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INVITED SURVEY PAPER
Nonlinear Shannon Limit in Optical Fiber Transmission System

Akihiro MARUTA†a), Senior Member

SUMMARY The remaining issues in optical transmission technology
are the degradation of optical signal to noise power ratio due to amplifier
noise and the distortions due to optical nonlinear effects in a fiber. Therefore
in addition to the Shannon limit, practical channel capacity is believed to
be restricted by the nonlinear Shannon limit. The nonlinear Shannon limit
has been derived under the assumption that the received signal points on
the constellation map deviated by optical amplifier noise and nonlinear
interference noise are symmetrically distributed around the ideal signal
point and the sum of the noises are regarded as white Gaussian noise. The
nonlinear Shannon limit is considered as a kind of theoretical limitation.
However it is doubtful that its derivation process and applicable range have
been understood well. In this paper, some fundamental papers on the
nonlinear Shannon limit are reviewed to better understanding its meaning
and applicable range.
key words: optical fiber communication, nonlinear Shannon limit, Gaus-
sian noise model, four wave mixing

1. Introduction

The Shannon limit [1] which represents the theoretical up-
per limit of the channel capacity is the most important and
most famous expression in communication engineering. The
spectral efficiency C/W [bit/s/Hz] is defined as the channel
capacity C [bit/s] per unit bandwidth under the influence of
white Gaussian noise. The expression of the Shannon limit
is given by

C
W
= log2 (1 + SNR) , (1)

where SNR is the signal-to-noise ratio andW [Hz] represents
the bandwidth.

The information is transmitted by modulating ampli-
tude, frequency and/or phase of lightwave following the
temporal variation of information data in optical fiber com-
munication system. In conventional systems, binary digital
transmission is carried out by assigning the binary data, ‘0’
and ‘1’, to the status that the light is on and off, respectively.
Recently, research and development on multi-level optical
transmission in which amplitude and phase of lightwave are
modulated have been actively carried out and their practical
implementation has already begun [2] by the development of
coherent optical communication technology [3], [4]. Optical
transmission technologies, which can overcome fiber loss by
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optical amplification and overcome linear distortions due to
group velocity dispersion and polarization mode dispersion
by coherent detection assisted by digital signal processing,
have remaining problems caused by the degradation of op-
tical signal-to-noise power ratio (OSNR) and the distortions
due to optical nonlinear effects in a fiber. Therefore in ad-
dition to the Shannon limit, practical channel capacity is
believed to be limited by nonlinear Shannon limit [5]–[17].
The nonlinear Shannon limit has been derived under the as-
sumption that the received signal points on the constellation
map deviated by optical amplifier noise and nonlinear in-
terference noise is assumed to be symmetrically distributed
around the ideal signal point and the sum of the noises are
regarded as white Gaussian noise. The nonlinear Shannon
limit is considered as a kind of theoretical limitation. How-
ever it is doubtful that its derivation process and applicable
range have been understood well.

In this paper, some fundamental papers [5]–[8] on the
nonlinear Shannon limit are reviewed to better understand-
ing its meanings and applicable range. In Sect. 2, we derive
a model equation which describes a behavior of lightwave
propagation in a fiber. In Sect. 3, the deductive derivation of
the nonlinear Shannon limit starting from the model equa-
tion is presented. In Sect. 4, the application of the derived
expressions to a practical system evaluation and design are
discussed. Finally, Sect. 5 is devoted to conclude the discus-
sion.

2. Lightwave Propagation in a Fiber

A model equation which describes lightwave propagation in
a fiber is reviewed in this section [18].

2.1 Lightwave Propagation in a Linear Fiber

We consider an electric field of a linearly polarized (LP)
mode propagating in a singlemode fiber which can be treated
with weakly guiding approximation. By setting the z-axis to
the fiber axis, we assume that the electric field E (r⊥, z, t) of
lightwave in a fiber can be expressed as

E (r⊥, z, t)
= i Re[E(z, t) φ(r⊥) exp{i(ω0t − β0z)}], (2)

where Re[∗] represents the real part of [∗]. r⊥ is the co-
ordinate on the fiber’s cross section which is perpendicular
to the z-axis. t [s] expresses the time. i represents a unit
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vector towards the direction of polarization, i.e., the direc-
tion of the electric field, and it is perpendicular to the z-axis.
E(z, t) expresses a complex amplitude of the envelope of
the electric field and its absolute value represents the pulse
shape. φ(r⊥) represents the modal function of the funda-
mental mode (LP01 mode). i =

√
−1 is the imaginary unit.

ω0 [rad/s] represents the angular frequency of the carrier.
β0 [rad/m] represents the propagation constant of the funda-
mental mode at ω0.

Next, we calculate the Fourier transform of the opti-
cal pulse, E(z, t), with respect to the time t. The Fourier
transformation is defined by

Ê(z,∆ω) =
1
√

2π

∫ ∞

−∞

E(z, t) exp(i∆ωt) dt . (3)

Equation (3) represents that the temporary localized optical
pulse has finite width spectrum. By setting the frequency
spectrum of the optical pulse at the input of the fiber as
Ê(0,∆ω), the frequency spectrum of the pulse, Ê(L,∆ω)
observed after propagation of the distance L in a linear fiber,
the propagation constant of which is given by β(ω), can be
calculated as

Ê(L,∆ω) = exp[i∆β(∆ω)L] Ê(0,∆ω) , (4)

where∆β(∆ω) = β(ω) − β0. The inverse Fourier transform
of Eq. (3) is given by

E(z, t) =
1
√

2π

∫ ∞

−∞

Ê(z,∆ω)

× exp(−i∆ωt) d(∆ω) .
(5)

Then the optical pulse observed at the output of the fiber
(z = L) can be calculated by substituting Eq. (4) into Eq. (5).

E(L, t) =
1
√

2π

∫ ∞

−∞

Ê(0,∆ω)

× exp{−i(∆ωt − ∆βL)} d(∆ω) .
(6)

When ∆β is an arbitrary function of ∆ω, analytical integra-
tion of Eq. (6) is difficult. By applying Taylor expansion to
the propagation constant β(ω) which is a function of angular
frequency ω, around the carrier frequency ω0, we have

β(ω) = β0 +
dβ
dω

�����ω=ω0

(ω − ω0)

+
1
2

d2 β

dω2

�����ω=ω0

(ω − ω0)2

+
1
6

d3 β

dω3

�����ω=ω0

(ω − ω0)3 + · · · .

(7)

Then

∆β(∆ω) = β(1)
0 (∆ω) +

1
2
β(2)

0 (∆ω)2

+
1
6
β(3)

0 (∆ω)3 + · · · ,
(8)

where

β(m)
0 =

dm β

dωm

�����ω=ω0

, (m = 1, 2, · · · ) . (9)

The necessary number of expansion terms in Eq. (8) to ap-
proximate ∆β is dependent on the pulse width at the input of
the fiber. Namely, since the bandwidth is wider for narrower
pulse width, higher order term needs to be considered.

The dispersion parameter D [s/m2] and the dispersion
slope Dλ [s/m3] are frequently used to characterize a fiber.
We here show the relation between D, Dλ and β(2)

0 [s2/m],
β(3)

0 [s3/m]. D is defined by the differentiation of β(1) with
respect to the wavelength λ.

D ≡
dβ(1)

dλ

�����ω=ω0

=
d

dλ

(
dβ
dω

) �����ω=ω0

=
dω
dλ

d
dω

(
dβ
dω

) �����ω=ω0

=
dω
dλ

β(2)
0 .

