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INVITED SURVEY PAPER
Survey of Cloud-Based Content Sharing Research: Taxonomy of
System Models and Case Examples

Shinji SUGAWARA†a), Member

SUMMARY This paper illustrates various content sharing systems that
take advantage of cloud’s storage and computational resources as well as
their supporting conventional technologies. First, basic technology concepts
supporting cloud-based systems from a client-server to cloud computing as
well as their relationships and functional linkages are shown. Second,
the taxonomy of cloud-based system models from the aspect of multiple
clouds’ interoperability is explained. Interoperability can be categorized
into provider-centric and client-centric scenarios. Each can be further
divided into federated clouds, hybrid clouds, multi-clouds and aggregated
service by broker. Third, practical cloud-based systems related to contents
sharing are reported and their characteristics are discussed. Finally, future
direction of cloud-based content sharing is suggested.
key words: content sharing, client-server, shared storage, peer-to-peer,
grid computing, cloud computing, object storage, interoperability, federated
cloud, hybrid cloud, multi-cloud, aggregated service by broker, provider
centric, client centric

1. Introduction

Due to rapid advances of computers, communication de-
vices, and communication networks, diverse and vast
amounts of digital contents are exchanged over the Internet,
enabling numerous users to enjoy the benefits of technol-
ogy. To realize smooth and stress-free content provisioning,
searching and retrieving, numerous content sharing systems
and supporting technologies have been developed and im-
plemented. Currently, cloud computing systems for content
sharing, such as exchanging text messages, documents, pho-
tos, voice, music, and videos, are important in our daily life,
and many interesting systems have been implemented over
the Internet.

According to an Internet traffic forecast issued by Cisco
[1], global IP traffic in 2015 stands at 72.5 exabytes (EB)
per month and will nearly triple by 2020, to reach 194.4
EB per month. On the other hand, the percentage of Con-
tent Delivery Network (CDN) traffic in global IP traffic is
expected to grow rapidly. CDN traffic in 2015 stands at
23.9 EB per month which is about one third of global IP,
will grow to 104.0 EB which is more than half of global IP.
Cloud-based content sharing plays a major role of CDN, and
its importance must be getting larger and larger in the next
decade.
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However, the concept of cloud computing is rather
vague even now, and its definition is partially controversial.
Then, it is sometimes difficult even for the researchers in the
computer and communications fields to truly understand the
natures of numerous cloud-based content sharing systems
working over the Internet. Thus we would like this survey
to be some help for the researchers to organize their ideas or
concepts on cloud-based content sharing systems.

The rest of this paper is organized into four sections. In
Sect. 2, some basic technology concepts supporting cloud-
based systems from client-server to cloud computing, includ-
ing their relationships and functional linkages, are shown.
Section 3 introduces the taxonomy of cloud-based system
models from the aspect of the interoperability of multiple
clouds. In Sect. 4, practical cloud-based systems related to
content sharing, are introduced, and their characteristics are
briefly reported. Finally, summary of this survey is presented
in Sect. 5 as well as some discussions on the characteristics
of each cloud system models and actual system examples
including their relationships. In addition, future directions
of cloud-based content sharing are suggested.

2. Basic Concepts and Technologies of Computer Sys-
tems Supporting Contents Sharing

This section provides several major conventional models of
computer systems supporting content sharing over the Inter-
net. Although the models are relatively simple and primitive,
each plays a very important role. Especially in the situation
where the system architecture is complicated in order to
achieve a high efficiency in content sharing, the instances of
these models are well served as part of actual cloud-based
content sharing systems like the ones illustrated later.

Generally, every system of content sharing over the
Internet must incorporate the following three-step process:
(i) publication, which makes the content available, (ii) user
discovery, which allows users to discover sources of the
content, and (iii) user delivery, which grants users access to
the content [2], [3]. It is easy to confirm that many major
content sharing systems perform all three of these steps.

We believe that the most common and basic model of all
modern computer system architectures is the client-server,
and the other major system architectures can be explained
as derivatives realized during system extensions, large-scale
integrations and/or simplification processes to meet users’
demands. In this section, we deal with the client-server
system architecture and its functional derivatives as tech-
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Fig. 1 Relationship among major computer systems concerning system scales and decentralization
degrees.

nologies supporting content sharing.

2.1 Client-Server Systems

Because the client-server system is very simple but use-
ful, it is one of the most basic and popular computa-
tion/communication system models adopted by working sys-
tems currently on the Internet. Typical examples used for
content sharing systems are a Web server, an FTP server or
a DNS server using protocols of HTTP (HTTPS), FTP, and
DNS. A Web server and an FTP server are commonly used
for the publication and user delivery steps in many content
sharing systems, allowing contents to be preserved and read-
ily downloaded anytime. On the other hand, a DNS server
is used for user discovery to help search for the address of a
target server which is assumed to possess the target content.

Generally, a simple client-server system provides cer-
tain computational results to its users or client application
processes according to their requests. Although there are
differing opinions about the definition of this system, many
people have advocated that the basic function of the client-
server system consists of the following three levels [4]:

• User-interface level
• Processing level
• Data level

Considering these levels, the other major computer system
models working over a large-scale network can be explained
as derivatives of the above mentioned client-server system.
The relationship among major computer systems is shown
in Fig. 1 focusing on their system scales and decentraliza-
tion degrees. The existing complicated cloud-based systems
mentioned later are combinations of the system models in the
figure. For simplicity, we assume that the basic client-server
system consists of two parts (i.e., a client and a server),

where the client includes some or all of the user-interface
level, while the server assumes the remaining roles.

Thus, we see that a simple client-server system can be
extended in all three function levels. In this extension, the
system is enlarged to address the deficiency of total perfor-
mance by replacing a single server with many processing
units or servers. In this case, a centralized client-server sys-
tem is changed into a distributed one, which consists of many
separated processing units or servers, that are connected via
communication links.

Typically this extension occurs in one of two ways:
vertical distribution or horizontal distribution [4]. The char-
acteristic feature of a vertical distribution is that it is achieved
by placing logically different components of the system on
physically different processing units or servers. For example,
it is possible that whole function of a system is divided into
three servers and each server is responsible for a different
level. It should be noted that how to divide the three levels is
flexible, and in principle, the three levels can be divided into
as many servers as desired. However, each physically sepa-
rated server must be logically different from the others. The
system architecture divided into n (n ≥ 2) parts is called the
(physically) n-tiered architecture, where as the one that is not
divided is called a single-tiered or monolithic architecture.

