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PAPER
Nested Circular Array and Its Concentric Extension for
Underdetermined Direction of Arrival Estimation

Thomas BASIKOLO†a), Student Member, Koichi ICHIGE†, Member, and Hiroyuki ARAI†, Fellow

SUMMARY In this paper, a new array geometry is proposed which is
capable of performing underdetermined Direction-Of-Arrival (DOA) esti-
mation for the circular array configuration. DOA estimation is a classical
problem and one of themost important techniques in array signal processing
as it has applications in wireless andmobile communications, acoustics, and
seismic sensing. We consider the problem of estimating DOAs in the case
when we have more sources than the number of physical sensors where the
resolution must be maintained. The proposed array geometry called Nested
Sparse Circular Array (NSCA) is an extension of the two level nested linear
array obtained by nesting two sub-circular arrays and one element is placed
at the origin. In order to extend the array aperture, a Khatri-Rao (KR)
approach is applied to the proposed NSCA which yields the virtual array
structure. To utilize the increase in the degrees of freedom (DOFs) that this
new array provides, a subspace based approach (MUSIC) for DOA estima-
tion and `1-based optimization approach is extended to estimate DOAs us-
ing NSCA. Simulations show that better performance for underdetermined
DOA estimation is achieved using the proposed array geometry.
key words: array antenna, degrees of freedom (DOF), direction of arrival
estimation, Khatri-Rao product, nested array.

1. Introduction

Direction of arrival (DOA) estimation, which is also called
spatial spectra estimation has been an active research area,
playing an important role in many applications, such as elec-
tromagnetic, acoustic, and seismic sensing [1]–[3]. The de-
velopment in the array signal processing discipline has led to
high resolution DOA estimation techniques for narrowband
signals and wideband [3], [4].

DOA estimation in antenna arrays however has been
mostly confined to uniform linear arrays (ULA) and uniform
circular arrays (UCA) [5]. Subspace based methods like
MUltiple SIgnal Classification (MUSIC) [4] can resolve up
to (M − 1) sources for an M element ULA and UCA [5], [6].
In order to estimate more sources than the number of physi-
cal sensors, [7] proposed nested linear arrays. This work was
further extended to arrays with higher geometries in [8], [9]
as well as co-prime arrays [10]. In this paper, we consider
nonuniform circular arrays and propose a novel array struc-
ture which has the ability to provide an increase in DOFs
and hence is capable of resolving more sources than phys-
ical sensors available called Nested Sparse Circular Array
(NSCA). This proposed array is obtained by combining two
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or more sub-circular arrays. We demonstrate that by using
NSCA, we can achieve underdetermined DOA estimation.

In recent years, underdetermined DOA estimation has
received considerable interest [11]–[13]. One of the most
effective approach to underdetermined DOA estimation is to
construct a new array that has an extended aperture and ob-
tains higher DOFs as compared to DOFs obtained from the
physical array. Sparse spatial sampling in this case provides
a remarkable improvement in DOFs, and typical array struc-
tures employed include nested linear arrays [7] and co-prime
arrays [10]. In recent years, a different kind but effective
DOA estimation technique called `1-SVD based on sparse
signal reconstruction emerged [14]. In single measurement
case, `1 optimization is considered attractive to sparse signal
recovery due to its guaranteed recovery accuracy [15]. How-
ever, for an array with M sensors, the `1-based approach in
[14] can resolve up to M − 1 signals impinging on the array.

Earlier works fail to fully consider underdetermined
DOA estimation for UCA. In [16], to resolve more than
(M−1) sources, theKhatri-Rao (KR) [11] subspace approach
was considered for quasi-stationary signals applied to UCA.
Quasi-stationary signals are a class of nonstationary signals
in which the signal statics are locally static over a short
period of time [11]. Speech and audio signals are some of
the examples of quasi-stationary signals. The problem with
using quasi-stationary signals is that this method can not be
applied to stationary sources [7].