(10)

The relation between the angular frequency ω and the wave-
length λ is

ω =
2πc
λ

, (11)

where c represents the light speed in vacuum. Then the fol-
lowing equation can be derived by differentiating the above
equation with respect to λ as

dω
dλ
= −

2πc
λ2 . (12)

By substituting Eq. (12) into Eq. (10), we obtain

D = −
2πc
λ2 β(2)

0 . (13)

Dλ is defined by the differentiation of D with respect to λ as

Dλ ≡
dD
dλ

�����ω=ω0

= −2πc
d

dλ

(
β(2)

λ2

) �����ω=ω0

= −2πc *
,
−2

β(2)
0
λ3 +

1
λ2

dβ(2)

dλ

�����ω=ω0

+
-

=
4πc
λ3 β(2)

0 −
2πc
λ2

dω
dλ

d
dω

(
d2 β

dω2

) �����ω=ω0

=
4πc
λ3 β(2)

0 +

(
2πc
λ2

)2
β(3)

0

= −
2D
λ
+

(
2πc
λ2

)2
β(3)

0 . (14)

2.2 Nonlinear Effect in a Fiber

Light propagating in a fiber is confined in a core which has
higher refractive index than claddings and which diameter
is µm-order, then the intensity of the electric field is locally
high and the nonlinear polarization could not be ignored.
Since the fiber loss is small and the light can propagate for
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long distance with preserving its high intensity, the nonlin-
ear optical effects are accumulated along the fiber and then
obviously exhibited. In this subsection, the nonlinear optical
effects in a fiber are briefly explained.

We expand the polarization vector P of the medium by
the electric field E by power series as

P = ε0(χ(1) · E + χ(2) : EE

+χ(3) ...EEE + · · · ) ,
(15)

where ε0 is the permittivity in vacuum, χ(1) is a linear sus-
ceptibility tensor (2nd-order tensor), χ( j) ( j ≥ 2) is a j-th or-
der nonlinear susceptibility tensor (( j + 1)-th order tensor).
Equation (15) shows that the polarization is proportional to
the electric field and the medium can be considered as linear
for weak intensity case, the nonlinear polarization can not
be ignored and the nonlinear optical effects are exhibited for
strong intensity case. Optical fiber is made from amorphous
silica glass. Since the glass is not a crystal without noncen-
trosymmetry, it does not exhibit the second-order nonlinear
optical effect induced by χ(2) in general. The third-order
nonlinear optical effect induced by χ(3) is then the lowest-
order effect.

Let us consider the nonlinear refractive index variation
∆nNL in which the index is changed with proportional to the
intensity of electric field due to optical Kerr effect in one of
the third-order effects.

The variation of fiber’s propagation constant β, namely
∆β, arising from the third-order effect is proportional to∆nNL

such like

∆β = k0∆nNL , (16)

where k0 = 2π/λ is the wave number in vacuum. The trans-
mitted power through a fiber, P [W] can be calculated using
Eq. (2) as

P(z, t) =
∫
S

iz · (E × H ) dS

=
β0cε0
2k0

|E(z, t) |2
∫
S

|φ(r⊥) |2 dS ,
(17)

where iz is a unit vector along the fiber axis, H is the mag-

netic field, and
∫
S

dS represents the surface integration over

the fiber’s cross section. By defining

E ′(z, t) ≡

√
β0cε0
2k0

∫
S

|φ(r⊥) |2 dS E(z, t) , (18)

based on Eq. (17), the unit of |E ′(z, t) |2 results in [W] and
then Eq. (16) can be rewritten as

∆β = γ |E ′ |2E ′ . (19)

Here, γ [1/(m ·W)] is the nonlinear coefficient of optical
fiber and can be represented as

γ = k0
n2
Aeff

, (20)

by using nonlinear refractive index n2 [m2/W] and effective
area of core Aeff [m2]. Aeff is defined by

Aeff =

(∫
S

|φ(r⊥) |2 dS
)2

∫
S

|φ(r⊥) |4 dS
. (21)

2.3 The Model Equation of Optical Pulse Propagation in a
Fiber

In this subsection, we derive an equation that describes the
optical pulse propagation in a fiber in which both of disper-
sion and nonlinear effects are considered. Firstly, we focus
on the dispersion effect. We define the Fourier transform of
the complex amplitude of the envelope of the electric field
E(z, t) by

Ẽ(∆β,∆ω) ≡
1

2π

∫ ∞

−∞

∫ ∞

−∞

E(z, t)

× exp{i(∆ωt − ∆βz)} dt dz ,
(22)

then we have

1
2π

∫ ∞

−∞

∫ ∞

−∞

∂mE(z, t)
∂tm

× exp{i(∆ωt − ∆βz)} dt dz = (−i∆ω)mẼ,
(23)

1
2π

∫ ∞

−∞

∫ ∞

−∞

∂mE(z, t)
∂zm

× exp{i(∆ωt − ∆βz)} dt dz = (i∆β)mẼ .
(24)

By multiplying Ẽ(∆β,∆ω) to Eq. (8), we obtain

∆βẼ = β(1)
0 (∆ω)Ẽ +

1
2
β(2)

0 (∆ω)2Ẽ

+
1
6
β(3)

0 (∆ω)3Ẽ + · · · .
(25)

By applying the inverse Fourier transform to Eq. (25) with
considering Eqs. (23) and (24), we have

−i
∂E
∂z

= i β(1)
0
∂E
∂t
−
β(2)

0
2

∂2E
∂t2

−i
β(3)

0
6

∂3E
∂t3 + · · · .

(26)

Hereafter, higher order dispersion terms than the fourth order
are omitted. Since Eq. (26) is a linear equation, the replace-
ment from E(z, t) to E ′(z, t) defined by Eq. (18) does not
change the form of equation. Next, considering the change
of ∆β due to the nonlinear effect shown in Eq. (19) and
adding it to the right hand side of Eq. (26), we obtain

−i
∂E ′

∂z
= i β(1)

0
∂E ′

∂t
−
β(2)

0
2

∂2E ′

∂t2

−i
β(3)

0
6

∂3E ′

∂t3 + γ |E
′ |2E ′ .

(27)
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By adding the fiber loss term to Eq. (27), we have

i
(
∂E ′

∂z
+ β(1)

0
∂E ′

∂t

)
−
β(2)

0
2

∂2E ′

∂t2

−i
β(3)

0
6

∂3E ′

∂t3 + γ |E
′ |2E ′ = −iαE ′ ,

(28)

where the loss coefficient α [1/m] can be represented by

α =
loge 10

20
α̂ , (29)

with using α̂ [dB/m]. Equation (28) represents an equa-
tion which describes a lightwave propagation in an opti-
cal fiber exhibiting the dispersion up to the third-order and
the nonlinear change of refractive index. Note here that
we should care about the applicable range of Eq. (28) un-
der the assumption of single mode, single polarization, and
quasi-monochromatic approximationwhenEq. (28) has been
derived. The quasi-monochromatic approximation means
that the full width at half maximum of optical spectrum,
(∆ f )FWHM, is much smaller than the carrier frequency, f0.
From Eqs. (13) and (14), β(2)

0 and β(3)
0 can be represented by

using dispersion parameter D and dispersion slope Dλ as,

β(2)
0 = −

λ2

2πc
D , (30)

β(3)
0 =

λ3

(2πc)2 (λDλ + 2D) . (31)

Especially, when β(2)
0 is not zero and the single channel

optical pulse propagation in which pulse width is wider than
a few picoseconds is considered, we can regard β(3)

0 ∼ 0
and then the third order dispersion term can be omitted in
Eq. (28).

3. Gaussian Noise Model of Nonlinear Interference
Light in Dispersion Uncompensated Optical Trans-
mission Line

A method to evaluate the influence to the transmission char-
acteristics arising from the nonlinear optical effect in in-line
dispersion uncompensated optical transmission line with us-
ing dispersion compensation by digital coherent transceiver,
so-called the Gaussian noise model of nonlinear interference
light is reviewed [5]–[8].

3.1 Bit Error Rate of Digital Modulation Schemes

In digital modulation/demodulation theory, the bit error rate
(BER) can be given by a function of the (electrical) SNR
[19].

