
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019
439

PAPER Special Section on Network Virtualization and Network Softwarization for Diverse 5G Services

Scalable State Space Search with Structural-Bottleneck Heuristics
for Declarative IT System Update Automation

Takuya KUWAHARA†a), Takayuki KURODA†b), Manabu NAKANOYA†c), Yutaka YAKUWA†d), Nonmembers,
and Hideyuki SHIMONISHI†e), Member

SUMMARY As IT systems, including network systems using
SDN/NFV technologies, become large-scaled and complicated, the cost
of system management also increases rapidly. Network operators have to
maintain their workflow in constructing and consistently updating such
complex systems, and thus these management tasks in generating system
update plan are desired to be automated. Declarative system update with
state space search is a promising approach to enable this automation, how-
ever, the current methods is not enough scalable to practical systems. In this
paper, we propose a novel heuristic approach to greatly reduce computation
time to solve system update procedure for practical systems. Our heuris-
tics accounts for structural bottleneck of the system update and advance
search to resolve bottlenecks of current system states. This paper includes
the following contributions: (1) formal definition of a novel heuristic func-
tion specialized to system update for A* search algorithm, (2) proofs that
our heuristic function is consistent, i.e., A* algorithm with our heuristics
returns a correct optimal solution and can omit repeatedly expansion of
nodes in search spaces, and (3) results of performance evaluation of our
heuristics. We evaluate the proposed algorithm in two cases; upgrading
running hypervisor and rolling update of running VMs. The results show
that computation time to solve system update plan for a system with 100
VMs does not exceed several minutes, whereas the conventional algorithm
is only applicable for a very small system.
key words: orchestration, task planning, system update automation, auto-
mated planning, change management, model-based engineering, declara-
tive provisioning, network function virtualization

1. Introduction

Recent development and wide acceptance of SDN [1], [2]
andNFV [3], [4] technologies havemade network infrastruc-
ture greatly flexible, i.e. deployment, modification, scale-in
and out, as well as destruction of (virtual) network systems
can be done in a software-defined way. Network functions,
such as router, firewall, load-balancer, IDS/IPS, and so on,
are deployed as a virtual entity on any available physical
servers, rather than manually installing physical boxes into
the system. Scaling-up the number of such functions, for
instance, can be done by instructing orchestrators or NFV
platform software, rather than purchasing any new hardware
boxes. Researches on automation of NFV resource opti-

Manuscript received April 12, 2018.
Manuscript revised July 26, 2018.
Manuscript publicized September 20, 2018.
†The authors are with System Platform Research Laboratories,

NEC, Kawasaki-shi, 211-8666 Japan.
a) E-mail: t-kuwahara@me.nec.jp.com
b) E-mail: t-kuroda@ax.nec.jp.com
c) E-mail: m-nakanoya@bc.nec.jp.com
d) E-mail: y-yakuwa@ap.nec.jp.com
e) E-mail: h-shimonishi@cd.jp.nec.com
DOI: 10.1587/transcom.2018NVP0009

mization can be found in many literatures, such as [5], for
example. In addition, in plumbing among these functions,
there’s no need to physically wire among them, or set up
complex VLAN/routing configurations with a lot of con-
straints, but SDN technology enables ideal plumbing among
these functions with arbitrary logical topology, appropriate
path selection, and logical separation from other services,
regardless of physical network installations. Optimization
of co-design of NFV function placement and SDN route op-
timization can also be found in many literatures, such as [6],
for example.

These technologies have made operator’s tasks for de-
ployment and maintenance of the system significantly ease
and agile, however, these tasks have to be well-prepared for
every situations. Workflows for deployment and mainte-
nance tasks have to be carefully designed so that the order
of each step in the workflow ensures no system failure nor
effects on running services. This is an another burden for
operators to design such workflows in advance of the ser-
vice operation, as network systems become more complex
and demands for network services adapted to allow diverse
customization requirement. In addition, such pre-defined
workflow can only be applied for well-prepared regular tasks,
such as increasing the number of functions within a prepared
resource pool, or preparing a new virtual network based with
common templates. Let us suppose a case, when a resource
pool in some small area has been exhausted and needs to al-
locate extra resource in different area, there would be a man-
ual configurations to fetch resource in remote area, set up a
network path, or extend virtual network span to that area, re-
configure service chain topology or job dispatch policy, etc.
Someone can imagine another case where any network hard-
ware or service halted unexpectedly and simple switching
to stand-by system is not applicable, or there’s any trouble
at a single point of failure, the operator is urged to prepare
recovery workflow on-demand as quickly as possible. We
can also imagine a workflow to patch or upgrade hypervisor,
which requires delicate treatment of services running on top
of that hypervisor because such services have mutual effects
with other services running at other part of the system.

Based on above discussions, we are facing to new fron-
tier of SDN/NFV research towards automation of workflow
generation. This will make manual and labor jobs of oper-
ation expert fully automated and possibly autonomous self-
management of a network infrastructure. In this paper, we
discuss automated system update to eliminate human task

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

440
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

of generation of system update plan. To this end, we are
proposing to employ Declarative system update [7]–[12] for
this issue. Taking this approach, system operators have only
to input the desired system state, and planning engines au-
tomatically generate system-update plans on behalf of the
system operators.

Some declarative system update approaches [7], [8]
adopt a “state-space search” as an automated planning
method. Although it has been suggested that a state space of
a system grows exponentially with increasing number of sys-
tem components [11], our previous work proposed a kind of
a divide-and-conquer technique to solve planning problems
concerning updating large-scale systems [8].

However, in some cases, exponential growth of the state
space remains an issue concerning planning problems. Ac-
cordingly, the notion of global constraints was introduced to
planning system updates [12]. This notion makes it possi-
ble to impose certain system requirements on the transient
and desired states of a system update. For example, when
system operators need to update a service that manages crit-
ical infrastructure and cannot be stopped even during system
update procedures, planning engines accounting for global
constraints can generate a system-update plan while keeping
the system operating normally.

Unfortunately, if we introduce global constraints to our
previous approach, our divide-and-conquer strategy may not
sufficiently break an original planning problem down to fine
grained sub-problems. In such cases, system update would
not be finished in realistic time, even if the size of the system
is realistic, for example, consisting of 50 ∼ 100 components.

In our preliminary report, we have proposed a ba-
sic method for efficient planning of declarative system up-
date [13]. In this paper, we further propose complete method
which can omit recomputation of values of heuristic func-
tion to be more efficient and present mathematical proof of
justification for this optimization. We also present various
experimental results to verify the effectiveness of themethod.

The proposed method suppresses the increase in time
for planning and makes declarative system update a more
powerful tool for system management. The proposed plan-
ningmethod is based on the observation that most system up-
dates contain a “bottleneck” component, which takes many
steps to update due to dependencies with other components.
We found that a system-update plan can be quickly formu-
lated by setting the update of the bottleneck components as
a priority. We formalized this finding as a heuristic function
for the A* search algorithm, and we designed an efficient
planning method tailored for declarative system update.

In the rest of this paper, related work is introduced in
Sect. 2. In Sect. 3, declarative system updatewith state-space
search is overviewed. In Sect. 4, state models and planning
problems are formalized in the similar way to a reported
method [8]. In Sect. 5, a heuristic function is formulated
and validated, and an efficient algorithm for calculating that
heuristic function is devised and validated. In Sect. 6, the
results of an experimental evaluation of the performance of
the algorithm are presented and discussed, and in Sect. 7, the

conclusions of this study are presented.

