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SUMMARY  This paper presents a fast and large-scale optical circuit-
switch architecture for intra-datacenter applications that uses a combination
of space switches and wavelength-routing switches are utilized. A 1,440 x
1,440 optical switch is designed with a fast-tunable laser, 8 x 8 delivery-
and-coupling switch, and a 180 x 180 wavelength-routing switch. We
test the bit-error-ratio characteristics of all ports of the wavelength-routing
switch using 180-wavelength 10-Gbps signals in the full C-band. The worst
switching time, 498 microseconds, is confirmed and all bit-error ratios are
acceptable.
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1. Introduction

With the advent of cloud-computing and big-data ser-
vices, intra-datacenter traffic is growing at 24% a year
[1]. Recent advances in machine-to-machine communica-
tion spurred by artificial-intelligence based applications will
further strengthen this trend. A large part of intra-datacenter
traffic originates from elephant flows, which are produced
by bandwidth-intensive applications such as video stream-
ing, storage backup, and virtual machine migration. The
antonym, mice flows, derives from latency-sensitive appli-
cations including web searches [2]. With the increase in
intra-datacenter traffic, the power consumption of electrical
Ethernet and packet switches is becoming a crucial issue.
When the number of server racks explodes and high radix
electrical switches are unavailable, necessary switching level
increases, which results in excessive delay.

One feasible solution is the opto-electronic hybrid
switching network [3], [4]. To realize such networks, op-
tical circuit/flow switches that eliminate costly optical-to-
electrical and electrical-to-optical conversions and offload
most of the elephant flows from electronic switches are be-
ing investigated [4]-[9]. The key attributes for develop-
ing cost-effective optical switches are their port count and
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switching speed. High port count optical switches enable the
construction of flatter networks which contribute to reduce
latency and control burden in terms of circuit/flow switch-
ing [10], [11]. In present intra-datacenter networks, most
traffic is East-West streams that stimulate the transition to
flatter switching tier networks based on the fat-tree architec-
ture. The control latency of the optical switch must be short,
e.g. 100 us, so that most traffic can be unloaded from the
electrical domain [12].

Various optical switching technologies, the micro-
electro-mechanical system (MEMS) and the semiconductor
optical amplifier (SOA) switching system are being consid-
ered for intra-datacenter interconnections [4]—[6]. However,
MEMS-based switches need optical-path adjustment at the
fabrication stage, the complexity of which increases superlin-
early in terms of the port count. In addition, the architecture
creates a single point of failure. Furthermore, mechanical
switches are slow, e.g. several milliseconds [13]. On the
other hand, the SOA-based switch offers compact integrated
devices with nanosecond-order switching speeds [5], [6], but
its high power consumption limits the available port count.

The wavelength-routing (WR) switch based on an N x N
cyclic arrayed-waveguide grating (AWG) can create low-
power switching systems [14], since the AWG is a passive
device. However, enlarging the cyclic-AWG scale triggers
frequency deviation of the passband from the designated fre-
quencies, i.e. ITU-T grid [14] and as a result the attainable
port count of the WR switch is limited. To relax the im-
pact of the frequency deviation, the uniform loss and cyclic-
frequency (ULCF) AWG configuration was developed [7]
and a prototype 64 x 64 AWG router has been realized by
combining a 64 X 128 cyclic AWG and 64 1 x 2 optical cou-
plers, where each pair of AWG output ports are bridged as
one router output port so that the passband deviation is re-
duced. However, the attainable port count is much smaller
than that considered necessary for intra-datacenter network-
ing. Coordinated wavelength tuning to the passband of the
AWG has been also considered [15]; however, it needs com-
plicated mechanisms to control the laser diodes and increases
the cost of tunable lasers.

To resolve these difficulties, we previously proposed
an optical switch architecture that utilizes a combination
of M x M wavelength-independent delivery-and-coupling
(DC) switches and WR switches based on N x N cyclic
AWGs constructed with multi-stage cyclic AWGs [8]. The
combination can substantially enlarge the switch scale since
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the total port count becomes MN X MN. We fabricated a
270 x 270 optical-switch prototype using 3 x 3 DC switches
and 90 X 90 WR switches, and experimentally confirmed
its effectiveness [16]. Further expansion of the switch scale
needs enlargement of DC switch and/or WR switch scale.
However, incrementing the port-count of a DC switch in-
evitably increases the optical coupler loss while for a WR
switch it increases the passband frequency deviation result-
ing in excessive filtering loss. Applying erbium-doped fiber
amplifiers (EDFAs) can compensate such losses; however,
the solution necessitates a substantial number of costly ED-
FAs since there are no effective EDFA insertion points where
multiple wavelength signals are aggregated.

