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Adaptive Multi-Scale Tracking Target Algorithm through Drone

Qiusheng HE†∗, Xiuyan SHAO††∗, Nonmembers, Wei CHEN†††,††††∗a), Member, Xiaoyun LI†, Xiao YANG†††,
and Tongfeng SUN†††, Nonmembers

SUMMARY In order to solve the influence of scale change on target
tracking using the drone, a multi-scale target tracking algorithm is pro-
posed which based on the color feature tracking algorithm. The algorithm
realized adaptive scale tracking by training position and scale correlation
filters. It can first obtain the target center position of next frame by com-
puting the maximum of the response, where the position correlation filter
is learned by the least squares classifier and the dimensionality reduction
for color features is analyzed by principal component analysis. The scale
correlation filter is obtained by color characteristics at 33 rectangular areas
which is set by the scale factor around the central location and is reduced
dimensions by orthogonal triangle decomposition. Finally, the location and
size of the target are updated by the maximum of the response. By testing
13 challenging video sequences taken by the drone, the results show that
the algorithm has adaptability to the changes in the target scale and its ro-
bustness along with many other performance indicators are both better than
the most state-of-the-art methods in illumination Variation, fast motion,
motion blur and other complex situations.
key words: target tracking, color feature, principal component analysis,
scale adaptation

1. Introduction

With the rapid development of drone technology, the drone
has been widely used in many fields. Reference [1] uses
a drone combined with a thermal far-infrared (FIR) camera
to detect potential sinkholes over a large area. The drone
is also used to make the strategy to prevent the potential
possibility of the terrorism attack on the civilian areas [2].
Reference [3] describes a demonstrator application that uses
the drone to monitor and detect the position and state of the
person. A novel approach is presented to automatically de-
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termine the locations for soil samples based on a soil map
created from drone imaging [4]. A drone is used to collect
fast gas concentration data from underground coal fire [5].
Reference [6] introduces an approach able to predict copper
accumulation points, using a combination of aerial photos,
taken by drones. However, visual target tracking using the
drone is not involved. The drone visual target tracking is a
challenging task and often becomes very difficult due to il-
lumination and scale change, occlusion, messy background,
and fast motion and motion blur.

Tracking algorithm includes from early Mean Shift al-
gorithm [9]–[11], particle filter algorithm [12]–[14], sup-
port vector machine (SVM) [15]–[17] to multiple instance
learning algorithm [18]–[20]. Then the speed of correla-
tion filter algorithm in the tracking process is paid more at-
tention. Correlation filtering was first proposed for target
tracking by Bolme et al [21], the simple grayscale feature
training filter was used in the design of minimum output
sum of squared error(MOSSE). João F. Henriques et al. [22]
put forward CSK algorithm. KCF algorithm proposed in
reference [23] applies HOG features to tracking algorithm,
which improved the tracking precision. Luca Bertinetto et
al. [24] proposed Staple algorithm, which integrated color
histogram feature and HOG feature with a certain fusion-
factor, and then after-fusion feature was used to train the fil-
ter, so the tracking precision was improved, but the tracking
speed was greatly reduced. Hamed Kiani Galoogahi et al.
[25] proposed the BACF algorithm, which took the back-
ground information into account in the tracking process,
solved the problem of object occlusion and fast motion, and
improved the tracking precision. In references [26]–[29],
depth features were applied to the tracking algorithm. Al-
though depth feature improved the tracking precision to a
certain extent, the tracking speed was greatly reduced.

The tracking algorithms above do not solve the prob-
lem of target scale change. If the target shrinks, the filter
will learn a lot of background information. If the target ex-
pands, the filter will be affected by the local texture of the
target. Both situations are likely to produce unexpected re-
sults, leading to tracking drift and failure of tracking [30]–
[32]. Martin Danelljan et al. [33] first applied CN(Color
Name) to target tracking, used PCA to reduce the dimen-
sion of 11-dimensional features, and then the CSK tracking
algorithm was used for tracking. The tracking precision was
relatively high, but the effect was not ideal in the case of tar-
get scale change, partial occlusion and deformation. In the
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paper, a multi-scale target tracking algorithm based on color
attributes is proposed to solve the problem of scale change
and achieve multi-scale target tracking through drone based
on adaptive color feature.

