. maintaining a few well-paying clients
in one industry may be more attractive than cheaply servicing numerous end-users in another.
Regardless, setting aside contemplations of business strategy, we review 23 vendor websites and
categorise the domains they target. Listed terms are occasionally split, combined or rephrased
to sensibly fit a common framework. For instance, ‘Banking & Insurance’ targeted by Einblick
translates to one tick for two categories, i.e. ‘Finance’ and ‘Insurance’.

The resulting distribution of the commercial focus on industries is depicted in Fig. 12. A long tail
highlights the general utility of AutoML, but some domains receive higher levels of attention than
others. There are numerous reasons why this may be the case, including a prevalence of big data
and client funds. It is also possible that the types of ML problems arising in these targeted domains
conform to well-defined archetypes, thus requiring less effort in the first MLWF phase, i.e. problem
formulation and context understanding. Accordingly, the following sectors are well represented:
finance, retail, marketing, and insurance. The ML model outcomes in these industries also tend to
be proxies for profit, such as the volume of sales, so the value of AutoML can be quantified relatively
quickly and objectively. Healthcare and energy also receive serious attention, as these are typically
considered social goods and thus are often backed by government resources, either directly or via
policies and less tangible benefits. For the same reason, more than a third of surveyed vendors
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Fig. 11. A snapshot of a commercial AutoML website, which lists industries targeted by its services. The
vendor associated with this example is BigSquid.

seek to offer AutoML services to the public sector. In the meantime, privacy concerns and national
defence considerations may stifle activity within some of the lower-ranked sectors, e.g. military,
aviation, maritime, and cybersecurity. However, associated contracts may simply be less publicised.
The final analysis in this monograph involves looking into case studies promoted by AutoML

vendors. These reports are typically accessible via associated websites, e.g. within sections named
‘blog’ or ‘resources’. Of course, due to the lack of peer review and often both depth and detail, only
a glancing commentary can be made. Moreover, not all vendor publications are relevant or useful
to this survey. For instance, partnership announcements are occasionally lumped in with the case
studies. Alternatively, reports may be written from the perspective of someone ‘experimenting’
with the commercial AutoML product. Even among the remainder, case studies that do not clearly
detail a business problem serve no purpose for a rigorous review.
Thus, the end result is a survey of 20 vendors and 130 documents of associated content. While

attempts were made to cover the same ground as in Section 5.1, a lack of published information
hampers an identical analysis. This outcome is not unexpected. For instance, vendors are unlikely
to discuss the challenges of using AutoML while spruiking their products. Ultimately, the only
significant insights that can be extracted from this study relate to the problem types targeted by
AutoML vendors, displayed in Fig. 13. As a side note, given that some vendors dedicate multiple
reports to a single use case, the charted counts are normalised. Accordingly, while product recom-
mendation would otherwise top the rankings with 16 case studies, only seven vendors advertise
this use case.
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Fig. 12. Major industries suitable for ML. Each one is associated with the number of commercial AutoML
websites that target the industry. This survey covers 23 vendors.

Unsurprisingly, the long tail on the chart indicates that AutoML is deemed useful for a diverse
array of insight-gathering and decision-making problems. Certainly, with supervised learning as the
default form of ML, classification/regression tasks can be formulated within numerous industrial
contexts. Of course, as with the targeted industries, particular problems see the most apparent use
of AutoML. These ML applications include demand forecasting for products/services, predictive
maintenance, and product recommendation to new and existing customers, i.e. cross-selling and
up-selling. Such problem types may be well-suited to AutoML, as they are often accompanied by
plenty of labelled data and a clear target/objective.
However, it is notable that the term ‘influential factors’ also ranks very high; associated ML

tasks involve not just making predictions but also understanding what is driving those predictions.
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Fig. 13. Problem types suitable for ML. Each one is associated with the number of commercial AutoML
websites that dedicate at least one case study to the problem. This survey covers 20 vendors.

Admittedly, it is unclear why so many case studies focus on this problem type, i.e. whether vendors
are preparing this promotional material based on the features they have developed or on the demand
they expect. Nevertheless, the point here is that traditional technical performance is not the be-all
and end-all for such ML tasks, and other factors, including explainability, necessarily influence
successful outcomes. In effect, commercial entrepreneurs are exploring just how versatile AutoML
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can be. Thus, for those in the broader AutoML research community, it is a timely opportunity to
consider what it means for the technology to be ‘performant’ in all the use cases listed within
Fig. 13. Such considerations and associated innovations may strongly influence future technological
uptake and impact.