Meanwhile, in a horizontal distribution, a client or a
server may be physically split into logically equivalent parts
(i.e., part of a system (e.g., one of n tiers) can be replicated
and the replicas share the task of the part’s role). In this case,
each replica’s load can be adequate and balanced with others
in certain situations. In addition, it is possible to handle
rapid growth or even shrink service requests by changing the
number of replicas, making the system scalable. This idea
leads to the concepts of Peer-to-Peer and a cloud.

The rest of this section introduces six other major com-
puter system models as elements of cloud-based content
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sharing systems, which are illustrated later, linking exten-
sion, large-scale integration, and simplification of the client-
server system’s function levels.

2.2 Shared Storage/ Distributed File Systems

A lot of networked and distributed file systems exist as shared
storage such as NFS [5], LOCUS [6], AFS [7], [8], and
CODA [9]. These systems either use centralized servers
(e.g., NFS) or a few distributed replicated file servers (e.g.,
CODA). Several server-less systems have been designed to
achieve higher availability and scalability (e.g., Farsite [10]
and Kosha [11]). Additionally, GFS [12] is a distributed file
system designed for data-intensive tasks, but it uses dedicated
disks and is specialized for web searches.

Parallel file systems (e.g., GPFS [13], PVFS [14],
Frangipani [15], and Petal [16]) target large datasets and are
tightly integrated with supercomputers. Distributed logical
disks [17] were later built from a decentralized collection
of commodity storage appliances by extending ideas from
Petal with regard to replication, volume management, and
load balancing. Such systems handle replication at the disk
segment level but not the dataset level.

Although there are many variations of these systems,
they can roughly be divided into simple shared storage sys-
tems, which mainly use centralized storage, and distributed
storage systems, which distribute their file servers. The for-
mer is a simplified model of a simple client-server, reducing
the function of the processing level. The latter is an extended
model of a shared storage system to increase the functions of
the user-interface level and the data level as horizontal dis-
tribution similar to an extension from a simple client-server
to a distributed client-server to meet users’ or application
processes’ requests.

Shared storage and distributed file systems were origi-
nally used to supplement main servers while caching, main-
taining, and controlling data sets rapidly and extensively. In
this sense, the publication and user delivery steps are the
main roles.

2.3 Peer-to-Peer Systems

Peer-to-Peer (P2P) systems consist of distributed nodes and
Internet-based applications. Each node is called a peer be-
cause depending on the circumstance, it plays the role of the
client or the server, and works in the system on even ground
with the other nodes. In this type of system, resources of
autonomous participants (e.g., computational power, data
storage, network bandwidth, etc.) are connected to provide
services (e.g., data/content sharing, distributed computing,
user communication/collaboration, etc.) to peers in a de-
centralized mode. P2P technologies are typically applied on
the Internet’s edge or in ad-hoc networks. P2P systems are
often characterized with the following features: Decentral-
ization, Scalability, Anonymity, Self-organization, and Fault
Tolerance.

P2P systems can be roughly classified as either pure

and hybrid. A pure approach lacks a centralized server,
and contents shared in the system should be searched by a
flooding-based queries transmission (in unstructured P2P),
a Distributed Hash Table (DHT) (in structured P2P), etc.
Gnutella [18] and Freenet [19] are good examples of pure
P2P systems. In a hybrid approach, the server is referenced
first to access meta-information and then communication
is carried out between peers. Napster [20] and BitTorrent
[21] are examples of hybrid P2P systems. The super-peer
approach is an intermediate method. An example of this is
KaZaa [22]. In KaZaa, a super-peer owns some information
that may not exist in the peers; therefore, if a peer cannot find
certain information, it asks super-peers whether they have the
information. P2P systems are mainly applied in collaborative
content exchanges and file/content management [23].

P2P system is an extension of a simple client-server
at the user-interface level, processing level, and data level
in common with an extension to a distributed client-server.
The main difference from a distributed client-server is that a
peer in the P2P system has some autonomy. P2P provides a
very flexible structure, but sometimes may be destabilized.

From the view point of the three necessary processes for
content sharing, all are included as system’s functions. For
example in the case of pure P2P, content storage is equipped
by each peer for publication, while flooding and peers’ struc-
ture according to DHT are available for both user discovery
and user delivery.

2.4 Grid Computing

Grid computing is the predecessor of cloud computing al-
lowing resource sharing using a dedicated infrastructure to
establish a large, distributed computing platform with cross-
organizational boundaries [24]–[26]. Grid nodes share ap-
plications and resources through a virtualization mechanism
across an organization. Grid computing has emerged to help
solve large-scale computational problems via high perfor-
mance sharing resources.

The architecture of a grid generally consists of five
layers: fabric, connectivity, resource, collective, and appli-
cation layers. The fabric layer provides access to various re-
sources (e.g., compute, storage, and network resources). The
connectivity layer defines core communications and authen-
tication protocols for easy and secure network transactions.
The resource layer defines protocols for publication, discov-
ery, negotiation, monitoring, accounting, and payment of
sharing operations for individual resources. The collective
layer monitors and captures interactions across collections
of resources and directory services. Finally, the applica-
tion layer includes applications of users, on top of the above
protocols and API (Application Programming Interface)s.

Grid computing is also an extension of a simple client-
server because its user-interface level, processing level, and
data level are like an extension to P2P. The fact that the
three necessary processes for content sharing are included
in the system is also the same as the P2P. These features are
common with the P2P grid mentioned below.
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2.5 P2P Grid Computing

P2P grid computing [27] combines the features of P2P and
grid, with in-and-out flexibility and fast search mechanisms.
The resources of the system are characterized by the col-
laborator peers, including clients and/or servers, in a more
scalable system than traditional grid computing. P2P grid
computing has the same capabilities as traditional grids and
autonomous P2P systems. Additionally, it supports numer-
ous peers or sites that can be incorporated in the infrastruc-
ture of the grid.

In P2P grid, large-scale computational grids are built
based on edge-resources (e.g., desktop PCs) with a built-in
fault-tolerance. The system offers scalability and improved
resource availability compared to grid computing. The full
decentralization feature of the P2P grid prevents the nodes
from exchanging content and control messages, which main-
tains system scalability. In addition, full decentralization
prohibits nodes from considering the metadata received by
others as trustworthy.

All nodes in the hybrid system are categorized into two
types: grid nodes and P2P nodes. The grid nodes are con-
nected to help distribute grid resources such as computing
cycles, data storage, etc. The grid component of the P2P
grid can provide the basic grid services, such as task man-
agement, resources scheduling, file operations, and system
administration. The P2P nodes are not involved in this grid
component.

