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PAPER
Network Resonance Method: Estimating Network Structure from
the Resonance of Oscillation Dynamics

Satoshi FURUTANI†∗a), Chisa TAKANO††b), and Masaki AIDA†c), Members

SUMMARY Spectral graph theory, based on the adjacency matrix or
the Laplacian matrix that represents the network topology and link weights,
provides a useful approach for analyzing network structure. However, in
large scale and complex social networks, since it is difficult to completely
know the network topology and link weights, we cannot determine the
components of these matrices directly. To solve this problem, we propose
a method for indirectly determining the Laplacian matrix by estimating its
eigenvalues and eigenvectors using the resonance of oscillation dynamics
on networks.
key words: Laplacian matrix, spectral graph theory, resonance

1. Introduction

There are many network systems in the real world, such as
the Internet, the World Wide Web (WWW), and social net-
works. Accordingly, networks are studied in many research
fields, such as mathematics, physics, engineering, biology
and economics.

Spectral graph theory [1] gives a useful approach for
analyzing network structure based on the adjacency matrix
or the Laplacian matrix. In particular, the eigenvalues of the
Laplacian matrix give important information for describing
the dynamic properties of the network; for example, mixing
speed of Markov chains [2], [3], synchronization on net-
works [4]–[7] and virus propagation in networks [8], [9].

If we want to use a matrix to represent a network struc-
ture, we have to know all matrix components, i.e. the pres-
ence and strength of links. However, in large scale and
complex social networks, it is difficult to know the values of
all matrix components. This is because it is difficult to ob-
serve the presence of links and their strength over the whole
network. Typical examples are social networks formed by
human relationships. In these networks, the strength of con-
nections between people, i.e. friendship, is likely to be inho-
mogeneous and can never be quantitatively measured. The
unavailability of link strength values prevents the determi-
nation of network structure even if we know the complete
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topological structure of the network.
Given the above background, we propose a method for

estimating the structure of a network by observing the net-
work’s reaction to external perturbations. The key to our
method is spectral decomposition of the Laplacian matri-
ces. According to the spectral decomposition, Laplacian
matrices which describe the structure of undirected graphs
can be uniquely described by its eigenvalues and eigenvec-
tors. This means the eigenvalues and eigenvectors have the
information about the structure of networks. Thus, if we
can get all the eigenvalues and eigenvectors of a Laplacian
matrix without a priori information about the network struc-
ture, we can reproduce the original Laplacian matrix, i.e.
we can determine the network structure indirectly. More-
over, the above concept can be applied to some particular
directed graphs, since the (asymmetric) Laplacian matrix of
directed graphs which satisfy the particular condition can be
symmetrized [10], [11].

In this paper, we explain our method for estimating the
structure of networks, called the network resonance method.
This method estimates the structure of a network by esti-
mating the eigenvalues [12] and eigenvectors of a Laplacian
matrix by observing the oscillation dynamics on the net-
work. Here the eigenvectors can be estimated by combining
the techniques for estimating the absolute value of their com-
ponents [13] and determining their sign.

This paper is organized as follows. Section 2 explains
the Laplacian matrix and oscillation model on networks as
an introduction to the description of our method. Section 3
proposes the network resonance method. Section 4 shows
its effectiveness through numerical experiments. Section 5
discusses the issues of our method and introduces related
work. Finally, we conclude this paper in Sect. 6.

2. Preliminary

2.1 Laplacian Matrix

Let G = (V, E) be an undirected graph, where V =

{1, 2, . . . , n} is the set of nodes and E (⊂ V ×V ) is the set of
links in G. The (weighted) adjacency matrix A =

(
Ai j

)
is

the n × n matrix defined as

Ai j :=
{

ki j ((i, j) ∈ E),
0 ((i, j) < E). (1)

In undirected graph, A is a real symmetric matrix, because
ki j = k ji . The degree of each node is di :=

∑n
j=1 ki j . The
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degree matrix is defined as

D := diag(d1, d2, . . . , dn),

and the Laplacian matrix is defined as follows [14]:

L := D − A. (2)

In undirected graph, L is also a real symmetric matrix, the
same as A. The Laplacian matrix is also called graph Lapla-
cian and is often used to describe the diffusion phenomena
on networks. Additionally, normalized Laplacian matrix
N := D−1/2LD−1/2, that is a Laplacian matrix scaled by
node degree, has been used for random walk analysis of
networks [15].

Next, we define the Laplacian matrix of directed graph
G = (V, E), where E is the set of directed links. The
(weighted) adjacency matrixA =

(
Ai j

)
of a directed graph

G is defined as

Ai j :=
{
wi j ((i → j) ∈ E),
0 ((i → j) < E). (3)

The out-degree of each node is dout
i :=

∑n
j=1 wi j . The degree

matrix is defined as D := diag(dout
1 , dout

2 , . . . , dout
n ), and the

Laplacian matrix L of a directed graph is defined as

L :=D −A. (4)

In general, L is asymmetrical because wi j , w ji . In
this paper, we callmatrixL an asymmetric Laplacianmatrix.