2. Color Vision Tracking

Color features have rich expression and high identification.
The CN algorithm maps the original RGB color space to
11 dimensional color attribute space [31], which is robust
to the problem that the target is vulnerable to environmen-
tal changes in the process of the target tracking. The algo-
rithm integrates the grey feature and color feature, and pre-
processed each feature channel through the Hann window,
finally obtains the comprehensive feature representation of
grey level and color [32].

In order to shorten computing time, it adopts the
dimensionality reduction technology of principal compo-
nent analysis (PCA) to reduce the 11-dimensional color
space to 2-dimensional color space. Let D1 and D2 rep-
resent the color space of 11-dimensional color space and
2-dimensional color space respectively, x is the color fea-
ture of D1 dimension, and reduces the dimension by search-
ing a mapping matrix with orthogonal column vectors of
D1 → D2. x̃ is obtained by linear mapping x̃ = BT

p x, which
is the color feature of D2 dimension.

After finish color feature extraction, then process the
feature to track object [34]. CN algorithm is a discriminant
tracking method, which determines the position of a new
frame target according to the maximum responses of classi-
fier. Therefore, the design of classifier is the main problem
of tracking.

The color feature classifier adopts RLS classifier,
which is a recursive least square algorithm. The CN al-
gorithm minimizes a linear regularization function directly
in the Reproducing Kernel Hilbert Space that is defined by
the kernel. The classifier is obtained by training the im-
age block with size M × N around the target, training sam-
ple x̃m,n is obtained by cyclic shift and m ∈ {0, · · · ,M − 1},
n ∈ {0, · · · ,N − 1}. The classifier is trained by minimizing
regularized risk functional, and the risk functional is shown
in Eq. (1).

ε =

p∑
j=1

β j

∑
m,n

∣∣∣∣〈∅ (
x̃ j

m,n

)
, w j

〉
− h j(m, n)

∣∣∣∣2 + λ
〈
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〉
(1)

where φ(·) represents the function of image blocks map to
the Hilbert space by the kernel function k, where the kernel
uses the Gaussian kernel. x̃ j

m,n is the target sample of the jth
frame, h j is the expected Gauss function output of x̃ j

m,n, and
λ ≥ 0 is the regularization parameter. This risk functional
considers all frame errors, and β is the weighting coefficient
of each frame error.

The solution of Eq. (1) can be expressed as the linear
combination of inputs.
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)
(2)

When the cost function is minimized, it should be satisfied.
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where AP
N , AP

D, AP, UP
x , U j

x, YP and H j represent the corre-
sponding Fourier transform respectively, U j
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u j

x

}
, F{·}

represents Fourier transforms, u j
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x j
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)
, the

target model is updated according to Eq. (4).
AP
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x̂p = (1 − β)x̂p−1 + βx̃p

(4)

where x̂p is used to represent the target feature of the pth
frame, which is estimated after updating. The mecha-
nism makes it unnecessary to store redundant information
in updating models, only needs to store the information{
Ap

N , A
p
D, x̂

p
}

of the previous frame to ensure the tracking
speed.

The output response of the classifier is ŷp =

F−1
(
ApU p

z

)
, where U p

z = F
(
up

z

)
, up

z (m, n) = k
(
zp

m,n, x̂p
)
, zp

m,n
is the target feature that is extracted from the frame p, and
x̂p is target feature estimated of the pth frame after learning
of classifier. Calculating the output response ŷ and deter-
mine the location of the target in the next frame through its
maximum value.

3. Modified CN Tracking Algorithm

The original CN algorithm was improved on the CSK algo-
rithm, but it did not solve the problem of scale change. A
scale estimation method based on MOSSE filter [35], [36].
Here the scale estimation strategy is added under the frame-
work of CN tracking algorithm to achieve adaptive scale tar-
get tracking in the paper.