2. Related Work

A fundamental framework for declarative system update,
which accepts a desired state as input and generates work-
flows that execute system update by automatic planning, has
been proposed by El Maghraoui et al. [11].

The planning technique used in [11] is called partial-
order planning (POP). In short, a POP engine receives a set
of actions, which are elemental operations for system update
(and similar to the transitions in our models), and constructs
a partial plan.

In contrast to a totally ordered plan specifying a com-
plete order of actions, a partial plan is a partially ordered
set of actions and specifies only necessary and sufficient or-
dering of actions. A partial plan can be more efficiently
executed than a totally ordered plan because two or more
actions can be executed in parallel when they are not related
by their relative orders.

In a comparative study on several planning techniques,
the most-suitable technique for planning an IT-system up-
date was discussed [14]. It was concluded that hierarchical
task network (HTN) algorithms, which decompose a high-
level action into several finer-grained actions and finally el-
ementary actions by applying decomposition to the actions
hierarchically, are the most suitable.

It was also pointed that a general HTN algorithm is
insufficient to solve a planning problem concerning a large-
scale IT system. In another work, to tailor an HTN algorithm
to IT system planning [15], a hybrid approach to a HTN and
state-space search and several optimization were proposed
[16].

In contrast to those works, in our previous work [8]–
[10], we chose state-space search for making it possible to
explicitly deal with system states and easily taking global
constraints (cf. [12]) into account. State-space search can
be adapted to account for global constraints by restricting a
state space to states satisfying given global constraints. This
feature is difficult to integrate into methods such as those that
handle states of IT systems implicitly (like POP and HTN).

As mentioned in Sect. 1, the size of state spaces grows
exponentially with increasing number of components in a
system. To address this issue, our previous work [8] adopted
a divide-and-conquer strategy, namely, dividing systems into
strongly connected components by dependencies. By our
divide-and-conquer strategy, the main factor of scalability
of a state-space search reduces from the size of a whole sys-
tem to the maximum size of strongly connected components
of a system. However, global constraints make related sys-
tem components depend on each other, and our divide-and-
conquer strategy does not work due to these dependencies.

3. Illustration of Fully Declarative System Update

This section illustrates declarative system update. Figure 1
shows our motivating example, that is a situation in which n

KUWAHARA et al.: SCALABLE STATE SPACE SEARCHWITHSTRUCTURAL-BOTTLENECKHEURISTICS FORDECLARATIVE IT SYSTEMUPDATEAUTOMATION
441

Fig. 1 Motivating example: updating a running hypervisor.

Fig. 2 An example of state model planning.

virtual machines are hosted on a hypervisor and the hyper-
visor needs to be stopped and restarted for version update.
In the rest of this section, for brevity, we assume that n = 1,
that is, only one VM is hosted on the hypervisor.

In this example, it is supposed that the hypervisor can-
not be upgraded while in operation and that the hypervisor
cannot be stopped while it is hosting the VM. In this case,
system update must be executed in correct order, namely, (1)
stop the VM, (2) stop the hypervisor, (3) upgrade the hyper-
visor, (4) restart the hypervisor, and (5) reboot the VM.

3.1 Modeling Systems

In this study, each system component is modeled by state
models. State models consist of several transition systems
with dependencies on their transitions. Here, a transition
system consists of states of a system and transitions between
them, and represents behaviors of a system with discrete
internal status.

System updates are modeled by the planning problems
on state models, which is called state model planning. A
state model planning is defined by a state model as well as
initial and desired states of each transition system of the state
model. Figure 2 shows an example modeled by state-model
planning.

Each rectangle in the figure represents a transition sys-
tem, henceforth called a state element to emphasize that it
is an element of a whole state model. Each circle in a state
element is a state of it, and each arrow between two states
is a transition between them. Each double-lined state is an
initial state of each state element, and each filled-with-black

state is a desired state of each state element. The goal of
system update is for all components to transit from an initial
state to a desired state.

In Fig. 2, three state elements are shown. “HV.package”
has two states, old and new, which represent an old version
and a new version of the package of the hypervisor, respec-
tively. “HV.service” has two states, run and stop, which
represent running and stopped states of the hypervisor, re-
spectively. “VM” also has two states, run and stop, which
represent running and stopped states of the VM, respec-
tively†.

In Fig. 2, some transitions have a label with a name of
an element and its state. For example, the label “VM:stop”
is attached to the transition from run to stop in HV.service.
These labels represent dependencies on transitions. A de-
pendency on a transition represents a requirement to use the
transition. That is, dependency “d:s” on a transition from
src to dst of state element e means that “e’s state can move
from src to dst only if component d is at state s.”

We note that system operators do not have to directly
represent a state model of their systems. Representing state
model is equally or more time-consuming tasks for system
operators. We assume that our declarative system update
tool uses high-level models to hide details of states, tran-
sitions and dependencies. For example, the component
model [9], [10] is proposed, which consists of system com-
ponents, connections between them, and property of them.
In this model, the model encapsulates the details of com-
ponents and connections, and are converted into a detailed
model that corresponds to the state model.

3.2 State Model Planning

The goal of state model planning is to discover the shortest
sequence of transitions that transfers states of all compo-
nents to desired states while keeping all requirements on
labels fulfilled. A system-update plan is obtained as a so-
lution of state model planning, and system update can be
correctly performed by following the system-update plan.
For example, one solution of the problem shown in Fig. 2 is
given as the following plan:

1. VM: run→ stop
2. HV.service: run→ stop
3. HV.package: old→ new
4. HV.service: stop→ run
5. VM: stop→ run

(Here, notation e : a → b denotes a transition from a to b in
e.) This solution gives a correct system-update plan directly.

A way to formulate state-model planning as a shortest-
path problem on a state graph, which is a transition system
integrating all system components, was shown by Kuroda
and Gokhale [8]. For example, Fig. 3 shows a state graph of
our running example. A system-update plan can be found as

†Precisely, the “VM” component should be named
“VM.service”, but it is omitted for brevity.

442
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

Fig. 3 State graph of the system shown in Fig. 2.

paths from the initial state (1) to the desired state (5) over
this state graph as the following path: (1)→ (2)→ (3)→ (7)
→ (6)→ (5).

4. Formal Definitions

In this section, state models and state model planning are
formalized.

4.1 Notations

The following useful notations are introduced first.

• Let I be a set. When tuple X = (Xi)i∈I is an element
of

∏
i∈I Xi , X[i] denotes Xi . That is, _[i] is an i-th

projection map.
• Suppose that I = {i1, . . . , in}. Tuple X such as X[i] =

Xi can also be denoted as {i1 : Xi1, . . . , in : Xin }.
• Sequence of x1, . . . , xn arranged in this order is denoted
as 〈x1, . . . , xn〉.

• When s = 〈x1, . . . , xn〉, length of s is defined as n and
denoted as ‖s‖.

4.2 State Model

System components are modeled as unlabeled transition sys-
tems, which called state elements.

Definition 4.1 (State element). A state element e is
defined as a pair (S,T) where S is called states, and
T ⊆ S × S is called transitions. S can be denoted as
S (e) and T can be denoted as T (e).