BER = f (SNR) . (32)

Definite form of a function f can be determined for each
modulation/demodulation scheme. The SNR is defined as
a ratio of averaged signal power Pch and noise power of

amplified spontaneous emission (ASE) PASE, and given by

SNR =
Pch

PASE

, (33)

where the averaged signal power Pch can be obtained by

Pch =
PRx

Rs

∫ ∞

−∞

|HRx (∆ω) |2 d(∆ω) . (34)

Here, PRx is the received optical power per channel and
Rs represents the symbol rate of the transmitted signal.
HRx (∆ω) is the baseband transfer function of the coher-
ent receiver. The ASE noise power PASE can be obtained
by

PASE =

∫ ∞

−∞

GASE |HRx (∆ω) |2 d(∆ω) , (35)

where GASE is a power spectral density (PSD) of a single
polarization component in dual polarized ASE noise which
is received at the receiver.
The relation between SNR and OSNR is given by

OSNR =
Rs

Bn
SNR , (36)

where Bn is the OSNR bandwidth.
We assume a nonlinear interference (NLI) noise can

be regarded as a Gaussian noise which is independent of
ASE noise, then using the NLI noise power PNLI, the SNR
including the NLI noise can be represented as

SNRNL =
Pch

PASE + PNLI

, (37)

where

PNLI =

∫ ∞

−∞

GNLI(∆ω) |HRx (∆ω) |2 d(∆ω) . (38)

Here, GNLI(∆ω) is the PSD of the NLI noise. The relation
between SNRNL and OSNRNL is then

OSNRNL =
Rs

Bn
SNRNL . (39)

3.2 Gaussian Noise Approximation of Transmitted Optical
Signal

3.2.1 Complex Periodic White Gaussian Noise Process

A transmitted optical signal is modelled by a complex peri-
odic white Gaussian noise (PWGN) process with the period
of T0. It is expressed with Karhunen-Loeve expansion as

EPWGN(t) =
1
√

T0

∞∑
n=−∞

ξn exp(−inΩ0t) , (40)

where Ω0 = 2π/T0. ξn is a random variable with the mean
value of 0 and the dispersion ofσ2

a = 1. By applying Fourier
transform to Eq. (40), we have
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ÊPWGN(∆ω)

=
1
√

2π

∫ ∞

−∞

EPWGN(t) exp(i∆ωt) dt

=

√
Ω0

2π

∞∑
n=−∞

ξn

∫ ∞

−∞

exp{i(∆ω − nΩ0)t} dt

=
√
Ω0

∞∑
n=−∞

ξn δ(∆ω − nΩ0) ,

(41)

where δ(ω) is Dirac’s delta function. Then the PSD for the
PWGN is given by

ĜPWGN(∆ω) = 〈|ÊPWGN(∆ω) |2〉

= Ω0

∞∑
m=−∞

∞∑
n=−∞

〈ξmξn〉δ(∆ω − mΩ0) δ(∆ω − nΩ0)

= Ω0

∞∑
m=−∞

∞∑
n=−∞

σ2
a δnmδ(∆ω − mΩ0) δ(∆ω − nΩ0)

= Ω0

∞∑
n=−∞

δ(∆ω − nΩ0) ,

(42)

where 〈∗〉 represents the average and δnm is Kronecker delta.

3.2.2 Gaussian Noise Approximation of Transmitted Opti-
cal Signal

We show how to apply the Gaussian noise approximation to
a transmitted optical signal Ea (t). Ea (t) is assumed as a
periodic function with the period of T0 as

Ea (t) = q(t) for 0 ≤ t < T0 . (43)

M pulses in which each temporal waveform is represented by
s(t) are allocated with the symbol period of Ts in 0 ≤ t < T0
and their amplitudes and/or phases are modulated by infor-
mation data. q(t) can be then represented as

q(t) =
M−1∑
m=0

am s(t − mTs) . (44)

Here, T0 = MTs and am is a complex number which repre-
sents the modulated amplitude and/or phase.

Next, let us calculate the Fourier transform of Ea (t),
i.e., Êa (∆ω). Since Ea (t) is a periodic function with the
period of T0, it can be represented with the Fourier series
expansion.

Ea (t) =
∞∑

n=−∞

qn exp(−inΩ0t) , (45)

where

qn =
1
T0

∫ T0

0
q(t) exp(inΩ0t) dt . (46)

By applying the Fourier transform to Eq. (45), we have

Êa (∆ω) =
1
√

2π

∫ ∞

−∞

Ea (t) exp(i∆ωt) dt

=
1
√

2π

∞∑
n=−∞

qn

∫ ∞

−∞

exp{i(∆ω − nΩ0)t} dt

=
√

2π
∞∑

n=−∞

qn δ(∆ω − nΩ0) .

(47)

By substituting Eq. (44) into Eq. (46), we obtain

qn =
1
T0

M−1∑
m=0

am

∫ T0

0
s(t − mTs) exp(inΩ0t) dt

=
1
T0

M−1∑
m=0

am exp(inΩ0mTs)

×

∫ T0−mTs

−mTs

s(τ) exp(inΩ0τ) dτ . (48)

Here, we assume

ŝ(nΩ0) =
1
√

2π

∫ T0−mTs

−mTs

s(τ) exp(inΩ0τ) dτ

'
1
√

2π

∫ ∞

−∞

s(τ) exp(inΩ0τ) dτ , (49)

and use Ω0 = 2π/T0 and Ts = T0/M , Eq. (48) can be repre-
sented as

qn =

√
2π

T0
ŝ(nΩ0)

M−1∑
m=0

am exp
(
i2πn

m
M

)
. (50)

By substituting Eq. (50) into Eq. (47), we have

Êa (∆ω) = Ω0

∞∑
n=−∞

ŝ(nΩ0) δ(∆ω − nΩ0)

×

M−1∑
m=0

am exp
(
i2πn

m
M

)
.

(51)

Considering the property of Dirac’s delta func-
tion, ŝ(nΩ0) δ(∆ω − nΩ0) can be replaced by ŝ(∆ω)
δ(∆ω − nΩ0) in Eq. (51). Therefore,

Êa (∆ω) = Ω0 ŝ(∆ω)
∞∑

n=−∞

δ(∆ω − nΩ0)

×

M−1∑
m=0

am exp
(
i2πn

m
M

)
.

(52)

Furthermore, we assume

ŝ(∆ω) = | ŝ(∆ω) | exp{iϕs (∆ω)} , (53)

and rewrite Eq. (52) as

Êa (∆ω) =
√
Ω0 | ŝ(∆ω) |

×

∞∑
n=−∞

ζn δ(∆ω − nΩ0) .
(54)

Here, ζn is a random variable defined by
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ζn =
√
Ω0

M−1∑
m=0

am

× exp
[
i
{
2πn

m
M
+ ϕs (nΩ0)

}]
. (55)

By calculating the average value of ζnζ∗` , we have

〈ζnζ
∗
` 〉 = Ω0

〈M−1∑
m1=0

am1 exp
[
i
{
2πn

m1
M
+ ϕs (nΩ0)

}]

×

M−1∑
m2=0

a∗m2 exp
[
−i

{
2π`

m2
M
+ ϕs (`Ω0)

}]〉
= Ω0 exp[i{ϕs (nΩ0) − ϕs (`Ω0)}]

×

M−1∑
m1=0

M−1∑
m2=0
〈am1 a∗m2〉 exp

(
i2π

nm1 − `m2
M

)
= Ω0 σ

2
a exp[i{ϕs (nΩ0) − ϕs (`Ω0)}]

×

M−1∑
m1=0

M−1∑
m2=0

δm1m2 exp
(
i2π

nm1 − `m2
M

)
= Ω0 σ

2
a exp[i{ϕs (nΩ0) − ϕs (`Ω0)}]

×

M−1∑
m=0

exp
{
i2π(n − `)

m
M

}
, (56)

where σ2
a is a variance of the Gaussian variable of ζn, and

M−1∑
m=0

exp
{
i2π(n − `)

m
M

}

=

{
0 if n , ` and (n − `) , k M ,
M if (n − `) = pM .

