
Compact CAR: Low-Overhead Cache Replacement Policy for an ICN Router

Atsushi Ookaa, Suyong Euma, Shingo Atab, Masayuki Murataa

aGraduate School of Information Science and Technology, Osaka University,
1-5 Yamadaoka, Suita, Osaka, 565-0871 Japan
Tel.: +81-6-6879-4542, Fax: +81-6-6879-4544

bGraduate School of Engineering, Osaka City University,
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan

Tel.: +81-6-6605-2191, Fax: +81-6-6690-5382

Abstract

Information-centric networking (ICN) has gained attention from network research communities due to its capability of efficient
content dissemination. In-network caching function in ICN plays an important role to achieve the design motivation. However,
many researchers on in-network caching have focused on where to cache rather than how to cache: the former is known as contents
deployment in the network and the latter is known as cache replacement in an ICN element. Although, the cache replacement has
been intensively researched in the context of web-caching and content delivery network previously, the conventional approaches
cannot be directly applied to ICN due to the fine granularity of cacheable items in ICN, which eventually changes the access
patterns.

In this paper, we argue that ICN requires a novel cache replacement algorithm to fulfill the requirements in the design of high
performance ICN element. Then, we propose a novel cache replacement algorithm to satisfy the requirements named Compact
CLOCK with Adaptive Replacement (Compact CAR), which can reduce the consumption of cache memory to one-tenth compared
to conventional approaches.

Keywords: Information-centric networking, Content-centric networking, Cache replacement algorithm, In-network caching,
Router

1. Introduction

Information-centric networking (ICN) was introduced as a
future network architecture which is optimized for content dis-
semination. ICN is built on the idea of name-based routing
which enables each ICN element to be aware of users’ requests
as well as their counterpart responses. Thus, individual ICN el-
ements can be turned into caching devices by simply providing
physical cache memory for them.

This feature of ICN that all elements have caching capa-
bility is called in-network caching function, and several ICN
architectures, CCNx[1], NDN[2], SAIL[3] and PURSUIT[4],
have already suggested utilizing the function to take several ad-
vantages of caching system such as reducing network access la-
tency, alleviating network traffic, balancing network load, and
achieving robustness against a single failure scenario. In this
sense, ICN can be considered as a largely distributed caching
architecture whose performance depends on mainly two factors:
where to cache and how to cache contents. The former and the
latter are known as content placement and cache replacement
problems, respectively.

Email addresses: a-ooka@ist.osaka-u.ac.jp (Atsushi Ooka),
suyong@ist.osaka-u.ac.jp (Suyong Eum),
ata@info.eng.osaka-cu.ac.jp (Shingo Ata),
murata@ist.osaka-u.ac.jp (Masayuki Murata)

While the problem of content placement has attracted much
attention in ICN research communities, that of cache replace-
ment has been ignored since many people believe that the prob-
lem has already been investigated intensively in the context of
web-caching and content delivery network. However, it is un-
clear that the conventional cache replacement approaches are
suitable for ICN due to following two reasons. First, core ICN
elements are expected to meet the speeds required for line-rate
operation, especially by exploiting limited memory and com-
putational resources. However, the conventional cache replace-
ment approaches are designed for end-device operation rather
than for core-device operation which should be carried out in
parallel with forwarding operation. Second, the fine granu-
larity of cacheable items in ICN, namely chunks or segments,
changes the traffic access patterns of request messages, which
dramatically govern the performance of cache replacement al-
gorithm.

In the light of the observation above, this paper studies the
cache replacement problem in the core ICN elements, and so
they can support the line-rate operation, which is critical in the
design of core ICN elements. First, we analyze the access pat-
terns of contents to understand its relation to cache replacement
algorithms. Then, we propose a novel cache replacement al-
gorithm named Compact CLOCK with Adaptive Replacement
(Compact CAR) to fulfill the requirements. The proposed algo-
rithm is based on CLOCK that is a classical cache replacement

Preprint submitted to Elsevier December 9, 2016

ar
X

iv
:1

61
2.

02
60

3v
1

 [
cs

.N
I]

 8
 D

ec
 2

01
6

policy to achieve low-complexity approximation. The numer-
ical simulation shows that the proposed cache replacement al-
gorithm can reduce the consumption of cache memory to one-
tenth compared to conventional approaches.

This paper is organized as follows. In Section 2, we review
related research works. In Section 3, we describe the design
considerations of cache replacement algorithm for a core ele-
ment of ICN. This is followed by a detail description of our
proposed method Compact CAR in Section 4. In Section 5, we
evaluate our protocol through extensive simulations. Then, we
discuss on some implementation issues of our proposal, espe-
cially for the design of high performance of ICN core element
in Section 6. Finally, we conclude this article in Section 7.

2. Related works

There are a considerable number of cache replacement algo-
rithms, ranging from those available in a computer system (e.g.,
CPU and I/O buffers) to those used in communication networks
(e.g., web-proxies and CDNs). Thus, there are various require-
ments and methods suitable for the individual environments.
To understand the requirements of in-network caching in ICN,
we review several cache replacement algorithms that have been
carried out in the different context.

Replacement algorithms are developed originally for the
purpose of paging in the computer system [5, 6]. The bottle-
neck of the systems is the latency of fetching pages from slow
auxiliary memory to fast cache memory. On the one hand, the
hardware cache such as CPU commonly used First-in, first-out
(FIFO) and Not Recently Used (NRU) to reduce the cost be-
cause of the hardly limited resources. On the other hand, the
software cache such as virtual memory of OS commonly adopts
LRU and LFU, which are costly to maintain a data structure
or/and statistical information (i.e., the number of references to
a page).

As researchers uncover problematic access patterns that de-
grade the performance of the algorithms, many variants of LRU
and LFU are devised to overcome the problems. 2Q [7], ARC [5]
and LIRS [8] improve the performance by exploiting the advan-
tages of LRU and LFU while their time and space complexities
are comparable to that of LRU. In contrast to them, CLOCK [9]
reduces the complexity of LRU by approximating its behavior
with a fixed circular buffer while keeping the performance. The
complexity of CLOCK is comparable to that of NRU which
has a low computational cost. CAR [6] combines CLOCK with
ARC to achieve both performance improvement and cost reduc-
tion.

Since web services became explosively popular, web-cache
and CDN-cache are researched intensively to improve the per-
formance of them in terms of bottleneck, latency, overload and
robustness [10, 11, 12]. Because the resource constraints of
them are more moderate than that of computer systems, the
cache replacement algorithms in a web and a CDN utilize statis-
tical information including not only recency and frequency but
also several others including size, latency, and URI [11]. How-
ever, the improvement was slight or specific to particular envi-
ronments in spite of an abundance of caching algorithms [12].

In recent years, ICN has revived research on caching algo-
rithms because ICN provides inherent in-network caching fea-
ture. Unlike web- and CDN-cache employed in the application-
layer, all elements in ICN have caching capability. Because one
of the most interesting problems is improvement achieved by
through cooperation among ICN elements in the network-layer,
many researchers focus on cache placement algorithms [13, 14].
As a cache replacement algorithm taking advantage of ICN,
there are also policies that make use of content popularity [15,
16].

To realize ICN, especially an ICN core element, it is re-
quired to implement a cache replacement algorithm that can be
operated with severe resource constraints instead of the statis-
tical caching algorithms for web and CDN with rich resources.
The implementation cost of commonly used approaches such
as LRU and LFU are also prohibitive for router hardware, as
pointed out by [17, 18]. Looking back at the history of cache
replacement algorithms, ICN elements need a hardware imple-
mentable approach whose complexity is comparable to that of
FIFO or CLOCK. In addition to the cost, this approach should
cope with access patterns specific to ICN, where the unit of
caching is a fine-grained chunk rather than whole content data.
To understand how to satisfy these requirements of cost and per-
formance, we examine the knowledge of caching in computer
systems and apply it to in-network caching in the following sec-
tion.

3. Design Considerations of Cache Replacement Algorithm
for ICN

3.1. Access Patterns of Traffic in the Network

An access pattern is the important factor to govern the per-
formance of cache replacement algorithm. It is well known
that the popularity of contents follows a Zipf-like distribution:
a large number of contents requested only once or just a few
times [19]. In addition, many requests generate asynchronous
requests for contents, and so temporal locality of network traffic
becomes relatively low.