3.1 Scale Estimation Strategy

In the tracking process, the scale of target changes fre-
quently due to motion. If the algorithm cannot adapt to the
scale change of target, the output of the classifier will be
affected to some extent, which causes tracking ineffective.
The method adopted in the paper is to estimate the target lo-
cation first, then estimate the scale based on the information
of estimated location area, and finally update the results of
target tracking according to the results of scale estimation.
Scale estimation detects the change of target scale through
correlation filter, so that the search area can be reasonably
limited. Feature extraction process of scale estimation is
shown in Fig. 1. Firstly, a series of rectangular regions with
variable size are identified around the target, and the color
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Fig. 1 Feature extraction process of scale estimation.

features of each region are calculated. Then, the extracted
features are used to train the RLS classifier, and the scale
correlation filter is obtained. Supposes the target size in the
current frame is M×N, and the size of scale correlation filter
is S × 1. The areas with the size of m′ × n′ around the target
are extracted successively, and the obtained sample is xi

scale,
i = 1, · · · , 33, τ ∈ −(S − 1)/2, · · · , (S − 1)/2, m′ = θτM,
n′ = θτN, θ is scale factor.

3.2 Rapid Scale Tracking

Taking into account the problem of the large amount of cal-
culation during feature extraction, the dimension of 33 fea-
ture matrices that is obtained in Sect. 3.1 is unified into the
dimension of the initial target region by bilinear interpola-
tion in the paper. Then the 33 feature matrices after bilin-
ear interpolation are integrated and the scale feature matrix
xscale of target is obtained. In addition, orthogonal trigono-
metric decomposition is used to reduce the dimension of the
feature and reduce the amount of calculation.
1) Dimension reduction
In the tracking process, the tracking speed of the tracker is
inversely proportional to the dimension of the feature. In
the paper, considering the rapidity of calculation, orthogo-
nal triangular decomposition is used to reduce the dimen-
sion of the feature. Through constructing a projection ma-
trix Bp,scale multiplying it by the target feature xscale after
bilinear interpolation transformation, the target feature in
low dimensional space can be obtained. The dimension of
the projection matrix Bp,scale is d̃ × d, where d represents
the dimension of the target feature before dimension reduc-
tion, d̃ represents the dimension of the target feature after
dimension reduction and p represents the pth frame. Scale
correlation filter is trained by minimum regularization risk
functional, which is shown in Eq. (5).

η = βp

∑
m′,n′

∥∥∥x̂p
scale

(
m′, n′

)
− Bp,scale x̂p

scale
(
m′, n′

)
BT

p,scale

∥∥∥2

(5)

To minimize the risk functional, let Bp,scaleBT
p,scale = I, the

projection matrix can be solved through eigenvalue decom-

position of autocorrelation matrix. Autocorrelation matrix
is Qp =

∑
x̂p

scale (m′, n′) x̂p
scale (m′, n′)T , eigenvalue decom-

position formula is Qp = Bp,scaleΛpBT
p,scale. Each row of the

projection matrix Bp,scale represents the eigenvector corre-
sponding to the eigenvalue in Λp.
2) Dimension reduction scale tracking
By lessening the dimensionality, the tracking speed will be
greatly improved without affecting the tracking precision.
When the projection matrix is used to reduce the dimension
of the feature, two projection matrices Bx

p,scale and Bu
p,scale

are calculated for the target feature xp
scale extracted and the

target feature up
z,scale that is estimated by learning of classi-

fier respectively, the target feature extracted after reducing
the dimension is x̃p

scale = Bx
p,scalexp

scale, and the target feature
estimated by learning of classifier after reducing the dimen-
sion is ũp

z,scale = Bu
p,scaleup

z,scale. In the tracking process, in
order to improve calculation efficiency, the autocorrelation
matrix is not constructed explicitly, but the projection ma-
trix is obtained by QR decomposition of xp

scale and up
z,scale

respectively.
Response ŷp

scale of the detection scale filter can be ob-
tained from Eq. (6), and the maximum scale of ŷp

scale can be
found as the scale of the target in the new frame.