State elements of a state model represent behavior of
components (i.e., finer-grained parts of systems), and the
state model represents the behavior of the whole system
that consists of these components. Thus, to formally define
a state model, interactions between state elements, called
“dependencies”, need to be defined. For this purpose, global
states and global transitions of a set of state elements are first
introduced.

Definition 4.2 (Global state and global transition).
Let E be a set of state elements.

Global states over E are defined as a set of all
tuples of states over E. Formally, global states SE
are defined as

∏
e∈E S (e).

Global transitions over E are all transitions⋃
e∈E T (e) extended to global states. Formally, let

e ∈ E, t ∈ T (e) and σ1, σ2 ∈ SE . (σ1, t, σ2) is a
global transition when t = (σ1[e], σ2[e]) holds and
σ1[e′] = σ2[e′] holds for each e′ ∈ E \ {e}.

A set of all global transitions over E is denoted
as TE , and (σ1, t, σ2) ∈ TE is denoted as tσ1

.

Intuitively, global states represent states of a whole system,
and global transitions represent component-wise transitions
of a whole system.

The notion of dependency among state elements can be
introduced as follows. As mentioned in Sect. 3.2, dependen-
cies represent restrictions on transitions of state elements,
such as “The VM instance can be launched only when the
hypervisor is running.”

Definition 4.3 (Dependency). Let E be a set of state
elements.

A dependency over E is a mapping D from each
transition in E to a tuple of (non-empty) subsets of
states in E:

D : t 7→ (Be)e∈E (where Be ⊆ S (e)∧Be , ∅)

State element e is said to be depending to e′

when D(t)[e′] , S (e′) holds for some t ∈ T (e).
Dependency from e to e′ can be denoted as e

D
e′.

When it is clear from the context, D can be omitted,
and e e′ can be simply written.

A dependency maps from each transition to a set of global
states that the transition is executable. Formally, A transition
t is said to be executable at a global state σ when σ[e] is in
D(t)[e] for all e ∈ E.

The following notation is also introduced:

• A set of all dependencies over E is denoted as DE .
• When B[e] = S (e) holds, “e : S (e)” can be omitted
from {e1 : B[e1], e2 : B[e2], . . . , en : B[en]} for sim-
plicity of expression.

• The symbol > denotes {e1 : S (e1) , . . . , en : S (en)}.
• When D is a dependency and (s, d) is a transition,

D((s, d)) can be denoted as D(s, d).

Then, state models are formally defined as follows. Let
E be a set of state elements and D be a dependency over E.
A state model is defined as pairM = (E, D).

Example 4.1. State elements of the system shown in Fig. 4
are formalized as follows:

• HV.package = ({old, new}, {(old, new)})
• HV.service = ({runhv, stophv},

KUWAHARA et al.: SCALABLE STATE SPACE SEARCHWITHSTRUCTURAL-BOTTLENECKHEURISTICS FORDECLARATIVE IT SYSTEMUPDATEAUTOMATION
443

Fig. 4 State model of the system used in Sect. 3.

{(runhv, stophv), (stophv, runhv)})
• VM = ({runVM, stopVM},
{(runVM, stopVM), (stopVM, runVM)})

Dependency D between these state elements is defined
as




D(old, new) = {HV.service : {stophv}}

D(runhv, stophv) = {VM : {stopVM}}

D(runVM, stopVM) = D(stopVM, runVM) =
{HV.service : {runhv}}

; otherwise, D(t) = >.
Finally, the state model of the system in Fig. 4 is given

asM = ({HV.package ,HV.service,VM}, D).

4.3 State Graph

As mentioned in Sect. 3.2, a state model is translated into
one transition system called a state graph [8].

Definition 4.4 (State graph). LetM = (E, D) be a
state model. A state graph G(M) = (S,T) is a
labeled state transition system defined as

• S = SE
• T =

{
tσ ∈ TE

��� t is executable at σ.
}

State graph is a graph whose nodes are states of a sys-
tem, and edges are (executable) transitions between them.

A global transition (σ1, t, σ2) in T can be denoted as
σ1

t
−→T σ2, or simply σ1

t
−→ σ2 when T is clear from the

context.

Example 4.2. Let M be a state model defined in the ex-
ample 4.1. Figure 5 shows the state graph G(M), which
consists of six global states σ0, . . . , σ5. Here, “hv.p” (resp.
“hv.s”) abbreviates “HV.package” (resp. “HV.service”). In
Fig. 5, two “unreachable” global states: (hv.p : new, hv.s :
stophv,VM : runVM) and (hv.p : old, hv.s : stophv,VM :
runVM) are omitted.

4.4 State Model Planning

State model planning and its solution can now be defined.
Formally, state model planning is defined as a planning prob-
lem defined for a state graph of a state model from a global
initial state to a global desired state.

Fig. 5 State graph of the state model shown in Fig. 4.

Definition 4.5 (State model planning). State model
planning is a triple P = (M, σ0, σ f).

• M: state model
• σ0 ∈ G(M): global initial state
• σ f ∈ G(M): global desired state

Paths on state models are defined as:

Definition 4.6 (Path on state models). Let M =

(E, D) be a state model, and G(M) = (S,T) be
the state graph of M. If σ0, σ1, . . . , σn ∈ S and
t1, t2, . . . , tn ∈ T satisfy the following relations:

σ0
t1
−→T σ1, σ1

t2
−→T σ2, . . . , σn−1

tn
−−→T σn

sequence 〈t1, t2, . . . , tn〉 is called a path onM from
σ0 to σn.

A solution to state-model planning (M, σ0, σ f) is de-
fined as one of the shortest paths on M from σ0 to σ f .
Hence, L(P) denotes:

• the length of a solution to state model planning P when
P has a solution, or

• ∞ when P has no solution.

By definition of a solution to state-model planning, a
solution to statemodel planning (M, σ0, σ f) can be obtained
by solving shortest path search problem defined for a graph
G(M) from σ0 to σ f . A heuristic search algorithm, a.k.a.
the A* algorithm [17], is adopted to solve a shortest-path
search problem defined for a state graph with the proposed
heuristic function.

5. Heuristic Function for State Model Planning

5.1 Challenging Case in Realistic Use

For brevity of examples, we only discussed about a simple
and small problem consisting a VM and a hypervisor so far.
However, in many cases, hypervisors manage two or more
VMs. It is supported that n is taken as a natural number
more than two, and n VMs are hosted on the hypervisor.
A state model of a system containing n VMs has 2n+1 + 2
global states. Unfortunately, in “hop count” measurement,
the desired state of the running example is situated at the
farthest point from the initial state of the running example.

444
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

Therefore, if Dijkstra’s algorithm [18] is used to find a path
from an initial state to a desired state, then all over the global
states are traversed and the problem will never be solved
in a practical time when n is large (e.g., when n > 100).
Accordingly, to deal with large systems, a heuristic function
tailored for state model planning must be adopted.

5.2 Critical Element Heuristic Function

The proposed heuristic function is based on the following
observation. In many cases of system update, a “bottleneck”
component occurs in the entire system update. That is, a
component has many dependencies to other components di-
rectly or indirectly, and resolving its dependencies takesmost
of the updating time. The element of that bottleneck compo-
nent is called the critical element. For example, in the system
shown in Fig. 2, HV.package is said to be the critical element
of the planning problem, because transferring states of all
other elements are caused by the update of the HV.package.