In particular, ICN is able to identify a chunk (its default size
is 4K bytes in CCNx), which enables the chunk level caching
in an ICN element. Thus, we conjecture that the distribution
of the “chunk popularity” would be more biased than Zipf-like
distributions. In this paper, to design an appropriate cache re-
placement algorithm for ICN under different types of the dis-
tributions, we classify access patterns of traffic, which governs
the distribution [5, 8, 7, 20], into four categories: SCAN, LOOP,
COOREALTED REFERENCES, and FICKLE INTEREST as
follows:

• SCAN: a sequence of requests to different chunks, and so
each chunk is requested only once

• LOOP: a repetition of a scan

• CORRELATED REFERENCES: a short-term intensified
requests to a few chunks

2

• FICKLE INTEREST: rapidly changing sets of requested
chunks

First, although the exact access pattern of the chunk level
(i.e., network level) traffic in ICN is not known due to the lack
of available ICN traffic trace, such one-time used items occupy
60% or more in the network level traffic in IP networks [21].
We conjecture that the highly aggregated network level traffic
in ICN would have a large number of one-time used chunks,
which correspond to SCAN access pattern.

Second, ICN is originally designed to efficiently dissemi-
nate multimedia traffic which generally occupies high network
bandwidth and is requested repeatedly. Thus, we also conjec-
ture that the chunk level traffic in ICN will have LOOP access
pattern. As mentioned previously, LOOP is highly correlated
to SCAN: SCAN and LOOP are generated by unpopular and
popular contents, respectively.

Third, CORRELATED REFERENCES and FICKLE IN-
TEREST access patterns are observed in the requests to user-
generated contents and real-time contents, respectively. We
conjecture that these access patterns would be frequently ob-
served in ICN due to the growth of social networks that share
user-generated contents as well as real-time application such
as video chatting. The volatile traffic hinders the strategies de-
pending on statistical information (including LFU) from replac-
ing the out-of-date chunks that were accessed frequently.

For the reason above, the cache replacement algorithm for
ICN should be able to deal with the access patterns described
above. We here focus on the first access pattern, SCAN, in the
design of the cache replacement algorithm for ICN since it is
the major traffic that occupies the network bandwidth. Among
the conventional cache replacement algorithms, CAR is able to
efficiently deal with SCAN traffic access pattern [6] due to its
dual lists which enable to distinguish popular and non-popular
contents. Our proposal is based on CAR to inherit this feature.

3.2. Computational Power and Memory Limitations

In the design of the cache replacement algorithm, two of the
performance metrics should be considered. One is the cost that
updates the table holding the information of cached items in the
ICN element. The other is the cost that manages the table in
the memory according to a cache replacement algorithm, e.g.,
prioritizing cached items. We call the former and the latter as
computational cost and memory cost, respectively.

The computational cost includes insertion of a new caching
item into the table, deletion of an existing cached item from the
table, moving the location of cached items in the memory, and
updating relevant information in the caching table. The opera-
tions listed above should be taken into account in the design of
cache replacement algorithm, especially when it is applied for
a high speed core ICN element.

The memory cost increases as the number of cached items
increases due to the increase of control information for the main-
tenance of the table [22, 6, 17, 18]. For example, LFU has much
higher overhead to keep statistics of each cached item. In LRU
using double-linked-list, this cost is prohibitive due to the main-
tenance of double pointers to other cached items.

To reduce the computational and memory costs in conven-
tional approaches, CLOCK was introduced, which has a mem-
ory link list having a shape of a clock. It searches for a cached
item that needs to be replaced following a clockwise. While
searching for a candidate for replacement, it refers to one bit
corresponding to the candidate. When the bit is set to off,
the cached item is discarded. Otherwise, the searching pro-
cess keeps on going until it finds a cached item whose bit is
off. Then, all bits skipped over during the searching process are
set to off. Thus, CLOCK requires only a single bit per chunk
and few repetitions of the searching process. Our proposed me-
chanism also adopts this mechanism in CLOCK to reduce the
computational and memory costs.

3.3. Adaptable Parameter Tuning
Some cache replacement algorithms need to tune parame-

ters statically and dynamically according to workloads offered
to the cached items in cache. For instance, the parameters in-
clude the interval to obtain statistics of request arrivals in LFU,
the ratio between the number of popular and that of non-popular
cached items in LIRS, and the variable sizes of the lists used in
ARC and CAR.

While some parameters in ARC and CAR can be tuned
adaptively to the change of workload, other parameters in LFU,
LIRS and 2Q need to be defined in advance. However, the
static parameters are unfavorable due to 1) difficulty of finding
optimal parameters, 2) invalidity of optimal parameters in the
change of workload, which causes performance fluctuation. For
this reason, we conjecture that a cache replacement algorithm
that adaptively changes the system parameters is preferable in
the design of cache replacement algorithm for ICN.

4. Compact CLOCK with Adaptive Replacement (Compact
CAR)

4.1. Key Ideas of the Proposed Algorithm
The algorithm we propose is based on Clock with Adaptive

Replacement (CAR) [6]. CAR is known to be robust against
the access patterns of SCAN, CORRELATED REFERENCES
and FICKLE INTEREST.

CAR maintains two CLOCK lists: one is for cached items
that have been accessed only once, and the other one is for the
rest. CLOCK is a dominant algorithm in the design of page re-
placement in computer operating system [6, 22]. Basically, it
aims to achieve some of the benefits of LRU replacement but
without heavy computational and memory costs in the manipu-
lation of LRU operation - we discuss the operation in detail in
the next section.

This two-stack approach can keep frequently requested con-
tents from being replaced by one-time requested content. In
addition, CAR can dynamically adapt to the access patterns by
adjusting its lengths of CLOCK lists as autonomously tuning
parameter. Due to the adaptive parameter tuning, CAR can also
function well in an unsteady environment. However, the com-
putational cost of CAR is similar to that of LRU, which is pro-
hibitive in the use of the algorithm for the design of high speed
ICN core element.

3

CLOCK of CAR

A B DCA B DC

B DA C E

next

prev

data
B DA C

B DA C

E

Every insertion (deletion)

requires to shift

a massive amount of data.

a. Using a doubly-linked list b. Opening the space

𝑷
[b
it]

A

E

B

C

D

E

A

BC

D

Insert a new chunk “E”

𝑷
[b
it]

Keeping two pointers per block

requires costly memory overhead
𝑶 𝒄 𝐥𝐨𝐠𝒄 because 𝒄 × 𝑷 ≥ 𝒄 𝐥𝐨𝐠𝒄 .

CLOCK in buffer

(fixed-size)

How to insert the chunk “E” in a fixed-size buffer?

c. Compact CAR (Proposal)

A B DC

Only two blocks

are swapped but

mixing the order.

C BA D

E

⇒ High computational cost⇒ High memory cost ⇒ Slight additional cost

but mixing the order

empty

mixed
*𝑐: cache size [chunks]

Figure 1: Illustration of Computational and Memory Costs in the Inserting Operation in the Different Data Structures

𝑎1 𝑎2 𝑎𝑖 𝑏𝑐−𝑛 𝑏𝑗𝑎𝑛⋯ ⋯ ⋯

reference-bit (R-bit)

𝑻𝟏 (𝑇1 = 𝑛)

0

0

1

0

1

0

0 𝑎1

𝑎3

𝑎𝑖−1

𝑎𝑛
𝑎2

⋯⋯

𝑏1⋯ 𝑥1 𝑥𝑘 𝑦𝑐−𝑚 𝑦𝑙𝑥𝑚⋯ ⋯ ⋯ 𝑦1⋯

𝑻𝟐 (𝑇2 = 𝑐 − 𝑛) 𝑩𝟏 (𝐵1 = 𝑚) 𝑩𝟐 (𝐵2 = 𝑐 −𝑚)

𝑎𝑖

1

0

0

1

0

1

0

0 𝑏1

𝑏3

𝑏𝑗−1

𝑏𝑐−𝑛
𝑏2

⋯⋯

𝑏𝑗

1

𝑥1

𝑥3

𝑥𝑘−1

𝑥𝑚
𝑥2

⋯

𝑥𝑘

𝑦1

𝑦3

𝑦𝑙−1

𝑦𝑐−𝑚
𝑦2

⋯

𝑦𝑙

Figure 2: Data Structure of Compact CAR

4.2. Design of Compact CAR

Compact CAR is designed to further reduce the memory
cost of CAR while maintaining its inherent advantages. The
reason that CAR has high memory cost is that the sizes of
CLOCK lists used in CAR have variable-size. Thus, Compact
CAR has the two CLOCK lists in the fixed-size buffer to over-
come the problem.

Figure 1 illustrates an operation of chunk insertion with
different approaches from the viewpoint of computational and
memory costs. First, CAR uses a doubly-linked list. When a
chunk is inserted in the middle of memory space, the chunk is
inserted physically at the end of the memory space. Then, the
order of the chunks in the memory is arranged virtually using a
doubly-linked list. It involves with two operational costs: com-

putational cost which involves the rearrangement of pointers
in the doubly-linked list, and memory cost which involves the
memory space accommodating the doubly-linked list. Compu-
tational cost is not that expensive. However, it consumes a de-
cent amount of memory space to maintain the order by keeping
two pointers per block.