ŷ
p
scale = F−1
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ApGp

z,scale

)
(6)
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z = F{gp

z }, g
p
z (m, n) = k
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p,scalezp
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p,scale x̂p
scale

)
,

zz
m,n represents the target feature extracted from the pth

frame, and x̂p
scale represents the target feature of the pth

frame which is updated by the classifier through learning.
Output response ŷp

scale is calculated and the position of tar-
get in the next frame is determined by its maximum value.
Then the target model is updated, and Eq. (7) is used for up-
dating.Âp

scale = (1 − β)Âp−1
scale + βAp

scale

x̂p
scale = (1 − β)Âp−1

scale + βBx
p,scalexp

scale

(7)

where β represents scale learning factor, Âp
scale and Âp−1

scale rep-
resent the coefficient matrix of the current frame and the
coefficient matrix after updating the previous frame respec-
tively. x̂p

scale and x̂p−1
scale represent the target feature of the cur-

rent frame and the target feature after updating the previous
frame respectively. Bx

p,scale is a projection matrix and may
be got when reducing dimension. In target tracking, because
the scale change of the target in two adjacent frames is very
small, the position kernel correlation filter is used to detect
the position of the target, then samples are collected around
the target, and the scale of the target is detected by using
the scale kernel correlation filter. In this way, the detection
of target position and scale are completed. In the tracking
algorithm, Gaussian function is used to output the position
filter and scale filter, and the multi-channel color feature and
gray value are selected for the target feature. The expected
output y and ys of the classifier are as shown in Eqs. (8) and
(9), respectively.
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y = exp

− (
p − p∗

σ

)2 (8)

ys = exp

− (
s − s∗

σs

)2 (9)

where p represents the target position and p∗ represents the
center position of the target. s represents the total scale and
s∗ is the average value of all elements in s. σ and σs are the
standard deviation of the scale kernel correlation filter and
the position kernel correlation filter, respectively.

3.3 Arithmetic Flow

According to the above analysis, the proposed tracking al-
gorithm includes mainly three parts. Firstly, the feature are
preprocessed by Hann window and the target feature is ex-
tracted. Then we reduce the dimension of the target feature
and calculate response value. Finally the target position and
scale are updated. The detailed algorithm flow is as follows.

Input:
input image patch It.
the position of the previous frame Pt−1 and scale S t−1.
position model AP

t−1, xP
t−1 and scale model AS

t−1, xS
t−1.

Output:
target location estimated Pt and scale estimated S t.
update position AP

t , xP
t and update scale model AS

t , xS
t .

Position evaluation:
1, According to the position of the previous frame of

video, the color features are extracted in the current
frame according to twice the target scale of the pre-
vious frame.

2, use Z and AP
t−1, xP

t−1 calculate y.
3, calculate max(y), obtain target accurate position Pt.
Scale evaluation:
4, Take current location of the target as the center, the

color feature Z′ of 33 different scales was extracted.
5, reduce the dimension to 17 dimension, then use Z′

and AS
t−1, xS

1−t calculate ŷS .
6, calculate max(ŷS ), get accurate target scale S t.
model updating:
7, take sample fP and fS .
8, update position model AP

t , xP
t .

9, update scale model AS
t , xS

t .

4. Experimental Evaluation

In order to verify tracking effect of the algorithm, 13 chal-
lenging videos in the OTB2015 dataset were selected for
testing. The dataset provides accurate ground truth, the po-
sition and the size of initial frame to calculate tracking pre-
cision. The paper compared with 10 algorithms that are
excellent tracking performance in recent years and include
CSK, KCF, SAMF, SRDCF, DCF CA, MOSSE CA, STA-
PLE CA and SAMF CA and CN.

In the paper, the tracking effect of the algorithm is eval-
uated in terms of the accuracy of tracking and the change of

Fig. 2 The relationship between dimension of scale filter and tracking
precision.

scale. In order to facilitate the comparison, default param-
eters are used in the compared algorithms that are selected.
The configuration of the experimental machine is as follows:
Intel Pentium CPU G3250@3.20 GHz as CPU, the size of
running memory is 2 GB, 64 bit operation system. The soft-
ware environment: Win7 + Matlab2014.

