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PAPER
Low Complexity Soft Input Decoding in an Iterative Linear
Receiver for Overloaded MIMO

Satoshi DENNO†a), Senior Member, Tsubasa INOUE†, Yuta KAWAGUCHI†, Takuya FUJIWARA†, Nonmembers,
and Yafei HOU†, Member

SUMMARY This paper proposes a low complexity soft input decoding
in an iterative linear receiver for overloadedMIMO. The proposed soft input
decoding applies two types of lattice reduction-aided linear filters to estimate
log-likelihood ratio (LLR) in order to reduce the computational complexity.
A lattice reduction-aided linear with whitening filter is introduced for the
LLR estimation in the proposed decoding. The equivalent noise caused by
the linear filter is mitigated with the decoder output stream and the LLR
is re-estimated after the equivalent noise mitigation. Furthermore, LLR
clipping is introduced in the proposed decoding to avoid the performance
degradation due to the incorrect LLRs. The performance of the proposed
decoding is evaluated by computer simulation. The proposed decoding
achieves about 2 dB better BER performance than soft decoding with the
exhaustive search algorithm, so called the MLD, at the BER of 10−4, even
though the complexity of the proposed decoding is 1

10 as small as that of
soft decoding with the exhaustive search.
key words: MIMO, overloaded, linear detection, iterative decoding, soft-
input-soft-output (SISO)

1. Introduction

High speed wireless communication has been demanded for
access networks such as cellular networks and wireless local
area networks (WLANs). The fifth generation cellular sys-
tem is going to provide us with communication links that of-
fer about 100 times higher speeds than the fourth generation
system [1]. For such high speed wireless communications,
a lot of techniques have been investigated, e.g., adaptive
modulation and coding (AMC), orthogonal frequency divi-
sion multiplexing (OFDM), multiple-input-multiple-output
(MIMO). Especially, MIMO spatial multiplexing has been
intensively investigated because it can increase the link ca-
pacity in proportion to the number of antennas on a receiver
and a transmitter without additional frequency band [2]–[4].
Many techniques have been proposed to exploit the poten-
tial of MIMO spatial multiplexing. Minimum mean square
error (MMSE) spatial filters, serial interference cancellers
(SICs), complexity reduced maximum likelihood detection
(MLD) with QR decomposition and M−algorithm (QRM-
MLD) [5], and so on, have been proposed for the receiver.
To improve the transmission performance, the Turbo prin-
ciple [6], [7] has been considered for MIMO receivers [8]–
[13]. For instance, the Turbo equalization, a representative
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of those techniques, has been investigated because of its high
transmission performance.

Non-orthogonal signal transmission systems that simul-
taneously send more signal streams than the degree of free-
dom have been proposed for further high speed signal trans-
mission. For instance, low density signature (LDS) and
sparse code multiple access (SCMA) have been proposed
that employ sparse codes for spectrum spreading [14]–[16].
The faster than Nyquist (FTN), which loads more subcar-
riers in a band than OFDM, is also regarded as a type of
non-orthogonal transmission schemes, and its performance
has been evaluated [17]. Overloaded MIMO can be also
classified into non-orthogonal signal transmission. Several
receiver configurations have been proposed for overloaded
MIMO [18], [19]. Linear detectors such as MMSE spatial
filters, SICs and QRM-MLD are useless because of their
poor performance due to lack of the freedom in overloaded
MIMO systems. Non-linear detectors, e.g. the MLD, have
been considered. For instance, joint decoding has been pro-
posed to achieve the optimum performance in overloaded
MIMO systems with error correction coding [20]. Because
non-linear detection executes exhaustive search, non-linear
detection imposes a prohibitively high computational load
on receivers. Therefore, reduced complexity detection tech-
niques have been proposed [21]–[23]. Iterative soft input
decoding for those receivers has been proposed [24], [25].
Since those receivers still have some non-linear signal pro-
cessing, the complexity of the receivers grows exponentially
as the number of the signal streams increases. For further
complexity reduction, linear signal detectors have also been
considered even for overloaded MIMO [26]. Although the
receiver proposed in [26] achieves superior performance,
hard input decoding is utilized, because lattice reduction is
applied for linear detectors to achieve superior performance
even in overloaded MIMO systems. Though soft input de-
coding is known to achieve better performance, prohibitive
high complexity is needed to convert received signals into
soft signals, because only exhaustive search has been known
to be useful for the soft signal conversion in overloaded
MIMO systems.