(57)

3.2.3 Model of Transmitted Optical Signal

Based on the discussions in Sects. 3.2.1 and 3.2.2, using
Eq. (41), the transmitted optical signal approximated by the
Gaussian noise model is represented by

ÊGN(∆ω) =
√

GTx (∆ω)ÊPWGN(∆ω)

=

√
GTx (∆ω)

√
Ω0

∞∑
n=−∞

ξn δ(∆ω − nΩ0)

=
√
Ω0

∞∑
n=−∞

ξn

√
GTx (nΩ0) δ(∆ω − nΩ0)

=

∞∑
n=−∞

Ên(0) δ(∆ω − nΩ0) ,

(58)

where

Ên(0) = ξn
√
Ω0 GTx (nΩ0) . (59)

Here, GTx (∆ω) represents the envelope of modulated spec-
trum of each channel in the transmitter. Then the PSD of the
transmitted signal is given by

ĜGN(∆ω) = 〈|ÊGN(∆ω) |2〉

= Ω0 GTx (∆ω)
∞∑

m=−∞

∞∑
n=−∞

〈ξm ξ∗n〉

×δ(∆ω − mΩ0) δ(∆ω − nΩ0)

= Ω0 GTx (∆ω)
∞∑

m=−∞

∞∑
n=−∞

δmn σ
2
a

×δ(∆ω − mΩ0) δ(∆ω − nΩ0)

= Ω0 GTx (∆ω)
∞∑

n=−∞

δ(∆ω − nΩ0) .

(60)

Next, the inverse Fourier transform of Eq. (58) leads

EGN(t) =
1
√

2π

∫ ∞

−∞

ÊGN(∆ω) exp(−i∆ωt) d(∆ω)

=

∞∑
n=−∞

Ên(0)
√

2π

∫ ∞

−∞

δ(∆ω − nΩ0)

× exp(−i∆ωt) d(∆ω)

=

∞∑
n=−∞

Ên(0)
√

2π
exp(−inΩ0t) . (61)

Using the input waveform to the transmission line shown in
Eq. (61), let us calculate the electric field after propagating
through the transmission line in the next subsections.

3.3 Nonlinear Interference Noise Generated by Four Wave
Mixing

3.3.1 Non-degenerate Four Wave Mixing Model

For the simplicity, by picking up 4 different frequency con-
tinuous lights in the discrete spectrum shown in Eq. (61) and
considering those lights propagation in a fiber, we set E(z, t)
as

E(z, t) =
4∑

k=1

Êk (z)
√

2π
exp(−i∆ωk t) , (62)

where ∆ωk (k = 1, 2, 3, 4) is the difference between the an-
gular frequency ωk and the reference angular frequency ω0
in Eq. (2), i.e., ∆ωk = ωk − ω0. The frequency allocation is
assumed to satisfy

ω3 + ω4 = ω1 + ω2 . (63)

Under this condition, ∆ωk satisfies

∆ω3 + ∆ω4 = ∆ω1 + ∆ω2 , (64)

as shown in Fig. 1. Hereafter, we consider the case in which
∆ω2 + ∆ω3 , 2∆ω1 is satisfied. By substituting Eq. (64)
into Eq. (28), Eq. (28) can be separated to four equations as

i
dÊ1
dz
+ ∆β(∆ω1)Ê1

+
γ

2π




*.
,
|Ê1 |

2 + 2
∑

i=2,3,4
|Êi |

2+/
-

Ê1 + 2Ê∗2 Ê3Ê4




= −iαÊ1 ,

(65)
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Fig. 1 Frequency allocation of four continuous waves in which non-
degenerate four wave mixing occurs.

i
dÊ2
dz
+ ∆β(∆ω2)Ê2

+
γ

2π




*.
,
|Ê2 |

2 + 2
∑

i=1,3,4
|Êi |

2+/
-

Ê2 + 2Ê∗1 Ê3Ê4




= −iαÊ2 ,

(66)

i
dÊ3
dz
+ ∆β(∆ω3)Ê3

+
γ

2π




*.
,
|Ê3 |

2 + 2
∑

i=1,2,4
|Êi |

2+/
-

Ê3 + 2Ê1Ê2Ê∗4




= −iαÊ3 ,

(67)

i
dÊ4
dz
+ ∆β(∆ω4)Ê4

+
γ

2π




*.
,
|Ê4 |

2 + 2
∑

i=1,2,3
|Êi |

2+/
-

Ê4 + 2Ê1Ê2Ê∗3




= −iαÊ4 ,

(68)

where

∆β(∆ω) = β(1)
0 (∆ω) +

β(2)
0
2

(∆ω)2

+
β(3)

0
6

(∆ω)3 . (69)

In the nonlinear terms in Eqs. (65)-(68), we focus on the
four wave mixing (FWM) terms. The term of γÊ1Ê2Ê∗3/π
in Eq. (68) represents a continuous light generation at
ω4(= ω1 + ω2 − ω3) by the nonlinear interactions among
three continuous lights at the angular frequency of ω1, ω2,
and ω3. This is called the non-degenerate FWM.

Hereafter, we consider a case where the idler light Ê4 is
generated by the non-degenerate FWMwhen three lights, Ê1,
Ê2, and Ê3, are simultaneously launched into a fiber. Omit-
ting all nonlinear terms in Eqs. (65)-(67) and the nonlinear
terms representing the self phase modulation (SPM) and the
cross phase modulation (XPM) in Eq. (68), Eqs. (65)-(68)
can be rewritten as

dÊj

dz
+ {α − i∆β(∆ω j )}Êj = 0 for j = 1, 2, 3 (70)

dÊ4
dz
+ {α − i∆β(∆ω4)}Ê4 − i

γ

π
Ê1Ê2Ê∗3 = 0. (71)

The solution of Eq. (70) is

Êj (z) = Êj (0) exp[{−α + i∆β(∆ω j )}z] . (72)

We assume that the solution of Eq. (71) has the following
form,

Ê4(z) = Ẽ4(z) exp[{−α + i∆β(∆ω4)}z] , (73)

where Ẽ4(z) is a complex function of z. By substituting
Eqs. (72) and (73) into Eq. (71), we obtain

dẼ4
dz
= i

γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

× exp[(−2α + i∆B)z] , (74)

where ∆B is the phase mismatching parameter. By using
Eqs. (69) and (64), ∆B can be represented by

∆B = ∆β1 + ∆β2 − ∆β3 − ∆β4

= β(1)
0 (∆ω1 + ∆ω2 − ∆ω3 − ∆ω4)

+
β(2)

0
2
{(∆ω1)2 + (∆ω2)2 − (∆ω3)2 − (∆ω4)2}

+
β(3)

0
6
{(∆ω1)3 + (∆ω2)3 − (∆ω3)3 − (∆ω4)3}

= −β(2)
0 (∆ω4 − ∆ω1)(∆ω4 − ∆ω2)

−
β(3)

0
2

(∆ω1 + ∆ω2)(∆ω4 − ∆ω1)(∆ω4 − ∆ω2)

= −(∆ω4 − ∆ω1)(∆ω4 − ∆ω2)

×

{
β(2)

0 + β
(3)
0
∆ω1 + ∆ω2

2

}
. (75)

By setting Ẽ4(0) = 0, Eq. (74) can be integrated as

Ẽ4(z) = i
γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

×
1 − exp[(−2α + i∆B)z]

2α − i∆B
.

(76)

By substituting Eq. (76) into Eq. (73), Ê4(z) can be rewritten
as

Ê4(z) = i
γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

×
1 − exp[(−2α + i∆B)z]

2α − i∆B
exp[{−α + i∆β(∆ω4)}z] .