If we assume that the left eigenvector tm of L, where
tm = (m1, m2, . . . , mn), that is associated with a zero eigen-
value satisfies

tmL = (0, 0, . . . , 0), (5)

and mi > 0 for all i satisfy

mi wi j = m j w ji (≡ ki j ), (6)

then the link asymmetry of L can be expressed by using
symmetric Laplacian matrix L. Namely,L can be expressed
as follows.

L = M−1L, (7)

where M := diag(m1, m2, . . . , mn). This implies that some
particular asymmetry of links can be reduced to node char-
acteristics like Fig. 1; for more detail, see [10], [11].

2.2 Scaled Laplacian Matrix

As mentioned in the previous subsection, normalized Lapla-
cian matrix N is the Laplacian matrix that is scaled by node
degree di . To generalize this, we introduce scaled Lapla-
cian matrix S that is the Laplacian matrix scaled by arbitrary
node characteristic mi (> 0). Scaled Laplacian matrix S is
defined as follows:

S := M−1/2 L M−1/2. (8)

Fig. 1 An example of reducing link asymmetry to node characteristics.

Since scaled Laplacian matrix S is a nonnegative-definite
matrix and its minimum eigenvalue is 0, we sort its eigen-
values in ascending order as

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1,

and we define the eigenvector associated with eigenvalue λµ
as vµ (µ = 0, 1, . . . , n − 1), that is

S vµ = λµ vµ .

We can choose the eigenvectors as the eigenbasis, that is,
they are mutually orthogonal with length of 1, as

vµ · vν = δµν,

where δµν is the Kronecker delta.
Since scaled Laplacian matrix S is a real symmetric

matrix, S can be diagonalized by using orthogonal matrix V
as

Λ = tV S V, (9)

where Λ := diag(λ0, λ1, . . . , λn−1) is the diagonal matrix
of the eigenvalues, and V := (v0, v1, . . . , vn−1) is the or-
thogonal matrix made by the eigenbasis. Equivalently, we
have

S = V Λ tV . (10)

This means that scaled Laplacianmatrix S can be completely
determined if we have all the information about the eigen-
values and eigenvectors of S.

Finally, we show the relationship between asymmetric
Laplacian matrix L for directed networks and the corre-
sponding scaled Laplacian matrix S. By multiplying M−1/2

by the characteristic equation from the left, we obtain

M−1/2S vµ = λµ M
−1/2 vµ

⇔ M−1L (M−1/2 vµ) = λµ (M−1/2 vµ)
⇔ L uµ = λµ uµ, (11)

with

uµ := M−1/2 vµ . (12)

Thus, we recognize scaled Laplacian matrix S has the same
eigenvalue as L, and their eigenvectors are related as given
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by (12).
This means that the directed graph described by asym-

metric Laplacian matrix L can be analyzed via the cor-
responding (symmetric) scaled Laplacian matrix S. More
concretely, the structural and dynamical properties of the di-
rected graph described by L can be analyzed via the eigen-
values and eigenvectors of S. In general, it is difficult to
analyze asymmetric matrices because they are not always
diagonalizable. Hence this fact is fruitful for analyzing di-
rected graphs that satisfy (6).

2.3 Oscillation Model on Networks

To describe the propagation of activity on networks, Aida et
al. proposed an oscillation model on networks in [10]. Let us
assume a system in which each node has a state value, and its
state influences the states of adjacent nodes. Let xi of node
i be its displacement from equilibrium, and let the restoring
force be proportional to the difference of the displacements
of the adjacent nodes.

Note that this is a kind of the most simple and universal
model. If all nodes have the same value of the state, it is
natural to assume no influence occurs between nodes. In
addition, it is natural to assume the strength of influence
between nodes are given by increasing function f (∆x) of the
difference, ∆x, of the values of node state. Even if function
f (∆x) is nonlinear, we can obtain a linear relation for small
values of ∆x by applying the first order approximation of the
Taylor expansion. Namely,

f (∆x) = ki j∆x +O
(
(∆x)2

)
,

where ki j is a positive constant corresponding to the spring
constant. Thus, the oscillation model is an universal model
suitable for many different influence models.