6 CRITICAL DISCUSSION AND FUTURE DIRECTIONS
This comprehensive review of AutoML as a technology has comprised multiple analyses repre-
senting various angles of attack, all grappling with several fundamental questions. Simply put,
as of the early 2020s, what does AutoML technology look like? How is it being offered? How is
it being used? And is it any good? In fact, this last question of ‘goodness’ motivated substantial
contemplation in Section 3, urging AutoML researchers to look beyond standard technical perfor-
mance and consider the bigger picture, i.e. the potential requirements of all possible stakeholders
in an ML application. Accordingly, equipped with a refined perspective, this monograph has made
seminally broad assessments of supply, demand, and service quality. Specifically, surveys of open-
source/commercial software and academic/vendor reports have all aided in appraising industrial
engagement with AutoML, both present and potential. Nonetheless, with so much content, it is
worth summarising/discussing the most prominent insights extracted from the analyses.

Almost no one is touching automated problem formulation and context understand-
ing. As a reminder, such an assessment concerns the first stage of an MLWF, i.e. the conceptual
framework introduced in both Section 2 and Fig. 2 to encompass a diversity of high-level ML
operations within one inclusive workflow. Accordingly, it makes sense here to structure some
of the overarching commentaries according to the main phases of an MLWF. However, there is
little to say about the initial stage, when business plans transform into a machine-interpretable
problem. Indeed, sophisticated mechanisms do not exist within the commercial sphere, despite
several vendors offering templates and code repositories for common use cases. The situation
is not much different among open-source packages either, with only a couple trying NLP and
adjacent methodologies to interpret user desires efficiently [154, 496]. In effect, virtually all AutoML
software starts with the premise that stakeholders have already created a well-defined project
plan, for which resourcing is approved and project controls have been set up. This assumption is
a poor one in reality, especially as organisations new to ML will likely struggle to translate their
business objectives into well-scoped projects [113]. Admittedly, automating the formulation phase
is a matter of HCI and may additionally require an AutoML paradigm shift [313], e.g. the design of
reasoning mechanisms. After all, business agendas are only rigidly limited by human creativity, so
mapping an infinite space of real-world problems into concrete ML processes very much remains
an open research question.

Automated data engineering is reasonably well supported, but there is room for im-
provement. This second phase of an MLWF is the most closely linked to model development,
given that data transformations can themselves be bundled into an ML pipeline or a deep neural
network, so it makes logical sense that, historically, it was the first to be enveloped by the expanding
scope of AutoML. Unsurprisingly, at the current time, there are several tools dedicated solely to
data engineering, as listed in Section 4.1.1. Likewise, the majority of surveyed ‘comprehensive’
systems, whether open-source or commercial, provide assistance/automation with basic facets of
cleaning or preparation. However, the coverage is incomplete, and packages that, for instance, do
not manipulate date-time stamps or tokenise text will struggle to construct the most information-
rich version of data for ML modelling. Similarly, Table 22 and Table 66 show that AutoFE, for both
feature generation and selection, has not yet been consistently integrated into the broader AutoML
ecosystem. This state of the technology means that users still require the technical expertise/support
to manually clean, prepare and enhance data for many ML applications. Such an outcome is not
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optimal, given that the data-engineering stage of an MLWF is a large time-sink. Moreover, Fig. 7
confirms that there is a high demand for automated data engineering among academically published
ML applications. Thus, the idealised form of AutoML services, even for the core data-to-model
conversion process, cannot be realised without further developmental progress in this phase.

The focus on model development is most substantial, but notable gaps in coverage
exist. First of all, it is no surprise that all comprehensive AutoML software heavily automates the
construction of ML models, given that CASH is the capability that initially brought the field to
prominence. Virtually all surveyed academic reports of AutoML applications involve some form of
model selection. Thus, as detailed by Table 34 and Table 81, AutoML tools, whether open-source or
commercial, almost universally support standard forms of supervised ML. Time-series forecasting
is also decently well represented. However, the provision of more exotic services is scattered.
Stakeholders will need to do their research when shopping for AutoML software if they have
problems related to unsupervised learning, computer vision, and NLP. Furthermore, particularly
on the commercial side, Section 4.3.8 notes that transparency is an issue; just because a vendor
claims to support an ML use case does not mean that the details of this support cover all possible
stakeholder requirements. Accordingly, the quality of model outcomes can be tough to guarantee
under the broad framework for ‘performant ML’ introduced in Section 3.2.