Second, it illustrates a case where a doubly-linked list is
not used but memory blocks are shifted when a chunk is in-
serted. It does not require high memory cost because the order
of chunks in physical memory can be used directly without cre-
ating virtual order created in the first scenario. However, this
scenario demonstrates high computational cost caused by the
shift of memory blocks.

Third, the operation of chunk insertion in Compact CAR is

4

𝑎1 𝑎2 𝒂𝒊 𝑏𝑐−𝑛 𝑏𝑗𝒂𝒏⋯ ⋯ ⋯

𝑻𝟏 (𝑇1 = 𝑛)

0

0

1

0

1

0

0 𝑎1

𝑎3

𝑎𝑖−1

𝒂𝒏
𝑎2

⋯⋯

𝑏1⋯

𝑻𝟐 (𝑇2 = 𝑐 − 𝑛)

𝒂𝒊

1

0

0

1

0

1

0

0 𝑏1

𝑏3

𝑏𝑗−1

𝑏𝑐−𝑛
𝑏2

⋯⋯

𝑏𝑗

1

𝑎1 𝒂𝒏 𝑏𝑐−𝑛 𝑏𝑗𝒂𝒊⋯ ⋯ ⋯

𝑻𝟏 (𝑇1 = 𝑛 − 1)

0

0

1

0

1

0

0 𝑎1

𝑎3

𝑎𝑖−1𝒂𝒏

𝑎𝑛−1
𝑎2

⋯⋯

𝑏1⋯

𝑻𝟐 (𝑇2 = 𝑐 − 𝑛 + 1)

1

0

0

1

0

0

0

1 𝑏1

𝑏3

𝑏𝑗−1

𝑏2

⋯⋯

𝑏𝑗

1

𝒂𝒊

+1

𝑎𝑛−1

Figure 3: Example of Moving a Chunk ai from T1 to T2 by Replacing the Edge Chunk an

illustrated. To insert a new chunk at the position of the chunk
’B’, Compact CAR moves the chunk ’B’ to the end. Then, the
newly inserting chunk is inserted to the location. It does not
use a doubly-linked list to create virtual order of chunks in the
memory space and so the memory cost can be reduced dramati-
cally. At the same time, it does not involve the shift of memory
blocks simultaneously, which reduces a computational cost as
well. Readers may concern that the mixed order degrades the
performance but it is not that serious: we will address the issue
in Section 5.

Figure 2 illustrates the data structure of Compact CAR which
maintains four variable-size CLOCK lists. Let us say T∗ =
T1 ∪ T2 and B∗ = B1 ∪ B2. T∗ are used for caching data, and
B∗ remember the record of evicted chunks. Each of T∗ and B∗
is arranged in physically contiguous memory. The n chunks in
T1 are arranged in one side and the (c−n) chunks in T2 fill the
other side. To realize the searching process described in Sec-
tion 3.2, T∗ and B∗ have a hand as the starting position to start
for searching process, and T∗ assigns each chunk a reference
bit (R-bit). The hand of T1 moves rightward on the array in
the figure and that of T2 moves leftward so as to fill the free
space in the direction that the hand moves (i.e., if cache is not
full, there are empty blocks between T1 and T2). The same
principle applies to B1 and B2, except that they do not hold
data of chunks and R-bits. Compared to the operation of CAR
in the related work, Compact CAR does not require a memory
space to keep pointers as discussed above. This is a reason why
Compact CAR can use memory more efficiently in a compact
manner than CAR.

As mentioned in Section 4.1, Compact CAR inherits advan-
tages of two-stack approach of CAR. L1 = T1∪B1 (unshaded)
andL2 = T2∪B2 (shaded) are assumed to be two CLOCK lists.
L1 is for contents that have been accessed only once. L2 is for
contents that have been accessed at least twice. By adjusting
the target size p, which is the parameter representing the target
size of T1 (0 < p ≤ c), the sizes of the lists |T1|, |B1|, |T2|, and
|B2| vary adaptively. A cache hit to L1 (L2) dynamically in-
creases the target size for T1 (T2), and simultaneously decreases
the target size for the other list. In other words, the size of T1

grows when the recency of contents governs the performance
of the cache replacement algorithm, whose behavior becomes
similar to LRU . On the other hand, the size of T2 grows when
the frequency of content access governs the performance of the
cache replacement algorithm, whose behavior becomes simi-
lar to LFU . For example, the size of T2 grows when SCAN
occurs. This feature enables Compact CAR to adaptively deal
with the change of traffic access patterns.

Figure 3 gives an example of moving a chunk ai within T∗
to realize the swap operation illustrated in Fig. 1(c). Compact
CAR swaps ai with the one at the boundary between T1 and T2,
and then just shifts the boundary to the left hand side. This sim-
ple swap operation enables the migration of a chunk between T1
and T2. However, the original CAR algorithm requires to keep
a doubly linked list or to shift an enormous amount of chunks
(ai+1, · · · , an, bc−n, · · · , bj+1) leftward to insert ai into the
position pointed by the hand of T2 as illustrated in Figure 1.

4.3. Replacement Algorithm of Compact CAR

Algorithms 1, 2, 3, and 4 show pseudocode of the cache
replacement algorithm of Compact CAR. The replacement pro-
cess in cache replacement starts with Algorithm 1. If an ac-
cessed chunk x is hit, then the process sets the R-bit of x and
terminates (lines 2–4). If there is a cache miss, then line 5
checks whether x is in a ghost cache. If B∗ contains x, the
history of x is discarded and the parameter p, which is the tar-
get size for T1, is updated (lines 7–13). This process of tuning
p makes CAR adaptive to changes in access patterns. If x is
not in B∗ and the ghost cache if full, then a chunk in B∗ is dis-
carded (lines 16–18). In this, i stands for the index of the list
into which x is to be cached; therefore, i is set to 2 when there is
a ghost hit and is set to 1 otherwise. After ensuring that there is
room in the ghost cache, a chunk in T∗ is discarded if T∗ is full
(lines 20–23). A victim chunk is selected from T1 if the size of
T1 is not less than the target size p; otherwise, a chunk in T2 is
replaced. Finally, x is cached at a position st in Ti, which has
been ensured to be free (line 27).

Algorithms 2, 3, and 4 describe how to make room for a
chunk or its historical information. HandTi

indicates the loca-

5

Algorithm 1 Compact CAR Replacement Algorithm

1: procedure CACHEREPLACEMENT(x) . x is an accessed
chunk.

2: if x ∈ T∗ then . cache hit
3: x.R-bit← 1
4: return
5: else if x ∈ B∗ then . ghost hit
6: i← 2 . to cache x in T2
7: if x ∈ B1 then
8: δ ← max(1, |B2|

|B1|); p← min(c, p+ δ)

9: DiscardBtm(1,x)
10: else . x ∈ B2

11: δ ← max(1, |B1|
|B2|); p← max(0, p− δ)

12: DiscardBtm(2,x)
13: end if
14: else . cache miss
15: i← 1 . to cache x in T1
16: if Full(L1) & |B1| > 0 then ReplaceBtm(1)
17: else if Full(L) & |B2| > 0 then ReplaceBtm(2)
18: end if
19: end if
20: if Full(T∗) then
21: if |T1| ≥ max(p, 1) then st ← ReplaceTop(1)
22: else st ← ReplaceTop(2)
23: end if
24: else . T∗ is not full.
25: st ← an available address in Ti
26: end if
27: Ti[st]← x . x is cached as a chunk in Ti.
28: end procedure

tion pointed to by the hand of Ti, and Bi is analogous. Every
algorithm assures a free space at EdgeAddr, which is the ad-
dress of the boundary of two lists, either T1 and T2 or B1 and
B2. Whenever x is not located at the boundary, it is swapped
with the EdgeChunk of the list, which is located at the bound-
ary. The reason to do so is that this frees an address located
next to the edge address of both lists. For example, consider
what happens when caching a new chunk in T1 when a chunk
in T2 is discarded. If the cache is full and the swap is not per-
formed, there is no free space contiguous with the area of T1
unless the discarded chunk in T2 is adjacent to T1. Otherwise,
it will be necessary to swap two chunks or shift an enormous
amount of chunks in order to cache the new chunk in T1. Thus,
the swap process is essential to ensure a vacant address that is
contiguous with both of the lists (not only T1 and T2, but also
B1 and B2).

The DiscardBtm procedure (shown in Algorithm 2) evicts
the historical information of x in Bi when x is a ghost hit.
The ReplaceBtm procedure (shown in Algorithm 3) evicts
the history information pointed to by the hand ofBi when there
is a cache miss and Bi is full. The ReplaceTop procedure
(shown in Algorithm 4) removes the chunk pointed by the hand
of Ti when the cache is full. If a chunk whose R-bit is set is
found in T1, the chunk is moved to T2 in the manner described
in Fig.5. Lines 11–12 store the evicted chunk as history infor-
mation without losing the contiguousness of the lists because
an address next to the edge of Bi has been ensured to be free,
as discussed above.