This paper proposes a low complexity soft input decod-
ing in an iterative linear receiver for overloaded MIMO. The
proposed soft input decoding applies linear filters to convert
the received signals into log likelihood ratios (LLRs) as soft
signals for reducing the complexity of the signal conversion.
Lattice reduction is applied to the linear filters for attaining
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near optimum performance. However, some of the linear
filters are obliged to detect the signals in the channel with
strong interference. Because the interference can be regarded
as colored noise, noise whitening based on cholesky factor-
ization is introduced in the proposed decoding. The noise
cancellation proposed in [26] is also used because it can im-
prove the SNR of the linear filter output signals. Moreover,
we propose iterative decoding where the signal processing
chain from the LLR estimation, the decoding and, the noise
cancellation fed with the decoder output stream is iterated
in order to improve the reliability of the LLRs. In addition,
we propose to clip the amplitude of the LLRs prior to the
channel decoding for avoiding incorrect LLR violating the
proposed decoding.

A system model of overload MIMO is described in
the next section. The proposed decoding is explained in
Sect. 3, andSect. 4 evaluates the performance of the proposed
decoding. The conclusion is remarked in Sect. 5.

Throughout this paper, (A)−1, {A}m and superscript T
denote an inverse matrix, an mth column vector of a matrix
A, and transpose of a matrix or a vector, respectively. E

[
β
]
,

<[α], and=[α] represent the ensemble average of a variable
β, a real part and an imaginary part of a complex number α.

2. System Model

We assume that a transmitter with NT antennas sends signals
to a receiver with NR antennas. However, the number of the
transmit antennas NT is bigger than that of the receive an-
tennas NR, which channel is so called “Overloaded MIMO”.
The information bit stream is firstly fed to a channel encoder,
and the output bit stream is provided to Quaternary phase
shift keying (QPSK)modulators via an interleaver. Themod-
ulation signals from one of the modulators are provided to
an IFFT processor in order to convert the input signals into
the time domain. The modulator, the IFFT processor and the
antennas are comprised of a transmit signal chain connected
to one of the antennas. Let xc,n (k) ∈ C denote the nth
signal from the ith modulator, the transmission signal vector
Xc,n∈ C

NT×1 consisting of the nth signals from all the modu-
lators can be defined asXc,n =

(
xc,n (1) · · · xc,n (NT)

)T. The
transmission signal vector at the k time instant Sk∈ C

NT×1

can be defined as,

Sk =
1
√

NF

NF−1∑
n=0

Xc,nej2π kn
NF , (1)

where j ∈ C, e ∈ R, and NF ∈ Z represent the imaginary unit,
and the Napier’s constant, and the number of the FFT points,
i.e., the number of the subcarriers. The transmission signal
vector travels a multipath fading channel, and is received
at the NR receive antennas. Let Yc,k∈ C

NR×1 denote the
received signal vector at the k time instant, the vector can be
written as follows.

Yc,k =

NP−1∑
l=0

Hc,lSk−l + Nc,k (2)

Fig. 1 System model.

In (2), NP ∈ Z, Hc,l∈ C
NR×NT and Nc,k∈ C

NR×1 represent the
number of the paths in the channel, the channel matrix of
the lth delayed path and the additive white Gaussian noise
vector. If the received signal vector is provided to the FFT
processor, a frequency domain vector Yc,n∈ C

NR×1 on the
nth subcarriers can be obtained as,

Yc,n =
1
√

NF

NF−1∑
k=0

Yc,ke−j2π kn
NF = Hc,nXc,n + Nc,n (3)

Hc,n =

NP−1∑
l=0

Hc,le
−j2π ln

NF .

Hc,n∈ C
NR×NT and Nc,n∈ C

NR×1denote a channel matrix and
the AWGN vector on the nth subcarrier [27]. All the fre-
quency domain vectors Yc,n∈ C

NR×1 n = 1 · · · NF are fed to
our proposed detector and the output signals from the de-
tector is provided to a channel decoder. The transmission
system is shown in Fig. 1 as a system model.