The oscillation model sets the spring constant between
nodes i and j to ki j and the mass of node i to mi . Here,
we consider the situation that we impose a forced oscillation
with frequencyω on node j as an external force, and suppose
that the damped force is proportional to the velocity dxi (t)/dt
of node i. The equation of motion of the forced oscillation
on networks can be written by using the Laplacian matrix as
follows:

M
d2x(ω, t)

dt2 + Mγ
dx(ω, t)

dt
+ L x(ω, t) = (F cosω t) 1{ j }

(13)

or

d2x(ω, t)
dt2 + γ

dx(ω, t)
dt

+L x(ω, t) =
F cosω t

m j
1{ j },

(14)

where γ and F are constants, and 1{ j } is the n-dimensional
vector whose j-th component is 1; all other components are
0. Then,

x(ω, t) = t (x1(ω, t), x2(ω, t), . . . , xn(ω, t)).

By using vector y(ω, t) = M1/2 x(ω, t), (13) and (14) can
be rewritten as

d2y(ω, t)
dt2 + γ

dy(ω, t)
dt

+ Sy(ω, t) =
F cosω t
√m j

1{ j } .

(15)

The stationary solution of (13) can be written by using eigen-
values λµ and associated eigenvectors vµ of S as

x(ω, t) = M−1/2
n−1∑
µ=0

Aµ (ω) cos
(
ω t + θµ (ω)

)
vµ, (16)

where Aµ (ω) and θµ (ω) are the amplitude and the phase for
eigenmode µ, respectively. They are expressed as

Aµ (ω) =
F vµ ( j)
√m j

1√
(ω2

µ − ω2)2 + (γ ω)2
, (17)

θµ (ω) = arctan *
,

γ ω

ω2 − ω2
µ

+
-
. (18)

Note that, eigenfrequency ωµ =
√
λµ.

3. Network Resonance Method

In this section, we explain the network resonance method
that estimates the structure of networks without a priori in-
formation about the links of networks. In the framework of
the network resonance method, we estimate network struc-
ture from the network’s reaction to external perturbations.
Here, the external perturbation corresponds to a periodic ex-
ternal force, F cosω t, of (13) and the network’s reaction
corresponds to the amplitude ai (ω) := maxt |xi (ω, t) | ob-
served at each node i. Note that node centrality (the strength
of node activity) can be understood as the oscillation energy
that is proportional to the square of the amplitude [16], [17].
Hence it is expected that oscillation energy and amplitude of
nodes are observable state quantities in the real networks.

Since node amplitude ai (ω) increases sharply around
each eigenfrequency because of resonance, we obtain a curve
with several peaks as the node reaction. The position and
height of each peak correspond to the eigenvalues and eigen-
vectors, respectively. Thus, it is expected that we can esti-
mate the eigenvalues and eigenvectors by focusing on these
peaks. Figure 2 shows a schematic diagram of the network
resonance method.

Themethod for estimating eigenvalues and eigenvectors
is detailed below.

3.1 Method for Estimating Eigenvalues

This subsection explains themethod that estimates the eigen-
values of a scaled Laplacian matrix from the amplitudes of
oscillation dynamics without a priori information about the
network structure.

Node amplitude ai (ω) includes contributions from all
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Fig. 2 Network resonance method.

Fig. 3 Determining frequencies ω−µ and ω+µ from amplitude Aµ (ω).

eigenmodes µ (µ = 0, 1, . . . , n − 1). Here, let us consider
amplitude Aµ (ω) for a single eigenmode µ. From (17),
amplitude Aµ (ω) increases sharply around ω ' ωµ. This
phenomenon is called resonance. Amplitude Aµ (ω) takes
maximal value at

ω =

√
ω2
µ −

γ2

2
(=: ωmax

µ ). (19)

We then define ω−µ and ω+µ (ω−µ < ω+µ ) as the frequencies
that satisfy

Aµ (ω±µ ) =
1
√

2
Aµ (ωmax

µ ), (20)

like Fig. 3.
If γ � ωµ, the eigenfrequency ωµ and the damping

factor γ can be approximately represented as

ωµ ' 2ω±µ −
√

2(ω±µ )2 − (ωmax
µ )2, (21)

γ ' ω+µ − ω
−
µ, (22)

where the double-sign of (21) corresponds. ω−µ ,ω+µ andωmax
µ

are the values obtained by observing amplitude Aµ (ω), so
we can estimate the eigenvalue λµ (= ω2

µ) by substituting
them into (21). In the same way, we can estimate the value
of damping factor γ.

Although we cannot actually observe amplitude Aµ (ω)
for each µ alone, it is assumed that the contribution of the am-
plitude Aµ (ω) is dominant relative to the amplitudes ai (ω)
around ω ' ωµ. This yields the expectation that we can
estimate the eigenvalues of S by obtaining the values corre-
sponding to ω−µ , ω+µ and ωmax

µ from the peaks of amplitude

ai (ω). In fact, it is reported that this method makes it possi-
ble to estimate the eigenvalues of S with high accuracy [12].