Algorithm 2 DiscardBtm() for Compact CAR

1: procedure DISCARDBTM(i, x)
2: Swap(x,Bi.EdgeChunk)
3: Discard x (at the edge of Bi)
4: . ensuring that an address next to the edge of Bi is free
5: end procedure

Algorithm 3 ReplaceBtm() for Compact CAR

1: procedure REPLACEBTM(i)
2: Swap(Bi[HandBi], Bi.EdgeChunk)
3: Discard Bi.EdgeChunk
4: Rotate HandBi

5: . ensuring that an address next to the edge of Bi is free
6: end procedure

Algorithm 4 ReplaceTop() for Compact CAR

1: function REPLACETOP(i)
2: while Ti[HandTi

].R-bit= 1 do
3: Ti[HandTi

].R-bit← 0
4: if i=1 then
5: Swap(Ti[HandTi

], Ti.EdgeChunk)
6: . Shift the boundary between T1 and T2.
7: end if
8: Rotate HandTi

9: end while
10: se ← an address next to the edge of Bi
11: Bi[se]← Ti[HandTi

]
12: Swap(Ti[HandTi

], Ti.EdgeChunk)
13: Discard Ti.EdgeChunk
14: Rotate HandTi

15: return Ti.EdgeAddr
16: end function

5. Performance Evaluation

In this section, we evaluate the performance of Compact
CAR compared to OPT (off-line optimal algorithm with a pri-
ori knowledge of the stream of requests: absolute upper bound
on the achievable cache hit rate), FIFO, CLOCK, and CAR in
various scenarios to demonstrate the fulfillment of the design
considerations discussed previously.

First, the performance of the proposed algorithm is evalu-
ated with various access patterns including synthetic traffic as
well as real traffic trace in different types of topologies. Then,
adaptability of our proposal to changing access traffic patterns
is demonstrated by comparing to the same approach without
tuning a parameter. Finally, computational and memory costs
of the proposal are theoretically analyzed to present its efficient
memory usage which is critical in the design of a high perfor-
mance ICN core element.

5.1. Simulation Setup and Configuration

Two types of workloads are used in this simulation study:
artificial workloads that follow a Zipf distribution and real traf-
fic traces of Video-on-Demand (VoD), e.g., YouTube, Daily-
Motion, and NicoVideo, which are collected from a network
gateway at Osaka University campus. The former and the latter

6

are denoted byAZipf(α) and byAReal. In addition, their super-
script C and P , e.g., ACZipf(a) and APZipf(α) represent the sizes
of content and chunk, respectively.

The popularity of Internet content (e.g., VoD, web pages,
file sharing, and user generated traffic) has been reported to fol-
low the Zipf distribution with 0.6 ≤ α ≤ 1.2 [23, 21]. Thus,
we use these values to generate synthetic traffic requests from
the Zipf distribution for this simulation study.

At the same time, the real traffic traces are gathered from
July 26th 2013 to February 26th 2015. The number of unique
contents is 2,428,880; the number of contents requested at least
twice is 918,545; and the number of total accesses is 13,004,868.
The popularity distribution of the real traffic trace follows the
Zipf-like distribution, as depicted in Fig. 4. We also show the
statistics of the real traffic traces in units of chunks in Table 2.

As stated in Section 3.1, the fine granularity of cacheable
items in ICN, namely chunks or segments, changes the access
patterns of request message, which dramatically governs the
performance of cache replacement algorithm. Unfortunately,
ICN traffic traces are not available yet. Thus, we generate syn-
thetic requests for chunks, which simulates the access pattern of
ICN in the following manner. We assume that the inter arrival
time between requests to content items is similar to the one in
the current Internet, which follows the Zipf distribution. How-
ever, the inter arrive time for chunks is constant according to
Table 1, which is determined by the statistics of our observed
real traffic. The generated requests are superimposed to simu-
late the aggregation of request messages in the network.

Two different topologies are used for this simulation study.
One is a topology in which there is only one ICN element be-
tween clients and a server. The other is a line topology that
includes ten ICN elements between them. One ICN element
topology is used to demonstrate the performance of the pro-
posed algorithm compared to those of conventional approaches
including an optimal performance. On the other hand, the line
topology is used to present how efficiently the proposed cache
replacement algorithm works without a cooperative caching me-
chanism1. In ICN, a requested content can be cached while be-
ing downloaded at any node along the downloading path, which
is known as on-path caching. When all nodes along the path
cache downloading contents, it eliminates the effect of a co-
operative caching. In other words, the simulation results with
a line topology reveal how resistant our proposed algorithm in
the absence of cooperative caching mechanism.

Each cache at ICN element has same capacity c of 101 to
106 chunks which are adjusted according to the traffic trace we
adopt. Also, the transmission delay of each chunk on links and
the unnecessary computation in the protocol stacks are ignored
to simplify the simulation.

5.2. Cache Hit Rate with Synthetic Traffic
Figures 5 depicts the cache hit rates of each cache replace-

ment policy in a single ICN element with synthetic traffic de-
scribed previously: ACZipf(α) changing α from 0.6 to 1.2. Our

1It cooperatively distributes content items in the network to improve cache
hits as well as to reduce the usage of network resources.

Table 1: Number of Chunks Per Second [pck/s]

Chunk size 1.5 KB 15 KB 60 KB
Standard Definition (600kbps) 50 5 1.25

High Definition (1.2Mbps) 100 10 2.50

Table 2: Statistics of Workloads in Units of Chunks

Workload # of total
accesses

of observed
unique chunks

of chunks
requested at
least twice

A
P (1.5KB)
Real 17,955,409 5,465,044 440,254

A
P (15KB)
Real 14,557,548 5,321,617 552,631

A
P (60KB)
Real 16,606,810 8,006,084 1,769,759

Figure 4: Popularity Distribution of Real Trace

proposal, Compact CAR, achieves a hit rate comparable to that
of CAR, which is contrary to our speculation. We conjectured
that the operation mixing the order in the Compact CAR would
degrade its performance. The result is promising because we
can achieve the performance as good as CAR even with much
less memory cost. The memory cost of Compact CAR includ-
ing several others is theoretically analyzed in Section 5.6 in
detail. In addition, the results show that Compact CAR can
achieve the same cache hit ratio with one-tenth of cache size
compared to simple cache replacement algorithms such as FIFO
and CLOCK in the best case.

In addition to the simulation using traces in units of con-
tents, Figures 6 shows the cases when the sizes of cacheable
chunks change from 60 KB to 1.5 KB with the parameters of
the Zipf distribution (α) at 1.0 and 1.2, which are denoted, e.g.,
A
P (60KB)
Zipf(0.6) to AP (1.5KB)

Zipf(0.6) . As the value of α increases, the hit
rate increases. This means that a high popularity bias results
in a high hit rate. As depicted in Fig.6(d), we observe that the
cache hit rate decreases substantially as the size of cacheable
items becomes small, e.g., from a whole content to chunks.

5.3. Cache Hit Rate with Real Traffic Trace

Figure 7 presents the simulation results with real Video-on-
demand (VoD) traffic which was collected at Osaka University.

7

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

OPT
FIFO

CLOCK
CAR

Compact CAR

(a) AC
Zipf(1.2)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(b) AC
Zipf(1.0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(c) AC
Zipf(0.8)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(d) AC
Zipf(0.6)

Figure 5: Results for Artificial Workloads in Units of Content

 0

 0.1

 0.2

 0.3

 0.4

 0.5

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(a) AP (60KB)
Zipf(1.0)

 0

 0.1

 0.2

 0.3

 0.4

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(b) AP (15KB)
Zipf(1.0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(c) AP (60KB)
Zipf(1.2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Content P(60KB) P(15KB)) P(1.5KB)

Ca
ch

e
hi

t
ra

te

Unit of caching

OPT
CLOCK

CompactCAR

(d) AZipf(1.0), c = 105

Figure 6: Results for Artificial Workloads in Units of Chunks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

OPT
FIFO

CLOCK
Compact CAR

(a) ACReal

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(b) AP (60KB)
Real

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(c) AP (15KB)
Real

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

te

Cache size [Chunks]

(d) AP (1.5KB)
Real

Figure 7: Results for Real Traces

Each content is segmented into small size chunks to simulate
the transmission of chunks in ICN networks. The cache hit
rates in Fig. 7 are similar to those in Fig. 5 and Fig. 6. In
Fig. 7, one interesting observation is that the cache hit rate of
our proposed algorithm suddenly soars, e.g., when cache size is
104 in Fig. 7(c) compared to conventional cache replacement
algorithms: the performance becomes outstanding. This phe-
nomenon correlates to the Reuse Distance (RD); therefore, we
discuss it below.