Thus far, there has been little effort while developing AutoML technologies to ensure
trust in ML. Indeed, this assertion is among the most predominant concerns when discussing
possible deficiencies within model outcomes. Many factors feed into whether a human is willing
to trust the validity/utility of ML, and two are particularly pertinent here: explainability and
fairness. Now, Table 47 and Table 93 indicate that existing AutoML software does generally assist
interpretability on a global level, e.g. identifying feature importance. However, more sophisticated
treatments are rare in commercial products and, according to this survey, are entirely absent
in major open-source offerings. This situation means stakeholders wishing to understand ML
predictions/prescriptions for individual queries, e.g. distinct people, may be forced to supplement a
comprehensive systemwith the dedicated tools in Section 4.1.2. As for scenario analysis, which could
shed further light on problem contexts and constructed ML models by supporting counterfactual
thinking, very few AutoML systems incorporate such a mechanism. Of course, explainability can
verify whether ML worked free of technical error, but it is also a prerequisite for identifying
whether an ML solution is fair. Bias can crop up via human decisions, non-representative data
or algorithmic assumptions, so it is a significant deficiency that, among comprehensive AutoML
systems, its automated detection and management are rare and practically nonexistent, respectively.
Consumers, businesses and general society are becoming increasingly aware of the socioethical
impacts that real-world ML applications can have, and regulatory policies and legislation are
steadily coming online. Thus, while the topic is understandably complex [313], it does not suit the
ethos of AutoML to leave the daunting task of selecting/interpreting bias-and-fairness metrics to a
non-expert.

Publicly available AutoML software is hardly ‘cutting edge’, but that may be okay; it is
still unclear what contributes most to an optimal ML solution anyway. In Section 4.3.3, a
comparative analysis of HPO-mechanism availability within open-source systems and commercial
products was accompanied by a discussion asserting that the technical depth of the latter seems
relatively shallow. Granted, this assessment is made holistically and is also possibly skewed by the
heavy presence of active academics within the open-source community. Nonetheless, it does seem
like, for the model-development phase, commercial software is more likely to employ rudimentary
grid/random search than any bandit-based refinement of Bayesian optimisation. As for more
sophisticated concepts explored within academia, their presence is felt sparsely across all offerings,
i.e. meta-learning, ensemble techniques, ML pipeline optimisation, and so on. Now, as mentioned
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in Section 5.2, the absence of theoretical advances in a package can be due to (1) ignorance, (2)
an inability to implement, or (3) intentional rejection. In this last case, it is possible that such an
attitude could be justified. Maybe technical depth is not actually required for an AutoML system
to support performant ML. Many modern SOTA approaches in data science burn up increasing
amounts of resources to squeeze out decreasing increments of improvement, often all focussed on
accuracy metrics that, as this review has argued, may not be critically important. Even if they were,
perhaps ML applications would be better served by a data-centric approach rather than fixating
on fine-tuning models for a static dataset. Intelligently controlling data flow, not just through
AutoFE but also by the selective presentation of samples, may potentially impact model outcomes
more than CASH. Whatever the case, many commercial AutoML providers are presently surviving
without needing to employ SOTA techniques. Perhaps operational efficiencies gained across an
entire MLWF make up for any model-development shortcomings. Alternatively, AutoML may be
so innovative among its target industries that any rudimentary approaches still provide immense
value. Only time will tell if developers start following academic research more closely once the
easy pickings dry up.