(77)

3.3.2 FWM Light Generated in Periodically Amplified
Transmission System

Let us consider the FWM light generated in periodically
amplified optical transmission system in which optical am-
plifiers are disposed with the spacing of za [20], [21]. By
considering N amplifiers, the total system length is N za. The
transmission fiber is assumed to be homogeneous in which
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the group velocity dispersion β(2)
0 , the third order dispersion

β(3)
0 , the nonlinear coefficient γ, and the loss coefficient α

are constant. Furthermore, optical amplifiers are placed just
before the output end of each section and their power gain G
is set to G = exp(2αza) with which the loss of one section
with the length za can be compensated.

FWM light generated in each section independently
propagates in the remaining transmission line linearly and
reaches to the output. At the output, the total FWM light is
obtained by coherently summing up the FWM lights gener-
ated in each section.

Firstly, the electric field of FWM light Ê (k)
4 (kza) at

the output of the k-th section which is generated in the k-th
section can be calculated by using Eq. (77) as

Ê (k)
4 (kza) = i

γ

π
Ê1[(k − 1)za]Ê2[(k − 1)za]

×Ê∗3[(k − 1)za]
1 − exp[(−2α + i∆B)za]

2α − i∆B
× exp[{−α + i∆β(∆ω4)}za]

√
G .

(78)

The electric field Êj[(k − 1)za] ( j = 1, 2, 3) at the input of
the k-th section can be calculated by using Eq. (72) as

Êj[(k − 1)za] = Êj (0)
× exp[i∆β(∆ω j )(k − 1)za] . (79)

By substituting Eq. (79) into Eq. (78), we have

Ê (k)
4 (kza) = i

γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

× exp[i{∆β(∆ω1) + ∆β(∆ω2) − ∆β(∆ω3)}(k − 1)za]

×exp[i∆β(∆ω4)za]
1 − exp[(−2α + i∆B)za]

2α − i∆B
= i

γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

×exp[i{∆B + ∆β(∆ω4)}(k − 1)za]

×exp[i∆β(∆ω4)za]
1 − exp[(−2α + i∆B)za]

2α − i∆B
= i

γ

π
Ê1(0)Ê2(0)Ê∗3 (0) exp[i∆B(k − 1)za]

×exp[i∆β(∆ω4)kza]
1 − exp[(−2α + i∆B)za]

2α − i∆B
.

(80)

The FWM light Ê (k)
4 (kza) generated in the k-th section is

assumed to propagate in the remaining transmission line
linearly and reach the output end of the transmission line.
Then the FWM light Ê (k)

4 (N za) at the output z = N za can
be calculated by using Eq. (72) as

Ê (k)
4 (N za) = Ê (k)

4 (kza) exp[i∆β(∆ω4)(N − k)za]

= i
γ

π
Ê1(0)Ê2(0)Ê∗3 (0) exp[i∆B(k − 1)za]

×exp[i∆β(∆ω4)N za]
1 − exp[(−2α + i∆B)za]

2α − i∆B
.

(81)

By summing up Eq. (81) for all k, the total FWM light
Ê (total)

4 (N za) at the output z = N za can be obtained as

Ê (total)
4 (N za) =

N∑
k=1

Ê (k)
4 (N za)

= i
γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

1 − exp[(−2α + i∆B)za]
2α − i∆B

×exp[i∆β(∆ω4)N za]
N∑
k=1

exp[i∆B(k − 1)za]

= i
γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

1 − exp[(−2α + i∆B)za]
2α − i∆B

×exp[i∆β(∆ω4)N za]
1 − exp(i∆BN za)
1 − exp(i∆Bza)

= i
γ

π
Ê1(0)Ê2(0)Ê∗3 (0)

1 − exp[(−2α + i∆B)za]
2α − i∆B

×exp
[
i
{
∆β(∆ω4)N +

∆B(N − 1)
2

}
za

]

×

sin
(
∆BN za

2

)
sin

(
∆Bza

2

) .

(82)

3.4 Gaussian Noise Model

By setting ∆ω1 = `Ω0, ∆ω2 = mΩ0, and ∆ω3 =
(` + m − n)Ω0, ∆ω4 = nΩ0, and rewriting ∆B as ∆B`mn in
Eq. (75), we have

∆B`mn = (n − `)(n − m)Ω2
0

×

{
β(2)

0 + β
(3)
0

(` + m)Ω0
2

}
.

(83)

The FWM term γÊ1Ê2Ê∗3/π in Eq. (68) can be represented
by the sum of exchanging the order of Ê1 and Ê2, as
γ(Ê1Ê2 + Ê2Ê1)Ê∗3/(2π). Therefore, changing the order of
` and m, and counting them separately, the right hand side
of Eqs. (77) and (82) becomes half. By rewriting Ê4(z) to
Ê(z, nΩ0) in these equations and substituting Eq. (59) into
them, we have

Ê(z, nΩ0) = i
γ

2π
Ω

3/2
0 ξ` ξm ξ∗`+m−n

×

√
GTx (`Ω0)GTx (mΩ0)GTx [(` + m − n)Ω0]

×
1 − exp[(−2α + i∆B`mn)z]

2α − i∆B`mn

× exp[{−α + i∆β(nΩ0)}z] ,

(84)

Ê (total) (N za, nΩ0) = i
γ

2π
Ω

3/2
0 ξ` ξm ξ∗`+m−n

×

√
GTx (`Ω0)GTx (mΩ0)GTx [(` + m − n)Ω0]

×
1 − exp[(−2α + i∆B`mn)za]

2α − i∆B`mn

sin
(
∆B`mnN za

2

)
sin

(
∆B`mnza

2

)
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×exp
[
i
{
∆β(nΩ0)N +

∆B`mn(N − 1)
2

}
za

]
.

(85)

3.4.1 Gaussian Noise Model for Incoherent FWM Light

When the FWM light generated in a single span (ss) is in-
coherent, the FWM light generated in all sections can be
obtained by summing up the power of FWM light generated
in N sections.

In periodically amplified optical transmission system,
by representing the power gain of optical amplifier located at
just before the output end of each section as G = exp(2αza),
nonlinear interference light Ê (ss)

NLI(za,∆ω) generated in a sin-
gle span can be expressed as

Ê (ss)
NLI(za,∆ω)

=

∞∑
n=−∞

Ê (ss)
NLI(za, nΩ0)

√
G δ(∆ω − nΩ0) .

(86)

Ê (ss)
NLI(za, nΩ0) can be calculated by using Eq. (84) as

Ê (ss)
NLI(za, nΩ0) =

∑
`

∑
m

Ê(za, nΩ0)

= i
γ

2π
Ω

3/2
0 exp[{−α + i∆β(nΩ0)}za]

×
∑
`

∑
m

ξ` ξm ξ∗`+m−n

×
√

GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − exp[−{2α − i∆B`mn}za]

2α − i∆B`mn
.

(87)

Therefore the NLI power P̂(ss)
NLI(za, nΩ0) is represented as

P̂(ss)
NLI(za, nΩ0) = 〈|Ê (ss)

NLI(za, nΩ0) |2G〉

=

〈(
γ

2π

)2
Ω

3
0

∑
`

∑
m

ξ` ξm ξ∗`+m−n

×

√
GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − exp[−{2α − i∆B`mn}za]

2α − i∆B`mn

×
∑
`′

∑
m′

ξ∗`′ ξ
∗
m′ ξ`′+m′−n

×

√
GTx (`′Ω0) GTx (m′Ω0) GTx [(`′ + m′ − n)Ω0]

×
1 − exp[−{2α + i∆B`′m′n}za]

2α + i∆B`′m′n

〉
=

(
γ

2π

)2
Ω

3
0

∑
`

∑
m

∑
`′

∑
m′

〈ξ` ξm ξ∗`+m−n ξ
∗
`′ ξ

∗
m′ ξ`′+m′−n〉

×

√
GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×

√
GTx (`′Ω0) GTx (m′Ω0) GTx [(`′ + m′ − n)Ω0]

×
1 − exp[−{2α − i∆B`mn}za]

2α − i∆B`mn

×
1 − exp[−{2α + i∆B`′m′n}za]

2α + i∆B`′m′n

=

(
γ

2π

)2
Ω

3
0

∑
`

∑
`′

〈ξ` ξ
∗
`′〉

×
∑
m

∑
m′

〈ξm ξ∗m′〉〈ξ
∗
`+m−n ξ`′+m′−n〉

×

√
GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×

√
GTx (`′Ω0) GTx (m′Ω0) GTx [(`′ + m′ − n)Ω0]

×
1 − exp[−{2α − i∆B`mn}za]

2α − i∆B`mn

×
1 − exp[−{2α + i∆B`′m′n}za]

2α + i∆B`′m′n

=

(
γ

π

)2
Ω

3
0

∑
`

∑
m

GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − 2 exp(−2αza) cos(∆B`mnza) + exp(−4αza)

4α2 + (∆B`mn)2 .