2.6 Cloud Computing

Cloud computing is a key concept in this paper. The defini-
tion of a cloud remains debatable [24], [28]. However, herein
we use the following definition: a cloud is large-scale dis-
tributed computing driven by economies of scale, in which a
pool of abstracted, virtualized, dynamically-scalable, man-
aged computational power, storage, platforms, and services
are delivered on demand to external customers over the In-
ternet [24].

The important points in this definition are:

• Cloud computing is massively scalable.
• Cloud computing can be encapsulated as an abstract en-

tity that delivers different levels of services to customers
outside the cloud.

• Cloud computing is driven by economies of scale.
• Services can be dynamically configured via virtualiza-

tion or other approaches and delivered on demand.

Cloud computing and grid computing are similar con-
cepts because the cloud evolved from the grid and relies on
the grid as its backbone and for infrastructure support. The
essence of this evolution is attributed to a shift in focus from
an infrastructure that delivers storage and computational re-
sources (grid) to one that is a more abstract resource aimed
at economic effects (cloud) [24].

From this viewpoint, cloud computing is the large-scale

integration of a grid computing system’s software and hard-
ware at all three function levels. Similar to grid computing,
the three necessary processes for content sharing are also
available. In addition, cloud computing works economically
(i.e., it is designed according to an efficiency-oriented pol-
icy), which is a clear difference from P2P and grid computing
that are sometimes driven by an altruistic policy.

2.7 Object Storage

Object storage is a large-scale storage architecture in which
preserved data are treated as objects that differ from file
systems, which manage data as files in a hierarchical struc-
ture. Each object consists of the data itself, metadata, and a
unique identifier. Data in object storage can be used directly
by application processes just like an interface, accessed with
the use of the identifier searching in the namespace, and
managed by replication and distribution at the object-level
granularity.

As a system design policy, numerous physical storages
are aggregated and abstracted in object storage systems, and
appear to have a huge capacity of storage from users and
application processes. This architecture allows this model to
provide a relatively inexpensive and scalable service.

Typical examples of object storage are AWS S3 (Sim-
ple Storage Service) [29], Microsoft Azure [30], and Google
Cloud Storage [31], that are provided by cloud service
venders, while examples of open source developments in-
clude Swift [32], [33], GlusterFS [34], [35], and Ceph
[36], [37].

Object storage is both an extension of shared storage at
the user-interface level and data level as well as simplified
model of cloud computing at the processing level. Addition-
ally, because this system model is used to cache or preserve
many kinds of data, including unstructured data and cold
data, which is seldom accessed, publication and user deliv-
ery steps seem to be its main role for content sharing.

3. Taxonomy of Cloud-Based Contents Sharing System
Models

This section illustrates typical models of contents sharing
architectures using cloud systems, from the viewpoint of
cloud interoperability [38].

The most simple system architecture is a single cloud.
However, much more complicated systems are needed for
content sharing over the Internet these days, and if we con-
sider to implement such a system, using multiple clouds is a
reasonable decision, and in this case, cloud interoperability
is a very important concept. Cloud interoperability has many
merits, including:

• Scalability and high resource availability [39], [40]
• Avoiding vender lock-in [41]
• Geographic distribution and low-latency access [42]
• Cost efficiency and saving energy [41]

Armbrust et al. mentioned that cloud computing refers
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Fig. 2 Classification of cloud interoperability scenarios.

to both the applications delivered as services over the Inter-
net as well as the hardware and systems software in the data
centers that provide such services [41]. In this definition,
the data center hardware and software are called a cloud,
and their services are generally provided for profit. A public
cloud is one available to the public in a pay-as-you-go man-
ner. On the other hand, a private cloud is one that belongs
to a business or an organization and is not available to the
public. A typical cloud environment includes a hundreds of
independent, heterogeneous, private, and public clouds [43].

The main stakeholders in cloud computing are cloud
users and Cloud Providers (CPs). Cloud users are either
software/application Service Providers (SPs) who offer a
service to consumers or end users who use the cloud services
directly. Because SPs offer economical services using the
resources provided by CPs, CPs indirectly provide the utility
computing services required by a variety of parties. This
hierarchy results numerous combinations of CPs and cloud
users which include SPs and end users, and gives rise to a
number of plausible scenarios between clouds [44].

Because interconnections naturally occur among
clouds, clouds must be interoperable. Figure 2 illustrates
several scenarios of cloud interoperability. They can be
roughly divided into two categories: provider-centric and
client-centric interoperability. If cloud interoperability re-
quires CPs to adopt and implement standard interfaces, pro-
tocols, formats, and architectural components that facilitate
collaboration, it is called provider-centric interoperability.
Provider-centric scenarios are categorized further as feder-
ated and hybrid cloud scenarios. On the other hand, in client-
centric interoperability, interoperability is not supported by
CPs and cloud customers are required to initiate it by them-
selves or via third-party brokers. Client-centric scenarios
are also categorized further as multi-cloud and aggregated
service by broker [38] scenarios. The rest of this section
illustrates each particular scenario in detail.

3.1 Federated Clouds

In this kind of system, the SP establishes a contract with a
CP, which is a member of a federation. A group of cloud
providers are federated and trade their surplus resources
among each other to gain economies of scale, efficient use of
their assets, and expanded capabilities [43]. The computing
utility service is delivered to SPs using resources by one or
multiple CPs. The SP may be unaware of the federation

Fig. 3 Concept of a federated cloud.

Fig. 4 Concept of a cloud service stack.

because its contract is with a single cloud provider. The
concept of this system is illustrated in Fig. 3.

Cloud services are sometimes categorized into three
levels [41]: SaaS (Software as a Service), PaaS (Platform
as a Service) and IaaS (Infrastructure as a Service). These
service levels form a stacked structure (Fig. 4). This cate-
gorization is mainly from the viewpoint of CP’s providing
environment to users, and different from the one discussed
here, however in provider-centric situation, namely, in an en-
vironment where CPs have the initiative to offer the system
architecture options to users or SPs, interconnection, i.e.,
federation in this case, among clouds at different cloud stack
layers, may occur.

If an interconnection occur between clouds at, for ex-
ample, SaaS and PaaS, this is called a delegation or vertical
federation. This type of interconnection is thought to have
a rather smooth implementation because role-sharing be-
tween the upper layer and the lower layer is clear. On the
other hand, if the interconnection occurs between clouds at
the same level (e.g., PaaS and PaaS), this is called a hori-
zontal federation. This type of interconnection is thought to
face many more implementation hurdles.