Reference [17] proposed a Nested Circular Array
(NCA) to performwideband estimation inwhichmicrophone
pairs are used to eliminate spatial aliasing for counting and
DOA estimation of multiple simultaneous speakers. Al-
though this is the case, NCA is basically a Uniform Circular
Array in structure and not extension of nested arrays as pro-
posed in [7]. In [18], optimal array structures were surveyed
in which optimal and nearly optimal schemes operating both
in a periodic and non-periodic fashion were designed by
considering linear compression schemes classified as dense
or sparse. Although in linear case, the length-10 minimal
sparse ruler (SR) is an optimal sparse array, its counterpart,
length-20 circular SR designed with a length-10 linear SR
has sensors positioned on one side of the array which results
in angular dependency for DOA estimation hence reduced
performance. We carry out a performance comparison of
the length-20 circular SR to the proposed array configura-
tion NSCA in underdetermined DOA estimation.

In this paper, we propose a new array structure called
“Nested Sparse Circular Array” that has the ability to esti-
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mate more sources than the number of physical sensors. The
proposed array is further synthesized into a non-uniform
concentric array through the KR approach. The virtual ele-
ments synthesized by the KR approach are inside the orig-
inal circle which works as a concentric circular array and
is effective for wideband DOA estimation. The synthesized
non-uniform concentric array increases the DOFs and helps
to perform underdetermined DOA estimation. This makes
the proposed NSCA a good candidate for both narrowband
and wideband underdetermined DOA estimation. We ex-
tend the subspace based approach MUSIC in [4] and used
in [11] for quasi-stationary signals to the proposed NSCA.
Therefore, the proposed NSCA is capable of performing un-
derdetermined DOA estimation for quasi-stationary signals
as reported in [19] and not stationary signals. Furthermore,
an `1 optimization method based on compressive sensing or
sparse signal recovery is used which takes advantage of the
KR product of covariance matrix.

Notations

Notations used in this paper are given as follows. We rep-
resent matrices by capital boldface letters (e.g., A) whilst
vectors are represented by lowercase boldface letters (e.g.,
a). The superscript T represents transpose, and superscript
H represents conjugate transpose, whereas superscript ∗ rep-
resents conjugation without transpose. ‖•‖p represents the
`p norm. The symbol � represents the Khatri-Rao product
between two matrices of appropriate size and the symbol ⊗
is used to represent the left Kronecker product.

2. Preliminaries

2.1 The Signal Representation

We consider anM element omnidirectional, non-uniform cir-
cular antenna array. We assume that D narrowband sources
with wavenumber k = 2π/λ are impinging on this array
from the directions Θd = (θd, φd), where d = 1, 2, · · · , D
with receiver noise powers σ2. θ is the elevation angle while
φ is the azimuth angle and λ is wavelength. The received
signal vector is therefore given by

x(t) = A(Θ)s(t) + n(t) (1)

where x(t) is an M×1 noise-corrupted array snapshot vector,
s(t) is a D×1 signal vector, and n(t) is an M×1 noise vector.
The noise is assumed to be additive white gaussian noise.
The arraymanifold matrixA is anM×D matrix, the columns
ofwhich are steering vectors a(θd, φd), d = 1, 2, ..., D. Thus,
we have the array manifold matrix given by:

A = [a(θ1, φ1), a(θ2, φ2), ..., a(θD, φD )] (2)

The source number D is a priori known or accurately esti-
mated [6]. We further assume that the sources are uncor-
related such that the source autocorrelation matrix of s(t) is
diagonal. Thus,

Rxx = E[xxH ] = ARssAH + σ2I (3)

where Rss is the signal covariance matrix given by the diag-
onal of signal powers and I is an identity matrix.

2.2 Nested Array

The class of arrays called nested array was first proposed
in [7]. The “two level” nested array as defined in [7] is in
fact similar to the array structure originally proposed in [20].
However in [7] the concept of nested arrays was generalized
tomore than two levels so that there is a considerable increase
in the DOFs. A two level nested linear array is a series of
two interconnected uniform linear array (inner and outer)
with the inner ULA having M1 and the outer ULA having
M2 elements. A two level nested linear array can therefore
achieve 2M2(M1 + 1) − 1 freedoms in the co-array using
M1 + M2 elements only [7].