3.2 Method for Estimating Eigenvectors

In this section, we explain our method for estimating the
eigenvectors of a scaled Laplacian matrix. In estimating
eigenvectors, we focus on not the position but the height of
amplitude peaks.

Let us decompose node displacement xi (ω, t) into
eigenmode xi,µ (ω, t) as xi (ω, t) :=

∑n−1
µ=0 xi,µ (ω, t). The

amplitude ci,µ (ω) = maxt |xi,µ (ω, t) | of the eigenmode is
expressed as follows:

ci,µ (ω) =

��������

1
√mi m j

F vµ (i) vµ ( j)√
(ω2

µ − ω2)2 + (γ ω)2

��������
. (23)

By substituting ω = ωµ into (23) and rearranging the terms,
we get

|vµ (i) vµ ( j) | =
√mi m j γ ωµ ci,µ (ωµ)

F
. (24)

When i = j, (24) becomes

|vµ (i) | =

√
mi γ ωµ ci,µ (ωµ)

F
. (25)

In (24) and (25), F is the known parameter that represents the
strength of the external force and γ and ωµ can be estimated
from (21) and (22). Thus, we can obtain the absolute values
of the i and j-th components, vµ (i) and vµ ( j), of eigenvector
vµ if we can estimate the unknown values of mi , m j and
ci,µ (ωµ). We explain the technique used to estimate mi , m j

and ci,µ (ωµ) below.
First, we show how to estimate ci,µ (ωµ). Let us divide

node displacement xi (ω, t) into the term for eigenmode µ
and all other terms as follows.

xi (ω, t) = ci,µ (ω) cos(ω t + θµ (ω))

+

n−1∑
ν=0
ν,µ

ci,ν (ω) cos(ω t + θν (ω)). (26)

By substituting ω = ωµ into (26), and using θµ (ωµ) ' π/2
and θν (ωµ) ' 0 obtained from (18), (26) can be rewritten as

xi (ωµ, t) = −ci,µ (ωµ) sin(ωµ t)+
n−1∑
ν=0
ν,µ

ci,ν (ωµ) cos(ωµ t)

=

√
α2
µ + β

2
µ sin(φµ − ωµ t), (27)

with

αµ := ci, µ (ωµ), βµ :=
n−1∑
ν=0
ν,µ

ci, ν (ωµ),
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Fig. 4 Determining the contribution, βµ , of the eigenmodes other than
the eigenmode of interest.

cos φµ :=
αµ√

α2
µ + β

2
µ

.

Because ai (ωµ) := maxt |xi (ωµ, t) | =
√
α2
µ + β

2
µ, we obtain

ci,µ (ωµ) =
√

ai (ωµ)2 − β2
µ . (28)

Thus, if we have the value of node amplitude ai (ωµ) and the
contribution βµ =

∑n−1
ν=0, ν,µ ci,ν (ωµ) from the eigenmodes

other than eigenmode µ, we can obtain the value of ci,µ (ωµ).
To determine βµ, we focus on (17). By substituting

ω = ωµ ± γ/k into Aµ (ω), we obtain

Aµ
(
ωµ ± γ/k

)
=

√
k2

k2 + 4
F vµ ( j)
√m j ωµ γ

=

√
k2

k2 + 4
Aµ (ωµ).

(29)

Therefore, let us define hlow and hhigh (hlow < hhigh) as
heights ai (ωµ + γ/k) and ai (ωµ − γ/k). Then, let βµ be
the external dividing point whose external ratio of ai (ωµ)
to hlow is 1 :

√
k2/(k2 + 4) (Fig. 4). Finally, by substituting

βµ and ai (ωµ) into (28), we obtain amplitude ci,µ (ωµ) of
eigenmode µ.

This method always succeeds if the contribution, βµ,
from the eigenmodes other than eigenmode µ around the
peak of eigenmode µ can be regarded as constant. While in
practice contribution βµ around the peak is not constant, but
rather is proportional to ω−2, we can consider that contribu-
tion βµ is virtually constant because we focus on the narrow
region of γ/k. Furthermore, the reason for choosing hlow

over hhigh is that hhigh makes a larger contribution to βµ than
hlow, and thus would degrade the precision of the estimated
values.