The limited provision of automated deployment,monitoring andmaintenance is a pre-
dominantly commercial affair. After all, as a sweeping generalisation, academia appears to be
preoccupied with the static accuracy of ML models. This assertion is supported by Fig. 8, which
shows the metrics that overwhelmingly matter when publishing AutoML applications via academic
journals. Essentially, all scientific interest seems to end with the model-development phase of
an MLWF. One may argue that what follows tends to be dismissed as a mundane and messy
engineering problem. This perspective may also explain why free AutoML services that are not
directly linked to academia likewise do not bother assisting with the deployment stage. In contrast,
vendors, whose clientele can include particularly non-technical stakeholders, are contractually
obligated to provide end-to-end support. Outside of insight-gathering applications, an ML model
object suits no business organisation if it cannot be put into production to supply end-users with
predictions/prescriptions. Accordingly, most surveyed commercial systems have found it necessary
to venture into the space of MLOps. That said, Table 105 questions the contemporary sophistication
of these services, e.g. in terms of testing and updating deployments. The situation is similar for
the final phase of an MLWF: monitoring and maintenance. Many surveyed vendors do actually
have basic mechanisms in place to alert clients about degrading model performance, triggering
retraining if desired. However, Table 109 reveals a dearth of systems that actively monitor data for
concept drift, let alone proactively update an ML model. Of course, it is presently unclear what the
best policy for triggering adaptation is [580, 583], and vendors are also likely to prefer humans in
the loop to limit liability for poor model outcomes. Nonetheless, there is a long way to go before
AutoML services can be claimed to support continuous learning, a prerequisite for next-generation
AutonoML frameworks [308, 313].

Making a business out of AutoML drives different priorities compared with providing
it for free. To support this point and underscore several preceding insights, Table 124 highlights
just how differently this monograph rated open-source and commercial AutoML systems for major
criteria. This comparison includes considerations of the deployment and management effort (DM),
plus governance and security (G), though it is noted that all free providers effectively ignore these
facets and score zero, bringing down all their overall scores. Nevertheless, taking into account all
the criteria listed in the table, it is worth noting that five packages each obtained over half of the
available points, namely Dataiku (0.734), DataRobot (0.729), H2O (0.635), Microsoft (0.615), and
SageMaker (0.521). They are all commercial. So, after first accounting for the skewing effect of
these five, we find there is little overall difference between open-source and closed-source tools
in terms of operational/technical efficiencies (E). In fact, when it comes to matters of technical
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Table 124. Summary of how the surveyed open-source and commercial AutoML systems scored for major
criteria. Includes (1) total scores incorporating all the included criteria and (2) average scores for the open-
source and commercial software tools. Each score is relative to the maximum achievable and is contained
within the 0 to 1 range, with 0 meaning that none of the assessed aspects have been met and 1 that all of
them are perfectly fulfilled. Colour coding: the darker green colour means better performance. Abbreviations:
E - efficiency, DD - dirty data, CC - completeness & currency, EX - explainability, EU - ease of use, DM -
deployment and management effort, and G - governance and security.