Figure 8 plots the cumulative distribution functions (CDFs)
of RD. RD represents the number of chunks between two con-
secutive same chunks. For example, consider what happens

when the value of RD is larger than the size2 of cache. When
the first chunk in the two consecutive same chunks is cached,
it has a high probability to be discarded from the cache. If this
case keeps happening due to a large amount of one-time con-
tents (e.g., SCAN and LOOP), only non-popular contents re-
main in the cache. This situation is called cache pollution that
non-popular contents occupy whole cache causing low-cache
hit rate. Thus, a cache hit almost occurs when RD is smaller
than cache size, and vice versa.

As mentioned in Section 4.1, Compact CAR maintains two
link lists: one for non-popular contents, and the other for pop-
ular contents. Thus, the cache pollution only affects to the link

2Its unit is the number of chunks

8

(a) Different Types of Workloads in Units of Con-
tent

(b) Artificial Workloads (α = 1.0) in Different
Units

(c) Real Traces in Different Units

Figure 8: CDF of RD in Various Workloads

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

total
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th

Ca
ch

e
hi

t
ra

te

Node

FIFO
CLOCK

Compact CAR

(a) AC
Zipf(0.8)

(c = 105)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

total
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th

Ca
ch

e
hi

t
ra

te

Node

(b) AP (60KB)
Zipf(1.0)

(c = 103)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

total
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th

Ca
ch

e
hi

t
ra

te

Node

(c) AP (60KB)
Zipf(1.0)

(c = 104)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

total
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th

Ca
ch

e
hi

t
ra

te

Node

(d) AP (15KB)
Real (c = 103)

Figure 9: Results for Simulation with a Linear Topology

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

102 103 104 105

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]
OPT, ideal

CLOCK, ideal-coop
CLOCK, non-coop
CLOCK, 1st-node

Compact CAR, ideal-coop
Compact CAR, non-coop
Compact CAR, 1st-node

(a) AP (15KB)
Zipf(1.0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

102 103 104 105

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]
OPT, ideal

CLOCK, ideal-coop
CLOCK, non-coop
CLOCK, 1st-node

Compact CAR, ideal-coop
Compact CAR, non-coop
Compact CAR, 1st-node

(b) AP (60KB)
Zipf(1.2)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

102 103 104 105

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]
OPT, ideal

CLOCK, ideal-coop
CLOCK, non-coop
CLOCK, 1st-node

Compact CAR, ideal-coop
Compact CAR, non-coop
Compact CAR, 1st-node

(c) ACReal

Figure 10: Comparison between non-cooperative caching and ideally-cooperative caching

list that maintains non-popular contents. In other words, Com-
pact CAR is robust to the cache pollution scenario caused by a
large amount of non-popular contents.

5.4. Simulation with a Line Topology
The results with a line topology are shown for the purpose

of showing the lower bound of the performance where a coop-
erative caching mechanisms fail. As mentioned previously, the
cache hit rate is governed by two factors: one is a cache replace-
ment algorithm (how to cache), and the other is a cooperative
caching algorithm (where to cache). We can assume that one
node topology represents a case where a cooperative caching

algorithm works ideally. If one node whose caching capacity is
equivalent to the total n nodes, the one node topology can be
considered as the n-node topology that has an ideal cooperative
caching mechanism. In other words, the result with one node
topology shows the upper bound of the performance where co-
operative caching works ideally. On the other hand, the line
topology represents non-cooperative caching algorithms, espe-
cially when contents being downloaded from one end to the
other are cached every nodes in the line topology. In this case,
the cache capacity of a whole network is considerably wasted
by redundant caches. Thus, our simulation results clarify the
upper and lower bound of the performance caused by coopera-

9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18
(a) Actual hit rate of Compact CAR

H
it

R
at

e

Compact CAR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
(b) Relative hit rate with Compact CAR being 1.0

R
el

at
iv

e
hi

t
ra

te

CFR(0.0)
CFR(0.1)
CFR(0.5)
CFR(0.9)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(c) q (=p/c)

×106

q

Virtual time (request number)

q

Figure 11: Dynamics of Hit Rate of CFR(q)and Adaptive Pa-
rameter q

tive caching mechanisms.
Figure 9 presents the cache hit rates of individual nodes on

a line topology. Compact CAR improves the hit rate in the sec-
ond and succeeding routers, whereas the hit rate of FIFO and
CLOCK decreased to approximately zero. Figure 10 shows the
upper and lower bound of the performance achieved by cooper-
ative caching. We denote the performance of ideally coopera-
tive caching by “ideal-coop”, which specifies the upper bound.
The result denoting “non-coop” means the total cache hit rates
of nodes in a line topology, which is the performance of non-
cooperative caching and specifies the lower bound. We also
show the hit rate of the only first node of a line topology as
“1st-node” to understand how CLOCK is inappropriate for the
environment without cooperative caching. There is less differ-
ence between the upper bound and the lower bound of Com-
pact CAR than that of CLOCK. This result indicates Compact
CAR can exploit resources in a network by reducing redundant
caches caused by the cooperation failure.

It is interesting to analyze the performance under an envi-
ronment with a certain cooperation or a cache decision algo-
rithm; however, we do not show the analysis because the main
purpose of this paper is proposing the cache replacement algo-

rithm that is feasible and appropriate for an ICN element. In
future, we will investigate the effects of various cache place-
ment and decision algorithms on a network and communication
quality.

5.5. Dynamic Parameter Tuning

As explained in Section 4.2, Compact CAR dynamically
adapts to changing traffic access patterns by varying the param-
eter p. There is no one-size-fits-all parameter and it is necessary
that the parameter should be tuned to maximize a cache hit rate
under any circumstances.

Here we evaluate the parameter tuning strategy for the pro-
posed Compact CAR whose parameter p represents the target
size of T1. The parameter p ranges from zero to the cache size
c. As the value of p increases, the operational behavior of Com-
pact CAR becomes similar to the case where recently accessed
content becomes important. On the other hand, as p decreases,
Compact CAR behaves similar to the case where frequently re-
quested content becomes important.

Thus, depending on the variation of access patterns, the pa-
rameter p should be tuned. To compare the difference between
dynamical tuning and statical tuning, we introduce Clock with
Fixed Replacement (CFR) algorithm which corresponds to our
proposal Compact Clock with Adaptive Replacement (Compact
CAR). CFR has the fixed value of q = p/c (0 ≤ q ≤ 1) which
is determined in advance.

Figure 11 shows that Compact CAR adaptively changes the
parameter: the trends of q and the cache hit rates of CFR(q).
The x-axis shows the virtual time t, which is equivalent to the
total number of requests. The cache hit rates of CFR(q) are
shown as relative value with that of Compact CAR being 1.0 in
Fig. 11 (b). When 0 < t < 6 × 106, the hit rate of CFR(q)
with high q tends to increase as q increases, and vice versa. The
results show that Compact CAR can adaptively change the pa-
rameter. When t = 6× 106, we can observe the rapid increase
in the cache hit rate of Compact CAR. This increase is due to an
arrival of many popular contents. Thus, the value of q decreases
to adopt the access patterns, where frequently accessed content
becomes important, and the corresponding hit rate of CFR(q)
increases. In addition, q of Compact CAR continues to follow
the optimal value at any time as evidenced by the fact that the
best relative hit rates among CFR(q) are at most nearly 1.0. By
contrast, the relative hit rates of the parameter fixed algorithms
become at worst nearly 0.1. Thus, we can confirm that the pa-
rameter tuning algorithm of Compact CAR are necessary and
greatly adaptive.

5.6. Analysis on Space and Time Complexities of CAR and Com-
pact CAR

We analyze the time and space complexities of Compact
CAR. The complexity is analyzed from the viewpoint of an
additional process or memory required for the algorithms. In
the evaluation of time complexity, we calculate the number of
memory access as a dominant factor when a cache hit or a miss
occurs. Because the actual value is typically unsteady, we study
the worst-case and average-case complexity in the two different

10

Table 3: Time Complexity of Cache Replacement Algorithm’s Overhead

worst case average case
policies hit miss hit miss
FIFO δ tr + tw + δ δ tr + tw + δ

LRUDLL 3tr + 6tw + δ 3tr + 6tw + δ 3tr + 6tw + δ 3tr + 6tw + δ
LRUS O(n) O(n) O(n) O(n)
LRUC O(1) O(n) O(1) O(n)
LFUH O(logn) O(logn) O(logn) O(logn)

ARC (with LRUDLL) O(1) O(1) O(1) O(1)
LIRS (with LRUDLL) O(m) O(m) O(1

β
) O(1

β
)

CLOCK tw + δ O(n) tw + δ O(1
1−β)

CAR (with LRUDLL) tw + δ O(n) tw + δ O(1
1−β)

Compact CAR (our proposal) tw + δ O(n) tw + δ O(1
1−β)

Table 4: Space Complexity of Cache Replacement Algorithm’s Overhead
Space Complexity

policies memory [bit] order number of history
FIFO logn O(logn) -

LRUDLL 2n logn+ 2 logn O(n logn) -
LRUS δ O(1) -
LRUC n logn+ logn O(n logn) -
LFUH n · C O(n · C) -

ARC (with DLL) 4n logn+ 7 logn O(n logn) n
LIRS (with DLL) 4n logn+ 2n+ 2m logn+ 4 logn O(m+ n logn) m

CLOCK n+ logn O(n) -
CAR (with DLL) 4n logn+ n+ 9 logn O(n logn) n

Compact CAR (our proposal) n+ 9 logn O(n) n

cases (i.e., a cache hit and a cache miss). Space complexity de-
pends on the amount of additional bits needed to maintain a data
structure, and so we calculate the amount of bits. We also ex-
press them with bigO notation. Our analysis does not calculate
the amount of memory to keep ghost caches since it should be
compared with the amount of memory required for cache data
rather than control information.