In a client-centric situation, namely, in an environment
where users or SPs have the initiative to form the system
architecture by themselves using resources provided by a
number of clouds, it is also possible for users or SPs to select
and combine clouds at different cloud stack layers for some
special effects. This topic will be mentioned in 3.3.

Another concept, which is similar to the cloud federa-
tion, is an Intercloud. In many works, these terms are used
interchangeably. However they differ slightly. The main
difference is that an Intercloud is based on the future stan-
dard and open interfaces, while a federation uses a provider
version of interfaces. Therefore, federated cloud can be
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Fig. 5 Concept of a hybrid cloud.

considered as a prerequisite toward the final goal of the In-
tercloud.

3.2 Hybrid Clouds

In the hybrid cloud architecture, an organization that owns
a private cloud moves part of its operations to external CPs.
The organization can also sell its idle capacity to other
providers during periods of low load. This extension of a
private cloud (on-premises) to combine local resources with
resources from remote public CPs (third-party) is called hy-
brid cloud. The concept of this system is illustrated in Fig. 5.

In this kind of system, SPs or end-user applications can
scale out through both private and public clouds when the
local infrastructure is insufficient. Furthermore, this system
can be extended if the organization offers capacity from its
private cloud to others when that capacity exceeds the re-
quirements for internal operations. This creates a system
that performs economically.

Although hybrid clouds and federated clouds are both
categorized in provider centric scenarios and have similar ar-
chitectures, there are clear differences. In a federated cloud,
multiple clouds, regardless whether each of them is a private
or public, try to form a flat structured, high capability entity
together to realize an efficient use of resources and to avoid a
deficiency of utility provided to users or SPs. Although both
have the same goal, a hybrid cloud is a mixture of private and
public clouds, and in a common scenario, the organization
owning a private cloud enters into a contract with a user or
an SP to provide computing utility service, and occasion-
ally seeks help from a public cloud that anyone can use its
capability.

A hybrid cloud system has typical architectural pat-
terns, which are illustrated in [45]. In this article, four typ-
ical architectures are introduced: Static placement, Assisted
replication, Automigration, and Dynamic migration. Addi-
tionally, another article discusses the economics of hybrid
cloud systems and shows the economic benefits of using a
hybrid cloud by comparing it with pure private cloud and
pure public cloud [46].

3.3 Multi-Clouds

In this architecture, SPs or end-users are responsible to man-
age resources across multiple clouds. Service deployment,

Fig. 6 Concept of a multi-cloud.

Fig. 7 Concept of an aggregated service by broker.

negotiation with CPs, and monitoring CPs during service
operations are executed by the SP or end-user applications.
In this case, the SP may require using an adapter layer with
different APIs to execute services on various clouds [38].
The important point for employing this architecture is that a
separate layer controls everything regarding aggregation and
integration of the clouds, and is completely separate from
the CPs. Figure 6 illustrates the basic concept of this system.

In the case of aggregating clouds at different stack lay-
ers for special effects, the adapter layer must absorb the
difference, as mentioned in 3.1.

3.4 Aggregated Service by Broker

If we can assume another stakeholder (i.e., a broker), an-
other type of architecture can be designed. Its basic concept
is illustrated in Fig. 7. In this type of system, the broker ag-
gregates services from multiple CPs and offers an integrated
service to the SPs or users. That is, a third-party abstracts
the deployment and management of the components. SPs
or users benefit greatly from this architecture because the
broker provides a single entry point to multiple clouds. In
this kind of system, CPs may also be required to install
some internal components to support aggregated services by
a trusted broker [38].

This system architecture is a one where the adapter layer
of multi cloud is picked out from the user’s or SPs’ function
entity and becomes another independent entity. Then the
part of this system consisting of a broker and clouds looks
like a single cloud at highest stack layer of all the clouds
from the user or SP’s viewpoint.
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Table 1 Correspondences between projects and system models.
System Models Projects

P2P, Cloud Triton/Utility-based P2P Cloud
Multi-cloud CYRUS/CHARM

P2P, Multi-cloud FS2You/STACEE
Shared Storage, Multi-cloud Syndicate
Client-Server, P2P, Cloud CS-P2P Streaming Cloud

Fig. 8 System architecture of triton.

4. Case Studies

In this section, we introduce actual projects of cloud systems.
Examples are selected in terms of potency for contents shar-
ing. Because each one is a mixture or hybrid of cloud models
and conventional contents sharing architectures, we examine
each in detail from the viewpoint of system taxonomy. Ta-
ble 1 depicts the correspondence between the projects and
basic or cloud-based system models.

4.1 Triton

Triton [47] is a peer assisted single cloud storage system with
a hybrid architecture of P2P and a cloud. Numerous users
who have some contents to share with others are intercon-
nected by a P2P network and collaborate on data in the cloud
resources. Thus, they exchange split blocks of a shared con-
tent item with each other without serious congestion due to
the benefit of a P2P network. Fig. 8 illustrates the system
architecture of Triton.

As for contents update, instead of waiting until all the
updates are propagated in the cloud’s internal servers, and
thus risking to access to stale content item, users (i.e. peers)
in this system start to push the updated content items between
themselves by exploiting direct communication channels. To
maintain consistency of updated shared contents, operations
in Triton are based on a state machine replication protocol.
The state machine approach [48], [49] is a general method for
implementing a fault-tolerant service by replicating servers
and coordinating clients’ interactions with server replicas.

A cloud is used as a coordination rendezvous, which

stores only the meta information about the shared contents,
such as a list of peers and a Merkle Tree (i.e., hash tree)
calculated by the content file blocks to track the file updates.
A peer who wants to obtain a file retrieves the information
about the hash tree that composes the blocks and a list of the
peers who have the blocks of the desired content item.

4.2 P2P Cloud Hybrid for Utility-Based Contents Sharing
(Utility-Based P2P Cloud)

One of the services that a cloud provides is online storage,
which is classified as IaaS. One good example is Amazon
S3 (Simple Storage Service) [75]. Online storage can be
used through the Internet and there is virtually no capacity
limitation as long as the user pays. Tomimori et al. proposed
a content sharing method according to contents utility func-
tion in hybrid P2P network under the environment where
storages of both peers and cloud system are available [76].

Content replication is executed similar to the ERCT-
based method [77], and the system calculates the utility value
of each content item shared in the system network according
to the contents’ reference frequency and capacity.

Each content item is relocated within a certain period
from a peer’s storage to cloud’s storage or vice versa, ac-
cording to the utility value.