The transmission signal vector Xc,n, the received sig-
nal vector Yc,n, and the AWGN vector are transformed
into real vectors in our proposed soft detector. The
real transmission signal vector Xn∈ R

2NT×1, the real re-
ceived signal vector Yn∈ R

2NR×1 and the real AWGN vector
Nn∈ R

2NR×1 on the nth subcarriers are defined as Xn =(
<

[
Xc,n

]T
=

[
Xc,n

]T)T
, Yn =

(
<

[
Yc,n

]T
=

[
Yc,n

]T)T
,

and Nn =
(
<

[
Nc,n

]T
=

[
Nc,n

]T)T
, respectively. In ad-

dition, the real channel matrix on the nth subcarriers
Hn∈ R

2NR×2NT is also defined as,

Hn =

(
<

[
Hc,n

]
−=

[
Hc,n

]
=

[
Hc,n

]
<

[
Hc,n

] )
. (4)

Even if those vectors and the matrix are expressed in real
numbers, the system model can be expressed in a similar
manner as (3), which is written as follows.

Yn = HnXn + Nn (5)

Next section describes our proposed low complexity
soft input decoding with the signal vectors Yn n = 1 · · · NF.

3. Low Complexity Iterative Decoding

3.1 Lattice Reduction-Aided LLR Estimation

As iswell known, a posterioriLLRcan be dealt as a soft input
signal. Let x(k) ∈ R denote the kth transmission signal in-
cluded in the transmission signal vector on the nth subcarrier,
Xn, if we assume that every signal takes ±1 with equal prob-
ability, a posteriori LLR of the signal x(k), γ (x(k)) ∈ R,
can be approximately written as follows.
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γ (x(k)) = log
P (x(k) = 1|Yn)

P (x(k) = −1|Yn)

≈ log
∑

x(k)=1 P
(
Yn |c0 · · · c2NT−1

)∑
x(k)=−1 P

(
Yn |c0 · · · c2NT−1

)
≈ max

x(k)=1

[
log P

(
Yn |c0 · · · c2NT−1

)]
− max

x(k)=−1

[
log P

(
Yn |c0 · · · c2NT−1

)]
= −

1
σ2

(
min
x(k)=1

���Yn −HnX̄n
���
2
− min

x(k)=−1
���Yn −HnX̄n

���
2
)

(6)

σ2 and P(a |b) in (6) represent a variance of the AWGN and
a conditional probability that an event a happens when an
event b occurred. In addition, max

α

[
β
]
indicates a function

that outputs the maximum value of β under a constraint of
α. min

α

[
β
]
also outputs the minimum value of β under a

constraint of α. In the most right hand side of (6), the min-
imum values with respect to the transmission signal vector
Xn under a constraint of x(k) = ±1 have to be searched. The
optimum vectors to satisfy theminimization problems can be
found by the exhaustive search, which almost requires twice
as much complexity as the MLD. In principle, complexity
of the exhaustive search grows exponentially as the number
of the transmit antennas increases. Such a high complex-
ity signal processing is needed for every bit, which means
that the LLR calculation requires about 4NT times as much
complexity of the MLD. Prohibitive higher complexity can
not be imposed on receivers. Therefore, the LLR estimation
that requires such high complexity can not be implemented
in wireless communication systems.

For complexity reduction of the LLR estimation, we in-
troduce the following assumption that detectors can find the
similar vector as the exhaustive search if the performance of
those detectors comes close to that of the exhaustive search.
In a word, the assumption is that the optimum estimation
vector is almost unique in spite of configuration of detec-
tors, if those detectors achieve similar performance. On this
assumption, we apply a linear detector to estimate a trans-
mission signal vector X̄n instead of the exhaustive search.
On the other hand, the same signal processing is carried
out in every subcarrier except for the channel decoding, the
suffix n indicating the number of the subcarrier is hereafter
dropped. Let LF(0) [Y] indicate a function of a linear filter
where the vector Y is an input signal vector, the assumption
can be written as follows.

X̄ = arg min
X

[
|Y −HX|2

]

≈ LF(0) [Y] (7)

To make the linear filter achieve better performance in over-
loaded MIMO systems, the lattice reduction is applied to
the following extended channel matrix in which an diagonal
matrix is added under the channel matrix H [26].(

H
σ
σd

I2NT×2NT

)
T = (Q1 Q2)

(
R1

O2NR×2NT

)
(8)

σd, I2NT×2NT∈ R
2NT×2NT and T∈ R2NT×2NT in (8) repre-

sent a standard deviation of the transmission signals, i.e.,
σd =

√
E

[
|x(k) |2

]
, the 2NT × 2NT-dimensional iden-

tity matrix and a unimodular matrix. As is shown
in (8), the extended channel matrix with the unimod-
ular matrix is QR-decomposed into a unitary matrix
(Q1 Q2) ∈ R2(NT+NR)×2(NT+NR) and a right upper triangu-
lar matrix