Name E Total DD Total CC Total EX Total EU Total DM Total G Total Overall Proportion
Auto ViML 0.452 0.500 0.417 0.222 0.286 0.000 0.000 0.333
Auto-PyTorch 0.323 0.500 0.458 0.000 0.286 0.000 0.000 0.281
auto-sklearn 0.226 0.625 0.667 0.000 0.429 0.000 0.000 0.323
AutoGluon 0.290 0.375 0.667 0.222 0.429 0.000 0.000 0.344
AutoKeras 0.194 0.375 0.708 0.000 0.429 0.000 0.000 0.302
AutoML Alex 0.258 0.750 0.542 0.000 0.429 0.000 0.000 0.313
carefree-learn 0.290 0.500 0.542 0.000 0.429 0.000 0.000 0.302
FLAML 0.258 0.375 0.583 0.000 0.286 0.000 0.000 0.281
GAMA 0.161 0.375 0.417 0.222 1.000 0.000 0.000 0.281
HyperGBM 0.355 0.500 0.458 0.000 0.857 0.000 0.000 0.333
Hyperopt-sklearn 0.387 0.375 0.417 0.000 0.286 0.000 0.000 0.281
lgel 0.226 0.625 0.583 0.000 0.857 0.000 0.000 0.333
Lightwood 0.194 0.375 0.417 0.222 0.286 0.000 0.000 0.240
Ludwig 0.226 0.500 0.583 0.222 0.571 0.000 0.000 0.323
Mljar 0.258 0.500 0.542 0.222 0.429 0.000 0.000 0.313
mlr3automl 0.258 0.500 0.417 0.000 0.286 0.000 0.000 0.250
OBOE 0.290 0.750 0.375 0.000 0.286 0.000 0.000 0.271
PyCaret 0.258 0.875 0.667 0.222 0.429 0.000 0.000 0.375
TPOT 0.290 0.625 0.750 0.000 0.571 0.000 0.000 0.375
Average score - open-source systems 0.273 0.526 0.537 0.082 0.466 0.000 0.000 0.308
Name E Total DD Total CC Total EX Total EU Total DM Total G Total Overall Proportion
Alteryx 0.306 0.875 0.333 0.000 0.714 0.429 0.667 0.391
Auger 0.452 0.750 0.375 0.000 0.714 0.357 0.000 0.406
B2Metric 0.161 0.500 0.458 0.000 0.286 0.429 0.667 0.313
Big Squid 0.323 0.625 0.333 0.556 0.571 0.143 0.000 0.354
BigML 0.226 0.500 0.583 0.222 0.857 0.214 1.000 0.406
cnvrg.io 0.323 0.500 0.375 0.111 0.857 0.714 0.333 0.427
Compellon 0.161 0.375 0.083 0.222 0.286 0.000 0.000 0.146
D2iQ 0.161 0.250 0.208 0.111 0.714 0.357 0.667 0.260
Databricks 0.452 0.125 0.458 0.222 0.571 0.214 1.000 0.396
Dataiku 0.790 0.250 0.792 0.778 0.857 0.643 1.000 0.734
DataRobot 0.839 0.250 0.708 0.667 0.714 0.786 1.000 0.729
Deep Cognition 0.226 0.125 0.250 0.222 0.714 0.143 0.000 0.240
Einblick 0.226 0.125 0.500 0.222 0.571 0.000 0.667 0.292
Google 0.387 0.250 0.542 0.667 0.857 0.357 1.000 0.490
H2O 0.613 0.250 0.833 0.556 0.857 0.643 0.000 0.635
IBM 0.355 0.125 0.333 0.778 0.714 0.571 1.000 0.448
KNIME 0.226 0.125 0.458 0.000 0.857 0.429 1.000 0.354
Microsoft 0.613 0.250 0.625 0.556 0.857 0.643 1.000 0.615
MyDataModels 0.194 0.250 0.250 0.333 0.429 0.000 0.000 0.208
Number Theory 0.290 0.125 0.542 0.222 0.286 0.571 0.000 0.365
RapidMiner 0.323 0.125 0.563 0.444 0.857 0.500 1.000 0.464
SageMaker 0.387 0.125 0.542 0.778 0.857 0.571 1.000 0.521
SAS 0.323 0.125 0.500 0.444 0.714 0.500 1.000 0.438
Spell 0.194 0.000 0.417 0.111 0.714 0.357 0.667 0.302
TIMi 0.032 0.000 0.167 0.222 0.143 0.000 0.000 0.083
Average score - commercial systems 0.343 0.280 0.449 0.338 0.663 0.383 0.587 0.397

depth, e.g. cleaning/preparing dirty data (DD) and providing coverage of ML approaches that is
complete and current (CC), free AutoML services are generally ahead. One can even hypothesise
that, if benchmarking technical performance was included in this survey, open-source systems
would likely have the greater range of options to pursue SOTA ML results. However, when it comes
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to explainability (EX) and ease of use (EU), critical requirements for democratisation, vendors
are solidly ahead, scoring 0.338 versus 0.082 and 0.663 versus 0.466, respectively. Admittedly, the
quantification in this monograph is open to debate, and we do not claim there are well-defined
thresholds for service quality or business value. Nonetheless, it is clear that when the stakes are
high, and the survival of AutoML software is closely coupled with stakeholder engagement, certain
aspects attain an importance they did not previously have.

There is no singular roadmap for the future of AutoML technology. Admittedly, this
particular finding may seem at odds with previous suggestions that imply some logical order to
advancing the field. However, as discussed in Section 4.3.8, there are many actors with varying
origins and diverse agendas telling this story. So, while global trends and directions may be
emergently evident, the localised threads of development are much more unpredictable and chaotic;
there may yet be surprises in store for what ‘AutoML Tech’ comes to mean. For instance, concerning
the latter stages of an MLWF, it is clear that different parties are converging on assisted/automated
MLOps from two different directions. Some are pushing forwards from core AutoML practices
such as CASH, while others are entering the space by expanding the scope of generic DevOps
platforms. It is not even clear which entities will outcompete each other. The latter tend to have
well-established infrastructures to lean on, while, as recently mentioned, it is not apparent whether
any advanced model-selection methodologies offered by the former constitute a genuine advantage.
Thus, from an industrial consumer perspective, will AutoML platforms offer MLOps? Or will
MLOps platforms offer AutoML? Then there are higher-level questions. It is clear that an integrated
comprehensive system, both end-to-end and generally applicable, is theoretically ideal in terms of
broad utility [308]. Yet AutoML tools dedicated solely to individual MLWF phases/processes, as
in Section 4.1, and technical/industrial domains, as in Section 5.2, benefit from being lightweight
and focussed. Maybe it is more practical for sufficiently technical stakeholders to stitch together
a patchwork of AutoML services as desired, assuming commercial tools are transparent enough
to allow this, leaving comprehensive systems to those who need/want to relinquish finer control.
Again, this review cannot pass judgement here, as it is unclear howmuch a dedicated developmental
focus compensates for restricted utility and the technical challenges of subsequent integration.