4.1 Fast Scale Estimation

In Sect. 3.2, dimension reduction is applied to the original
scale estimation and the influence of dimensionality of scale
correlation filter on tracking performance is analyzed in de-
tail below.

As shown in Fig. 2, in the process of reducing dimen-
sion from 33 dimensions, tracking performance is basically
consistent within a certain range. Results show that the di-
mension is set to 17, not only the tracking performance can
be guaranteed, but also the dimension of the feature can be
significantly reduced and the calculation speed can be im-
proved.

4.2 Performance Analysis

Performance analysis is mainly divided into three parts: cen-
tral position error, tracking success ratio and distance accu-
racy.
1) Central Position Error
The calculation formula of center position error is as fol-
lows.

CLE =

√
‖O − Ot‖

2

where O and Ot represent the real center coordinates of the
target and the center coordinates that are obtained by the
algorithm respectively. Center position error represents the
error between the center that is obtained by algorithm and
the real target center. The smaller the error is, the higher
tracking precision is. The result of center position error is
shown in Table 1. In general, the algorithm proposed in the
paper has better performance in the central position error
than other algorithms.
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Table 1 Central position error results of visual tracking.

Table 2 Tracking precision results.

2) Distance Precision
The formula for distance precision (DP) is DP = m/n, m is
the number of video frames whose central position error is
less than a certain threshold value, and n is the total number
of frames of test data set. The threshold of the paper is 20
pixels. It can be seen from Table 2 that the algorithm in
the paper has better tracking precision compared with other
algorithms.
3) Tracking success ratio
The success ratio of tracking is defined as

OP = area (RT ∩ RG) /area (RT ∪ RG)

where the target region RT is obtain by the algorithm, real
target area RG is marked by groundtruth, and area (RT ∩ RG)
is the overlap area of two regions, and area (RT ∪ RG) is the

Table 3 Track success rate.

area of the union of two regions. The higher the OP value is,
the closer the region obtained by the algorithm is to the real
target region, and the better the algorithm is. The higher the
OP value is, the higher the accuracy rate is. And it shows the
target is successfully tracked. Table 3 shows the results of
tracking success ratio. It can be seen from the Table 3 that
compared with other algorithms, the algorithm proposed in
the paper has higher tracking success ratio.

4.3 Experimental Result

It can be seen from Tables 1–3 that the algorithm proposed
in the paper is superior to other algorithms in tracking per-
formance. In Figs. 3–5, some video frame screenshots of the
algorithm in the tracking process will be given, which can
more intuitively reflect the tracking effect.
1) Scale change
In the tracking process, scale change will affect the track-
ing precision. Video frames as shown in Fig. 3, Dog1 video
changed significantly in scale in the tracking process. It can
be seen from the first line in Fig. 1, before the 590th frame,
all tracking algorithm were correct basically. However, in
the 908th frame, the target scale became larger. It can be
seen that only the proposed algorithm and STAPLE CA,
SRDCF could adapt to the changes in the scale, especially
in the 1039th frame. In the subsequent frames, the scale of
the target became smaller, and the algorithm in the paper
also adapted to the change of scale and successfully tracked
target. In the second line video Doll, the target of the 886th
frame became larger, and most of the existing algorithms
cannot adapt to the change of its scale. The 1637th frame
and later, the CSK and MOSSE CA have started to deviate
from the target, failed to track. In the third line Fleetface
video, the 614th frame, the target not only changed in scale,
but also had a certain degree of rotation. The proposed al-
gorithm showed good tracking effect. In the 663th frame
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Fig. 3 Scale changes tracking results (Dog1, Doll, FleetFace, Mhyang).

Fig. 4 Fast motion and motion blur tracking results (Jumping, Deer, Boy,
Fish).

