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PAPER
Study in CSI Correction Localization Algorithm with DenseNet

Junna SHANG†a), Nonmember and Ziyang YAO†b), Student Member

SUMMARY With the arrival of 5G and the popularity of smart devices,
indoor localization technical feasibility has been verified, and its market de-
mands is huge. The channel state information (CSI) extracted from Wi-Fi
is physical layer information which is more fine-grained than the received
signal strength indication (RSSI). This paper proposes a CSI correction lo-
calization algorithm using DenseNet, which is termed CorFi. This method
first uses isolation forest to eliminate abnormal CSI, and then constructs
a CSI amplitude fingerprint containing time, frequency and antenna pair
information. In an offline stage, the densely connected convolutional net-
works (DenseNet) are trained to establish correspondence between CSI and
spatial position, and generalized extended interpolation is applied to con-
struct the interpolated fingerprint database. In an online stage, DenseNet
is used for position estimation, and the interpolated fingerprint database
and K-nearest neighbor (KNN) are combined to correct the position of the
prediction results with low maximum probability. In an indoor corridor
environment, the average localization error is 0.536m.
key words: channel state information, indoor localization, fingerprinting,
deep neural network, generalized extended interpolation, isolation forest

1. Introduction

There are many requirements of location-based services
in indoor environments, e.g., intelligent business district,
hospital, nursing home, intelligent logistic warehouse,
skyscraper, underground parking, etc. Because the signal
is blocked or corrupted by dense obstructions, Global Navi-
gation Satellite System (GNSS) can’t provide high accuracy
navigation and localization inside the building. Therefore,
various indoor positioning technologies are developed, such
as pedestrian dead reckoning, ultra wide bandwidth, visi-
ble light, magnetic fields, Bluetooth and ultrasound [1]–[6].
Many recent studies use RSSI or CSI extracted from Wi-Fi
has been applied widely to estimate position.

PinLoc [7], [8] is the first Wi-Fi localization system
based on physical layer information that uses a commercial
network interface cards (NICs). FILA [9] is a system using
CSI for triangulation method. It trains the indoor propaga-
tionmodel for each indoor environment, and the location esti-
mation use triangulation method according to the model and
the line-of-sight (LOS) or the shortest Non-Line-of-Sight
(NLOS) received CSI. The Fine-grained Indoor Fingerprint-
ing System (FIFS) [10] divides 20MHz bandwidth into four
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subchannels equally and uses the sum of each subchannel
power as fingerprint. CSI-MIMO [11] proposes a finger-
print combined with amplitude and phase of CSI, which
uses the frequency diversity of CSI appropriately. DeepFi
[12] is a deep-learning-based indoor fingerprinting system
using Bayesian estimator, which uses CSI amplitude as fin-
gerprint, while the calibrated CSI phase are used in PhaseFi
[13]. Some works optimize a centroid algorithm based on
CSI propagation model, and they estimate location by KNN
[14]. Considering the channel at a fixed location is stable,
Wu et al. [15] propose Time Reversal Resonating Strength
(TRRS) based on Time Reversal (TR) radio transmission,
and they use TRRS based on Channel Impulse Response
(CIR) for inverse Fourier transform of CSI to measure the
similarity of test data and training data. Moreover, RSSI
and CSI are both applied in some systems to fully utilize
transmission channel quality metrics [16], [17].

Indoor localization system based on CSI with high re-
search value has high accuracywithout expensive equipment.
The key of further improving the accuracy and robustness
of this localization system is sufficient extraction and rea-
sonable application of CSI data features. Based on existing
CSI-based indoor localization algorithms, we use DenseNet
to establish correspondence between CSI and spatial po-
sition, and interpolated fingerprint database and K-nearest
neighbor algorithm are applied to correct the position of the
prediction resultswhen the reliability of probabilityweighted
localization algorithm based on neural network is low. The
experiment results show that this method reduces the local-
ization error of probability weighted localization algorithm
based on neural network, and compensates the shortcomings
of a single algorithm effectively to improve the stability of
indoor localization.

2. CSI Data Characteristics

IEEE 802.11a uses orthogonal frequency divisionmultiplex-
ing (OFDM) technology to exploit 52OFDMsubcarriers that
can be read through some NICs, such as Intel’s IWL 5300,
Atheros [18]. Take IWL 5300 NICs as an example, we can
acquire 30 subcarriers by this NIC, and each subcarrier can
be written as Eq. (1).

H(k) = |H(k)| · e j∠H(k) (1)

where |H(k)| and ∠H(k) are the amplitude and phase of sub-
carrier k respectively. The CSI data is a three dimensional
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matrix, which represents transmitting antenna, receiving an-
tenna and subcarrier respectively. The receiving antennas
are expressed in descending order of RSS. Every elements
of matrix is the real and imaginary parts of a subcarrier that
can be converted to amplitude and phase. As mentioned
previously, CIR can be obtained by inverse Fourier trans-
form of CSI, which is able to distinguish multipath signals.
The time resolution is 50 ns when the bandwidth is 20MHz,
so CIR can distinguish smaller scale multipath with higher
bandwidth.

Whether a data can be used for fingerprinting needs to
satisfy two conditions that the data features of the same cat-
egory show strong stability and the data features of different
categories show dissimilarity. The paper [7], [19] propose
that CSI amplitude values exhibit great stability at a fixed
location compared with RSS values, which is validated by
abundant experiments. The main reason of different loca-
tions have different CSI is multipath effect.