3. The Concept of Nested Sparse Circular Array and its
Application to Underdetermined DOA Estimation

3.1 Nested Sparse Circular Array

In case of nested linear array, its ability to resolve more
sources than physical sensors is that its difference co-array
has significantly more DOFs than the original array. In other
works, types of Minimum Redundancy arrays (MRAs) [21],
were utilized to achieve increased DOFs. The problem with
MRAs is that they require an extensive computer search to
construct the array [7]. In [22], a joint sparsity approach
was used by adopting convex relaxation idea with co-prime
arrays for off-grid targets in sparseDOAestimation. A gener-
alization of the co-prime array concept was proposed in [23].
Until now, so much work related to underdetermined DOA
estimation has been performed mainly considering nested
linear arrays, co-prime arrays, and MRAs.

In this subsection, we consider circular arrays and at-
tempt to provide a solution for underdetermined DOA esti-
mation using NSCA. Figure 1 shows a nested sparse circular
array with two sub-circular arrays concatenated and one ele-
ment at the origin which is used in KR formulation since we
consider the center of the NSCA as the origin. For an M-
element NSCA, the first and second sub-circular arrays have
(M − 1) physical elements in total. The first sub-circular
array has M1 physical elements with inter-element spacing
of d1 whilst the second sub-circular array has M2 physical
elements with inter-element spacing of d2.

For NSCA, the spacing d1 = 2πr/((M − 1)2/2) and
d2 = (M1 + 1)d1. Thus, d1 is the distance between elements
in the dense part of the array and d2 is the distance between
elements in the sparse part of the array. Using the union of
the first and second sub-circular array, we obtain the NSCA.
The element positions are therefore given by Cf irst = m1d1,
where m1 = 1, 2, · · · , M1 and Csecond = m2(M1 + 1)d1,
where m2 = 1, 2, · · · , M2. Thus the steering vector of the
NSCA will be given by;
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Fig. 1 A 7 element Nested Sparse Circular Array with one element at the
origin.

a(θ, φ) = [1, e jkr sin θ cos(φ−γ1), e jkr sin θ cos(φ−γ2),

..., e jkr sin θ cos(φ−γM−1)]T (4)

where γm is the angular position of the m-th element. We
assume that the elevation angle θ is fixed at 90◦ [6], therefore
the steering vector of the NSCA given in (4) as a(θ, φ) will
be reduced to a(φ).

To find the virtual elements and extend the array aper-
ture, the KR subspace approach [11], [24] is applied. By
using this approach, we can extend the DOFs of the NSCA
and be able to perform underdetermined DOA estimation.
This approach therefore is described in the following sub-
section.

3.2 The Khatri-Rao Subspace Approach

In many works, increased DOFs has been exploited using
various techniques for example augmented matrix approach
[21], fourth-order-cumulant based methods [25] and quasi-
stationary signal based methods [11]. However, these meth-
ods are used in linear arrays and there is little in terms of
circular array DOA estimation for more sources than physi-
cal sensors. Hence, in this subsection and the following, we
will exploit the increased DOFs by using the KR subspace
approach [11] and extend the KR-MUSIC and `1-based opti-
mization approach to underdetermined DOA estimation us-
ing NSCA.

We apply the KR subspace approach proposed in [11]
to DOA estimation. ConsiderAwhich is an L×Dmatrix and
B an M × D matrix having an identical number of columns,
their KR product is given by

A � B = [a1 ⊗ b1, a2 ⊗ b2, ..., aD ⊗ bD] (5)

where A � B results in an LM × D matrix. For two vectors
a and b, their Kronecker product is given by

a ⊗ b =



a1b
a2b
...

aLb



= vec(baT ) (6)

From the KR subspace approach, we find a new ar-
ray model for our proposed NSCA. For the DOA estimation
problem that has been formulated in Sect. 2.1, we apply vec-
torization to (3) to obtain

y= vec(Rxx )