The proposed heuristic function can be regarded as one
of variants of relaxed planning heuristics [19]. That is, de-
pendencies of a given state model planning are relaxed by
extracting dependencies that only relate to the critical ele-
ment and removing all other dependencies. The length of a
solution of the relaxed state model planning under approxi-
mates that of the original problem. Thus, this approximate
length of a solution can be used as an admissible heuristics
of the A* search algorithm.

The critical element of given state model planning must
be identified. The proposed algorithm searches for the crit-
ical element by using a brute-force algorithm. Namely, for
all elements e, given state model planning is relaxed by e,
an approximate length of a solution is computed by solving
each relaxed state model planning, and the element that pro-
duces maximum approximate length is taken as the critical
element.

5.3 Definition of Relaxation of State Model Planning and
Critical Element Heuristic Function

First, e-derived dependency is introduced. Intuitively, e-
derived dependency based on dependency D is dependency
D restricted on a rooted tree whose root is e, nodes are E,
and edges are a part of “ ” relations.

Definition 5.1 (e-derived dependency). Let M =

(E, D) be a state model. A dependency De
↓ is called

an e-derived dependency based on D when the fol-
lowing conditions hold (1) - (4) for all e ∈ E:

(1) For each transition t and each state e′,
D(t)[e′] ⊆ De

↓(t)[e′] holds.
(2) e is not depended from any other e ∈ E.
(3) Dependency De

↓ does not form a cycle.
(4) ∀e1, e2, e3 ∈ E \ {e}.


e2

De
↓

e1 ∧ e3
De
↓

e1


⇒ e2 = e3

Fig. 6 State model planning Pε .

Fig. 7 e1-rooted tree of dependencies over Pε .

Example 5.1. Problem Pε shown in Fig. 6 is used in Sect. 5.
Dependency Dε of Pε is given as:




Dε (a1, b1) = {e2 : {b2, c2}, e4 : {b4}}

Dε (b2, a2) = {e3 : {b3}}

Dε (a4, b4) = {e2 : {a2}, e3 : {b3}}

Dε (·, ·) = > (otherwise)

The following two e1-derived dependencies are introduced
as

1) If all dependencies except for direct dependencies
are removed from e1, the following e1-derived dependencies
Dε

e1
↓ direct are obtained:




Dε
e1
↓ direct(a1, b1) = {e2 : {b2, c2}, e4 : {b4}}

Dε
e1
↓ direct(·, ·) = > (otherwise)

2) If all dependencies except for those along with an e1-
rooted tree of dependencies shown in Fig. 7 are removed, the
following e1-derived dependencies Dε

e1
↓ derived are obtained:




Dε
e1
↓ derived(a1, b1) = {e2 : {b2, c2}, e4 : {b4}}

Dε
e1
↓ derived(b2, a2) = {e3 : {b3}}

Dε
e1
↓ derived(·, ·) = > (otherwise)

relaxed state model and relaxed state-model plan-
ningcan thus be defined on the basis of an e-derived de-
pendency.

Definition 5.2 (Relaxed state model M|De
↓ and re-

laxed state-model planning P|De
↓). LetM = (E, D)

be a state model, e be in E, De
↓ be an e-derived depen-

dency, P = (M, σ0, σ f) be a state model planning.
M|De

↓ = (E, De
↓) is called an De

↓-relaxed state
model of M and P|De

↓ = (M|De
↓, σ0, σ f) an De

↓-
relaxed state model planning of P.

Problem P|De
↓ is said to be a relaxed problem of P in

the sense that a graph G (M) is a subgraph of G
(
M|De

↓

)
.

The problem P|De
↓ takes only dependencies derived

from e into account. Accordingly, a critical element and

KUWAHARA et al.: SCALABLE STATE SPACE SEARCHWITHSTRUCTURAL-BOTTLENECKHEURISTICS FORDECLARATIVE IT SYSTEMUPDATEAUTOMATION
445

critical element heuristics can be formally defined as fol-
lows.

The following notation is introduced for brevity. Let
P = (M, σ0, σ f) be state model planning and σ be a
global state of M. P@σ is written for state-model plan-
ning (M, σ, σ f).

Definition 5.3. Critical-element heuristic function
ϑP (σ) : S → N is defined as

ϑP (σ) = max
e∈E

L(P|De
↓@σ)

Element arg max
e∈E

L(P|De
↓) is called a critical element

ofP. (SubscriptP is omitted from ϑP and ϑ is simply
written when it is clear from context.)

The following theorem shows that the function ϑ is
consistent. Consistency is important property for heuristic
functions in the following two points; (1) a consistent func-
tion is also an admissible function, which guarantees A*
algorithm calculates a collect shortest path, and (2) values
of a consistent function are invariant through A* algorithm.
We can optimize A* algorithm using this property.

Theorem 5.1. Let P be state-model planning. Function ϑP
is consistent, namely,

ϑP (σ) ≤ ϑP (σ′) + 1

holds for all global states σ, σ′ such as σ → σ′.

Proof. Let ec, e′c be critical elements of P@σ,P@σ′ re-
spectively. When no path from σ′ to σ f exists on P|Dec

↓ ,
ϑP (σ′) = ∞ and Theorem 5.1 holds. Therefore, the case
that a path from σ′ to σ f exists on P|Dec

↓ is considered.
The shortest path π on P|Dec

↓ from σ′ to σ f is chosen.
Because transition t such that tσ = (σ, t, σ′) exists, path π′
exists on P|Dec

↓ such that t, t0, t1, . . . , tn︸ ︷︷ ︸
π

. Because ϑ(σ) is

the length of the shortest path from σ to σ f on P|Dec
↓ , the

following equation is obtained:

ϑ(σ) ≤ |π′ | = |π | + 1 (1)

Because e′c is a critical element of P|De
↓@σ′, the fol-

lowing holds:

L(P|Dec
↓@σ′) ≤ L(P|De′c

↓
@σ′) (2)

|π | ≤ ϑ(σ′) (3)

By (1) and (3), ϑ(σ) ≤ ϑ(σ′) + 1 holds. �

The consistency propertymakes the proposed algorithm
more efficient by eliminating recalculation of the value of the
proposed heuristic function. The detail of optimization of
A* search algorithm is discussed below.

5.4 Algorithm for Computing ϑ(σ)

An algorithm for computing L(P|De
↓@σ) for calculating

ϑ(σ) is proposed in the following. We fix e-deriving de-
pendencies for each e in the rest of this section, and for
brevity, P|De

↓ is abbreviated as P|e.
We note that the number of states of each state element

is assumed to be enough small (e.g., 2∼5) to finish the pre-
process explained in the following subsection in negligibly
short time to whole planning process.

5.4.1 Preprocess

First, the proposed algorithm requires simple e-local paths
of each element e. Here, an e-local path is a sequence of
transition: (s0, d0), (s1, d1), . . . , (sk, tk) ∈ T (e) such that
di−1 = si holds for all i, and a local path is said to be
simple when it visits each state at most once. Second, the
algorithm requires the length of the shortest e-local paths
of each element e. Note that since shortest local paths are
simple, these values can easily be obtained after all simple
e-local paths of each element e are obtained.

Before A* search algorithm is executed, the following
preprocesses are executed. All simple e-local paths of each
state pair (s, s′) in each element e are calculated, and stored in
an array spe. Then the shortest path of each state pair (s, s′)
is obtained by choosing the shortest path from spe[s, s′], and
its length in an array diste.