Difference between Triton and Utility-based P2P Cloud

These systems are similar from the view point of the
system configurations, each of which includes both P2P and
cloud, and therefore, they are categorized together in the
same class in Table 1. However, the design concept and
intended purpose are completely different.

4.3 CYRUS

CYRUS [51] is a distributed, client defined architecture that
integrates multiple autonomous Cloud Storage Providers
(CSPs) into one unified cloud, allowing individual users to
specify their desired performance levels and share files or
contents. CYRUS ensures user privacy and reliability by
scattering files into smaller pieces across multiple CSPs, so
that no CSP can read user’s data. In addition, CSPs adopted
in this system are selected by an algorithm to minimize the
latency for downloading the shared contents or data. To
accommodate multiple autonomous users’ preference, the
system allows the users to upload their updated contents or
files simultaneously, and detects conflicts, if any, after the
fact from the client.

CYRUS does not treat CSPs as peers nor does it as-
sume that users directly communicate with each other. In-
stead each CSP, which is treated as a single node, becomes
an autonomous storage resource separately controlled by the
user (Fig. 9). This distributed user-controlled architecture
enforces privacy and reliability by dividing the user’s con-
tents or files into small pieces and redundantly scattering
these pieces to multiple CSPs. Thus, attackers must obtain
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Fig. 9 System architecture of CYRUS.

data from multiple CSPs to steal a file or a content item. On
the other hand, the files are easily recovered if some of CSPs
fail. File pieces can be uploaded and downloaded in parallel
to reduce latency. Because the user controls the file distri-
bution, users can choose how many CSPs to adopt, where to
distribute the file pieces so as to define customized privacy,
reliability, and latency.

CYRUS has three main functions:

• Integrating multiple clouds
As explained above, CYRUS scatters file pieces to mul-
tiple CSPs so that no single CSP can reconstruct a user’s
data. The file pieces are stored more than necessary in
redundant manner for easy file recovery. This idea is
from the (t, n) secret sharing scheme [52], which di-
vides user data into n shares, where each share is stored
on a different CSP. Secret Sharing divides and encodes
the data in such a way that reconstructing any part of
the original data requires at least t of the file shares.
Taking t < n ensures reliability, and otherwise, ensures
that multiple CSPs are required to recover user data.
Users can reconstruct the file using the shares from any
t CSPs.

• Scaling multiple users
To download files, users must know the locations of
the file’s shares. Thus, a separate metadata file for
each file stored on the cloud should be maintained;
when a user uploads a file, it records the share locations
in this metadata. The metadata is stored in a logical
tree at CSPs and users are simultaneously maintaining
local copies of the metadata tree for efficiency. Each
user can synchronize the local copies to track updated
share and file locations. The tree structure also allows
CYRUS to handle conflicting file updates. Users do
not lock a file while while modifying it. Instead users
can upload conflicting file versions as different nodes
on the metadata tree. The tree is then traversed to find
and resolve file conflicts.

• Optimizing cost and performance
CYRUS reduces users’ cost by limiting the amount of
data stored on CSPs. Before scattering a file, it is
divided into smaller discrete chunks. Unique chunks
are then divided into shares using secret sharing. The

Fig. 10 Mapping shares to CSPs.

shares are finally scattered to the CSPs (Fig. 10). Since
different files can use the same chunks, deduplication
reduces the total amount of data stored in CSPs, con-
serving storage capacity. Users can choose the number
of shares to upload in order to satisfy reliability and
privacy constraints (i.e., n and t for secret sharing).
Adjusting these parameters allows CYRUS to adapt to
changes in cloud conditions and user preferences. After
choosing n, users select the CSPs so that they do not
share a cloud platform, and this minimizes the latency
of shares’ downloading.

CYRUS is not the first to recognize the merit of the
“cloud of clouds” approach. DepSky [53] also controls mul-
tiple CSPs from the user, but it does not necessarily address
practical problems in large-scale deployment.

Other similar works integrate multiple CSPs using
proxy servers [54]–[58]. The proxy can scatter and gather
user data to and from multiple CSPs, providing transparent
access for users. Although the proxy server is a data sharing
point among multiple clients, allowing greater deduplication
efficiency, it is also a SPOF (single point of failure).

Cloud integration from users has been proposed in
[53], [59]–[62]. However, CYRUS provides a customiz-
able framework that sets reliability and privacy levels while
optimizing users’ admissible delays in accessing and storing
files.

4.4 CHARM

CHARM [65] is a system with a multi-cloud data-hosting
scheme, which selects several suitable clouds and an appro-
priate redundancy strategy to store data while minimizing
monetary costs and maximizing guaranteed availability. The
system also has a transition process to redistribute data ac-
cording to the variations of data access patterns and pricing
clouds.

Existing cloud services exhibit great heterogeneities in
terms of both working performance and pricing policies be-
cause they build their respective infrastructure and continu-
ally upgrade it with newly emerging gears. They also design
different architectures and apply various techniques to make
their services competitive. Such system diversity can be
observed across cloud vendors [66].

Due to numerous cloud vendors and their heterogeneous
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Fig. 11 Concept of CHARM using multi-cloud compared with single
cloud implementation.

performances or policies, customers must decide which
cloud(s) are suitable for storing their contents or data and
which hosting strategy is the most economical. If a customer
places his/her data into a single cloud and simply trusts to
luck, the so-called “vendor lock-in risk” may occur. The
vendor lock-in risk arises in the situation such as data migra-
tion to another cloud vendor due to price adjustments of the
employed cloud vendor, unexpected bankruptcy of the cloud
vendor, uncontrollable data unavailability, etc. Therefore,
multi-cloud data-hosting, which distributes data across mul-
tiple clouds to enhance redundancy and reduce the vendor
lock-in risk, has received wide attention recently.

The concept of a multi-cloud in CHARM is illustrated
in Fig. 11. The “proxy” component plays a key role by redi-
recting requests from client applications and coordinating
data distribution among multiple clouds. Figure 12 depicts
the proxy part in detail. There are main four components
in CHARM: Data Hosting, Storage Mode Switching (SMS),
Workload Statistic, and Predictor. Their functions are ex-
plained briefly below.

• Workload Statistic collects and tackles access logs to
guide the placement of data, and sends statistic infor-
mation to Predictor, which guides the action of SMS.

• Data Hosting stores data using replication or erasure
coding [67] according to the size and access frequency
of the data. To provide high availability and reliability
while introducing low storage overhead, erasure cod-
ing, which is based on the “Reed-Solomon code”, has
been widely applied to storage systems.

• Storage Mode Switching (SMS) decides whether the
storage mode for certain data should be changed from
replication to erasure coding or vice versa according to
the output of Predictor.