= vec
(
ARssAH

)
+ vec

(
σ2I

)
=(A∗ � A)p + σ21TM (7)

where p = [σ2
1, σ

2
2, ..., σ

2
D]T and 1m = [eT1 , e

T
2 , ..., e

T
M ] and

ei is a column vector having all zeros except a 1 at the i-th
position. p therefore is equivalent to source signal vector and
noise becomes a deterministic vector that is given by σ21M
which can be eliminated easily. In this case, y behaves
like the array’s received signal whose manifold is given by
(A∗ � A). Thus (A∗ � A) is a manifold of a longer array
i.e., array with virtual elements with a larger array aperture
than the one when it is not vectorized. Let B = (A∗ � A),
The steering matrix of array with virtual elements will be
given by B = [b(φ1), b(φ2), ..., b(φD )]T which is an M2 ×D
matrix. Using the Kronecker product, the M2 × 1 steering
vector is

b(φ)= vec(a(φ)aH (φ)) = a∗(φ) ⊗ a(φ)

=



1
e jkr cos(φ−γ1)

e jkr cos(φ−γ2)

...
e jkr cos(φ−γM−1)



∗

⊗



1
e jkr cos(φ−γ1)

e jkr cos(φ−γ2)

...
e jkr cos(φ−γM−1)



=



b1
...

bi
...

bM2



(8)

for i = 1, 2, ...M2. Therefore instead of using (1), we can
apply the problem of DOA estimation to the data obtained in
(7).

3.3 Concentric Extension of Nested Sparse Circular Array

In this subsection, we discuss the concept of a non-uniform
concentric array obtained as a result of a co-array of the
NSCA. This concentric extension of the NSCA enables the
increase in the DOFs provided by the co-array, such that we
can perform underdetermined DOA estimation.

For an array with M sensors, with the position of the
ith sensor denoted by ~xi , the difference co-array is defined
as

Cd = ~xi − ~xj, ∀i, j = 1, 2, ..., M (9)
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For difference co-arrays,Cd (i, i) refers to the co-array origin
since ~xi −~xi = 0. In our case, although we have M2 distinct
pairs of array elements in the co-array using the KR product,
our co-array contains some redundant co-array points, thus
we end up having less than (M2) distinct points [26]. The
other co-array points therefore are influenced by two distinct
pairs (~xi,~xj ) and (~xj,~xi) with~xi , ~xj . As illustrated in [26],
the co-array of a circular array with odd number of elements
is M (M − 1) + 1 while for an array with even number of
elements is (M2/2+1) but in our case, we synthesized more
co-array points than in [26].

To synthesize the virtual elements formed from the
NSCA using the KR product, we consider b(φ). From (8),
let m, l = 1, 2, · · · , M , therefore the first 2M points will be
determined by 1 × e jkr cos(φ−γl ) and e jkr cos(φ−γm ) × 1 which
are redundant points and the remaining points will be given
by;

bml (φ)=e jkr cos(φ−γm ) × e jkr cos(φ−γl )

=e jkr {cos(φ−γm )−cos(φ−γl ) } (10)

from trigonometric addition, b(φ) becomes;

bml (φ)=e−j2kr {sin((2φ−γm−γl )/2) sin((γm−γl )/2) }

=e−j2kr {sin(φ−(γm+γl )/2) sin((γm−γl )/2) } (11)

From this equation, we observe that we end up with virtual
elements located on positions having different radius from
the origin which implies that using the KR approach with
the NSCA, we synthesize the virtual elements onto a non-
uniform concentric circular array. Figure 1 shows NSCA
while in Fig. 2, we show the synthesized version of the array
with virtual elements which is basically a concentric exten-
sion of the NSCA.

The number of elements in the concentric extension
of the NSCA in Fig. 2 (given by Cd) decides the values
of the cross correlation values in the covariance matrix of
the received signal by the NSCA. By carefully using cross
correlation terms, we substantially increase the DOFs, thus,
be able to detect more number of sources than the number
of physical elements using the NSCA. From the synthesized
non-uniform concentric circular array, we can easily perform
underdetermined DOA estimation.