Next, we explain how to estimate node mass mi . For
that, we focus on the oscillation energy. Since xi (ω, t) is
periodic oscillation with frequency ω in the steady state, the
oscillation energy Ei (ω) of node i can be written as

Ei (ω) =
1
2

mi ẋi (ω, t)2 +
1
2

mi ω
2 xi (ω, t)2. (30)

If damping factor γ is sufficiently small, (30) is approxi-
mately equal to Ei (ω) ' 1

2 ω
2 ∑n−1

µ=0 Aµ (ω)2 vµ (i)2. In ad-
dition, we can consider that the contributions from eigen-
modes other than eigenmode 0 are sufficiently small around
ω ' γ/2. Thus, we obtain

Ei (γ/2) '
1
2

(
γ

2

)2
A0 (γ/2)2 v0(i)2

=
γ2

8
A0(γ/2)2

(√
mi

‖v0‖

)2 (
v0(i)2 ∝ mi

)
= C mi, (31)

where constant C is independent of node i. Since the ratio of
mass is more important than the magnitude of the value of
mass, the mass can be obtained from (31) by removing the
constant by a normalization condition or the like.

By substituting ci,µ (ωµ), mi and m j obtained by the
above methods into (24) and (25), we can estimate the abso-
lute value |vµ (i) | (∀µ, i) of each component of all eigenvec-
tors. However, in general, each eigenvector component has
either positive or negative sign. Here we explain a method
for determining the sign of eigenvector components by using
the orthogonality vµ · vν = δµν of eigenvectors.

If we set σµi ∈ {−1, +1} as the sign of vµ (i), we define
the objective function for each mode µ , 0 as

Zµ := |v0 · vµ | =
������

n∑
i=1

v0(i)vµ (i)
������

=

������

n∑
i=1
|v0(i)vµ (i) |σµi

������
=

������

n∑
i=1

rµiσµi
������
, (32)

where rµi := |v0(i)vµ (i) | ∈ R. Here we assume σ0,i = +1
for all i, since all components of eigenvector v0 associated
with the zero eigenvalue λ0 = 0 have the same sign. (32)
is a number partitioning problem (NPP) for real numbers;
NPP is the task finding a partition of a set of positive integer
such that the sums of elements in each subset are as close
as possible. Determining the sequence σµ = {σµ,i } of signs
that minimizes Zµ of (32) is equivalent to finding the actual
signs of components of eigenvector vµ. Thus, it is expected
that we can determine the signs of vµ by using the complete
Karmarkar-Karp algorithm, which is a complete anytime
algorithm for NPP. For more details, see Appendix.

Consequently, we can estimate the eigenvalues and
eigenvectors of S even if the network structure is unknown.
By substituting estimated eigenvalues and eigenvectors into
(10), we can reproduce the scaled Laplacian matrix that rep-
resents the network topology and link weights. This means
that we can estimate the network structure, which is virtually
impossible to observe directly in the real world.

4. Numerical Results

In this section, through numerical experiments, we show that
the network resonance method can estimate the structure of
networks. Note that we assume that the amplitudes are given
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Fig. 5 Network used in the first experiment. Link width represents link
weight.

Fig. 6 Non-diagonal components of actual and estimated Laplacian ma-
trix of Fig. 5 network.

in the simulation, since the displacement xi (t) is unobserv-
able state value in our model, and we can only observe the
amplitude ai (ω) (or the oscillation energy Ei (ω) ∝ ai (ω)2).
Moreover, the frequency resolution is not constant but var-
ied depending on the gradient dai (ω)/dω; the external force
frequency ω is a controlable parameter.

4.1 Estimation of the Undirected and Directed Network

First, for verifying the effectiveness of ourmethod, we use the
simple undirected network shown in Fig. 5. In this network,
we set each link weight to a uniform random number in the
interval (1, 10). The mass of node i is 1 for all i, the strength
F of the external force is 1, the damping factor γ = 0.005,
the parameter k of (29) is 2. Moreover, we assume that the
amplitude of all nodes are observable and we can input the
external force into just nodes 1, 2 and 3.

The result of the first experiment is shown in Fig. 6.
Figure 6(a) and 6(b) illustrate the non-diagonal components
of the actual and estimated Laplacian matrix, respectively.
It can be seen from this figure that our method can correctly
estimate the presence and strength of links by observing
the network’s reaction. Indeed, the average value ave(e)
and maximum value max(e) of relative errors ei j := |wi j −

ŵi j |/wi j of non-zero components are small; ave(e) = 0.0293

Fig. 7 Non-diagonal components of actual and estimated Laplacian ma-
trix of a network generated by BA model.

and max(e) = 0.1121. Here the average value ave(e) is
calculated by following equation:

ave(e) =
1
|E |

∑
(i, j)∈E

ei j,

where E is the set of links of the network shown in Fig. 5.
Next, we demonstrate that our method can estimate

large directed networks. In this experiment, we use a network
generated byBAmodel [18]. BAmodel is a typical algorithm
for generating random scale-free networks; it uses a prefer-
ential attachment mechanism, and requires three parameters
(n, q0, q): the number of nodes, the size of initial complete
graph Kq0 and the number of links added at each step. Here
the BA parameters are set to (n, q0, q) = (100, 3, 3). We set
each link weight to a uniform random number in the interval
(1, 2), and node mass to a random integer from 1 to 10. Note
that the asymmetric LaplacianmatrixL that satisfies Eqs. (5)
and (6) can be encoded to the scaled Laplacian matrix S by
the relation S = M+1/2LM−1/2. Therefore, an undirected
network whose nodes have unequal masses is interpreted as
a directed network. Other parameters, F, γ and k, are the
same as in the previous experiment. Moreover, we assume
that the amplitude of all nodes are observable and we can
input the external force into 50 nodes.