• Predictor predicts the future access frequency of
files. Numerous quality prediction algorithms ex-
ist. CHARM adopts the weighted moving average ap-
proach.

The prevalence of multi clouds can be explained in three
folds. First, a few researches have examined multi-cloud sys-
tems. DepSky [53] guarantees data availability and security
based on multiple clouds, allowing critical data (e.g., medical
and financial data) to be securely stored. RACS [54] deploys
erasure coding among different clouds in order to reduce the

Fig. 12 System architecture of CHARM (proxy part).

vender lock-in risk and monetary costs. Second, new types
of cloud vendors (e.g., DuraCloud [68] and Cloud Foundly
[69]) have emerged and rapidly grown to provide real ser-
vices based on multiple clouds. Third, new development
tools like Apache lib cloud [70] provide a unified interface
above different clouds, which facilitates migrating services
among clouds.

However, critical problems remain: (i) how to choose
appropriate clouds to minimize monetary costs in the pres-
ence of heterogeneous pricing policies, and (ii) how to meet
the specific availability requirements of different services.
CHARM tries to address these two problems.

Difference between CYRUS and CHARM

Although CYRUS and CHARM are both categorized
into Multi-cloud system, the former is mainly designed for
minimizing the latency in accessing and storing files as well
as providing customizable reliability and privacy levels to
the users, whereas the latter seems mainly to try to minimize
monetary costs.

4.5 FS2You

FS2You [63] is a peer-assisted semi-persistent online storage
system. Generally, P2P file sharing systems do not provide
guarantees on shared file availability, while server-based on-
line storage system can make such guarantees at the pro-
hibitive cost of server bandwidth and storage. The design
objective of FS2You is to achieve a reasonable and balanced
tradeoff between these extreme system models. Although
there is no clear description, the servers forming FS2You
(i.e., “online storage” stated in [63]) seem to be a cloud
system or something similar.

Figure 13 illustrates the hybrid system architecture of
FS2You. This system consists of four main components:
Directory Server, Tracking Server, Replication Server, and
Peers.

• Directory Server
A directory server keeps the information of all the files
or contents shared in this system, including the file IDs
and the hash values (each file ID is linked with the hash
value of the corresponding file).

• Tracking Server
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Fig. 13 System architecture of FS2You.

This server maintains the participating peers’ informa-
tion for each file.

• Replication Server
This server keeps contents shared in this system accord-
ing to the system’s server strategy.

• Peers
There are two types of peers in the system: (i) those
that upload files to servers (i.e., uploading peers) and
(ii) those that download files (i.e., downloading peers).

In Fig. 13, arrows (1), (2), and (3) represent the interac-
tion between a peer and servers for uploading new content.
Arrows (4), (5), and (6) represent the interaction between
peers and tracking server to maintain the overlay. Arrow (7)
represents the gossip communication and file block sharing
among peers. Arrows (8) and (9) represent a peer requesting
help from a replication server when it is difficult for the peer
to find or retrieve the necessary file from the other peers.

To upload a file, a peer computes the hash value of
the file and issues a request(s) to the directory server. The
directory server determines whether the file is new, and then
it redirects the file to one of the replication servers. Relevant
information is updated in the tracking server and the URL
for this file is generated for other peers to retrieve the file.

Each file is divided into fixed size blocks of 256 KB.
A Block Map (BM) is introduced to specify the availability
of blocks at each peer [64]. The periodic exchange of BMs
among peers enables them to locate the required blocks.
Each peer can retrieve distinct blocks from active partners
simultaneously.

One interesting point of this system’s file replication
strategy is that the system allows peers to be more actively
involved in exchanging popular file than the servers, and
it tries to allocate more server resources to unpopular files
stored in fewer peers. Generally, each file i in this system
is assigned a reference index Hi , which monitors the ratio
between uploaded file sizes and file access frequencies. The
reference index Hi is calculated per day as Hi = Si/Fi where
Si is the size of file i and Fi is its daily access frequency. In
FS2You, if Hi is low, the file is either small or popular, and
such files remain persistent in the servers. Files with higher
Hi are removed from the servers. To avoid excessive use

Fig. 14 System architecture of STACEE.

of server storage, large sized files can be stored only if they
have substantial user interests and popularity. This policy is
similar to the system described in 4.2.

4.6 STACEE

STACEE [71] is a storage cloud system using edge devices
provisioning their resources in P2P manner, thus this system
is categorized as both multi-cloud and P2P cloud simulta-
neously. The term “edge device” originates from telecom-
munications and refers to routers, routing switches, or multi-
plexers. However, in this system, it mainly means the devices
that are much closer to end users (e.g., mobile phones, PCs,
set-top-boxes, networked storage devices, etc.). Combining
all end-user edge devices may result in a scalable, very flexi-
ble storage capability that keeps data comparatively close to
the user, increasing availability, while reducing latency. This
system aims at Quality of Service (QoS)-aware scheduling
in a P2P storage cloud. It is built with edge devices by de-
signing an optimization scheme that minimizes energy from
a system perspective while simultaneously maximizing user
satisfaction from the individual user perspective. Figure 14
illustrates the system architecture.

In this system, multiple clouds exist, and each one incor-
porates edge devices for data storage. Edge devices access
the services being offered within the cloud through an en-
cryption layer. An edge device’s moving from a cloud to
another inside its boundary, allows dynamic cloud usage,
which can be realized on the edge devices themselves. This
also facilitates the integration of multiple clouds enabling
applications to not only run on a single cloud but on multiple
ones.

As shown in Fig. 14, each cloud consists of the follow-
ing main components:
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• Cloud Storage
This includes physical or virtualized storage.

• Cloud Platform
This component facilitates the deployment of applica-
tions in such way that costs and complexity of man-
agement the underlying hardware and software is re-
duced (i.e., application framework such as Ruby-on-
Rails, .Net Framework, Python Django, etc.).

• Cloud Services
This part comprehends the services needed to deliver
cloud storage over the Internet in real time (e.g., queuing
services).

• Cloud Infrastructure
This facilitates infrastructure as a service (IaaS)
by delivering virtualized platforms (e.g., Eucalyptus,
Hadoop, Nimbus [72], etc.).
This cloud network can be dynamically expanded by

the ad-hoc addition of further edge devices. Various search
strategies can be used to locate data (a number of approaches
exist within the P2P research literature to support data dis-
covery and query routing). A structured network topology
enables a quicker discovery than flooding-based approaches,
which may result in a longer discovery time and latency.