(
RT

1 O2NT×2NR

)T
∈ R2NT×2(NT+NR) , where Q1 ∈

R2(NT+NR)×2NT , Q2 ∈ R
2(NT+NR)×2NR , and R1∈ R

2NT×2NT

denote the right submatrix and the left submatrix of the uni-
tarymatrix, and a square right upper triangularmatrix. In ad-
dition, O2NR×2NT represents the 2NR×2NT-dimensional null
matrix. The transmission signals can be be detected with an
SIC by making use of the right upper triangular matrix given
by the QR-decomposition. Let an extended received signal
matrix Y(0)∈ R2(NT+NR)×1 be defined as Y(0) =

(
YT OT

2NT

)T

where O2NT∈ R
2NT×1 represents the 2NT-dimensional null

vector, the signal detection can be written as follows.

z̄(0) (m) = b
QT

1,mY(0) −
∑m−1

i=2NT
r1(m, i) z̄ (i)

r1(m,m)
c

m = 2NT, · · · , 1 (9)

In (9), z̄(m) ∈ R m = 1 · · · 2NT, Q1,m ∈ R
2(NT+NR)×1 and

r1(m, n) ∈ R denote an SIC output signals, themth column of
the matrix Q1 and the (m, n)-entry of the square right upper
triangular matrix R1. In addition, b•c denotes the function
that outputs a possible nearest integer of the input signal.
This detection can be regarded as an SIC assisted with the
lattice reduction. The output signals are written in a vector
format, i.e., Z̄(0) =

(
z̄(0) (1) · · · z̄(0) (2NT)

)T
∈ R2NT×1. Fi-

nally, the output vector of the linear function LF(0) [Y] can
be obtained as,

LF(0) [Y] = TZ̄(0) . (10)

As is shown above, the transmission signal vector X is esti-
mated without any exhaustive search. Hence, the complexity
of the linear filter is much less than that of the exhaustive
search.

One of the two terms in the most right hand side of (6)
has only been estimated with the linear filter, even though
the two terms are necessary. Hence, we propose a linear
filtering technique for estimating the other term in the next
section.

3.2 Complementary Vector Estimation

Let the channel matrix be expressed with the col-
umn vectors as H =

(
H1 · · ·H2NT

)
, a complemen-

tary matrix H̃k∈ R
2NR×(2NT−1) is defined with all the

column vectors except the kth column as H̃k =(
H1 · · ·Hk−1 Hk+1 · · ·H2NT

)
. Similarly, a complementary

vector X̃k∈ R
(2NT−1)×1 is also defined with all the en-

tries of the transmission vector except the kth entry as
X̃k = (x(1) · · · x(k − 1) x(k + 1) · · · x(2NT))T. The linear
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detector defined in the previous section is assumed to esti-
mate the transmission signal vector with x(k) = d (0)

k
where

d (0)
k

takes ±1, i.e., d (0)
k
= ±1 for one of the term in (6). Let

a signal d̈ (0)
k
∈ Z be defined as d̈ (0)

k
= −1 × d (0)

k
, the other

term in (6) can be rewritten as,

min
x(k)=d̈(0)

k

[
|Y −HX|2

]
= min

[���Y − H̃kX̃k −Hk d̈ (0)
k

���
2]
. (11)

Let a complementary received signal vector Ỹ(0)
k
∈ R2NR×1

be defined as,

Ỹ(0)
k
= Y −Hk d̈ (0)

k
. (12)

As is done in (7), the minimization in the right hand side of
(11) can be transformed to the estimation of the complemen-
tary vector X̃k .

¯̃X(0)
k
= arg min

X̃k

[���Ỹ
(0)
k
− H̃kX̃k

���
2]

= LF(0)
k

[
Ỹ(0)
k

]
(13)

We introduce a liner filter to estimate the complementary
vector X̃k as follows. We can expect that the SIC explained
in the previous section is able to estimate the transmission
signal vector X with high accuracy, which means that the
probability that dk equals to the transmission signal is high.
In a word, d̈k is different from the transmission signal with
high probability, which causes Hk d̈ (0)

k
to play a role of inter-

ference in (12). If the signal dk is transmitted as the signal
x(k), actually, the vector Ỹk can be written as follows.