Figure 7 shows the non-diagonal components of the
actual and estimated Laplacian matrices. From this figure,
one recognizes that our method can also estimate a large
directed network with high precision; ave(e) = 0.0005 and
max(e) = 0.0072.

4.2 Relation between the Number of Accessible Nodes and
Estimation Error

In this subsection, we investigate the relation between the
number of accessible nodes and estimation errors under the
same condition as Fig. 7 estimation; accessible node means
the node where we can input the external force. Figure 8
shows the average and maximum value of relative errors
versus the number of accessible nodes. This figure shows that
the estimation errors decrease as the number of accessible
nodes increases. Namely, ourmethod can estimate a network
structure with high precision if the number of accessible
nodes is sufficiently large.
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Fig. 8 Average and maximum value of relative errors versus the number
of accessible nodes.

Fig. 9 Average and maximum value of relative errors versus the network
size.

4.3 Relation between the Network Size and Estimation Er-
ror

In this subsection, we investigate the relation between the
network size and estimation error. Here we generate an
undirected BA networks with the parameters (n, q0, q) =
(n, 3, 3) and set each linkweight to a uniform randomnumber
in the interval (1,2). Other parameters are follows: ∀i mi = 1,
F = 1, γ = 0.001 and k = 2. Then, the number of accessible
nodes is b0.2nc for each network size n.

Figure 9 shows the average and maximum value of rel-
ative errors versus the network size. From this figure, we
recognize that the estimation error tends to increase as the
network size increases. Thus, our method cannot apply for
too large networks and we need to restrict our method to a
small network.

Fig. 10 The execution time of the processes i to iii.

4.4 Time Complexity

Finally, we show the time complexity of the proposed
method. Our method can be classified roughly into four pro-
cesses: i) estimating eigenvalues, ii) estimating nodemasses,
iii) estimating the absolute values of eigenvectors, and iv) de-
termining the signs of eigenvectors. Since the process iv is
not deterministic, it is necessary to consider the time com-
plexity separetely from the other processes. First, we show
the execution time of the processes i to iii for the different
network size (Fig. 10). Figure 10 shows that the time com-
plexity of the processes i to iii is O(n4). Here the gray solid
line is y = 0.001x4 for comparison.

The time complexity of the process iv is discussed
in [19]. According to [19], though the worst time com-
plexity is O(n2n), the time complexity is reduced to O(n3)
by the pruning rule of CKK, if network size is sufficiently
large (around n > 70).

5. Discussion and Related Work

5.1 Discussion

In this subsection, we discuss the issues and the limitation
of the network resonance method.

The first issue is duplication of eigenvalues. If eigen-
values of a scaled Laplacian matrix duplicate, we cannot es-
timate eigenvectors associated with duplicated eigenvalues.
However, duplication of eigenvalues rarely occurs in the en-
gineering framework. Eigenvalues of Laplacian marix L are
generally calculated as the solutions of eigenvalue equation
det(λI−L) = (λ−λ0)(λ−λ1) · · · (λ−λn−1) = 0. Since the
duplication of eigenvalues of Laplacianmatrix L is caused by
structural symmetry of a network [20], it is expected that the
duplication of eigenvalues of Laplacian matrix rarely occurs
in the case of the links of networks have weights. As an anal-
ogy, let us consider the condition that the quadratic equation
has double roots. The quadratic equation ax2 + bx + c = 0
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Fig. 11 An example of an amplitude with hidden peak. We cannot ob-
serve a peak around the eigenfrequency, since the absolute value of the
component of the eigenvector is small (dashed circle).

has double roots iff b2 − 4ac = 0. This situation rarely
occurs if the coefficients a, b, c ∈ R. Thus, we can theoreti-
cally observe all peaks by taking damping factor smaller than
spacing between eigenvalues, i.e. γ � ωµ+1−ωµ. Although
the damping factor depends on a network, we expect that it
can be controled by coordinating the contents of input.