Because edge devices may join and leave an ad-hoc
network (i.e., P2P network integrated with the multi-cloud),
it is necessary to determine which request is processed on
which edge device. The level of commitment of the edge
devices (i.e., guaranteed uptime of the devices) may vary,
and therefore, has an impact on any discovery strategy being
supported.

A P2P cloud implementation also has many limitations.
(i) The system may be unstable if a high churn rate of peers
(i.e., peers join in or drop off from the network at a high
frequency) is likely. (ii) The stability of edge devices may
have significant variability (i.e., some devices may be very
stable, while others are very unstable). (iii) Device properties
may also vary significantly (e.g., energy demands of devices,
storage capacity, etc.). This system tries to overcome these
limitations.

Difference between FS2You and STACEE

FS2You and STACEE are both categorized into the
same sort of the systems with P2P and Multi-cloud, and their
system configurations and usages are also similar. However,
the former is mainly designed for the progress of shared
file availability with reasonable cost, whereas the latter is
designed for the improvement of QoS for content retrieval.
FS2You uses multiple clouds, to be sure, bu each cloud
plays a specific role of its own, and seems to be vertical role-
sharing, whereas the STACEE consists of some independent
cloud components standing in parallel.

4.7 Syndicate

Syndicate [50] is a wide-area storage system that abstracts a

Fig. 15 Application architecture with and without a syndicate.

coherent storage from already deployed commodity compo-
nents such as cloud storage, edge caches, and other dataset
providers. The uniqueness of this system is that it not
only offers consistent semantics across multiple providers of
datasets, but also supplies a flexible programming model to
applications, so they can define their own provider-agnostic
storage functionality. This means that Syndicate decou-
ples applications from providers, and allows appellations
to choose the providers based on how well they enhance
the data or the contents’ locality and durability, instead of
whether they provide the necessary features.

In general, contents or data providers offer two kinds
of utility benefits: data durability and access locality. Cloud
storage and dataset providers improve durability by repli-
cating contents or data to geographically distributed data
centers, while edge caching providers improve locality by
placing temporary replicas of contents or data at sites closer
to users who consume them than the original contents servers
(i.e., lowering contents retrieval latency and increasing band-
width).

Utility benefits can be aggregated. Generally, multiple
providers yield more utility than a single one, and improve-
ments to one provider enhance the system’s overall utility.
However, making such improvements is non-trivial because
each provider has a different API with unique functional
semantics in the application design of the conventional dis-
tributed contents or data sharing systems. The system devel-
opers must design the application with coupling its storage
logic to provider implementations (Fig. 15 left).

The main idea of Syndicate is to avoid this coupling and
to be wide-area software-defined storage service that runs
on top of the unmodified contents or data providers (Fig. 15
right). It provides an extensible interface for implementing
domain-specific storage functionality in a provider-agnostic
way, while automatically addressing common cross-provider
consistency, security, and fault-tolerance requirements. Us-
ing Syndicate lets system developers create a storage service
for their applications with an aggregated utility of multi-
ple underlying providers without having to build and deploy
a whole storage service from the ground up. Therefore,
Syndicate offers virtual cloud storage through provider com-
position (Fig. 16).

Syndicate must distinguish among the application’s data
records in order to apply domain-specific storage function-
ality. Additionally, it must allow the application to structure
and search its data records efficiently in a way that is not cou-
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Fig. 16 System architecture of syndicate.

pled with the underlying provider’s semantics. To achieve
this, Syndicate defines three kinds of data abstractions: ob-
jects, directories, and Volumes.

Objects store record data or contents, as well as meta-
data to control the storage functionality. They are organized
hierarchically by directories, which realizes efficient organi-
zation and searchability by application. A Volume binds a
rooted tree of directories to a set of providers and a set of
principals (a Volume’s owner etc.). Within a Volume, object
data can be distributed across one or more providers, and
accessed by one or more principals.

To provide these abstractions to applications, Syndicate
provides Syndicate Gateways (SGs) and Metadata Services
(MSs). SGs have three variants based on how it interfaces
with external providers:

• User SG
Interfaces with edge caches for an application endpoint

• Replica SG
Interfaces with cloud storage providers

• Acquisition SG
Interfaces with dataset providers

MSs help SGs coordinate globally. They maintain the
authoritative state of each Volume’s metadata. Additionally,
they help the system scale, tolerate faults, and maintain con-
sistent data. A MS binds each SG to one Volume, and helps
SGs discover their peer SGs.

In a typical deployment, an application uses one MS,
and places data in objects distributed across one or more
Volumes. Application endpoints run User SGs locally to
access Volume data, and the developer provisions other SGs
to attach cloud storage and external datasets.

4.8 CS-P2P Streaming Cloud

Trajkovska et al. proposed a multimedia streaming cloud
using a hybrid structure of a client-server (CS) and a P2P
network [73]. In this system, servers on clouds are connected
to clients and working as a CS system. Simultaneously peers
are connected to the clients as a P2P network. All work
together as one system in both a centralized and a distributed

Fig. 17 System architecture of CS-P2P streaming cloud.

manner. To take advantage of the cloud paradigm and make
multimedia streaming more efficient, APIs are introduced in
the cloud. The APIs contain a built-in function for automatic
QoS calculations, allowing the QoS parameters such as band
width, jitter, and latency, to be negotiated among a cloud
service provider and its potential clients.

Before this research, Fouquet et al. proposed a P2P-
based distributed application-layer multicast scheme for a
video streaming tree [74]. In this scheme, a distribution tree
topology is formed in the network, and some nodes play
the roles of relay servers and controlling peers. They also
discussed its integration with the cloud (i.e., they suggested
that the important nodes should be replaced with clouds to
stabilize the system). However, latency and the bandwidth
issue were not sufficiently discussed.

Trajkovska et al., seemed to be inspired by the Fou-
quet’s research, and think that the cloud paradigm is the key
for bringing back the CS topology in multimedia communi-
cations. Expanding the cloud paradigm for P2P streaming
support could benefit both cloud service providers and end
users.

Figure 17 illustrates a general view of of the proposed
architecture containing multimedia streaming servers. This
system contains some streaming service levels. The First
level clients are directly connected to the server. Similarly,
higher level clients are defined. When a first class client
logs in, it consults a Web server with API and chooses one
among the three types of price packets (e.g., Gold, Silver
and Bronze). Then, it initiates a contract directly with the
provider of the service for desired streaming quality.