In this analysis, we define the following notations and vari-
ables. n is the number of cache entries. Some policies use P -
bit pointers to cache entries. P requires at least dlog ne [bit] to
identify n individual entries. For the analysis of the time com-
plexities of variants of CLOCK, let us assume hi denotes the
number of content accessed at least i times in a certain range, β
and γ represent h2/h1 and h3/h1, respectively. Note that β and
γ satisfies the inequality 0 ≤ γ ≤ β ≤ 1 since hi+1 ≤ hi. We
basically express time complexity of an algorithm as order of
the function of n or β. If the complexity of a algorithm is O(1)
and can be accurately calculated, we describe the complexity
with read time tr, write time tw and negligibly small time δ,
which is required for the other processes, instead of big O no-
tation, because the memory access time is a dominant factor in
caching algorithm execution time.

Although we analyze only two cache replacement algorithms:
CAR and Compact CAR, Table. 4 and 4 summarize the analyt-
ical results of space and time complexities of not only the two
of them but also other cache replacement algorithms including
FIFO, LRU, CLOCK, ARC and LIRS for the purpose of com-
parison. The detail explanations on the complexity analysis for
other than CAR and Compact CAR are presented in the Ap-
pendix A.

5.6.1. Space Complexity
First, we analyze the space complexity of CAR and Com-

pact CAR. Compact CAR maintains four CLOCKS shown in
Fig. 2. Our simple swapping renders Compact CAR free from
the additional costs of memory or process for maintaining the
order of sweeping the list. Furthermore, B1 andB2 do not need
R-bit and the total length of the other two CLOCKs, T1 and T2,
is n. Thus, Compact CAR costs (n + 9P) bits for two normal
CLOCKs whose total length is n, two CLOCKs without a R-
bit, four information of the size of the lists, and a parameter of
a target size.

On the other hand, CAR has two variable-size CLOCK lists
and two LRU lists. The variable-size CLOCK must support in-
sertion (deletion) of a chunk into (from) an arbitrary position in
a list allocated in physically contiguous memory. The imple-
mentation of variable-sized CLOCK needs the same data struc-
ture as LRU to keep the order of sweeping the list. Because the
approach illustrated in Fig. 1(b) imposes no additional mem-
ory cost, we focus on CAR implemented with a doubly-linked
list. Space complexity of two CLOCK lists and two LRU lists is
comparable to that of four doubly-linked lists whose total max-
imum length is 2n. In addition, total n R-bits are required for
two CLOCK lists. CAR also uses an adaptively tuned param-
eter called a target size, which costs at least P bits. Thus, the
memory overhead is (4Pn+ n+ 9P) bits.

5.6.2. Time Complexity
Second, we elaborate the time complexity of them. Since

many of the analysis is overlapped, we first elaborate the time
complexity of CAR, followed by that of Compact CAR. CAR

11

as well as CLOCK incurs tw+δ complexity at a cache hit since
it requires only to update R-bit. The worst-case complexity at
a cache miss is O(n) because a hand must move n times to go
around the clock in the worst case where R-bit of all entries in
CLOCK is set.

The average number of hand movements at a cache miss ω
is represented as n/s, where s is the number of cache misses
during n hand movements. Because we aim to calculate the
order of ω, our analysis can be simplified by considering the
extreme case where ω is maximized in the steady state. There-
fore, we consider two cases where n is maximized, and where
s is minimized. For brevity, we do not show how to maximize
n and minimize s here, which is obtained by the same calcu-
lation as CLOCK discussed in Appendix A.3. The difference
between CLOCK and CAR is that we must count not only the
first and second accesses to a chunk but also the third accesses
should to maximize n since the accesses turn on R-bits of en-
tries in L2. According to the calculation, ω satisfies the follow-
ing inequality:

ω =
n

s
≤ h1 + h2 + h3

h1 − h2
=

1 + h2

h1
+ h3

h1

1− h2

h1

=
1 + β + γ

1− β
.

Thus, the average-case time complexity depends on the charac-
teristics of accesses rather than the cache size n, and O(ω) =
O(1+β+γ1−β) = O(1

1−β) because 0 ≤ γ ≤ zeta ≤ 1. Time com-
plexity of Compact CAR can be calculated in the same way
as CAR. Time complexity at a cache hit is tw + δ, and worst-
case and average-case complexity at a cache miss are O(n) and
O(1

1−β), respectively.

6. Discussion on the Implementation of Compact CAR for
High Performance ICN Core Element

6.1. Computational Overhead of Variants of CLOCK
In the previous section, we analyzed the computational cost

of Compact CAR, which provides the complexity of O(1/(1−
β)) in terms of β. It may be arguable that the complexity could
be extremely large as the parameter β becomes close to one. In
fact, the β values of content-level and packet-level workloads
used in our simulation ranges from 0.38 to 0.71 and from 0.08
to 0.22, respectively. 1+2β

1−β showing average-case time com-
plexity of Compact CAR is less than only 2.0 when β < 0.2.
1+2β
1−β grows 6.0, which is the computational cost of LRU, when

β becomes 0.625. 1+2β
1−β < 8.0 even if β < 0.7. Although space

complexity of CAR can be reduced by using a stack instead of a
doubly-linked list, the implementation with a stack makes time
complexity prohibitive as illustrated in Fig. 1(b). In conclusion,
the computational and memory costs of Compact CAR are ac-
ceptable in the design of high performance ICN core element.

6.2. Feasibility of Hardware Implementation
The throughput and capacity of a cache are the most serious

obstacles to realize in-network caching. Assuming 10 Gbps of
traffic and with 64-byte data packets, a single-line card would
not to have throughput of approximately 20 million accesses

100

103

106

109

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228 230

20M

Sp
ac

e
co

m
pl

ex
ity

 [
bi

t]

Number of entries (2n)

210Mbit
CAR (with DLL)

CLOCK, Compact CAR

Figure 12: Space Complexities of CAR and Our Pro-
posal(Compact CAR)

per second at maximum (equivalently, 50 ns access time at a
minimum). Since routers typically contain many line cards, a
cache mechanism in a router must realize a level of throughput
in linear proportion to the number of line cards. In practice, the
existence of interest packets, data packets larger than 64 bytes,
and skipping cache accesses by cache hit may ease the required
access time several-fold; however, a cache decision policy is
necessary to enable ten-fold improvement.

Figure 12 shows a memory overhead of CAR and Compact
CAR. As explained in 5.6.1, CAR using a doubly-linked list
consumes (4Pn + n + 9P) bits. Assuming a router holds 20
million cache entries, the memory cost of CAR becomes 2 Gbit
to hold 20 million entries because P ≥ dlog ne. This cost is
prohibitive according to the constraint of SRAM, whose avail-
able size is 210 Mbit [24]. On the other hand, Compact CAR
requires a memory overhead of one bit per chunk. Compact
CAR consumes 20 Mbit; therefore the cost of Compact CAR is
feasible.

If SRAM access time is 0.45 ns [24], the router can han-
dle the traffic of the four line cards quickly enough to keep up,
even in the case of a cache miss causing several rotations of the
hand and several swapping processes. However, the data of the
chunks must be kept in a scalable memory, such as dynamic
RAM or a solid-state disk. Since such memory is slow, we
plan to consider a hierarchically structured cache memory and a
pipelined process to ensure a high average speed for read/write
accesses. We will eventually evaluate the router performance
in a hardware implementation of the router, combining Com-
pact CAR and a name lookup entity [25], to demonstrate the
feasibility of the router.

7. Conclusions

Few researches have been done for cache replacement algo-
rithms in the context of ICN because they have been intensively
researched in the fields of web-caching and content delivery
network previously. This paper argued that the conventional
cache replacement algorithms cannot be directly applied to the
design of a high performance ICN core element.