(88)

In the above, a single polarized electric field has been con-
sidered. Considering dual polarized field [22]–[24], we have

P̂(ss)
NLI(za, nΩ0) =

8
27
〈|Ê (ss)

NLI(za, nΩ0) |2〉

=
8
27

(
γ

2π

)2
Ω

3
0

∑
`

∑
m

GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − 2 exp(−2αza) cos(∆B`mnza) + exp(−4αza)

4α2 + (∆B`mn)2 .

(89)

Therefore, the NLI power at the output end of the transmis-
sion line, P̂NLI(N za, nΩ0) is represented as

P̂NLI(N za, nΩ0) = N P̂(ss)
NLI(za, nΩ0)

=
2
27

(
γ

π

)2
NΩ3

0

∑
`

∑
m

GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − 2 exp(−2αza) cos(∆B`mnza) + exp(−4αza)

4α2 + (∆B`mn)2 .

(90)

3.4.2 Gaussian Noise Model for Coherent FWM Light

When the FWM light generated in each span is coherent, the
total nonlinear interference light at the output end z = N za,



MARUTA: NONLINEAR SHANNON LIMIT IN OPTICAL FIBER TRANSMISSION SYSTEM
89

Ê (total)
NLI (N za,∆ω) can be represented as

Ê (total)
NLI (N za,∆ω)

=

∞∑
n=−∞

Ê (total)
NLI (N za, nΩ0) δ(∆ω − nΩ0) .

(91)

Ê (total)
NLI (N za, nΩ0) can be calculated by using Eq. (85) as

Ê (total)
NLI (N za, nΩ0) =

∑
`

∑
m

Ê (total) (N za, nΩ0)

= i
γ

2π
Ω

3/2
0 exp[i∆β(nΩ0)N za]

∑
`

∑
m

ξ` ξm ξ∗`+m−n

×

√
GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − exp[−(2α − i∆B`mn)za]

2α − i∆B`mn

×

sin
(
∆B`mnN za

2

)
sin

(
∆B`mnza

2

) exp
[
i
∆B`mn(N − 1)za

2

]
. (92)

Therefore theNLI power at the output end of the transmission
line, P̂(total)

NLI (N za, nΩ0), is represented as

P̂(total)
NLI (N za, nΩ0) = 〈|Ê (total)

NLI (N za, nΩ0) |2〉

=

〈(
γ

2π

)2
Ω

3
0

∑
`

∑
m

ξ` ξm ξ∗`+m−n

×

√
GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − exp[−(2α − i∆B`mn)za]

2α − i∆B`mn

×

sin
(
∆B`mnN za

2

)
sin

(
∆B`mnza

2

) exp
[
i
∆B`mn(N − 1)za

2

]

×
∑
`′

∑
m′

ξ∗`′ ξ
∗
m′ ξ`′+m′−n

×

√
GTx (`′Ω0) GTx (m′Ω0) GTx [(`′ + m′ − n)Ω0]

×
1 − exp[−(2α + i∆B`′m′n)za]

2α + i∆B`′m′n

×

sin
(
∆B`′m′nN za

2

)
sin

(
∆B`′m′nza

2

) exp
[
−i
∆B`′m′n(N − 1)za

2

]〉

=

(
γ

2π

)2
Ω

3
0

∑
`

∑
m

∑
`′

∑
m′

〈ξ` ξm ξ∗`+m−nξ
∗
`′ ξ

∗
m′ ξ`′+m′−n〉

×

√
GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×

√
GTx (`′Ω0) GTx (m′Ω0) GTx [(`′ + m′ − n)Ω0]

×
1 − exp[−(2α − i∆B`mn)za]

2α − i∆B`mn

×
1 − exp[−(2α + i∆B`′m′n)za]

2α + i∆B`′m′n

×

sin
(
∆B`mnN za

2

)
sin

(
∆B`mnza

2

) sin
(
∆B`′m′nN za

2

)
sin

(
∆B`′m′nza

2

)
×exp

[
i
∆B`mn(N − 1)za

2

]

×exp
[
−i
∆B`′m′n(N − 1)za

2

]

=

(
γ

2π

)2
Ω

3
0

∑
`

∑
`′

〈ξ` ξ
∗
`′〉

×
∑
m

∑
m′

〈ξm ξ∗m′〉 〈ξ
∗
`+m−nξ`′+m′−n〉

×

√
GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×

√
GTx (`′Ω0) GTx (m′Ω0) GTx [(`′ + m′ − n)Ω0]

×
1 − exp[−(2α − i∆B`mn)za]

2α − i∆B`mn

×
1 − exp[−(2α + i∆B`′m′n)za]

2α + i∆B`′m′n

×

sin
(
∆B`mnN za

2

)
sin

(
∆B`mnza

2

) sin
(
∆B`′m′nN za

2

)
sin

(
∆B`′m′nza

2

)

×exp
[
i
∆B`mn(N − 1)za

2

]

×exp
[
−i
∆B`′m′n(N − 1)za

2

]

=

(
γ

2π

)2
Ω

3
0

∑
`

∑
m

GTx (`Ω0) GTx (mΩ0) GTx [(` + m − n)Ω0]

×
1 − 2 exp(−2αza) cos(∆B`mnza) + exp(−4αza)

4α2 + (∆B`mn)2

×

sin2
(
∆B`mnN za

2

)
sin2

(
∆B`mnza

2

) .

(93)

For the dual polarized field, we have

P̂(total)
NLI (N za, nΩ0) =

8
27
〈|Ê (total)

NLI (N za, nΩ0) |2〉

=
2
27

(
γ

π

)2
Ω

3
0

∑
`

∑
m

GTx (`Ω0) GTx (mΩ0)

×GTx [(` + m − n)Ω0]

×
1 − 2 exp(−2αza) cos(∆B`mnza) + exp(−4αza)

4α2 + (∆B`mn)2
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×

sin2
(
∆B`mnN za

2

)
sin2

(
∆B`mnza

2

) . (94)

3.5 Power Spectral Density of Nonlinear Interference
Noise

Since the following expression is satisfied for any function
of f̂ (∆ω),∫ ∞

−∞

f̂ (∆ω) d(∆ω) = lim
Ω0→0

∞∑
n=−∞

Ω0 f̂ (nΩ0), (95)

by setting Ω0 → 0 (T0 → ∞) in Eq. (90), `Ω0 = ∆ω1,
mΩ0 = ∆ω2, and nΩ0 = ∆ω, we have

GNLI(N za,∆ω) = lim
T0→∞

Ω0P̂NLI(N za, nΩ0)

=
2
27

(
γ

π

)2
N

∫ ∞

−∞

∫ ∞

−∞

GTx (∆ω1) GTx (∆ω2)

×GTx (∆ω1 + ∆ω2 − ∆ω)

×
1 − 2 exp(−2αza) cos(∆Bza) + exp(−4αza)

4α2 + (∆B)2

×d(∆ω1) d(∆ω2) .