Ỹk ; H̃kX̃k + 2Hkdk + N
; H̃kX̃k + Ñk, (14)

where Ñk∈ R
2NR×1 represents the equivalent noise vector

defined as,

Ñk = 2Hk d̈k + N. (15)

As is indicated in (15), the interference signal 2Hk d̈k is
mixed with the AWGN in the equivalent noise vector. The
equivalent noise vector is not classified into the Gaussian
noise, and the correlation matrix of the equivalent noise
vector can be decomposed as follows.

1
σ2 E

[
ÑkÑT

k

]
=
σ2
d

σ2 HkHT
k + I2NR×2NR = LkLT

K (16)

In (16), I2NR×2NR∈ R
2NR×2NR and Lk∈ R

2NR×2NR represent
the 2NR × 2NR-dimensional identity matrix and a lower tri-
angular matrix. The decomposition into the lower triangular
matrix can be uniquely performed by the Cholesky factor-
ization. Because colored noise such as the equivalent noise
degrades the estimation performance of linear filters, whiten-
ing is applied to the vector Ỹ(0)

k where Ỹ(0)
k represents an ex-

tended signal vector defined as Ỹ(0)
k =

((
Ỹ(0)
k

)T
OT

2NT−1

)T
.

Ŷ(0)
k =

(
L−1
k

O2NR×(2NT−1)
O2NT−1×2NR I(2NT−1)×(2NT−1)

)
Ỹ(0)
k

=

(
L−1
k

H̃k
σ
σd

I

)
X̃k +

(
L−1
k

Ñk

− σ
σd

X̃k

)
(17)

Ŷ(0)
k
∈ R(2NT+2NR−1)×1 denotes a whitening filter output vec-

tor. If the equation in (17) is regarded as a system model
where the vector X̃k is transmitted in the extended channel
with the whitening, the vector X̃k can be estimated by the
linear filter similar as that explained in the previous section.
The lattice reduction is applied to the channel matrix in the
system model in (17) as follows.(

L−1
k

H̃k
σ
σd

I(2NT−1)×(2NT−1)

)
T̃k =

(
Q̃1,k Q̃2,k

) (
R̃1,k

O2NR×(2NT−1)

)
(18)

In (18), T̃k∈ R
(2NT−1)×(2NT−1) ,

(
Q̃1,k Q̃2,k

)
∈

R(2NT+2NR−1)×(2NT+2NR−1) and
(
R̃T

1,k O(2NT−1)×2NR

)T
∈

R(2NT+2NR−1)×(2NT−1) denote a unimodular matrix, a uni-
tary matrix and an upper triangular matrix where Q̃1,k ∈
R(2NR+2NT−1)×(2NT−1) , Q̃2,k ∈ R

(2NR+2NT−1)×2NR , and R̃1,k ∈
R(2NT−1)×(2NT−1) represent the right submatrix and the left
submatrix of the unitary matrix, and a square right upper
triangular matrix. The entries of the vector X̃k can also be
estimated with an SIC in the similar manner to that proposed
in the previous section.

z̄(0)
k

(m) = b
Q̃T

1,k,mŶ(0)
k −

∑m−1
i=2NT−1 r̃1,k (m, i) z̄k (i)

r̃1,k (m,m)
c

m = 2NT − 1, · · · , 1 (19)

In (19), z̄(0)
k

(m) ∈ R m = 1 · · · 2NT − 1, Q̃1,k,m ∈

R2(NT+NR−1)×1 and r̃1,k (m, i) ∈ R denote an SIC out-
put signals, the mth column of the matrix Q̃1 and the
(m, n)-entry of the square right upper triangular ma-
trix R̃1,k . Let Z̃(0)

k
∈ R(2NT−1)×1 be defined as Z̃(0)

k
=(

z̄(0)
k

(1) · · · z̄(0)
k

(2NT − 1)
)T
, the linear filter for the signal

x(k) is written as,

LF(0)
k

[
Ỹk

]
= T̃kZ̃(0)

k
. (20)

When the linear filter output vector ¯̃X(0)
k

is expressed as
¯̃X(0)
k
=

(
˜̄x (0)
k

(1) · · · ˜̄x (0)
k

(2NT − 1)
)
, the 2NR-dimensional

complementary vector X̄(0)∈ R2NT×1 can be formed as X̄(0)
k
=(

˜̄x (0)
k

(1) · · · ˜̄x (0)
k

(k − 1) d̈ (0)
k

˜̄x (0)
k

(k) · · · ˜̄x (0)
k

(2NT − 1)
)
. The

complementary vector X̄(0)
k

is provided to the LLR estima-
tion as well as X̄(0) .