In this paper, we propose a large-scale optical-switch
architecture for intra-datacenter networks that makes use
of cost-effective wavelength-aggregated amplification and
ultra-dense wavelength routing. The proposed architecture
comprises a DC-switch part, an aggregation-amplification
part, and a WR-switch part. Thanks to the wavelength ag-
gregation, one EDFA can simultaneously amplify multiple
wavelength signals and hence the per-port EDFA cost is dras-
tically reduced, a key benefit of the proposed architecture.
Furthermore, ultra-dense wavelength routing is realized by
introducing two-stage wavelength routing that combines an
interleaver with steep skirt characteristics and a pair of AWGs
with relaxed passband-center-frequency deviation. As a re-
sult, we can realize a cost-effective and large-scale optical
circuit switch. We newly fabricate a pair of 1 x90 AWGs on a
monolithic planar-lightwave-circuit (PLC) chip, and develop
control system for fast-tunable lasers [17]. The passbands
conform to the ITU-T 25-GHz grid and the wavelength-
tuning time is less than 436 us over the full C-band. We
construct part of a 1,440 x 1,440 optical switch by combin-
ing an 8 X8 DC-switch part, a 180 1 wavelength-aggregated
amplification part, and a 1 x 180 WR-switch part. Its good
transmission characteristics and fast switching time are ver-
ified by transmission experiments. To the best of our knowl-
edge, this is the first proof-of-concept demonstration of such
a large-scale fast optical switch.

The organization of this paper is as follows: Section 2
details the proposed optical switch architecture. Section 3
introduces an optical circuit switch prototype fabricated with
PLC technologies. The evaluations detailed in Sect. 4 con-
firm the effectiveness of the proposed switch architecture,
where performance in both static and dynamic states is eval-
uated. Finally, this paper is concluded in Sect.5. Note that
a preliminary edition of this paper was presented in Opto
Electronics and Communications Conference/International
Conference on Photonics in Switching (OECC/PS) 2016.

2. Proposed Optical-Switch Architecture

Figure 1 shows the basic concept of our proposed optical cir-
cuit switch; it combines M X M DC switches and N X N WR
switches. In accordance with a combination of carrier wave-
length of the wavelength-tunable transmitter and connection
of the M x M DC switch, the signal can be transported
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Fig.2  Previously proposed optical-switch architecture [8].

to an arbitrary output port. It offers enlarged switch scale
since the total switch scale is the product of M and N. Fur-
thermore, our scheme is tolerant against failures because a
failed switching part can be replaced in a module-by-module
manner.

Figure 2 shows the previously proposed M N x M N op-
tical switch architecture [8] in which M N x N WR switches
constructed by two-stage cyclic AWGs are bridged by N
M x M DC switches, each of which comprises M1 x M
Mach-Zehnder-interferometer (MZI) switches and M M x 1
optical couplers. To expand the switch scale, M and/or N
must be enlarged; however, the intrinsic loss of the DC switch
and/or excess filtering loss of the WR switch would increase.
Moreover, the filter bandwidth narrows as the signal passes
through non-ideal filters twice and this limits the available
bandwidth of the WR switch [18]. From these reasons, the
available switch scale is rather limited. Introducing EDFAs
can ease this problem, but a costly EDFA is needed at each
port (see Fig. 2) since there is no signal aggregation point.

Figure 3 depicts a newly proposed high-port-count
optical-switch configuration; it utilizes N M x M DC
switches, M N x 1 optical couplers, M EDFAs, M inter-
leavers, and M pairs of 1 X N/2 non-cyclic AWGs, where
M is the degree of the DC switch, N represents the port
count of the coupler and the number of wavelengths, and the
product of M and N equals overall switch scale. The opera-
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Table 1  The numbers of necessary components for an M N X M N optical switch. The numbers in
parentheses are those evaluated here.
MxM DC switch Nx1 coupler EDFA Interleaver Pair of 1xN/2 AWGs
Total number N (180) M (8) M (8) M (8) M (8)
Per-port cost 1/M (1/8) 1/N (1/180) 1/N (1/180) 1/N (1/180) 1/N (1/180)
N MxM DC DC-switch loss
switches M pairs of 1xN/2 AWGs Pin_‘]_olo_gio_l\i[_d_q + Excess loss
Coupler loss Amplifier
- 10log,,N [dB] + saturation limit
L —_ / Excess loss deinterleaver loss
25/50GHz o W/amplifier \, | = g=s==oooe- AWG loss
Bt = (Proposed) N\ | /| =777~
4 - CT) Amplifier
MN m 2 Receiver limit gain
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Quantum-noise limit W/O amplifier
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Fig.3  Newly proposed optical-switch architecture.