(96)

From Eq. (94), we also have

G(total)
NLI (N za,∆ω) = lim

T0→∞
Ω0P̂(total)

NLI (N za, nΩ0)

=
2
27

(
γ

π

)2 ∫ ∞

−∞

∫ ∞

−∞

GTx (∆ω1) GTx (∆ω2)

×GTx (∆ω1 + ∆ω2 − ∆ω)

×
1 − 2 exp(−2αza) cos(∆Bza) + exp(−4αza)

4α2 + (∆B)2

×

sin2
(
∆BN za

2

)
sin2

(
∆Bza

2

) d(∆ω1) d(∆ω2) .

(97)

∆B in Eqs. (96) and (97), is given by a formula in which ∆ω4
in Eq. (75) is replaced with ∆ω.

3.6 Nyquist Limit

Here we focus on a Nyquist WDM transmission system.
In this case, the symbol rate Rs is equal to the channel
bandwidth Bch. We assume that GTx (∆ω) is given by

GTx (∆ω) =
{

GWDM |∆ω | ≤ πBWDM ,
0 otherwise . (98)

Here, GWDM and BWDM represent the transmission power spec-
tral density and total bandwidth of the Nyquist WDM signal,
respectively. By setting ∆ω = 0 in Eq. (96), we have

GNLI(N za, 0)

=
2
27

(
γ

π

)2
NG3

WDM

∫ ∫
D

[1 − 2 exp(−2αza)

Fig. 2 The domain of integration D and approximated domain of inte-
gration C.

× cos{| β(2)
0 |(∆ω1)(∆ω2)za} + exp(−4αza)]

×[4α2 + {| β(2)
0 |(∆ω1)(∆ω2)}2]−1 d(∆ω1) d(∆ω2) .

(99)

Here, we assume the third order dispersion β(3)
0 = 0 in

Eq. (75). In this case, the domain of integration D in the
∆ω1 − ∆ω2 plane is determined by Eq. (98) and it satisfies

|∆ω1 |, |∆ω2 |, |∆ω1 + ∆ω2 | ≤ πBWDM . (100)

The domain of integration D is shown in Fig. 2. Analytical
integration in the domain ofD is difficult. Then the domain
of integration is approximated by a circular domain C with
the radius of πBWDM which is surrounded by a dotted line in
Fig. 2. The numerator of the integrand is also approximated
as

1 − 2 exp(−2αza) cos{| β(2)
0 |(∆ω1)(∆ω2)za}

+exp(−4αza)
= 1 − 2 exp(−2αza)

×


1 − 2 sin2




| β(2)
0 |(∆ω1)(∆ω2)za

2




+exp(−4αza)
= 1 − 2 exp(−2αza) + exp(−4αza)

+4 exp(−2αza) sin2



| β(2)
0 |(∆ω1)(∆ω2)za

2



= {1 − exp(−2αza)}2

+4 exp(−2αza) sin2



| β(2)
0 |(∆ω1)(∆ω2)za

2



' {1 − exp(−2αza)}2 .

(101)

Furthermore, the effective length of optical amplifier spacing
Leff and the asymptotic effective length Leff,a are respectively
defined by

Leff =

∫ za

0
exp(−2αz) dz

=
1 − exp(−2αza)

2α
, (102)

Leff,a = lim
za→∞

Leff =
1

2α
. (103)

Using Eqs. (101)–(103), Eq. (99) becomes
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Fig. 3 Integration on a unit circle C and four simple poles.

GNLI(N za, 0) =
2
27

(
γ

π

)2
NG3

WDML2
eff

×

∫ ∫
C

d(∆ω1) d(∆ω2)

1 + {| β(2)
0 |(∆ω1)(∆ω2)Leff,a}

2
.

(104)

Next, the following variable transformation is introduced to
integrate in the circular domain C. By setting{

∆ω1 = r cos ϕ ,
∆ω2 = r sin ϕ , (105)

we can rewrite Eq. (104) as

GNLI(N za, 0) =
2
27

(
γ

π

)2
NG3

WDM L2
eff

×

∫ 2π

0

∫ πBWDM

0

r dr dϕ

1 + (| β(2)
0 |Leff,a)2r4 cos2 ϕ sin2 ϕ

.

(106)

By setting z = exp(iϕ) in Eq. (106), the integration with
respect to ϕ is replaced with the integration on a unit circle
C with |z | = 1 which center is located at the origin of the
complex plane shown in Fig. 3. Then we have

Iϕ =
∫ 2π

0

r

1 + (| β(2)
0 |Leff,a)2r4 cos2 ϕ sin2 ϕ

dϕ

= r
∫
C

{
1
2

(
z +

1
z

)}−2 {
1
2i

(
z −

1
z

)}−2

1 + ( | β(2)
0 |Leff,ar2)2

dz
iz

= i
16r

(| β(2)
0 |Leff,ar2)2

×

∫
C

z3 *
,
z4 +

4
| β(2)

0 |Leff,ar2
z2 − 1+

-

−1

× *
,
z4 −

4
| β(2)

0 |Leff,ar2
z2 − 1+

-

−1

dz . (107)

In this case, the integrand in Eq. (107) has four simple poles
in the domain surrounded by C,

z = ±λ, ±iλ,

λ =

√√√√√√√√
*
,

2
| β(2)

0 |Leff,ar2
+
-

2

+ 1 −
2

| β(2)
0 |Leff,ar2

.
(108)

Then Eq. (107) can be represented as

Iϕ = i
16r

(| β(2)
0 |Leff,ar2)2

∫
C

f (z) dz , (109)

where

f (z) =
z3(z − λ)−1(z + λ)−1(z − iλ)−1(z + iλ)−1

z4 −




√√√
*
,

2
| β(2)

0 |Leff,ar2
+
-

2

+ 1 +
2

| β(2)
0 |Leff,ar2




2 .

(110)

The complex integral of Eq. (109) becomes

Iϕ = i
16r

( | β(2)
0 |Leff,ar2)2

× (2iπ)

×{Res[ f (z), λ] + Res[ f (z),−λ]
+Res[ f (z), iλ] + Res[ f (z),−iλ]} .

(111)

Here,

Res[ f (z), λ] = Res[ f (z),−λ]
= Res[ f (z), iλ] = Res[ f (z),−iλ]

=
λ3(λ + λ)−1(λ − iλ)−1(λ + iλ)−1

λ4 −




√√√
*
,

2
| β(2)

0 |Leff,ar2
+
-

2

+ 1 +
2

| β(2)
0 |Leff,ar2




2

=
1

4






√√√
*
,

2
| β(2)

0 |Leff,ar2
+
-

2

+ 1 −
2

| β(2)
0 |Leff,ar2




2

−




√√√
*
,

2
| β(2)

0 |Leff,ar2
+
-

2

+ 1 +
2

| β(2)
0 |Leff,ar2




2

= −
| β(2)

0 |Leff,ar2

32

√√√
*
,

2
| β(2)

0 |Leff,ar2
+
-

2

+ 1

= −
( | β(2)

0 |Leff,ar2)2

64

√√√
1 + *

,

| β(2)
0 |Leff,ar2

2
+
-

2
. (112)

Therefore the complex integral of Eq. (109) leads

Iϕ =
32πr

(| β(2)
0 |Leff,ar2)2

× 4
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×
(| β(2)

0 |Leff,ar2)2

64

√√√
1 + *

,

| β(2)
0 |Leff,ar2

2
+
-

2

=
2πr

√√√
1 + *

,

| β(2)
0 |Leff,ar2

2
+
-

2
. (113)

Substituting Eq. (113) into Eq. (106), we have

GNLI(N za, 0) =
2
27

(
γ

π

)2
NG3

WDM L2
eff

×

∫ πBWDM

0

2πr
√√√

1 + *
,

| β(2)
0 |Leff,ar2

2
+
-

2
dr . (114)

Furthermore, by changing variable with R = | β(2)
0 |Leff,ar2/2

and integrating it, we obtain

GNLI(N za, 0)

=
2
27

(
γ

π

)2
NG3

WDM L2
eff

×

∫ π2 |β(2)
0 |Leff,aB

2
WDM/2

0

2π
√

1 + R2

dR

| β(2)
0 |Leff,a

=
4
27

γ2NG3
WDML2

eff

π | β(2)
0 |Leff,a

[
sinh−1R

]π2 |β(2)
0 |Leff,aB

2
WDM/2

0

=
4
27

γ2NG3
WDML2

eff

π | β(2)
0 |Leff,a

sinh−1 *
,

π2 | β(2)
0 |Leff,aB2

WDM

2
+
-
.