3.4 DOA Estimation Based on KR-MUSIC

We use an ideal MUSIC [4] based approach for exploiting
the DOFs of the NSCA with virtual elements. Firstly, the
unknown noise covariance is eliminated and then dimension
reduction [11]. In order to eliminate the noise covariance,
let q⊥1M denote an orthogonal complement projector, where
q⊥1M = IM − (1/M)1M1TM . By performing a projection on
(7), we obtain

yq⊥1M = (A∗ � A)(q⊥1Mp) (12)

The singular value decomposition (SVD) of yq⊥1M is there-
fore

Fig. 2 Synthesized Concentric extension of a 7 element Nested Sparse
Circular Array. The physical element positions are given by ⊗ and virtual
element positions are given by ◦.

yq⊥1M =
[
Us

Un

] [∑
s0
0 0

] [
VH

s

VH
n

]∗
(13)

where Us and Vs are the left and right singular matrices
associated with nonzero singular values respectively,Un and
Vn are the left and right singular matrices associated with
zero singular values respectively, and

∑
s is a diagonal matrix

whose diagonals contain the nonzero singular values.
In [11] it has been proved that for (A∗ � A) to yield

a full column rank i.e rank = D the sufficient and neces-
sary condition is when D ≤ 2M − 1. Thus, prior to apply
subspace approach to DOA estimation problem such as MU-
SIC, we need to reduce the problem of dimension. Let the
virtual array response matrix (A∗ � A) = GB where B is a
dimensionally reduced virtual array response matrix which
is (2M)×D given byB = [b(φ1), b(φ2), ..., b(φD )]T as com-
pared to one given in (8) which is an M2 ×D matrix andG is
an (M2 +M)× (2M) matrix [11]. Let F = GTG, this implies
that

F = diag(1, 2, ...M − 1, M, M − 1, ..., 2, 1) (14)

from (12), this problem can therefore result in

ŷ=F−
1
2 GT

[
yq⊥1M

]

=F−
1
2 GT (A∗ � A)(q⊥1Mp)

=F
1
2 B(q⊥1Mp) (15)

the dimension reducing transformation F−
1
2 GT has or-

thonormal rows. We can therefore apply subspace based
approach to ŷ which is (2M − 1) × 1. We therefore ap-
ply MUSIC to the dimensionally reduced problem, thus the
MUSIC spectrum is given by
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P(φ) =
1





U
H
n F

1
2 b(φ)






2 (16)

over φ ∈ [0, π], and then we pick D largest peaks of P(φ) as
the DOA estimates.

3.5 DOA Estimation with `1-Based Optimization

Sparse signal representation employs the ideas of enforcing
sparsity by `1 penalization and restricting error by `2-norm
which enables reconstruction of sparse signal [14]. Under
the sparsity framework multiple measurements vectors are
employed to the problem of estimating a sparse unknown pa-
rameter. Thus, we can extend the DOA estimation problem
as a problem of finding the sparsest solution to underdeter-
mined linear system [27]. In this paper we extend `1-based
optimization proposed in [14] to underdetermined DOA es-
timation such that we increase the DOFs to 2M. We consider
(7) as a sparse signal representation problem which is given
by

y = Bp + σ21m (17)

where B is as defined in Sect. 3.2. To extend `1 penalization
to (17), we need to appropriately choose the optimization
criteria which is min‖p‖1 subject to ‖y − Bp‖22 ≤ β2, where
β is a parameter specifying how much noise we wish to
allow. Therefore, an unconstrained form of this objective
function is

min ‖y − Bp‖22 + λ ‖p‖1 (18)

The `2 term in (18) forces the residual y – Bp to be small and
λ controls the tradeoff between the sparsity of the spectrum
and residual norm.

In a practical setting, y in (17) can be estimated from N
snapshots such that ∆y = ŷ − y. The estimate error from is
asymptotically normal distribution (AsN), thus

∆y = vec(∆Rxx ) ∼ AsN
(
0M2,1,

1
N
RT

xx ⊗ Rxx

)
(19)

which leads to

W−
1
2∆y ∼ AsN

(
0M2,1, IM2

)
(20)

where the weighting matrix W−
1
2 =

√
N

[
RT

xx

]− 1
2
⊗ R−

1
2

xx

with W = 1
NRT

xx ⊗ Rxx . Let p̂ be the estimate of p, the
DOA estimation problem can then be given by the following
`1-norm minimization

min
p̂
‖ŷ − Bp̂‖22 + λ ‖p̂‖1 (21)

from (20) and (21) we further deduce that

W−
1
2
[ŷ − Bp̂] ∼ AsN

(
0M2,1, IM2

)
(22)

which then results in

W−
1
2 ‖ŷ − Bp̂‖22 ∼ As χ2(M2) (23)

where As χ2(M2) denotes the asymptotic chi-square distri-
bution with M2 degrees of freedom. Thus a parameter β

is introduced such that




W

− 1
2
[ŷ − Bp̂]