Example 5.2. Let Pε |e1 be Pε |Dε
e1
↓ derived. After the preprocess

is applied to P|e, the following prerequisite data is obtained.
(spe[s, s] = {〈〉} and diste[s, s] = 0 are omitted for all e.)

• ei (i = 1, 3, 4):

spei [s, s
′] = {〈(s, s′)〉}, distei [s, s

′] = 1
(for all s, s′ s.t. s , s′)

• e2:




spe2 [b2, a2] = {〈(b2, a2)〉, 〈(b2, c2), (c2, a2)〉},
spe2 [a2, c2] = {〈(a2, b2), (b2, c2)〉},
spe2 [c2, b2] = {〈(c2, a2), (a2, b2)〉},
spei [s, s′] = {〈(s, s′)〉} (for all other s, s′ s.t. s , s′)




diste2 [a2, c2] = diste2 [c2, b2] = 2
diste2 [s, s′] = 1 (for all other s, s′ s.t. s , s′)

5.4.2 Main Algorithm

The value of ϑP (σ) is the maximum value of L(P|ep@σ)
for all states in P. In the proposed algorithm for calculating
the value of ϑP (σ), all of the values of L(P|ep@σ) are
calculated by the following algorithm calc(P, e, σ):

Function costOn(P, e, R) calculates the minimum cost
of transferring states of e and its dependent elements from
initial states to desired states under a requirement R on e.
Here, a requirement on an element e is a sequence of a set
of states of e. Under requirement 〈R1, . . . , Rm〉, e needs to
visit one required state in each Ri in the order of R1, . . . , Rm.

446
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

Algorithm 1 “calc(P, ep , σ)”: Calculate L(P|ep@σ)
1: for e ∈ E do
2: visit[e]← false
3: end for
4: L ← costOn(P |ep , e, σ, 〈〉)
5: for e ∈ E do
6: if not visit[e] then
7: L ← L + diste (σ[e], σf [e])
8: end if
9: end for
10: return L

Algorithm 2 “costOn(P, e, σ, 〈R0, R1, . . . , Rm〉)”
1: visit[e]← true
2: spc← ∞
3: for 〈s0, s1, . . . , sm〉 ∈ trace(〈R0, . . . , Rm〉) do
4: for π ∈ pathThrough(σ0[e], s0, s1, . . . , sm, σf [e]) do
5: spc′ ← ‖π ‖
6: for dep ∈ {e′ | e e′ } do
7: req← pathReqs(P, dep, π)
8: spc′ ← spc′ + costOn(P, dep, σ, req)
9: end for
10: if spc > spc′ then spc← spc′
11: end for
12: end for
13: return spc

Algorithm costOn is defined as Algorithm 2.
Function trace(〈R0, . . . , Rm〉) returns a set of sequences

of states and be formally defined as:

trace(〈〉) = {〈〉}, trace(〈R0, . . . , Rm〉) = R0 × · · · × Rm

Function pathThrough(s0, s1, . . . , sk) returns e-local
paths from s0 to sk visiting s0, s1, . . . , sk and be formally
defined as:

pathThrough(s0, s1, . . . , sk)
= {concatenation of π1, . . . , πk

| π1 ∈ spe[s0, s1], . . . , πk ∈ spe[sk−1, sk]}

Function pathReqs(P, e,π) returns a requirement that
is a sequence consisting of dependencies of π and be formally
defined as:

pathReqs(P, e, π) = 〈D(t ′1)[e], . . . , D(t ′l)[e]〉(
where 〈t ′1, . . . , t

′
l〉: a sequence π with all > removed

)
Finally, the value ϑPε (σ) is obtained as the maximum

value of calc(Pε, e, σ) for all e.

Example 5.3. LetPε |e1 = (M, σ0, σ f) bePε |Dε
e1
↓ derived. First,

an execution process of costOn(Pε |e1, e1, σ0, 〈〉) is shown
below. In the following explanation, for simplicity, we omit
common arguments Pε |e1 and σ0 in costOn(Pε |e1, e, σ0, π)
and simply write costOn(e, π).

First, costOn calls two recursive calls of itself:

costOn(e1, 〈〉)
= costOn(e4, 〈{b4}〉) + costOn(e2, 〈{b2, c2}〉) + ‖〈(a1, b1)〉‖

The value of costOn(e4, 〈{b4}〉) is calculated immedi-
ately: costOn(e4, 〈{b4}〉) = ‖〈(a4, b4), (b4, a4)〉‖ = 2.

In the calculation of the value of costOn(e2, 〈{b2, c2}〉),
The cost of paths 〈(a1, b1), (b1, c1), (c1, a1)〉 and 〈(a1, b1),
(b1, a1)〉 are compared in line 10, and returns the smaller as
the value of costOn(e2, 〈{b2, c2}〉).

costOn(e2, 〈{b2, c2}〉)
= min{‖〈(a1, b1), (b1, c1), (c1, a1)〉‖ ,

costOn(e3, 〈{b3}〉) + ‖〈(a1, b1), (b1, a1)〉‖}
= min{3, ‖〈(a3, b3), (b3, a3)〉‖ + 2} = min{3, 2 + 2} = 3

Finally, the value of costOn(e1, 〈〉) is calculated as:

costOn(e1, 〈〉)
= costOn(e4, 〈{b4}〉) + costOn(e2, 〈{b2, c2}〉) + ‖〈(a1, b1)〉‖
= 2 + 3 + 1 = 6

In the above execution process, each visit[e] is set to
true for all e. Thus, calc(Pε, e1, σ0) returns 6, which is the
return value of costOn(Pε |e1, e1, σ0, 〈〉).

5.5 Optimize A* Search with Critical Element Heuristics

TheA* search algorithmwas proposed byHart et al. [17] and
is described asAlgorithm3. Here, the detail of backtracking
procedure for picking up the found path is omitted for brevity.

Algorithm 3 “A*(G = (S, T), s0, s f , h)”: Search the shortest
path on the graphG = (S,T) from s0 to s f with the heuristics
h
1: cost[s0]← h(s0); Open.add(s0)
2: while Open , ∅ do
3: smin ← arg min

s∈Open
f (s)

4: if smin = s f then return a shortest path obtained by backtracking.
5: Open.remove(smin); Closed.add(smin)
6: for n: all neighbor nodes of s do
7: f (n) ← cost[smin] − h(smin) + h(n) + 1

8:
if (n < Open ∧ n < Closed)
∨(n ∈ Open ∧ f (n) < cost[n])
∨(n ∈ Closed ∧ f (n) < cost[n]) then

9: cost[n]← f (n); Open.add(n)
10: end if
11: end for
12: end while

Additionally, we can adopt the following optimization
techniques of A* search algorithm and ϑ:

1) According to Theorem 5.1, the value f (s) in Algo-
rithm 3 is not updated. Therefore, the calculation in lines
7 − 9 of Algorithm 3 can be omitted when n ∈ Closed.

2) A tie breaking technique can be adopted. That is,
smin can be freely chosen from nodes whose cost is minimum
in all nodes in Open in line 3 of Algorithm 3. The proposed
algorithm choose the farthest node to s0.