The second issue is hidden peaks. The height of peaks
of amplitude ai (ω) observed at node i depends on the mag-
nitude of the product of vµ (i) and vµ ( j), where j is the index
of the node into which the external force is input. Thus,
if the magnitude of vµ (i) or vµ ( j) is rather small, the cor-
responding peak will not appear around the eigenfrequency
(Fig. 11). In this case, we cannot estimate |vµ (i) | because
our method requires the information of peak height. An ex-
pedient solution is to change the node pair of the observing
node i and the input node j. By changing the pair, the shape
of the amplitude, ai (ω), also changes. Thus, by repeating
this trial-and-error approach to selecting good node pairs and
finding peaks that are suitable, it is expected that |vµ (i) | can
generally be estimated. Moreover, as an effective method to
overcome this issue, in [21], Sugimoto and Aida proposed
a method that reproduces the Laplacian matrix from incom-
plete sets of eigenvalues and eigenvectors, i.e. only some of
the eigenvalues and eigenvectors, by using compressed sens-
ing. Thus, our method can estimate the structure of networks
even if we cannot completely estimate all eigenvalues and
eigenvectors.

The third isuue is the mutually interference of peaks. If
the spacing between adjacent eigenfrequencies is extremely
narrow, peaks mutually interfere and we may be prevented
the eigenvector estimation. However, according to random
matrix theory, nerest neighbor spacing distribution (NNSD),
i.e. the distribution of the spacing between adjacent eigenval-
ues, of the Laplacian matrix of any networks follows Gaus-
sian orthogonal ensemble (GOE) universality [22]. This
means that the ratio of the region that the spacing is extremely
narrow is constant, and it is expected that our method will

not break down for large networks.
Then, we discuss the feasibility of our method. It is

expected that our method is applicable to estimate the struc-
ture of various hidden networks; e.g. social networks of SNS
users. In an example of application for social network of
users, updating information on the web page with frequency
ω at a certain node j corresponds to inputting the exter-
nal force of the forced oscillation. Then, this influence is
propagated through links of the network. Thus, by observ-
ing activity (oscillation energy) at each node i and estimating
eigenvalues and eigenvectors of S, we can estimate the struc-
ture of a social network. Note, in this example, damping
factor γ of a network corresponds to user interest in contents
of information. Thus, it is expected that we can control the
damping factor γ such that it becomes sufficiently small by
selecting its contents.

Finally, we discuss the limitation of our method. As
suggested by Figs. 8 and 9, our method does not work well
in the case that the network size is too large or we cannot
access only one or few nodes. To overcome these limitations,
we are currently investigating that the method for estimating
network structure from only some of the eigenvalues and
eigenvectors by using compressed sensing, based on that the
sparsity of the structure of social networks.

5.2 Related Work

Estimating a network structure from dynamics on a network
is a fundamental inverse problem. The topology identifica-
tion problem is attracting attention, particularly in the field of
nonlinear dynamics. Examples of existing solutions to this
problem include an approach using synchronization [23],
steady-state control [24], [25] and perturbation [26]. For de-
tails, see the survey [27]. These approaches assume nonlin-
ear systems whose nodes are weakly coupled; e.g. Kuramoto
model [28] or other phase oscillator systems. We, on the
other hand, assume the oscillation model for describing net-
work dynamics, and the oscillation model is a system whose
nodes are strongly coupled. In this regard, ourmethod differs
from the above methods.

A few methods for estimating eigenvalues of a Lapla-
cian matrix have been published. In [29], Franceschelli et
al. proposed the method that estimates eigenvalues by arti-
ficially assigning local interaction dynamics to nodes and
observing their response. Thus, this method can be applied
only to network systems to which one can assign local in-
teraction dynamics, such as ad-hoc network. In [30], [31],
Mauroy and Hendrickx proposed the method that estimates
eigenvalues by applying dynamic mode decomposition for
snapshot data of observable state quantity in a network sys-
tem. However, it seems that the method does not ensure
estimating all eigenvalues of the Laplacian matrix of a large
network. In contrast, our method can theoretically estimate
all eigenvalues even if the size of a network is large, under
the condition that the damping factor is sufficiently small.

Finally, we discuss the frequency domain decomposi-
tion (FDD) as the method for estimating eigenvalues and
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eigenmodes of linear systems. FDD calculates power spec-
tral density (PSD) from output (measurement) vectors to
input signal such as the white noise, and estimates the eigen-
frequencies and eigenmodes from peaks of PSD [32], [33].
Our method and FDD resemble in the respect that estimating
eigenfrequencies and eigenmodes from peaks of response.
However, as far as we investigated, there are some differ-
ences. First, FDD focuses on peaks of PSD, Fourier trans-
form of auto-correlation function of a signal, while we focus
on peaks of the amplitude versus external force frequen-
cies. Although PSD and amplitude have common points
that horizontal axis is frequency and peaks appears on spe-
cific frequencies, they are intrinsically different each other.
Thus, FDD may not be directly applied to the dynamics
that we assumed. Moreover, according to (19), the position
of the maximal point of a peak shifts from the eigenfre-
quency a little. However, in the eigenfrequency estimation,
it seems that FDD regards the position of the maximal point
as the eigenfrequency, while our method considers this shift.
Then, FDD sequentially estimates the eigenmodes (includ-
ing signs), while our method firstly estimates the absolute
value of eigenmodes (eigenvectors) and then determines the
signs of eigenmodes. At this time, we estimate in the narrow
area around peak to enhance the estimation accuracy. Al-
though we cannot discuss superiority or inferiority because
of difficulty of direct comparison, we believe that FDD does
not spoil the originality of our method fatally.