tion process is as follows. A wavelength on the ITU-T grid
is selectively generated from a tunable laser. Note that we
use tunable lasers whose frequencies conform to the ITU-T
grid since they can be cost-effectively implemented by using
a simple etalon-based frequency locker, which makes fre-
quency control simple. The signal is then fed to an M X M
DC switch. The output from the DC switch is led to an N x 1
optical coupler. After the multiple (N) signals are aggre-
gated, an EDFA post-compensates the loss of the DC switch
and the optical coupler and pre-compensates the losses of
the following interleaver and AWG, simultaneously. With
this scheme, the EDFA cost per port can be greatly reduced
since each EDFA is shared by multiple wavelength signals,
i.e. multiple ports. The signals are then de-interleaved by a
1 %2 interleaver into odd-number channels and even-number
channels and hence the frequency interval of each tributary
is expanded from 25 GHz to 50 GHz. Finally, the signals of
each tributary are further separated by 1 X N /2 non-cyclic
AWGs having a 50-GHz passband interval, where the pass-
bands of the paired AWGs are interleaved with the 25-GHz
offset. The combination of an interleaver and AWGs makes
the best use of their characteristics in a mutually comple-
mentary manner: The interleaver has few ports but a steep
filter shape. Conversely, the AWG has gradual filter shape,
but its port count can be large. With this scheme, we can
construct a fine-resolution wavelength-routing switch that
enhances the spectral efficiency of the wavelength-routing
switch. Thanks to the aggregation of wavelength signals and
fine-granular wavelength routing, we can achieve a large-
scale optical switch cost-effectively.

Figure 4 shows the optical-power transition due to com-
ponent loss/gain in the proposed switch architecture. Lines
correspond to the configurations with and without optical
amplifiers, respectively as depicted in Fig.4. Purple and
green boundaries respectively depict the minimum optical

Fig.4 Power diagram of a channel in the proposed optical-switch archi-
tecture.

power required by the receiver and that restricted by quan-
tum noise; generally, the former limitation is more stringent
than the latter one. By adopting optical amplifiers, the opti-
cal power can be higher than the receiver-power requirement.
Thus, introducing the EDFA allows a larger DC-switch scale.
Moreover, we can pre-compensate the loss of the WR switch
part which includes an interleaver and an AWG.

Table 1 summarizes the necessary number and the per-
port cost contribution of each component for an MN X M N
switch. Each value in parentheses corresponds to the case
of M = 8 and N = 180. The costly EDFA and interleaver
are shared by N ports. Accordingly, the proposed archi-
tecture yields cost-effective optical switches that will suit
cost-sensitive datacenter applications.

3. Prototype Fabrication

To verify the technical feasibility of the proposed optical-
switch architecture, we monolithically fabricated interleaved
1 x 100 AWGs with the PLC technology. The prototype
employed an athermal structure to reduce power consump-
tion. A pair of AWGs were jointly implemented on a single
PLC chip of 36.4x44.0 mm? (Fig. 5(a)), and were compactly
contained in a module box of 120 x 70 x 7mm? (Fig. 5(b)).
Each AWG can route up to 100 channels aligned on the 50-
GHz grid, i.e., 196.225-191.275 THz for odd channels and
196.250-191.300 THz for even channels. The maximum fre-
quency deviation from the grid is under 3.5 GHz as shown
in Fig. 6, and it can be accepted in 50-GHz-grid systems;
however, the signal quality is seriously degraded when the
passband-frequency interval is 25 GHz, because guard bands
between wavelength channels are much smaller. On the
other hand, passband-frequency deviation of the interleaver
we used is less than 0.8 GHz, which is accurate enough to
de-interleave channels aligned on the 25-GHz grid.
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Fig.5 Monolithically fabricated two-array AWG, (a) a PLC chip and (b)
a module box.
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Fig.7  Passbands of the wavelength-routing switch.

Figure 7 illustrates passbands of the WR switch part,
i.e. a combination of the interleaver and the AWG. Passbands
for the center wavelengths of 1546.717 nm and 1546.917 nm
are shown as examples. We can confirm that the passbands
of the odd and even channels are interleaved with the 25-
GHz offset. The extinction ratio of 25 dB was achieved, and
hence the inter-channel crosstalk was well suppressed. As
a result, our scheme enables ultra-dense wavelength routing
with high port counts.