γ (0) (x(k)) ≈ −
d (0)
k

σ2

(���Y −HX̄(0) ���
2
−

���Y −HX̄(0)
k

���
2)

(21)

As is shown in (21), the LLR can be estimated without any
exhaustive search.

As is shown in (17), the whitening filter output vector
includes the transmission signals as a part of the equivalent
noise vector, which may degrade the LLR estimation perfor-
mance. Next section proposes a technique to improve the
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LLR estimation performance.

3.3 Iterative LLR Estimation

As is drawn in Fig. 1, the LLR is provided to the channel
decoder that outputs the soft signal stream. The output signal
streams is used to improve the reliability of the LLR, and
the improved LLR is fed to the decoder again. In a word,
the decoding and the LLR estimation can be iterated, which
could improve the LLR estimation and the channel decoding.
In the iterative decoding, the signal stream is converted to
the estimated transmission signal vectors X(ns)

s ∈ R2NT×1 via
the interleaver where ns ∈ Z represents the number of the
iterations of the decoding. As is suggested by [26], the
equivalent noise† included in the system defined in (17) can
be mitigated by adding the estimated transmission

signal vector multiplied with a coefficient σ
σd

as,

Y(ns) = Y(0) +
σ

σd

(
O2NR

X(ns)
s

)
. (22)

The output vector Y(ns)∈ R2(NT+NR)×1 is fed to the LLR es-
timation where the vector is substituted for Y(0) in (9). Let
Z̄(ns)∈ R2NT×1 denote an output vector from the SIC when
the vector Y(ns) is given as an input vector, the output vector
from the linear vector, X̄(ns)∈ R2NT×1, is described as,

X̄(ns) = LF(ns) [Y] = TZ̄(ns) (23)

LF(ns) means the linear filter at nsth decoding. As is pre-
viously explained, the output vector of the linear filter is
provided to the LLR re-estimation based on (21).

On the other hand, the complementary vector X̃(ns)
k

is also needed for the LLR re-estimation. Let the kth
entry of the vector X̄(ns) be d (ns)

k
, the complementary re-

ceived signal vector Ỹ(ns)
k

is obtained by substituting d̈ (ns)
k

for d̈ (0)
k

in (12). Let the estimated transmission signal vec-
tor X̄(ns)

s be defined as. X̄(ns)
s =

(
x̄ (ns)

s (1) · · · x̄ (ns)
s (2NT)

)
,

an estimated complementary transmission signal vec-
tor X̃(ns)

s,k ∈ R
(2NT−1)×1 can be also defined as X̃(ns)

s,k =(
x̄ (ns)

s (1) · · · x̄ (ns)
s (k − 1) x̄ (ns)

s (k + 1) · · · x̄ (ns)
s (2NT)

)
. The

equivalent noise in the complementary received signal vec-
tor is also mitigated in the similar manner as (22).

Y(ns)
k
=

(
Ỹ(ns)
k

O2NT−1

)
+
σ

σd

( O2NR

X̃(ns)
s,k

)
(24)

The output signal vector from the noise canceller for the com-
plementary received signal vector, Y(ns)

k
∈ R(2NT+2NR−1)×1,

is provided for the LLR re-estimation where Y(ns)
k

is sub-
stituted for Ŷ(0)

k in (19). The linear filter output vector
†The system model can be modeled by Y(0) =(

H
σ
σd

I2NT×2NT

)
X +

(
N
− σσd

X

)
. The second term in the right

hand side of the above equation is called “the equivalent noise”. The
transmission signal vector in the equivalent noise can be removed
by the noise cancellation defined in (22).

¯̃X
(ns)
k ∈ R(2NT−1)×1 can be definedwith the vector Z̄(ns)

k
output

from the SIC defined in (19) as,

¯̃X
(ns)
k = LF(ns)

k

[
Ỹ(ns)
k

]
= T̃kZ̃(ns)

k
. (25)

The linear filter output vector is also provided for the LLR
re-estimation based on (21).

3.4 LLR Clipping

As is explained in the previous section, our proposed decoder
assumes that the linear filter described in Sect. 3.1 estimates
the correct transmission signal vector. Actually, the assump-
tion is not always held true when Eb/N0 is not high enough.
This causes the proposed LLR estimation to produce incor-
rect LLR with large amplitude, which violates the following
decoding. Because the estimated vector X is the solution of
(7), the first term in the right hand side of (21) is the smallest,
even if the estimated signal d (ns)

k
included in the vector X is

incorrect. Besides, because the linear filter defined in (13) is
designed to estimate the vector in the channel with the strong
noise defined in (14) and (15), the filter detects the incorrect
vectors with high probability even if d̈ (0)

k
is correct, which

causes the second term in the right hand side of (21) much
bigger than the first term. As a result, a big incorrect LLR
is fed to the decoder as the soft input signal. The incorrect
LLR violates error correction of the decoder. We apply the
following clipping technique to mitigate the violence††.