Ultimately, further studies based on a broader vision of ‘performant ML’ are required
to honestly assess whether AutoML technology is living up to its full potential. That is
not to say that the endeavour of automating high-level ML operations has not already made a
splash in its last decade of mainstream dissemination. Numerous enterprising developers have
jumped on the bandwagon, offering a diverse supply of AutoML products. Demand is likewise
surging if the yearly numbers of published AutoML applications charted in Fig. 3 are anything to
go by. Nonetheless, this means that it is even more crucial in this phase of initial contact between
technology and industry that the best first impression is achieved and maintained. Already, this
review has identified numerous gaps in the services offered across both the open-source sphere
and commercial marketplace. Admittedly, the impact of these deficiencies will obviously differ.
For instance, not being able to cover certain types of ML problem merely limits the prospective
clientele for associated tools. On the other hand, obsessing with technical metrics at the cost of
appreciating the holistic stakeholder experience may frustrate engaged users and damage future
uptake. Developers should thus carefully consider the broader criteria introduced in Section 3.2
when assessing their implementations. Of course, further deliberation and debate are invited so
such factors can be quantified as objectively as possible; a scientific consensus can only make
ensuing benchmarks for AutoML services much more authoritative. Finally, while this monograph
has primarily attempted to assess the current state of AutoML technology via literature surveys, its
limitations are clear. For instance, vendor-promoted case studies are a poor substitute for academic
reports, often exhibiting bias, spin, and a lack of verifiable details. Instead, directly approaching
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AutoML users is likely a better litmus test for demand, although such surveys should also consider
a diversity of potential stakeholders beyond just data scientists [198, 550]. Fundamentally, the
AutoML community cannot optimise the translation of theory to technology if it cannot effectively
observe and identify what industry likes and what industry wants. Simply put, there is more work
to be done.

7 CONCLUSIONS
This monograph has reviewed the technological emergence and industrial uptake of AutoML as they
appear in the early 2020s. It is the first to comprehensively assess how this translation of academic
theory to mainstream practice has fared, distinguishing itself from its forerunners [195, 308] and
other overviews in the literature that focus instead on the fundamental concepts behind AutoML.
Unsurprisingly, such an endeavour grapples with many questions. Who are the people that are
likely to engage with or be impacted by AutoML, both presently and potentially? What do they
want from AutoML? How is the technology currently being supplied? What is it capable of? And
what is it being used for? Commentary on these topics has been heavily informed by surveys of
documented codebases, promotional material, and application reports.
Before undertaking any analyses, it was first necessary to motivate and define a lens through

which the state of AutoML technology could be appraised. The following is a summary of this
preamble:

• Section 2 formalised the nature of an ML application, i.e. a collection of activities aiming
to create/exploit a data-driven solution to a problem of descriptive/predictive/prescriptive
analytics via ML techniques. Specifically, the section introduced the notion of an MLWF,
designating a systematic way to organise tasks common to an ML application within one
encompassing but segmented workflow representation. Such a conceptual framework makes
it possible to assess which of the following operational phases are targeted by AutoML tech-
nology: problem formulation & context understanding, data engineering, model development,
deployment, and monitoring & maintenance.

• Section 3.1 introduced the notion of an ML stakeholder, i.e. a person or party with direct
or indirect interests in the processes and outcomes of an ML application. The section then
elaborated on the likely desires and requirements each type of stakeholder brings to the
table when engaging with ML. Such considerations allow assessments of AutoML to extend
beyond the data-scientist experience and, in particular, a fixation on technical metrics for ML
model validity.