Similarly, higher level clients consult the API functions
and obtain an information list with the QoS status for all
connected clients and then determine which client to con-
nect. By doing this, they agree on a lower streaming quality
(determined according to the price model for higher level
customers) and make a contract with a first or higher level
customer instead of the provider. In addition, it is possible
for peers to connect to higher level clients who offer their ser-
vice for free. In this way, the streaming topology is organized
in a tree based manner.
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The service provider has direct centralized management
for the contract politics among all types of customers. It also
controls the streaming and the stored content on the server
with the possibility of creating a contract with an external
server for single or short-term streaming. This may cause
growth in the viewing demands.

Such cooperation with the service provider acting as
a mediator among third party servers and its own clients
contributes to business as more streaming contents become
available. The owner of an external streaming server profits
from the cooperation with a cloud service provider. Addi-
tionally, this system offers a stable service that relies on a
scalable cloud computing platform offering a higher band-
width, lower latency, better load balancing, scalability, and
robustness.

5. Overview, Discussion and Future Directions

This paper illustrates various content sharing systems that
take advantage of cloud storage and cloud computing tech-
nologies as well as related conventional basic concepts and
technologies supporting content sharing.

First, we highlight some basic concepts of modern com-
puter systems in Sect. 2. We tracked the functional link-
ages among them from a client-server through shared stor-
age/distributed file system, P2P, grid computing, and P2P
grid to reach cloud computing and object storage. In addi-
tion, their relationships are discussed. If the client-server
system is the standard, then the other systems can be consid-
ered as derivatives. Although this notion is not necessarily
correct in terms of the development history or evolution pro-
cess, we show a perspective of the relationships and func-
tional linkages among major concepts in modern computer
systems. Each of which is an important concept to reach
the height of today’s various cloud-based content sharing
systems.

Second, based on the above mentioned basic technolo-
gies, we illustrate the taxonomy of cloud systems, which are
especially useful for contents sharing in terms of cloud in-
teroperability. We discuss federated clouds, hybrid clouds,
multi-clouds, and aggregated service by broker in Sect. 3.
The former two models are categorized into provider-centric,
while latter two are considered client-centric scenarios. Mo-
tivations for interoperability can be easily presented such
as scalability, vendor lock-in avoidance, low latency, cost
efficiency, etc.

If a cloud-based system needs to enlarge its scale of
service, a scale-out strategy rather than scale-up is used in
general regardless of its system model as well as type of cloud
interoperability, because cloud is better suited for horizontal
distribution for the case of its function enhancement, and
can scale out efficiently with improving cost-performance
ratio. One of the cloud system’s major horizontal scale-out
approaches is interoperation of multiple clouds.

Generally in the interoperation of multiple clouds, the
system can avoid the problem of idle capacity (where the
cloud’s resources are not fully utilized all the time) and

the problem of peaks in demand (where the cloud is over-
loaded for a certain period) by sharing the resources with
other clouds, which also reduces the system’s total operation
costs. In the provider-centric scenario, operations running
in a cloud can be migrated to another cloud. This is a clear
accommodation method, and achieves maximum system ca-
pability with minimum resources.

In principle, operation migration may be available in
any cloud system model. However, it seems to be difficult
to migrate processes from one cloud to another in client-
centric scenarios because each cloud is clearly separated and
the processes should migrate through SP, user, or broker’s
area. Even if different communication channels among the
clouds can be used, the SP or broker should give all the
directions for the migration. In the model of hybrid cloud
mentioned in 3.2, which is categorized as a provider-centric
scenario, a private cloud with the initiative of a service can
realize a migration operation positively.

When the multiple clouds interoperation is expanded
geographically, it can use the electricity of the cheapest price
by taking advantage of time-zone differences. Additionally,
if the cloud’s datacenter can be allocated in a cold weather
region, the cooling power can be reduced. Then the sys-
tem expansion due to the cloud interoperation can reduce
costs regardless of the system model. Similarly, this kind
of geographical expansion is also useful for a low latency of
service. If data centers scattered around the world, it is not
difficult for the CP to satisfy the QoS (Quality of Service) of
geographically dispersed service customers.

The problem of vender lock-in is serious for cloud users.
This problem is recognized from the users or the SPs’ side.
It is difficult for either to resolve it independently, especially
in systems categorized as provider-centric scenario, because
cloud services are provided under the initiative of CPs, which
tend to take priority of the “terms of use” in the scenario. A
multiple cloud system of client-centric scenarios, in which
a customer (i.e., an SP or a user) can individually utilizes
each cloud depending on the situation similar to CHARM
(mentioned in 4.4), must be adopted to avoid the vendor
lock-in problem.

Third, we introduce some practical cloud-based sys-
tems, which can be used for contents sharing such as Triton,
Syndicate, CYRUS, FS2You, CHARM, STACEE, CS-P2P
Streaming Cloud and P2P-Cloud Hybrid for Utility Based
Contents Sharing. Each can be classified into one, or several
of the above-mentioned categories of system models. All
these systems can be complicated, but they have interesting
functions.

According to Celesti et al., the evolution of cloud com-
puting can be hypothesized in three sequential phases: mono-
lithic, vertical supply chain, and horizontal federation [43].
In the monolithic stage, cloud providers are based on their
proprietary architectures that create islands of cloud. In the
vertical supply chain stage, some cloud providers leverage
services from other provider, e.g., a SaaS provider deploys
services of an IaaS provider as its own to serve its customers.
In horizontal federation, different sized cloud providers fed-
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erate themselves to gain benefits of a cloud federation, e.g., a
fully utilized IaaS provider may use resources in an underuti-
lized provider to accommodate more VM (Virtual Machine)
requests.

Most of the cloud-based systems picked up in this sur-
vey have the architecture of multi-cloud. Although multi-
cloud system seems to be included in the horizontal federa-
tion in the general meaning, if the hypothesis noted above is
true, cutting-edge cloud based content sharing systems have
already reached the final stage that Celesti et al. mentioned.

As a future direction, it is important that cloud-based
content sharing is fused with systems or technologies based
on the content- (or information-) centric paradigm [78] as
well as with systems based on the conventional end-to-end
(i.e., host-centric) paradigm. There are numerous expec-
tations for the advancement of cloud computing in many
fields, however from the viewpoint of content sharing, it
must be valuable for the clouds to keep on playing a major
role to provide users the above mentioned three-step process:
publication, user discovery, and user delivery in any circum-
stances. If clouds cache huge and unpopular content items,
which are not suitable for caching in the network, content
exchange over the Internet may be more affluent and rich,
taking advantage of content-centric paradigm. We believe a
great potential of cloud-based content sharing systems which
continue to provide significant benefits to the network users
even in the future.
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