12

For this reason, we proposed a novel cache replacement al-
gorithm named Compact CAR which would be an important
component in the design of a high performance ICN core el-
ement. Compact CAR outperforms compared to conventional
cache replacement algorithms in terms of cache hit rates and
reduction of memory usage in the design of ICN element. In
detail, the proposed algorithm can achieve the same cache hit
rates with only one-tenth of memory usages that simple con-
ventional algorithms use. In addition, the cache hit rate by the
proposed algorithm is only 10% less than the optimal case over
the various simulation scenarios. In particular, the difference
becomes negligible when we use real traffic traces whose RD
values are similar to the cache size. This result provides a clue
that a high cache hit rate can be achieved if the cache size adap-
tively changes according to the distribution of RD value in real
traffic. Furthermore, Compact CAR can dynamically adapt it-
self to the network environment whose traffic access patterns
change dynamically, which is important to deal with various
traffics in ICN.

ICN has been researched nearly 10 years and it may be the
time to consider its deployment issue in Internet-Scale where
the design of a high ICN core element becomes critical. We
believe that the proposed cache replacement algorithm plays a
key role in the design of such a high performance ICN core
element in near future.

Acknowledgment

This work was supported by the Strategic Information and
Communications R&D Promotion Programme (SCOPE) of the
Ministry of Internal Affairs and Communications, Japan.

References

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
R. L. Braynard, Networking named content, in: Proceedings of the ACM
CoNEXT 2009, 2009, pp. 1–12.

[2] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,
B. Zhang, G. Tsudik, K. Claffy, D. Krioukov, D. Massey, C. Papadopou-
los, T. Abdelzaher, L. Wang, P. Crowley, E. Yeh, Named data networking
(NDN) project (October 2010).
URL http://named-data.net/techreport/TR001ndn-proj.pdf

[3] T. Levä, J. Gonçalves, R. J. Ferreira, et al., Description of project wide
scenarios and use cases (February 2011).
URL http://www.sail-project.eu/wp-content/uploads/2011/02/SAIL
D21 Project wide Scenarios and Use cases Public Final.pdf

[4] N. Fotiou, P. Nikander, D. Trossen, G. C. Polyzos, Developing infor-
mation networking further: From PSIRP to PURSUIT, in: Proceedings
of the 7th International ICST Conference on Broadband Communica-
tions,Networks, and Systems, 2010, pp. 1–13.

[5] N. Megiddo, D. S. Modha, ARC: a self-tuning, low overhead replace-
ment cache, in: Proceedings of the 2Nd USENIX Conference on File and
Storage Technologies, 2003, pp. 115–130.

[6] S. Bansal, D. S. Modha, CAR: Clock with adaptive replacement, in: Pro-
ceedings of the 3rd USENIX Conference on File and Storage Technolo-
gies, 2004, pp. 187–200.

[7] T. Johnson, D. Shasha, 2Q: a low overhead high performance buffer man-
agement replacement algorithm, in: Proceedings of the 20th International
Conference on Very Large Data Bases, 1994, pp. 439–450.

[8] S. Jiang, X. Zhang, Making LRU friendly to weak locality workloads: a
novel replacement algorithm to improve buffer cache performance, IEEE
Transactions on Computers 54 (8) (2005) 939–952.

[9] F. J. Corbato, A paging experiment with the Multics system, Tech. rep.
(May 1968).

[10] J. Wang, A survey of web caching schemes for the Internet, ACM SIG-
COMM Computer Communication Review 29 (5) (1999) 36–46.

[11] K.-Y. Wong, Web cache replacement policies: a pragmatic approach,
IEEE Network 20 (1) (2006) 28–34.

[12] A.-M. K. Pathan, R. Buyya, A taxonomy and survey of content deliv-
ery networks, Tech. rep., University of Melbourne Grid Computing and
Distributed Systems Laboratory (February 2007).

[13] G. Zhang, Y. Li, T. Lin, Caching in information centric networking: A
survey, Computer Networks 57 (16) (2013) 3128–3141.

[14] M. Zhang, H. Luo, H. Zhang, A survey of caching mechanisms in
Information-Centric Networking, IEEE Communications Surveys Tuto-
rials 17 (3) (2015) 1473–1499.

[15] J. Ran, N. Lv, D. Zhang, Y. Ma, Z. Xie, On performance of cache policies
in named data networking, in: Proceedings of the International Confer-
ence on Advanced Computer Science and Electronics Information 2013,
2013, pp. 668–671.

[16] L. Wang, S. Bayhan, J. Kangasharju, Optimal chunking and partial
caching in information-centric networks, Computer Communications
61 (1) (2015) 48–57.

[17] S. Arianfar, P. Nikander, J. Ott, Packet-level caching for information-
centric networking, Tech. rep., Finnish ICT SHOK (June 2010).

[18] D. Rossi, G. Rossini, Caching performance of content centric networks
under multi-path routing (and more), Tech. rep., Telecom ParisTech (July
2011).

[19] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and Zipf-
like distributions: evidence and implications, in: Proceedings of IEEE
INFOCOM’99, Vol. 1, 1999, pp. 126–134.

[20] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., J. Emer, High performance
cache replacement using re-reference interval prediction (RRIP), ACM
SIGARCH Computer Architecture News 38 (3) (2010) 60–71.

[21] F. Guillemin, B. Kauffmann, S. Moteau, A. Simonian, Experimental anal-
ysis of caching efficiency for YouTube traffic in an ISP network, in: Pro-
ceedings of the 25th International Teletraffic Congress, 2013, pp. 1–9.

[22] S. Jiang, F. Chen, X. Zhang, CLOCK-Pro: An effective improvement of
the CLOCK replacement, in: Proceedings of the USENIX 2005, 2005,
pp. 323–336.

[23] C. Fricker, P. Robert, J. Roberts, N. Sbihi, Impact of traffic mix on caching
performance in a content-centric network, in: Proceedings of the IEEE
Conference on Computer Communications 2012, 2012, pp. 310–315.

[24] D. Perino, M. Varvello, A reality check for Content Centric Network-
ing, in: Proceedings of the ACM SIGCOMM workshop on Information-
centric networking, 2011, pp. 44–49.

[25] A. Ooka, S. Ata, K. Inoue, M. Murata, High-speed design of conflict-less
name lookup and efficient selective cache on CCN router, IEICE Trans-
actions on Communications E98-B (04) (2015) 607–620.

13

http://named-data.net/techreport/TR001ndn-proj.pdf
http://named-data.net/techreport/TR001ndn-proj.pdf
http://named-data.net/techreport/TR001ndn-proj.pdf
http://www.sail-project.eu/wp-content/uploads/2011/02/SAIL_D21_Project_wide_Scenarios_and_Use_cases_Public_Final.pdf
http://www.sail-project.eu/wp-content/uploads/2011/02/SAIL_D21_Project_wide_Scenarios_and_Use_cases_Public_Final.pdf
http://www.sail-project.eu/wp-content/uploads/2011/02/SAIL_D21_Project_wide_Scenarios_and_Use_cases_Public_Final.pdf
http://www.sail-project.eu/wp-content/uploads/2011/02/SAIL_D21_Project_wide_Scenarios_and_Use_cases_Public_Final.pdf

Appendix A. Time and Space Complexity of the Remain-
ing Policies

We analyze time and space complexity of policies which are
skipped in Section 5.6. The complexity is calculated based on
an additional process or memory required for the algorithms. In
the evaluation of time complexity, we calculate the number of
memory access as a dominant factor when a cache hit or a miss
occurs. Because the actual value is typically unsteady, we study
the worst-case and average-case complexity in the two different
cases (i.e., a cache hit and a cache miss). Space complexity
depends on the amount of additional bits needed to maintain a
data structure, therefore, we calculate the amount of bits. We
also express them with big O notation. Our analysis does not
calculate the amount of memory to keep ghost caches since it
should be compared with the amount of memory required for
cache data rather than control information.

In addition to the notations in Section 5.6, we define the fol-
lowing notations and variables. m is the number of ghost cache
entries in LIRS. Statistical policies assign C-bit information (as
a counter used in LFU) to every entry.

Appendix A.1. Complexity of FIFO

In FIFO, only a P -bit pointer to remember the head of the
queue is required. When a cache hit occurs, no additional op-
erations are necessary (except for common operations such as
reading the accesses entry). When a cache miss occurs, there
are two additional operations: reading the pointer to evict the
entry at the head of the queue and updating it. Thus, space
complexity is P bits. Time complexity at a cache hit and miss
is δ and (tr + tw + δ), respectively.

Appendix A.2. Complexity of LRU

LRUDLL. To implement LRUDLL, it is necessary to main-
tain a sorted doubly-linked list, where each entry has two P -
bit pointers and the most recently used (MRU) entry is at the
front of the list. In addition, two pointers are needed to remem-
ber MRU and LRU entries. Thus, LRUDLL totally requires
(2Pn+ 2P)-bit memory overhead.