(115)

For x � 1,

sinh−1(x) = loge (x +
√

x2 + 1) ' loge (2x) . (116)

Applying the approximation of Eq. (116) to Eq. (115), we
obtain

GNLI(N za, 0)

'
4
27

γ2NG3
WDML2

eff

π | β(2)
0 |Leff,a

loge (π2 | β(2)
0 |Leff,aB2

WDM) .
(117)

The NLI noise power PNLI can be calculated by using Eq. (38)
as

PNLI(N za)

=

∫ ∞

−∞

GNLI(N za,∆ω) |HRx (∆ω) |2 d(∆ω) . (118)

By approximating GNLI(N za,∆ω) ' GNLI(N za, 0) and as-
suming the bandwidth of the receiver is equal to the OSNR
bandwidth Bn, we set HRx (∆ω) as

HRx (∆ω) =
{

1 |∆ω | ≤ πBn ,
0 otherwise , (119)

Then we have

PNLI(N za) ' 2πBnGNLI(N za, 0)

=
8
27

γ2NG3
WDML2

effBn

| β(2)
0 |Leff,a

loge (π2 | β(2)
0 |Leff,aB2

WDM) .

(120)

By setting Leff,a ∼ Leff, we obtain

PNLI(N za) '
(
2
3

)3 γ2NG3
WDMLeffBn

| β(2)
0 |

× loge (π2 | β(2)
0 |LeffB2

WDM) . (121)

The total bandwidth of WDM signal BWDM, the transmis-
sion power spectral density GWDM, and the total transmission
power PWDM are respectively expressed by using the total
channel number Nch and transmission power per channel Pch

as

BWDM = NchBch = NchRs , (122)

GWDM =
Pch

Bch

=
Pch

Rs
, (123)

PWDM = NchPch = GWDMBWDM . (124)

By substituting these expressions into Eq. (121), we have

PNLI(N za) =
(
2
3

)3 γ2N P3
chLeffBn

| β(2)
0 |R

3
s

× loge (π2 | β(2)
0 |LeffN2

chR
2
s ) . (125)

4. Application to Evaluation and Design a Transmission
System

Let us consider to apply Eq. (125) to evaluate and design a
Nyquist WDM transmission system. By setting Rs = Bn in
Eq. (39), Eq. (37) becomes

OSNRNL = SNRNL =
Pch

PASE + PNLI

. (126)

By defining a parameter F which is independent of fiber
characteristics such as noise figure of optical amplifier, the
total ASE noise power after propagation through the total
length of the transmission line N za is represented as

PASE(N za) = FNG = FN exp(2αza) . (127)

On the other hand, the NLI noise power can be represented
by using Eq. (125) as

PNLI(N za) = η
γ2N P3

chLeff

| β(2)
0 |

= hP3
ch , (128)

where

η =

(
2
3

)3 loge (π2 | β(2)
0 |LeffN2

chR
2
s )

R2
s

, (129)
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h = η
γ2N Leff

| β(2)
0 |

. (130)

For simplicity, hereafter we treat η as a constant. By substi-
tuting Eq. (128) into Eq. (126), we have

OSNRNL =
Pch

PASE + hP3
ch

. (131)

Differentiating Eq. (131) with respect to Pch, we have

∂(OSNRNL)
∂Pch

=
PASE − 2hP3

ch

(PASE + hP3
ch)2

. (132)

By setting the right hand side of Eq. (132) to 0, the optimum
value of Pch, i.e. P(opt)

ch can be determined. By using Eqs. (127)
and (130), we have

P(opt)
ch =

(
PASE

2h

)1/3

=

(
F
2η

)1/3 


| β(2)
0 | exp(2αza)

γ2Leff




1/3

. (133)

By representing P(opt)
ch in Eq. (133) with the unit of [dBm], we

have

P(opt)
ch [dBm] = 10 log10 P(opt)

ch [mW]

= C1 −
10
3

log10
*
,

γ2Leff

| β(2)
0 |

+
-
+

1
3
α̂za .

(134)

Here, Eq. (29) was used to derive the above expression. C1
is given by

C1 =
10
3

log10

(
F
2η

)
, (135)

and it is independent of the transmission fiber. By substitut-
ing Eq. (133) into Eq. (131) and using Eqs. (127) and (130),
we find the maximum value of OSNRNL,

OSNR(max)
NL =

1
3h{P(opt)

ch }
2

=

(
4

27F2η

)1/3 1
N




| β(2)
0 | exp(−4αza)

γ2 Leff




1/3

.

(136)

By representing OSNR(max)
NL with the unit of decibel, we obtain

OSNR(max)
NL [dB] = 10 log10 OSNR

(max)
NL

= C2 −
10
3

log10
*
,

γ2Leff

| β(2)
0 |

+
-
−

2
3
α̂za − 10 log10 N ,

(137)

where

C2 =
10
3

log10

(
4

27F2η

)
, (138)

and C2 is independent of the transmission fiber, too.

Fig. 4 Variation of OSNR(r)
NL for Pch = rP

(opt)
ch .

Next, we consider the relation between OSNRNL and Pch

when the transmission power per channel Pch is not optimum.
By setting Pch = rP(opt)

ch with a constant r , OSNR(r)
NL can be

represented by using Eqs. (131), (133), and (136) as

OSNR(r)
NL =

rP(opt)
ch

PASE + hr3(P(opt)
ch )3

=
3r

r3 + 2
OSNR(max)

NL . (139)

By representing OSNR(r)
NL with the unit of decibell, we find

OSNR(r)
NL[dB] = 10 log10 OSNR

(r)
NL

= 10 log10

(
3r

r3 + 2

)
+ OSNR(max)

NL [dB] . (140)

We showEq. (139) in Fig. 4. The optimum transmission opti-
cal power P(opt)

ch and the maximum value of OSNR, OSNR(max)
NL ,

can be obtained in Eqs. (134) and (137), by the parameters
of the transmmission line except C1 in Eq. (135) and C2 in
Eq. (138), i.e., only by the second order dispersion coefficient
β(2)

0 , nonlinear coefficient γ, loss coefficient α, optical am-
plifier spacing za, number of sections N . The OSNR when
the transmission optical power per channel Pch deviates from
its optimal value can be calculated by using Eq. (140). These
results can be applied to evaluate and design aNyquistWDM
transmission system.

SNRNL is equal to OSNRNL in Nyquist WDM trans-
mission system as shown in Eq. (126) and then OSNR(max)

NL

in Eq. (136) gives the upper limit of the spectral efficiency
shown in Eq. (1). This is the nonlinear Shannon limit.

5. Conclusion

The nonlinear Shannon limit has been considered as a kind of
theoretical limitation. To clarify its meanings and applicable
range, some fundamental papers on the nonlinear Shannon
limit have been reviewed. The Gaussian noise model on
the nonlinear Shannon limit has been experimentally vali-
dated for various fiber types in [8]. But it does not give
the theoretical limitation of the channel capacity. Recently,
various attempts to break the limitation by nonlinear com-
pensation schemes and nonlinear transmission technologies
have been reported [25]–[48]. The nonlinear Shannon limit
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is a transitional limitation which can be overcome.
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