KUWAHARA et al.: SCALABLE STATE SPACE SEARCHWITHSTRUCTURAL-BOTTLENECKHEURISTICS FORDECLARATIVE IT SYSTEMUPDATEAUTOMATION
447

3) When ∀t, e.De1
↓ (t)[e] ⊆ De2

↓ (t)[e] holds, we can re-
move e1 from the candidates of critical elements. Addition-
ally, when σ[e1] = σ f [e1] and ∀t < T (e1) .De1

↓ (t)[e] ⊆
De2
↓ (t)[e] hold for all e, we have L(P|De1

↓@σ) ≤

L(P|De2
↓@σ) and have only to calculate the value of

L(P|De2
↓@σ).

4) A memoization technique can be adopted. Because
pathReqs is often called many times with the same argu-
ments, the result of each pathReqs call is stored and reused.

5) Let P = (M, σ0, σ f) be a state model planning.
When we regard a state model M as a graph with nodes
of state elements and edges of dependencies, the graph of
M is sometimes divided into some connected components
C1,C2, . . . ,Ck and we can construct an another state model
planning Pi by restricting P over state elements of each Ci .
Then, we can use more (or equal) accurate heuristics than
ϑ. That is, we adopt sum of values of ϑPi (σ) for each Pi
instead of the value of ϑP (σ).

Finally, the optimized Algorithm 3 provides a system-
update plan, P = (M, σ0, σ f), as the return value of
A*(M, σ0, σ f , ϑP).

6. Performance Evaluation

We applied the proposed algorithm to solve system update
plan of SDN/NFV systems. We start with very basic exam-
ples to safely upgrade running hypervisor without risking
VMs, or virtual network functions, running on top of the
hypervisor. And we also tested the algorithm for a system
that needs rolling update to avoid fatal incidents and zero
downtime update for high availability.

We implemented our heuristic function ϑ with De
↓derived

in Scala and evaluated performance of our planning algo-
rithm that uses critical element heuristics. Experiments were
conducted on a machine with Intel(R) Xeon(R) E5-1620 0
(3.60GHz, 32GB memory) with timeout of 1 hour. We use
scala runtime options “-J-Xms16G -J-Xmx16G” in perform-
ing all experiments.

6.1 Upgrade of Running Hypervisor

As we mentioned in the prior sections, the problem shown
in Fig. 1, which is to upgrade a hypervisor, is a difficult
problem for declarative system update because this induces
search in state space of exponential size. Our first experiment
is performed on the problem shown in Fig. 1, which includes
a hypervisor and n VMs.

Figure 8 depicts the state model planning HV-VM(n),
which is a state model representing the system of Fig. 1. The
state model planning HV-VM(n) is similar to our motivating
example shown in Fig. 2 but has n(> 1) VMs. The current
state of HV-VM(n) is that the hypervisor of the old version
package is hosting n VMs and the desired state is that the
hypervisor is hosting n VMs similarly but the package of the
hypervisor is updated.

Fig. 8 HV-VM(n): planning problem of updating a hypervisor.

Fig. 9 A load balanced cluster.

6.2 Rolling Update

As we mentioned in Sect. 1, in system updates, operators are
often urged to design workflows so that the system update
raise no fatal incidents of running services. If a system con-
sists of two more VMs installed the same function, operators
can adopt rolling update strategy to update these VMs with
no downtime. Namely, in rolling update strategy, operators
will not update all VMs simultaneously, but only subset of
VMs at a time.

Figure 9 shows a load balanced cluster, which is an
example of system that we can update each VMs by rolling
update. V M (1), V M (2), ..., and V M (n) are application
servers where the same application is installed. The load
balancer distributes attached VMs and, in most cases, all
VMs are necessarily needed to keep a service in operation.
Therefore, if the enough number of VMs is in operation, the
service on Fig. 9 keeps alive even in system update.

Figure 10 shows the state model planning Rolling(n),
which represents system update in Fig. 9 with n VMs. The
load balancer is not appeared in Rolling(n) because the
state of the load balancer doesn’t affect the update and ap-
parently keeps in the “running” state. Here, we note that
Fig. 10 doesn’t take the condition for keeping service run-
ning into account. In order to obtain rolling update plans, we
need to add a kind of global condition to the planning prob-
lem Rolling(n) and solve the problem with the additioncal
condition. We add the condition that “at least m(> 0) VMs
are running” to the problem Rolling(n). Our planner can
easily deal with such an additional conditions by excluding
global states violating the condition.

448
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

Fig. 10 Rolling(n): planning problem of rolling update.

6.3 Zero Downtime Updates of ToR Switches in a Data
Center

We consider an another example such that uses standby com-
ponents for update. As we mentioned in Sect. 1, declarative
system update tools uses extra resources and standby com-
ponents when system update cannot be completed in main
systems. Let us suppose a case of duplicated ToR switches in
a data center. Important network appliances, including ToR
switches, are often duplicated for high availability. Even
when main switches fall down, standby switches activate as
a substitute for the main switch and keep servers mounted on
the rack accessible. Additionally, even in firmware update of
ToR servers with requireing system reboot, the update can be
completed with no downtime by detouring traffic to standby
switches.

Figure 11 shows the latter case. There are n racks
with eight servers and two ToR switches. In each rack, one
ToR switches is an active switch, and other is a standby
switch. Now, the administrator plans firmware update of
active switches with no downtime.

Figure 12 shows a part of state model planning
of Fig. 11, which represents just one pair of active-
standby switch and contains state elements that show
a firmware of active switch (SW[i].main.firmware), ser-
vices of active and standby switch (SW[i].main and
SW[i].sub), routing (SW[i].routeBy), connection to core
switch (SW[i].connection), and connection to each server
(SW[i, 1].connection, · · · , SW[i, 8].connection). The state
model planning UpdToR(n) is defined by n switch pairs
SW[1], SW[2], . . . , SW[n]. Similarly to Rolling(n), we
need to add global condition that “all switches keep con-
nection among connecting components”. That is, all state
elements of “.connection” keep in the state “on”.

6.4 Results

The line graph Fig. 18 shows the results of experiments
to solve HV-VM(n) by Dijkstra algorithm and our method.
Fig. 19 shows the results of experiments using Rolling(n)

Fig. 11 A network system on a data center.

Fig. 12 A state model planning of active/standby switches of UpdToR(n).

Plan

1. VM(1): run → stop
2. VM(2): run → stop
3. VM(3): run → stop
4. HV.service:
run → stop

5. HV.package: old→ new
6. HV.service:
stop → run

7. VM(1): stop → run
8. VM(2): stop → run
9. VM(3): stop → run

Workflow

1. Stop VM(1)
2. Stop VM(2)
3. Stop VM(3)
4. Stop hypervisor
5. Upgrade hypervisor
6. Restart hypervisor
7. Restart VM(1)
8. Restart VM(2)
9. Restart VM(3)

Fig. 13 A plan for HV-VM(3) and a workflow for Fig. 1 of n = 3.

with the condition that “at least 1 VMs are running”. The
horizontal line shows n and the vertical one shows elapsed
time in seconds to find a solution of each problem. The line
of “no heuristic” shows results of Dijkstra algorithm and the
line of “our method” shows results of A* algorithm with
critical-element heuristic function.

The line graph Fig. 18 shows that the computing time
of state space search using Dijkstra algorithm drastically
increases and exceeds an hour with n = 24 on one hand. On
the other hand, our method can calculate a plan even with
n = 100 in 5 minutes.

Figure 13 shows a plan for HV-VM(3) and the corre-
sponding workflow. The plan correctly avoid accidental
system stop by stopping the underlying hypervisor.