γ (x(k)) =
{

2NRσ
2 (γ (x(k)) > 2NRσ

2)
−2NRσ

2 (γ (x(k)) < −2NRσ
2) (26)

The proposed iterative soft input decoding is summarized as
follows.

(a) initialization of the index ns; ns = 0
(b) the transmission signal vector estimation X̄(ns) with the

extended received signal vector Y(ns) shown in (10)
(c) the complementary vector estimation for all the bits in-

cluded in the transmission signal vector ¯̃X(ns) as shown
in (20)

(d) the LLRs estimation using the vectors X̄(ns) and X̄(ns)
k

based on (21)
(e) the LLR clipping
(f) the channel decoding with the LLRs and its output soft

signal stream
(g) ns = ns + 1
(h) the noise cancellation for the received signal vector

and all the complementary received signal vectors as
explained by (22) and (24)

(i) go back to (b)

4. Simulation

The performance of the proposed decoding is evaluated by
††The clipping technique is found toworkwell through computer

simulation. It is one of our future works to prove the optimality of
the technique.
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Table 1 Parameters in computer simulation.
(NT, NR) (6, 2)
Modulation QPSK/OFDM

Number of subcarriers 128
Channel model 3-path Rayleigh fading

Channel estimation Perfect
δ in LLL 0.9

Error correction coding Convolutional code (R = 1/2, K = 3)
Decoding Soft input soft output Viterbi algorithm

Fig. 2 Convergence property.

computer simulation in a 6×2 MIMO channel where 6 inde-
pendent streams are simultaneously transmitted to a receiver
with 2 antennas without any precoding. Overloading ratio
is 3. 3-path Rayleigh fading based on the Jakes’ model [28]
is applied as a channel model between all the transmit and
the receive antenna pairs. The number of subcarriers is 128.
The Lenstra–Lenstra–Lovász (LLL) algorithm is used for the
lattice reduction [29]. The convolutional code is employed
as channel coding. The channel estimation is perfect†. The
simulation parameters are listed in Table 1.

4.1 Convergence Property

The performance with respect to the number of the iterations
is evaluated in Fig. 2. The horizontal and the vertical axes
mean the number of the iterations and the average bit error
rate (BER). The performances in the channel with the Eb/N0
of 5 dB, 10 dB, and 15 dB are drawn in the figure. As is
shown in the figure, the BER performance is improved as the
number of the iterations increases, although the performance
gain given by the iteration greatly depends on the Eb/N0. The
performance converges at the 8th iterators when the Eb/N0
is 15 dB, while it takes more than 20 iterations to converge
when the Eb/N0 is 10 dB. As the number of the iterations is
increased, complexity of the decoding rises. To balance the
complexity and the performance, the number of the iterations

†The channel state estimation error causes the transmission
performance degradation in not only the proposed decoding but
also in the MLD. It is one of our future works to evaluate how
much performance is degraded by the estimation error.

Fig. 3 Comparison with hard input decoding.

Fig. 4 Performance on proposed clipping.

is hereafter set to 15.

4.2 Performance Gain from Hard Input Decoding

The performance of the proposed decoding is compared with
that of hard iterative decoding in Fig. 3. We apply the iter-
ative receiver proposed in [26] as the hard input decoding.
The number of the iterations is set to 15 in both the hard
input decoding and the soft input decoding. In the figure, the
horizontal axis means the Eb/N0 and the vertical axis is the
BER. In the figure, the performances without the iteration
are added as references. The soft input decoding achieves
about 4 dB better performance than the hard input decoding
at the BER of 10−4 when no iteration is executed. If the de-
coding is iterated 15 times, the performance gap between the
soft input decoding and the hard input decoding is increased
to about 7 dB at the BER of 10−4. In a word, the soft input
decoding attains higher gains than the hard input decoding.