2

2
≤ β2. Therefore,

DOA estimation can be reduced to

min
p̂
‖p̂‖1 subject to





W
− 1

2
[ŷ − Bp̂]





2

2
≤ β2 (24)

where β =
√
χ2(M2). The problem (24) is a second-order

cone program problem. For numerical solution of our SOC
problem, we can efficiently solve the SOC problem by using
off the shelf optimization software CVX [28].

4. Simulation Results

4.1 Specifications of Simulation

In this section, we carry out simulation experiments to assess
the capability of NSCA in estimating more sources than the
number of physical sensors. Numerical examples in this sec-
tion shows superior performance of the proposed array geom-
etry in terms of DOFs for underdetermined DOA estimation
and RMSE. In the examples, we examine a 7 element NSCA
antenna system (M = 7) as shown in Fig. 1 with two sub-
circular arrays concatenated and one element at the origin. 8
narrowband sources (D = 8) are impinging on the array from
the directions φ = [15◦, 36◦, 46◦, 70◦, 90◦, 112◦, 130◦, 145◦],
all with the same amount of power. In case of 10 narrowband
sources (D = 10) impinging on the array, φ = 236◦ and 284◦
are added. The radius of the nested circular array is r = λ.
The noise is assumed to be spatially and temporally white.

4.2 Spectra of Underdetermined DOA Estimation

Figure 3(a) shows the spectra after applying the subspace
based approach MUSIC for underdetermined DOA estima-
tion. In this case, we observe that we are able to resolve all
DOAs correctly and the peaks are sharp but we have low dy-
namic range. In Fig. 3(b) we observe the spectra of `1-based
optimization for sparse signal recovery in an underdeter-
mined case. In the case of `1-based optimization, we are
able to resolve all DOAs and estimate them accurately. The
peaks in this method are very sharp and we have very high
dynamic range. Both methods in Fig. 3 requires more snap-
shots to resolve DOAs correctly but the `1-based technique
have higher dynamic range as compared to MUSIC based
method. Both methods use a total number of snapshots of
2000, and an SNR of 0 dB.

4.3 SNR Dependency for Underdetermined DOA Estima-
tion

In this subsection, we examine the performance of MU-
SIC, the `1-based optimization technique with the cramer-
rao lower bound (CRLB) [29] by examining RMSE of the
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Fig. 3 Spectra for underdetermined DOA estimation for NSCA with M
= 7, D = 8, snapshots = 2000, and SNR = 0 dB for (a) MUSIC and (b)
`1-based optimization.

angle estimates as a function of SNR. Thus, CRLB is used as
the benchmark at high SNR conditions. We show the plots
for (D = 8) and (D = 10). The performance is not angu-
lar dependent because we observe similar result for different
angles. The number of trials used in this example is 100.

Figure 4(a) shows the RMSE as a function of SNR for 8
DOAs impinging on theNSCA for 10000 snapshots averaged
over 100 monte carlo simulations. The performance of both
methods improves as the SNR is increasing. The subspace
based technique MUSIC has lower performance compared
to `1-based optimization method but becomes closer to `1-
based method at 20 dB. In Fig. 4(b) we observe the RMSE of
MUSIC and `1-based optimization as a function of SNR for
10 DOAs impinging on the NSCA. In this case, we observe
that the `1-based optimization method outperforms MUSIC,
and has an RMSE of about 0.15 degrees. From the results
in Fig. 4(a) and (b) `1-based optimization method is clearly
better thanMUSIC, and hereafterwe concentratemore on the
results of `1-based optimizationmethod for underdetermined
DOA estimation.