The results of experiments using Rolling(n) shows
us striking difference of efficiency between two algorithm.
The line graph Fig. 19 shows the computing time of state

KUWAHARA et al.: SCALABLE STATE SPACE SEARCHWITHSTRUCTURAL-BOTTLENECKHEURISTICS FORDECLARATIVE IT SYSTEMUPDATEAUTOMATION
449

Plan

1. VM(1).attachment:
detached → attached

2. VM(1).service: run → stop
3. VM(1).version: old → new
4. VM(1).service: stop → run
5. VM(1).attachment:
attached → detached

6. VM(2).attachment:
detached → attached

7. VM(2).service: run → stop
8. VM(2).version: old → new
9. VM(2).service: stop → run
10. VM(2).attachment:
attached → detached

Workflow

1. Detach VM(1) from load bal-
ancer

2. Stop VM(1)
3. Update VM(1)
4. Restart VM(1)
5. Attach VM(1) to load balancer
6. Detach VM(2) from load bal-

ancer
7. Stop VM(2)
8. Update VM(2)
9. Restart VM(2)
10. Attach VM(2) to load balancer

Fig. 14 A plan for Rolling(2) and a workflow for Fig. 9 of n = 2.

Plan

1. SW[1].sub: off → on
2. SW[1].routeBy: main → sub
3. SW[1].main: on → off
4. SW[1].main.firmware: old →
new

5. SW[1].main: off → on
6. SW[1].routeBy: sub → main
7. SW[1].sub: on → off

Workflow

1. Activate standby switchSW[1].sub
2. Switch route from SW[1].main

to SW[1].sub
3. Stop SW[1].main
4. Update firmware of SW[1].main
5. Activate SW[1].main
6. Switch route from SW[1].sub

to SW[1].main
7. Stop SW[1].sub

Fig. 15 A plan for UpdToR(1) and a workflow for Fig. 11 of n = 1.

space search using Dijkstra algorithm drastically increases
and exceed an hour with n = 10 whereas our method can
calculate a plan even with n = 100 in 10 minutes.

Figure 14 shows a plan for Rolling(2) and the corre-
sponding workflow. From begining step 1 to finishing step
5, VM(2) keeps in operation and from begining step 6 to fin-
ishing step 10, VM(1) keeps in operation. Therefore, while
performing this workflow, the load balancer can distribute
workload to at least one of VM(1) and VM(2) and the system
of Fig. 9 keeps alive even during the update.

The line graph Fig. 20 also shows that notable differ-
ence between Dijkstra algorithm and our heuristic search.
The computing time of state space search using Dijkstra
algorithm exceeds an hour with n = 8 on one hand. On
the other hand, our method can calculate a plan even with
n = 60.

Figure 15 shows a plan for UpdToR(1) and the corre-
sponding workflow. From begining step 1 to finishing step 7,
core switch and servers in the rack 1 keep connected. There-
fore, while performing this workflow, the rack 1 in Fig. 11
keeps in operation.

6.5 Evaluation of Estimated Path Length by ϑ

In the above experiments, our heuristic function can estimate
precise value of shortest paths of these inputs by calcutating
its value of global initial states. That is, our heuristics esti-
mated length of solution of HV-VM(n) as 2n+3, Rolling(n)
as 5n, and UpdToR(n) as 7n at global initial states of each
problem. We note that because Rolling(n) (or UpdToR(n))

Fig. 16 The computation of ϑHV-VM(2) .

Fig. 17 Example problem Pc that ϑPc (σ0) , L(Pc).

Fig. 18 The results of experiments using HV-VM(n).

Fig. 19 The results of experiments using Rolling(n).

can be separated into sub-problemsPi corresponding to each
VM(i) (or SW[i]), as me mentioned in Sect. 5.5, we use∑

i ϑPi (σ) instead of ϑRolling(n) (σ) (or ϑUpdToR(n) (σ)).
Figure 16 illustrates computation of ϑHV-VM(2) by show-

ing the value of L(HV-VM(2) |De
↓derived) and e-rooted trees of

De
↓derived for each element e in HV-VM(2). The critical el-

ement of HV-VM(2) is HV.package because it follows the
maximum value of L(HV-VM(2) |De

↓derived).
In contrast, we introduce an example problem Pc that

ϑPc (σ0) , L(Pc) by Fig. 17. Any relaxed Pc have strictly
shorter solution than the original Pc . Because any derived
dependencies cannot depend on both e4.b4 and e4.c4, solu-
tions of any relaxed problems don’t pass through e4.b4 and

450
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

Fig. 20 The results of experiments using UpdToR(n).

e4.c4 at the same time, but solutions of Pc pass through both
of them.

7. Conclusion

To alleviate cost and time for management of SDN and NFV
systems, or IT systems more generally, we proposed declar-
ative system update scheme which automatically generates
system update plans. A novel heuristic function of A* search
for declarative system update was proposed to solve the sys-
tem update planning problem in practical time. An efficient
algorithm for calculating the value of the heuristic function
was also proposed. Under the assumption that state elements
in models are finely enough grained, the proposed algorithm
generates system-update plans in sufficiently practical time.
We took upgrading running hypervisor and rolling update
of running VMs as examples of system update, and showed
that our proposed algorithm delivered the update plan within
several minutes for a system with 100 VMs, whereas the
conventional algorithm is only applicable for very small sys-
tems.

Acknowledgments

This work was partly supported by the Ministry of Internal
Affairs and Communications, Japan.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol.38, no.2, pp.69–74, March 2008.

[2] K. Suzuki, K. Sonoda, N. Tomizawa, Y. Yakuwa, T. Uchida,
Y. Higuchi, T. Tonouchi, and H. Shimonishi, “A survey on openflow
technologies,” IEICE Trans. Commun., vol.E97-B, no.2, pp.375–
386, Feb. 2014.

[3] E.I. NFV, “Network functions virtualisation -white paper #3.” https://
portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.p
df

[4] Y.C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing-a key technology towards 5g,” ETSI white paper,
vol.11, no.11, pp.1–16, Sept. 2015.

[5] J.G. Herrera and J.F. Botero, “Resource allocation in nfv: A com-
prehensive survey,” IEEE Trans. Netw. Serv. Manag., vol.13, no.3,
pp.518–532, Sept. 2016.

[6] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol.41, no.2, pp.38–47, April
2011.

[7] S. Hagen and A. Kemper, “Model-based planning for state-related
changes to infrastructure and software as a service instances in large
data centers,” 2010 IEEE 3rd International Conference on Cloud
Computing, pp.11–18, July 2010.

[8] T. Kuroda and A. Gokhale, “Model-based it change management
for large system definitions with state-related dependencies,” Proc.
2014 IEEE 18th International Enterprise Distributed Object Com-
puting Conference, EDOC’14, pp.170–179, IEEEComputer Society,
Washington, DC, USA, 2014.

[9] T. Kuroda, M. Nakanoya, A. Kitano, and A.S. Gokhale, “The
configuration-oriented planning for fully declarative IT system provi-
sioning automation,” 2016 IEEE/IFIP Network Operations andMan-
agement Symposium, NOMS 2016, pp.808–811, Istanbul, Turkey,
April 2016.

[10] M. Nakanoya, T. Kuroda, and A. Kitano, “Automated change plan-
ning for differential update IT systems with state constraint,” 2016
IEEE 20th International Enterprise Distributed Object Computing
Workshop (EDOCW), pp.1–9, Sept. 2016.