6. Conclusion

In this paper, we proposed a network resonance method that
can estimate network structure from the resonance of oscil-
lation dynamics on networks. Our method can estimate the
structure of undirected and some directed networks with-
out a priori information about the presence and strength of
links. Through numerical experiments, we showed the effec-
tiveness of our method. Future work includes developing an
efficient estimation method for larger and more complex net-
works and countermeasures to cases wherein the reactions
of some nodes cannot be observed.
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Appendix: Number Partitioning Problem

Number Partitioning Problem (NPP) is one of the classi-
cal NP-hard problems of combinatorial optimization, and
it is actively studied in several fields such as mathemat-
ics, computer science and statistical physics [34]–[36].
NPP is defined easily: Given a set of positive numbers,
S = {n1, n2, . . . , nN }, find a partition that minimizes the dis-
crepancy

E =
������

∑
i∈U

ni −
∑
i<U

ni
������
. (A· 1)

A partition that yields E = 0 or E = 1 is called a perfect
partition.

A partition can be encoded by numbers σi = ±1: σi =

1 if ni ∈ U and σi = −1 otherwise. The cost function then
reads

E =
������

N∑
i=1

niσi

������
. (A· 2)

By comparing (32) and (A· 2), we find (32) is an exten-
sion of (A· 2). Thus, it is expected that we can determine
the signs of components of eigenvectors by using the com-
plete Karmarkar-Karp (CKK) algorithm [37], which is the
complete anytime algorithm for NPP. The complete anytime
algorithm is an algorithm that finds better and better solu-
tions the longer it is allowed to run, until it finally finds and
proves the optimum solution.

The procedure of the CKK algorithm is as follows: At

Fig. A· 1 An example of a binary tree generated by the complete
Karmarkar-Karp algorithm. Set {8, 7, 6, 5, 4} can be split into two sets
with the same summation of elements. With appropriate pruning rules, we
have to visit only colored nodes to find the optimum solution.

each iteration, given the sequence n1, n2, n3, . . . (n1 ≥ n2 ≥
n3 ≥ · · · ), CKK generates a new set by replacing the two
largest numbers n1 and n2 by the absolute values of their
difference. Moreover, CKK also generates a new set by
replacing the two largest numbers n1 and n2 by their sum.
This results in a binary tree, where the left branch replaces
values by their difference, while the right branch replaces
them by their sum:




n1, n2, n3, · · · 7→ n1 − n2, n3, . . . (left branch),
n1, n2, n3, · · · 7→ n1 + n2, n3, . . . (right branch).

Iterating both operations N − 1 times generates a tree with
2N−1 terminal nodes. The terminal nodes are single element
lists, whose elements show the discrepancy E of partitions.
CKK searches this tree depth-first from left to right. Fig-
ure A· 1 shows an example of a tree generated by CKK.

The CKK algorithm may require exponential time in
the worst case. However, it is possible to prune parts of the
search tree by the following simple rules:

1. If less than 5 numbers are left in the set, take the left
branch.

2. If the largest number in the set is larger than or equal
to the sum of all the other numbers, stop branching:
the best solution in this subtree is to place the largest
number in one set and all the other numbers in the other
set.

3. If a perfect partition E = 0 or E = 1 has been found,
stop the whole algorithm.

From these rules, for large N , the number of searching node
is nearly proportional to N [34]. Note thatwe need to alter the
above stopping criteria E = 0 (E = 1) to E < 10−k (k ∈ N)
for determining the signs of eigenvectors.

By the way, we understand the concern that the mis-
determination of signs of an eigenvector may prevent the
estimation accuracy. However, we consider determination of
the signs of eigenvectors have small effect for the estimation
accuracy, since the objective function Zµ of (32) takes 0 if
and only if the sequence σµ = {σµ,i } of the actual signs
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are found. Thus, in searching solution by CKK algorithm,
we easily perceive that the sequence of signs is not actual
if Zµ ; 0. Therefore, by not using the eigenmodes that
cannnot be determined in a suitable finite step, we can avoid
a deteriotation of the estimation accuracy due to wrong signs
of eigenvector.
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