4.3 Performance Gain by Clipping

Figure 4 shows the performance gain given by the proposed
clipping. In the figure, the performance without the iterative
LLR estimation is also added. The proposed clipping attains
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Fig. 5 Comparison with MLD.

a gain of about 4 dB at the BER of 10−3 even without the
iteration. If the decoding is iterated 15 times, although the
BER performance gain at the BER of 10−3 reduces to about
1 dB, the proposed clipping improves the BER in the region
of the Eb/N0 higher than 15 dB. The clipping achieves a gain
of about 10 dB at the BER of 10−5.

4.4 Comparison with MLD

The performance of the proposed decoding is compared with
that of the soft input decoding with the exhaustive search in
Fig. 5. In the figure, the soft input decoding with the ex-
haustive search is referred as “MLD”. In addition, the hard
input decoding with the exhaustive search is added as a ref-
erence. The soft input decoding and the hard input decoding
with the exhaustive search are referred as “MLD-soft” and
“MLD-hard” in the figure, respectively. The hard signal vec-
tor detected by the exhaustive search is provided to the de-
coder in the hard input decoding with the exhaustive search.
Although the soft input decoding with the exhaustive search
is known to achieve the optimum performance, the proposed
decoding outperforms the soft input decoding with the ex-
haustive search. The proposed decoding achieves about 2 dB
better BER performance than the soft input decoding with
the exhaustive search. The proposed decoding utilizes the
decoder output signal streams to mitigate the noise, which
helps the proposed decoding to outperform the soft input
decoding with the exhaustive search.

4.5 Complexity

Figure 6 compares the complexity of the proposed decoding
with that of the decoding with the exhaustive search. In the
figure, the horizontal axis means the number of transmit an-
tennas and the vertical axis is the number of multiplications
to detect one packet. Because no precoding is employed,
the number of the transmit antennas is equal to that of the
streams. The number of the iteration in the proposed decod-
ing is also set to 15, and the packet length is a 100-symbol
duration. While the complexity of the decoding with the
exhaustive search grows exponentially with respect to the

Fig. 6 Complexity.

number of the transmit antennas, the complexity of the pro-
posed decoding only gradually rises as the number of the
transmit antennas is increased†. Even though the complex-
ity of the proposed decoding will be greater than that of the
MLD-Soft if the number of the transmit antennas is less than
4, the complexity of the MLD easily overtakes that of the
proposed decoding as the number of the transmit antennas
is increasing from 4 to 8. When 6 independent streams are
simultaneously transmitted from the transmit antennas, the
complexity of the proposed decoding is 1

10 as small as that of
the MLD-soft, even though the proposed decoding achieve
better BER performance than the MLD-soft.

5. Conclusion

This paper has proposed a low complexity soft input de-
coding in an iterative linear receiver for overloaded MIMO.
The proposed soft input decoding applies two types of lat-
tice reduction-aided SICs to estimate the LLR in order to
reduce the computational complexity. While one type of the
SIC detects the signals in overloaded MIMO channels, the
other type of the SIC has to detect the signals in overloaded
MIMO channels with strong interference. This proposed de-
tector introduces the noise whitening filter implementedwith
the Cholesky factorization into the latter SIC for mitigating
the performance degradation due to the strong interference.
The noise reduction is introduced to mitigate an equivalent
noise caused by those filters and to improve the reliability of
the LLRs. Moreover, the decoding is iterated, whenever the
LLRs are re-estimated after the noise mitigation. However, a
†Although the complexity of the proposed decoding can not

be formulated exactly because the LLL algorithm, one of heuris-
tic algorithms to implement the lattice reduction, is applied, the
complexity can be roughly estimated as follows. Let NI and NS
denote the number of the iterations in the decoding and the num-
ber of the symbols in a stream, basically, the complexity of the
signal decoding is proportional to NI NT NR NF NS in the proposed
decoding, whereas that of the soft MLD is roughly in proportion to
NI N2

T NR NF NS4NT . Therefore, the complexity of the MLD grows
higher than that of the proposed decoding as the number of the
antennas increases.
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clipping technique is introduced to avoid incorrect the LLRs
violating the decoding.

The performance of the proposed decoding is evaluated
by computer simulation in a 6×2 overloadedMIMO system.
The proposed soft decoding with the 15 times iterations
achieves 7 dB better BER performance than no-iterative hard
input decoding at the BERof 10−4, and is about 2 dB superior
to the soft decoding with the exhaustive search, although the
soft decoding with the exhaustive search is known to be
the optimum. Even though the performance of the proposed
decoding is superb, the complexity of the proposed decoding
is 1

10 as small as that of the soft decoding with the exhaustive
search.
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