[11] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar, and A.V.
Konstantinou, “Model driven provisioning: Bridging the gap be-
tween declarative object models and procedural provisioning tools,”
Proc. 7th ACM/IFIP/USENIX International Conference on Middle-
ware, Middleware’06, pp.404–423, Springer-Verlag, Berlin, Heidel-
berg, 2006.

[12] H. Herry and P. Anderson, “Planning with global constraints for
computing infrastructure reconfiguration,” Proc. 2012 AAAI Work-
shop on Problem Solving Using Classical Planners, AAAI Press,
pp.44–50, 2012.

[13] T. Kuwahara, T. Kuroda, M. Nakanoya, Y. Yakuwa, and H. Shi-
monishi, “Scalable declarative IT system update automation by A*
search with critical-element heuristics,” submitted to 7th IEEE Inter-
national Conference on Cloud Networking, CloudNet 2018, Tokyo,
Japan, Oct. 2018.

[14] S. Hagen and A. Kemper, “A performance and usability comparison
of automated planners for it change planning,” Proc. 7th Interna-
tional Conference onNetwork andServicesManagement, CNSM’11,
pp.143–151, International Federation for Information Processing,
Laxenburg, Austria, Austria, 2011.

[15] S. Hagen, N. Edwards, L. Wilcock, J. Kirschnick, and J. Rolia,
“One is not enough: A hybrid approach for IT change planning,”
Integrated Management of Systems, Services, Processes and People
in IT, pp.56–70, Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[16] S. Hagen, W.L. da Costa Cordeiro, L.P. Gaspary, L.Z. Granville,
M. Seibold, and A. Kemper, “Planning in the large: Efficient gener-
ation of it change plans on large infrastructures,” Proc. 8th Interna-
tional Conference on Network and Service Management, CNSM’12,
pp.108–116, International Federation for Information Processing,
Laxenburg, Austria, Austria, 2013.

[17] P.E. Hart, N.J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst.
Sci. Cybern., vol.4, no.2, pp.100–107, July 1968.

[18] E.W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol.1, no.1, pp.269–271, Dec. 1959.

[19] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” J. Artif. Intell. Res., vol.14,
p.2001, 2001.

http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
http://dx.doi.org/10.1109/tnsm.2016.2598420
http://dx.doi.org/10.1109/tnsm.2016.2598420
http://dx.doi.org/10.1109/tnsm.2016.2598420
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1109/cloud.2010.14
http://dx.doi.org/10.1109/cloud.2010.14
http://dx.doi.org/10.1109/cloud.2010.14
http://dx.doi.org/10.1109/cloud.2010.14
http://dx.doi.org/10.1109/edoc.2014.31
http://dx.doi.org/10.1109/edoc.2014.31
http://dx.doi.org/10.1109/edoc.2014.31
http://dx.doi.org/10.1109/edoc.2014.31
http://dx.doi.org/10.1109/edoc.2014.31
http://dx.doi.org/10.1109/noms.2016.7502904
http://dx.doi.org/10.1109/noms.2016.7502904
http://dx.doi.org/10.1109/noms.2016.7502904
http://dx.doi.org/10.1109/noms.2016.7502904
http://dx.doi.org/10.1109/noms.2016.7502904
http://dx.doi.org/10.1109/edocw.2016.7584349
http://dx.doi.org/10.1109/edocw.2016.7584349
http://dx.doi.org/10.1109/edocw.2016.7584349
http://dx.doi.org/10.1109/edocw.2016.7584349
http://dx.doi.org/10.1007/11925071_21
http://dx.doi.org/10.1007/11925071_21
http://dx.doi.org/10.1007/11925071_21
http://dx.doi.org/10.1007/11925071_21
http://dx.doi.org/10.1007/11925071_21
http://dx.doi.org/10.1007/11925071_21
http://dx.doi.org/10.1109/cloudnet.2018.8549556
http://dx.doi.org/10.1109/cloudnet.2018.8549556
http://dx.doi.org/10.1109/cloudnet.2018.8549556
http://dx.doi.org/10.1109/cloudnet.2018.8549556
http://dx.doi.org/10.1109/cloudnet.2018.8549556
http://dx.doi.org/10.1007/978-3-642-04989-7_5
http://dx.doi.org/10.1007/978-3-642-04989-7_5
http://dx.doi.org/10.1007/978-3-642-04989-7_5
http://dx.doi.org/10.1007/978-3-642-04989-7_5
http://dx.doi.org/10.1007/978-3-642-04989-7_5
http://dx.doi.org/10.1109/tssc.1968.300136
http://dx.doi.org/10.1109/tssc.1968.300136
http://dx.doi.org/10.1109/tssc.1968.300136
http://dx.doi.org/10.1007/bf01386390
http://dx.doi.org/10.1007/bf01386390
http://dx.doi.org/10.1613/jair.855
http://dx.doi.org/10.1613/jair.855
http://dx.doi.org/10.1613/jair.855

KUWAHARA et al.: SCALABLE STATE SPACE SEARCHWITHSTRUCTURAL-BOTTLENECKHEURISTICS FORDECLARATIVE IT SYSTEMUPDATEAUTOMATION
451

TakuyaKuwahara received hismaster’s de-
gree of information science ad technology from
Graduate School of Information Science and
Technology, The University of Tokyo in 2015
and has been engaged in research on formal
methods for program verification. He joined in
NEC Corporation in 2015. Now he is working
on researches for automation technology for ICT
system design and operation.

Takayuki Kuroda received M.E. and Ph.D.
degrees from the Graduate School of Informa-
tion Science, Tohoku University, Sendai, Japan
in 2006 and 2009. He joined NEC Corporation
in 2009 and has been engaged in research on
model-based system management for Cloud ap-
plications and Software-Defined networks. As
a visiting scalar in the Electrical Engineering
andComputer Science department at theVander-
bilt University at Nashville, he studied declara-
tive workflow generation for ICT system update.

Now he is working on researched for automation technologies for system
design, optimization and operation.

Manabu Nakanoya received his B. Engi-
neering degree fromKeioUniversity in 2006. He
joined NEC Corporation in 2006 and has been
engaged in system integration of governmental
ICT system. He now works in NEC’s System
Platform Research Laboratories and is working
on researches for automation technologies for
ICT system design, optimization, and operation.

Yutaka Yakuwa received his M. Engineer-
ing degree from Waseda University in 2009.
He joined NEC Corporation in 2009 and has
been undertaking research on formal methods.
He now works in NEC’s System Platform Re-
search Laboratories and is engaged in research
on software-based automation technologies for
ICT system operation and management.

Hideyuki Shimonishi received M.E. and
Ph.D. degrees from the Graduate School of
Engineering Science, Osaka University, Osaka,
Japan, in 1996 and 2002. He joined NEC Cor-
poration in 1996 and has been engaged in re-
search on traffic management in high-speed net-
works, switch and router architectures, and traf-
fic control protocols. As a visiting scholar in the
Computer Science Department at the University
of California at Los Angeles, he studied next-
generation transport protocols. Since then, he

engaged in researches on networking technologies including SDN, Open-
Flow and NFV for carrier, data center and enterprise networks from their
early stages. Now he is working on researches for IoT system platform and
automation technologies for system design, optimization, and operation.