• Section 3.2 proposed an extensive assessment framework to determine how well an AutoML
service supports ‘performant ML’. The associated criteria are based on a holistic view of what
matters to stakeholders and are grouped into the following categories: efficiency, dirty data,
completeness & currency, explainability, ease of use, deployment & management effort, and
governance.

• Section 3.3 finally condensed the assessment framework based on stakeholder requirements
to generate insight and commentary about what industry presently sees as the role of AutoML.
Overall, there appear to be three primary goals for the technology as it relates to data science
practices: enhancement, democratisation, and standardisation.

Having established a comprehensive reference frame for what makes AutoML ‘good’ within
a real-world setting, this monograph then proceeded to present and dissect several surveys of
existing tools and application reports. The following summarises the analyses specific to AutoML
software:
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• Section 4.1 began appraising supply by examining AutoML tools that are termed ‘dedicated’;
these do not intrinsically feature the core processes of generating/managingMLmodel objects.
Instead, the packages are meant to be used with other software, focussing only on specific
segments and responsibilities within an MLWF, such as (1) data and feature engineering, (2)
bias, fairness and explainability, and (3) HPO. Overall, these ‘detachable’ tools can provide
flexibility and control to a technical user, but integration challenges may hinder broader
uptake.

• Section 4.2 considered open-source AutoML software termed ‘comprehensive’; these im-
plementations take charge of training ML models at a low level while also automating
higher-level operations. Essentially, this survey found that the field of free options avail-
able to interested stakeholders is broad, with nuanced discussions arising for each of the
aforementioned criteria. However, there is a general sense that these systems, often tied
to academia, are frequently inspired to innovate at technical depth, e.g. with sophisticated
model selection. The trade-off is that almost all have no interest in the productionisation
stages of an MLWF, and it is also rare to see HCI options for non-technical stakeholders
receive serious developmental attention.

• Section 4.3 continued assessing the supply of comprehensive AutoML systems, although
now focussing on the commercial sphere. Again, many products ready for organisational
use were identified, even though the capabilities and features their developers invest in
vary. Unsurprisingly, transparency was an obstacle to this analysis, but the details suggest
that commercial AutoML goes broad, not deep, contrasting with open-source offerings. For
instance, vendors seeking non-technical clients are motivated to focus on accessible UIs and
support some form of MLOps, rather than implement a SOTA CASH mechanism. However,
the survey results also indicated that no one particular agenda dominates the space of AutoML
technology; developers are scattered in their origins, approaches, and priorities.

The following summarises the analyses specific to AutoML applications:

• Section 5.1 began appraising demand by examining academically published AutoML projects
run for real-world problems. The rate of these applications being published was found to
be accelerating, and, although usage appears to be dominated by the health & biomedical
sectors, the spectrum of industries involved affirms the broad utility of AutoML. However,
the academic context of these publications obviously distorts what could be surmised about
the technology. In particular, there was a jarring discrepancy between the contemplative
ways authors promoted AutoML and the routine ways it was assessed to be performant;
judgements predominantly fell back on technical metrics for model validity.

• Section 5.2 briefly acknowledged a rising trend, i.e. the increasing number of AutoML tools
being specialised for particular use cases, such as niche forms of data analysis or associations
with specific industries. This phenomenon is arguably driven by expectations of demand,
as expending effort on specialised functionality has little to gain if it is not used. For now,
the trend is too nascent to earn significant commentary, but it reaffirms a finding in this
monograph that there are many ways for AutoML technology to evolve ‘in the wild’.

• Section 5.3 finally capped off analysing demand by inspecting AutoML vendor websites
and associated case studies. Although such promotional material should be reasonably well
representative of what customerswant from their commercial AutoML services, the usefulness
of the reports was obviously limited by a lack of peer review and detail. Nonetheless, vendors
were found to be targeting a selection of industries somewhat dissimilar to those linked
with academically published AutoML applications, which again highlights the general utility
of the technology. Moreover, the diverse array of problem types that AutoML is servicing
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further suggests that high-quality outcomes depend on more than just technical accuracy
metrics.