Let us denote an entry by ei(i = 1, 2, · · · , n), where smaller
i means that the entry is more recent, and its pointers that point
previous and next entries by pprevi and pnexti , respectively. If
ei is accessed, ei is moved to the front of the list. This process
updates six pointers: two pointers of ei, pnexti−1 , pprevi+1 , pprev1 and
a MRU pointer. To find ei−1, ei+1 and e1, it is necessary to read
three pointers. On the other hand, if there is a cache miss, en
is evicted and a new entry is cached as a previous entry of e1.
After reading the addresses of first, n-th and (n− 1)-th entries,
it is required to write a new entry and update pnextn−1 and pprev1

and MRU and LRU pointers. Consequently, (3tr + 6tw + δ)
gives an estimate of time complexity imposed by LRUDLL in
the case of both a cache hit and a cache miss.

LRUS . LRUS introduces no additional memory cost because
its data structure maintains all control information needed to
perform the algorithm. LRU entry, which is evicted when a

𝑖

4

3

2

1

content ID

⋯

#
 o

f
a
c
c
e
s
s
e
s

⋯

⋯

ℎ𝑖 ℎ4 ℎ3 ℎ2 ℎ1

A cache miss occurs and a hand moves.

A cache hit occurs and R-bit is set.

A cache hit occurs and nothing happens.

ℎ1 + ℎ2
= [# of hand movements in the worst case]

ℎ1 − ℎ2
= [# of cache misses in the worst case]

Figure A.13: Description of calculating ω of CLOCK

cache miss occurs, resides at the bottom of the stack. When a
cache miss occurs, a new entry stored at the top of the stack.

However, LRUS requires shifting a large amount of entries
to insert or move an entry just like the algorithm described in
Section 4.2. If ei is accessed, all entries from e1 to ei−1 must
be shifted. If there is a cache miss, it is required to shift entries
from e1 to en−1 and write a new entry at the top of the stack.
In the worst case, n entries are moved. On average, n/2 entries
are moved at a cache hit if all entries are uniformly referenced.
Thus, time complexity of LRUS is O(n). This process in a
small-scale computer system is typically supported by special
hardware for the shifting operation; however, it is infeasible
for use in an ICN element because of an excessive amount of
entries.

LRUC . LRUC assigns a C-bit counter to each entry. In addi-
tion, a C-bit counter is necessary to remember the total number
of accesses. Thus, LRUC imposes (Cn + C)-bit space com-
plexity.

Time complexity at a cache hit is O(1)in accordance with
processes updating a counter and writing the value at a new
entry. Time complexity at a cache miss is O(n) because of the
look-up process to retrieve an entry with the minimum counter
value from the unsorted list.

Appendix A.3. Complexity of CLOCK

To store n R-bits and a position located by a clock hand,
space complexity of CLOCK is (n+ P) bits. Time complexity
at a cache hit is (tw + δ) since it requires only to update R-
bit. The worst-case time complexity at a cache miss is O(n)
because a hand must move n times to go around the clock in the
worst case where R-bit of all entries in CLOCK is set. However,
such a case rarely happens.

Let s denote the average number of cache misses during
one cycle of a hand (i.e., n hand movements) to calculate the
average-case time complexity ω = n/s, which can be defined
as the number of hand movements per cache miss on average.
Fig. A.13 gives an intuitive understanding of how to calculate
n and s according to hi defined in the time interval [1, n] during
n hand movements.

Because we aim to calculate the order of ω, our analysis can
be simplified by considering the extreme case where ω is max-

14

imized in the steady state. Therefore, we consider two cases
where n is maximized, and where s is minimized.

First, we discuss the case where n is maximized. It is ob-
vious that the first access to a chunk causes a cache miss and
rotation of a hand. A cache hit by the second access to a chunk
set R-bit of the accessed entry. This entry whose R-bit is set
causes a movement of a hand because the hand ignores the en-
try only resetting theR-bit. Even if a chunk is accessed three or
more times per cycle, the accesses do not cause a hand move-
ment. Therefore, the number of hand movements to go around
CLOCK’s circular list is at most h1 + h2 as illustrated in Fig.
A.13 (a red area).

Second, we determine the minimum number of cache misses
s. It is clear that s = 1 at the minimum in the worst case where
(h1−1) chunks have been already accessed and theirR-bits are
set before our considering time interval [1, n]. However, assum-
ing the steady state where the popularity distribution of chunks
(i.e. the distribution of hi) is stable, there is at most h2 chunks
that is accessed before the beginning of the interval. Therefore,
the number of cache misses is at least h1 − h2 as illustrated in
Fig. A.13 (a blue area).

According to the above discussion, ω satisfies the following
inequality:

ω =
n

s
≤ h1 + h2
h1 − h2

=
1 + β

1− β
.

Thus, the average-case time complexity depends on the charac-
teristics of accesses rather than the cache size n, and O(ω) =
O(1+β1−β) = O(1

1−β) because 0 ≤ β ≤ 1.

Appendix A.4. Complexity of LFUH
Because LFUH is implemented with a heap, the complexity

of LFUHaccords with that of a heap. If a heap is arranged in
an array, Cn-bit space complexity is necessary because each
entry holds a C-bit counter. The operation performed at a cache
hit is moving an accessed entry, which is less expensive than
adding a new entry. The operation performed at a cache miss is
comparable to the cost of adding and deleting an entry. Both of
the operations require O(log n)time complexity.

Appendix A.5. Complexity of ARC

ARC has two LRUs and each LRU contains n entries, there-
fore, the space complexity of ARC implemented with LRUDLL
is more than twice as much as that of LRUDLL. In addition, the
LRU list is partitioned into two portions. To remember the par-
titioned location, each LRU list must maintain a P -bit pointer.
ARC as well as CAR has the P -bit parameter. Thus, mem-
ory overhead of ARC grows 4Pn + 7P bits. Time complexity
is O(1)as well as LRUDLL because there is no repetition in
ARC’s algorithm.

Appendix A.6. Complexity of LIRS

LIRS uses two LRUs which are called LRU stack S and
Q. The maximum size of LRU S and Q is (n + m) and n,
respectively. In addition, two bits are assigned to each entry to
mark a hot chunk and a ghost cache. Thus, the space complexity
is (4Pn+2n+2Pm+4P). m is practically smaller than 4n [8]

although the length of m, which is determined by the length of
a sequence of one-time content such as a scan and a loop, is
theoretically unlimited.

Time complexity can grow significantly since there is an
operation called stack pruning in LIRS. Stack pruning removes
cold chunks that have not been accesses for a very long time
including ghost caches. In the worst case, m ghost caches are
removed by only a single stack pruning operation, therefore,
worst-case complexity is O(m). Especially, if there is a long
loop or scan, this overhead becomes extraordinarily large ac-
cording to the length of the access pattern.

Average-case time complexity of stack pruning can be cal-
culated in accordance with the average number of deleted en-
tries by stack pruning, ω. Assuming n entries (i.e., the same
amount of entries as the cache size) are removed by stack prun-
ing while stack pruning is conducted s times, ω can be defined
as n/s. Specifying the time interval of hi accordingly, h1 ac-
cesses causes cache misses, h2 accesses render the accessed en-
try hot switching the LRU hot chunk into a cold chunk and trig-
ger stack pruning. Because the other

∑
i≥3 hi accesses treated

as accesses to hot entries, stack pruning is not conducted by the
accesses. According to the above calculations, the average-case
time complexity is O(ω) = O(h1/h2) = O(1/β). The more
one-time accesses occupy the traffic, the larger this complexity
becomes.

15

	1 Introduction
	2 Related works
	3 Design Considerations of Cache Replacement Algorithm for ICN
	3.1 Access Patterns of Traffic in the Network
	3.2 Computational Power and Memory Limitations
	3.3 Adaptable Parameter Tuning

	4 Compact CLOCK with Adaptive Replacement (Compact CAR)
	4.1 Key Ideas of the Proposed Algorithm
	4.2 Design of Compact CAR
	4.3 Replacement Algorithm of Compact CAR

	5 Performance Evaluation
	5.1 Simulation Setup and Configuration
	5.2 Cache Hit Rate with Synthetic Traffic
	5.3 Cache Hit Rate with Real Traffic Trace
	5.4 Simulation with a Line Topology
	5.5 Dynamic Parameter Tuning
	5.6 Analysis on Space and Time Complexities of CAR and Compact CAR
	5.6.1 Space Complexity
	5.6.2 Time Complexity

	6 Discussion on the Implementation of Compact CAR for High Performance ICN Core Element
	6.1 Computational Overhead of Variants of CLOCK
	6.2 Feasibility of Hardware Implementation

	7 Conclusions
	Appendix A Time and Space Complexity of the Remaining Policies
	Appendix A.1 Complexity of FIFO
	Appendix A.2 Complexity of LRU
	Appendix A.3 Complexity of CLOCK
	Appendix A.4 Complexity of LFUH
	Appendix A.5 Complexity of ARC
	Appendix A.6 Complexity of LIRS