4.4 Optimal Array

The third example in this section shows optimal array config-

Fig. 4 RMSE performance versus SNR of MUSIC and `1-based opti-
mization for underdetermined DOA estimation using NSCA with M = 7,
Snapshots = 10000 for (a) D = 8, and (b) D = 10.

uration in underdetermined DOA estimation. In this exam-
ple, we examine 3 circular array configurations; (a). Nested
Sparse Circular Array (NSCA) proposed in this paper, (b).
the length-20 circular sparse ruler proposed in [18], and (c).
Uniform Circular Array (UCA) conventional circular array
type which is also similar to the array type proposed in [17].
Figure 5, shows the RMSE performance of `1-based opti-
mization technique for the three arrays when (D = 8). We
observe that the proposed NSCA has superior performance
as compared to the other circular array types and its perfor-
mance is close to the CRLB as shown in Fig. 5.

4.5 Angular Dependency

In this example, we show the performance of `1-based opti-
mization approach in terms of angular dependency of RMSE
for the 3 circular array configurations examined in the pre-
vious subsection. With (D = 8), we observed the RMSE
behavior of the 3 arrays when the DOA is changed from ini-
tial positions by ∆φ, where ∆φ ranges from 0◦ to 180◦. In
Fig. 6, we observe that there is very little change in the RMSE
behavior for NSCA and UCA while sparse ruler has higher
angular dependency. The NSCA also has better RMSE com-
paring to the two configurations over all angles. UCA has no
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Fig. 5 Optimal array configuration comparison by `1-based optimization
for underdetermined DOA estimation D = 8, and Snapshots = 10000.

Fig. 6 Angular dependency of Nested Sparse Circular Array (NSCA),
length-20 circular Sparse Ruler (SR) and Uniform Circular Array (UCA)
using `1-based optimization technique for underdetermined DOA estima-
tion. D = 8, SNR = 20 dB, and Snapshots = 10000.

RMSE change as DOAs change in terms of angular depen-
dency between 45◦ and 180◦. Therefore we can conclude
that NSCA has little angular dependency in the case of ∆φ
between 0◦ and 180◦ and a better RMSE performance as
compared to the other two array configurations.

4.6 Performance Comparison of NSCA and Nested Linear
Array

In the next example we consider the performance compar-
ison of the proposed NSCA and nested linear array with
7 elements. Figure 7 shows the performance comparison.
We observe that nested linear array obtains a good RMSE
performance but it is not much different from the RMSE per-
formance of NSCA especially in lower SNR levels. On the
other hand, the performance of the proposed array (NSCA)
is also good and close to that of nested linear. On top of that,
NSCA has advantages over nested linear because it does not
suffer from angular dependency and as a circular array type,
it is capable of 2D DOA estimation.

Fig. 7 Comparison of NSCA and Nested Linear array RMSE perfor-
mance using `1-based optimization.

Fig. 8 Comparison of CPU runtime versus the number of impinging
signals for MUSIC and `1-based optimization using NSCA. M = 7, D = 8,
SNR = 20 dB, and Snapshots = 10000.

4.7 Average Runtime

The last example in this section shows the CPU runtime
versus the number of impinging signals for subspace based
method MUSIC and `1-based optimization using NSCA for
different number of signals impinging on the array. Fig-
ure 8 shows this comparison, where subspace based tech-
nique MUSIC requires very little amount of time to run
whilst the `1-based optimization technique requires almost
two times more than subspace based technique. Although
`1-based optimization method requires more run time, it has
superior performance as compared to subspace basedmethod
MUSIC.

5. Conclusion

In this paper, we proposed a nested sparse circular array ge-
ometry that realizes Underdetermined DOA estimation. The
concentric extension of NSCA provides the virtual sensors
which are synthesized on a non-uniform concentric circular
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array. By utilizing the virtual sensors in the concentric exten-
sion, the NSCA achieves increased degrees of freedom. We
explored two strategies that can be used with the NSCA; the
subspace based technique called MUSIC and the `1-based
optimization method. In both methods, we confirmed that
NSCA have the power to estimate more number of sources
in comparison to the number of physical sensors. We also
investigated the RMSE performance as related to SNR and
number of snapshots in which the number of snapshots plays
a crucial role in the underdetermined DOA estimation. Us-
ing the nested sparse circular array, an increase in the degrees
of freedom is guaranteed, especially with the `1-based opti-
mization method which attains 2M − 1 degrees of freedom
and has no angular dependency.
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