4. Experiments

To evaluate the transmission characteristics and switching
time of the proposed switch architecture, we constructed
part of a 1,440 x 1,440 optical switch by combining a fast-
tunable laser, 8 x 8 DC switch, 180 x 1 coupler, EDFA, 1 x 2
interleaver, and pair of 1 Xx90 AWGs. Here, a 256 x 1 coupler
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and 1 X 100 AWG were used as a 180 x 1 coupler and 1 x 90
AWG, respectively. We measured the bit-error-ratio (BER)
characteristics in both static and dynamic wavelength states.
Figure 8 shows the experimental configuration. The wave-
length under test was generated by the previously developed
fast-tunable laser [17].

Regarding the wavelength switching time, we mea-
sured 32,220 (180 x 179) combinations and the average and
worst values were 348 us and 436 us, respectively, so shut-
ter time was set to 498 us including ~60 us margin. The
laser output was modulated at 10 Gbps by an intensity mod-
ulator. The wavelength signal was then input to an 8 X 8
DC switch with input power Py,. The insertion loss of the
DC switch was 11.6dB including 1 X 8 coupler intrinsic
loss of 9dB. The DC switch used an electro-optic effect
switch and its switching time was around 200 ns, which is
much faster than that of tunable lasers. As crosstalk sources,
180-wavelength signals on the 25-GHz ITU-T grid in the
full C-band were generated using commercially available
continuous-wave (CW) sources and another intensity modu-
lator, where a wavelength-selective switch (WSS) based on
liquid crystal on silicon (LCOS) eliminated the same wave-
length as the target one and equalized the other-wavelength
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Fig.10  BER vs. elapsed time in dynamic wavelength states; transitions between (a) adjacent channels,
(b) edge and center channels, and (c) both edge channels.

signal powers simultaneously. The target wavelength signal
and the other wavelength signals in the full C-band were
then aggregated by a 256 x 1 coupler in place of the 180 x 1
coupler with 25.7-dB loss. After all signals were amplified
by an EDFA, an interleaver with 1.5-dB loss de-interleaved
the signals into odd channels and even channels and a pair of
1 X 90 AWGs routed the 180-wavelength signals according
to their wavelengths. Finally, the number of bit errors was
counted with a BER tester having burst-mode operation.

First, we measured the BER characteristics of 180-
wavelength channels in the static wavelength state. We set
input power Py, to 0 dBm; the input power was the minimum
level that achieved BERs below the threshold of forward-
error correction (FEC) using 7% overhead. Figure 9 shows
the BER characteristics measured as a function of the WR-
switch port number. The BER fluctuations are observed due
to inequality of gain and noise figure of EDFA and that of
port loss and extinction ratio of AWG; however, we con-
firm that BERs under the FEC threshold were obtained in all
wavelength (180) channels when Py, was 0 dBm; this input
power can easily be attained with commercially available
transmitters.

Next, we measured BER transitions induced by switch-
ing, where each BER was calculated using a 10*-length bit-
sequence window. Input power Py, was set to 0dBm. Fig-
ure 10 plots measured dynamic BER transitions, where laser
wavelength was changed between an edge and its adjacent
channels (i.e. 41 and 12), edge and center channels (i.e. 11
and 191), and both edge channels (i.e. A1 and 1180). Dur-
ing switching, BER was around 0.5 (i.e. log;o(BER) ~ —0.3)
since signal power was cut by a shutter to suppress crosstalk.
In all cases, switching time was 498 us as designed and BERs
below the FEC limit were confirmed.

5. Conclusions

We proposed a novel optical-switch architecture that offers
high port counts for intra-datacenter interconnection. The
switch comprises DC switches and WR switches, each of
which exploits a combination of an interleaver and AWGs to
realize dense-wavelength routing cost-effectively. Based on
the proposed architecture, we demonstrated part of a 1,440 x

1,440 optical switch by combining an 8 x 8 DC-switch part,
180 x 1 aggregation-amplification part, and 1 x 180 WR-
switch part. Overall transmission performance was evalu-
ated both in static and dynamic wavelength states. Switching
time of less than 498 us was attained thanks to the use of fast-
tunable lasers. Our proposed switch offers high scalability
in terms of hardware cost. The switching time is expected
to be further reduced with subsequent research.
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