Ultimately, the value in this review is ideally found in the broader perspective it promotes for
evaluating a technology as opposed to a science. By this stage, preceding monographs have already
argued strongly that the theoretical potential of AutoML [308] and AutoDL [195] is immense. An
enterprising researcher may envisage logical pathways – not necessarily easy ones – towards
inspirational ambitions, including AutonoML systems capable of continuous learning, dynamic
self-assembly, and general applicability. However, AutoML implementations ready for societal
use are clearly nowhere near such lofty heights. This review even finds suggestions that publicly
available products lag behind contemporary SOTA techniques, implying developer ignorance, an
inability to implement, or deliberate rejection. Indeed, if fundamental AutoML advances are being
actively dismissed by developers, despite researchers finding them promising, then this disconnect
is a troublesome one and should be understood; failure to do so will only cripple the translation
and impact of AutoML. The fact is, for better or worse, technology is what showcases a science to
investors and heavily influences, if not determines, how many resources are cycled back for further
research and development. Accordingly, the AutoML community cannot neglect to examine how
industry is engaging with the technology, and this requires a solid grasp of what ‘performance’
means in the general case. Real-world ML applications involving a diversity of stakeholders are
subject to many more complicated needs and pressures than a sanitised benchmark challenge
tackled by a group of expert ML practitioners.
Granted, to the credit of AutoML developers, this review has found many promising imple-

mentations of AutoML software, whether open-source or commercial, end-to-end or dedicated,
generic or specialised. Nonetheless, at the same time, numerous gaps have been identified in the
services provided. Perhaps these do not matter, and clients will still appreciate any added value
that ML can extract from their business contexts, provided the platforms they use look professional.
Alternatively, complacency may lead to flagging public interest in AutoML, and the technology
could end up being perceived as a gimmick. All that is clear is that the lessons learned and decisions
made during this initial contact between AutoML technology and industry will set the tone for
future societal engagement.
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Appendix A FADED HYPERPARAMETER OPTIMISATION TOOLS

Name GitHub Ref.
Adatune https://github.com/awslabs/adatune [71]
Darts https://github.com/quark0/darts [355]
DeepArchitect https://github.com/negrinho/deep_architect [411]
FAR-HO https://github.com/lucfra/FAR-HO [223]
GPyOpt https://github.com/SheffieldML/GPyOpt [528]
Optunity https://github.com/claesenm/optunity [157]
Osprey https://github.com/msmbuilder/osprey [386]
pyGPGO https://github.com/josejimenezluna/pyGPGO [283]
RoBO https://github.com/automl/RoBO [89]
sklearn-deap https://github.com/rsteca/sklearn-deap [470]
Spearmint https://github.com/HIPS/Spearmint [252]

Appendix B FADED AUTOML SYSTEMS

Name GitHub Company Ref.
Adanet https://github.com/tensorflow/adanet Google [526]
Advisor https://github.com/tobegit3hub/advisor Personal [145]
Aethos https://github.com/Ashton-Sidhu/aethos Personal [502]
Amla https://github.com/CiscoAI/amla Cisco [156]
ATM https://github.com/HDI-Project/ATM Research [400]
auto_ml https://github.com/ClimbsRocks/auto_ml Personal [429]
Auto-Weka https://github.com/automl/pyautoweka Research [94]
AutoXGBoost https://github.com/ja-thomas/autoxgboost Personal [530]
DeepMining https://github.com/sds-dubois/DeepMining Research [76, 199]
FedNas https://github.com/chaoyanghe/FedNAS Research [255, 256]
HpBandSter https://github.com/automl/HpBandSter Research [91]
MetaQNN https://github.com/bowenbaker/metaqnn Research [100, 101]
MLBox https://github.com/AxeldeRomblay/MLBox Personal [189]
Recipe https://github.com/laic-ufmg/Recipe Research [328]
tuneRanger https://github.com/PhilippPro/tuneRanger Research [445]
Xcessiv https://github.com/reiinakano/xcessiv Research [409]
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Appendix C INSUFFICIENTLY DETAILED COMMERCIAL SYSTEMS

Name Website Ref.
Aible https://www.aible.com/ [1]
Algolytics https://algolytics.com/products/abm/ [2]
DMway http://dmway.com/ [20]
dotData https://dotdata.com/ [22]
Kortical https://kortical.com/ [28]
neuralstudio.ai https://neuralstudio.ai/ [33]
OptiScorer https://optiscorer.com/ [35]
Pecan https://www.pecan.ai/ [36]
Prevision.io https://prevision.io/ [37]
SparkCognition https://www.sparkcognition.com/products/darwin/ [42]
TAZI https://www.tazi.ai/ [44]
Xpanse https://xpanse.ai/ [49]
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