Fig. 5 Light variations and background clutter tracking results (Shaking,
Skating1, Trellis, CarDark).

and 693th frame, CN has lost target. In the fourth line video
Dudek, most of the algorithms were successful in tracking,
but they were not able to adapt to the changes in the target
scale, which affected the tracking success ratio. However,
the proposed algorithm can still achieve 100% tracking suc-
cess ratio.
2) Fast Motion and Motion Blur
In the process of tracking, fast moving speed of the target
will make the target produce fuzzy pictures, which is a huge

challenge for tracking. The Video shown in Fig. 4, the first
line is screenshots of the tracking result of Jumping video.
As the target range is small, the motion speed is fast, and
the picture is blurred during the motion, many algorithms
failed to track in the video frame. It can be seen from the
figure that in 25th, 36th, 48th, 86th frame and the 186th
frame, all the algorithms except SRDCF and the proposed
algorithm cannot accurately track target. SRDCF deals with
the scale in the algorithm, and add penalty terms in the al-
gorithm, which can accurately track target. In the second
line of Deer video, it can be seen from the 25th frame that
DCF CA and SAMG have deviated from the target. In the
28th frame, the KCF algorithm has also failed to track. Al-
though tracked target successfully later, the tracking success
ratio decreased. In the third line Boy1 video, the target not
only has the characteristics of fast movement, but also has
a certain degree of change in the scale. In the 508th frame,
CSK started to deviate from the target, and the 513th frame
has completely deviated. In the fourth line Fish video, most
of the algorithms tracked accurately, but CSK and CN de-
viated from the target. In the group of videos, the tracking
effect of the proposed algorithm was better than other algo-
rithms, and it is the most obvious in Jumping video, achiev-
ing 99.8% success ratio.
3) Illumination Variation and messy background
Illumination variation and messy background are common
in videos, and dealing with the disturbances in the tracking
process is a major challenge. The first line shown in Fig. 5
is the results of tracking the moving objects, which varies
greatly in illumination, and the target is similar to the back-
ground color, and the background is also very messy. Only
in the 5th frame, MOSSE CA has deviated from the target.
In the 22th frame, only CSK, SAMF CA and the proposed
algorithm successfully can track target. In the 69th frame,
162th frame and 239th frame, DCF CA also showed good
tracking effect. In addition, other algorithms failed to track.
In the second line Skating1 video, not only the illumination
variation is obvious and the background is complex, but the
target also has a certain degree of scale change. Because the
algorithm cannot adapt the scale change, the tracking suc-
cess ratio is not high.

In the 82th frame, SAMF CA has already begun to de-
viate from the target, and the 30th frame has completely de-
viated from the target. In the 267th frame, the 291th frame
and the 362th frame, the proposed algorithm can adapt its
scale changes, and the tracking effect is better than other al-
gorithms. In the third line Trellis video, MOSSE CA started
to deviate from the target in the 128th frame, MOSSE CA,
CSK, and CN all failed to track. In the fourth line CarDark
video, most of the algorithms successfully tracked target. In
the group of videos, the proposed algorithm achieved good
tracking effect, especially in Shaking and Skating1 video,
96.4% of the tracking success ratio and 89.5% of the track-
ing ratio were better than other algorithms.
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5. Conclusion

In the paper, the multi-scale target tracking algorithm based
on adaptive color features through the drone is proposed,
which map the original RGB image to the 11-dimensional
color attribute feature space, so as to achieve the robust rep-
resentation of color features. Nuclear tracking method based
on color feature is adopted for tracking target quickly and
accurately. In the scale estimation, the color feature is cal-
culated through rectangular regions around the target, and
the scale correlation filter is designed to solve the problem
of target scale change in the tracking process. The advan-
tages of the multi-scale tracking algorithm based on adap-
tive color features proposed in this paper are as follows:

(1) Strong adaptability for the changes in the target
scale (such as the results of Dog and Doll video sequences).

(2) For fast motion and motion blur video, the algo-
rithm in the paper is fast in operation and can successfully
track with high accuracy.

(3) It has good resistance to illumination variation
and messy background, because the original RGB color is
mapped to CN feature space, which improves the robustness
of color representation.

Experimental results show that the proposed algorithm
applied in the drone in the paper not only maintains the
advantages of fast and accurate color feature tracking, but
also it achieves robust tracking under scale change, fast
motion and background interference. Although the prob-
lem of tracking failure may occur in high-speed drone, the
cloud computing method and edge calculation method for
the high-speed vehicles [37]–[39] provide a theoretical ba-
sis for the application of the algorithm in the drone.
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