Considering two propagation paths with the same at-
tenuation, the expressions at the receiver are A f (t − τ1) and
A f (t − τ2) respectively, where τ1 and τ2 are the time taken
for signals of two propagation paths to the receiver, A is the
attenuation coefficient. We set the Fourier transform of sig-
nal f (t) to F(ω), then the spectrum function of the received
signal is shown in Eq. (2).

AF(ω)e−jωτ1
(
1 + e−jω(τ2−τ1)

)
(2)

and the transfer function of multipath channel is

Ae−jωτ1
(
1 + e−jω(τ2−τ1)

)
(3)

where e−jωτ1 is a certain transmission delay, and themodulus
of the items in brackets is���1 + e−jω(τ2−τ1)

��� = 2
����cos

ω (τ2 − τ1)

2

���� (4)

It can be seen that the propagation attenuation of multipath is
related to signal frequency and delay difference. In practice,
a multipath channel has more than two propagation paths,
and the attenuation of each path is different, but the envelope
of the received signal must fluctuate randomly.

Figure 1 shows feature images from two adjacent ref-
erence points (RP) at three different times. It can be seen
that the features of the same RP show strong stability at dif-
ferent times and the features of different RPs show obvious
dissimilarity. There are 32 rows and 30 columns in finger-
print, and each column corresponds to the 30 subcarriers.
Rows 1 to 8 are samples of the first pair of antennas from 8
continuously received packets, rows 9 to 16 are packets of
the second pair of antennas from same packets, and so on.
We created 4 antenna Pairs and each of them has CSI of two
antennas of transmission and reception. It can be seen from
Fig. 1 that the CSI of same antenna pair are similar, while the
CSI of different antenna pairs are different and it improves
the stability of matching fingerprints.

In the experiment, it was found that CSI data at a fixed

Fig. 1 Feature images from two RPs at different times.

Fig. 2 Amplitude of continuously received CSI at a fixed location.

location has multiple clusters in some cases which brings a
problem of removing abnormal samples. The main reason
of this phenomenon is multipath effect [12]. Conventional
anomaly detection methods such as three-sigma rule, box
plot are based on the normal distribution. Taking Fig. 2(a)
as an example, these methods won’t be able to eliminate
the abnormal samples indicated by the red arrows. There
are many reasons for these irregular and non-repeatable ab-
normal samples, such as interference from other sources,
or random people walking, etc. Therefore, we remove the
abnormal samples that may be harmful to fingerprinting.

We use Isolation Forest (iForest) [20], [21] to elimi-
nate abnormal CSI samples. Isolation Forest is an ingenious
method for detecting anomalies without statistical parame-
ters such as mean and variance. Figure 3 shows that the
distribution of a set of data in a certain dimension Dim.
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Fig. 3 Isolation Forest example.

If we chose a random number between the maximum and
minimum values of all samples in this dimension, we can
separate the data set to two parts that are greater than this
number and less than or equal to this number. It is more
likely that normal data, such as the blue dots in the Fig. 3,
will need more cuts to be separated than abnormal data such
as the yellow dots.

Isolation Forest is based on this premise, and random
selecting dimensions with abundant isolated trees and ran-
domly cuts are used to avoid contingency. The anomaly
score [20] is used to determine if the sample is abnormal,
and the anomaly score of sample s in a data set is

score(s) = 2−
E (cut(s))
APL(S)

APL(S) = 2 · (ln(S − 1) + γ) −
2 · (S − 1)

S

(5)

Where E(·) means calculating the mean value, cut(s) is the
number of times and sample s is cut in an isolated tree, S is
the number of the samples, and APL(S) is the average path
length for the data set. The higher the anomaly score, the
more likely the sample is abnormal. As shown in Fig. 2(b),
abnormal CSI have been eliminated by iForest.

3. System Development

In this paper, we study how to use deep neural network to
utilize CSI for indoor localization, and how to improve the
accuracy of localization with KNN. The main idea of the
localization algorithm is fingerprint positioning divided into
offline stage and online stage, and the localization algorithm
architecture is shown in Fig. 4.

3.1 Data Collection

We use one transmitter with two antennas in this pa-
per. In offline stage, the data of all RPs are collected
at first. For the i-th RP, n CSI packets are collected:
CSIi =

(
csi1i ,csi2i , . . . ,csiji , . . . ,csini

)
, and each packet is

csiji =



Hi j
11 Hi j

12 · · · Hi j
1k · · · Hi j

1K

Hi j
21 Hi j

22 · · · Hi j
2k · · · Hi j

2K
...

...
. . .

...
...

Hi j
p1 Hi j

p2 · · · Hi j
pk
· · · Hi j

pK
...

...
...

. . .
...

Hi j
P1 Hi j

P2 · · · Hi j
Pk
· · · Hi j

PK


(6)

where i is the number of RPs, which is the category. Hi j
pk

is

Fig. 4 CSI correction localization algorithm with DenseNet architecture.

the CSI of the k-th subcarrier of the p-th antenna pair of the
j-th packet of the i-th RP. The CSI training data set with N
RPs is CSItrain = {(CSIi, li)}Ni=1, li = (xi, yi), where li is the
coordinate of the i-th RP.

Take all samples of the k-th subcarrier of the p-th an-
tenna pair on the i-th RP as a unit and use iForest to obtain
the abnormal data packet number. After each subcarrier
and each antenna pair has undergone anomaly detection, we
merge these abnormal numbers and remove duplicates to get
the abnormal number set of the i-th RP. The abnormal sam-
ples are eliminated according to this set, and the number of
samples retained is ni . Finally, we haveCSI ′train that has been
eliminated abnormal samples.

3.2 Interpolation and Fingerprint Database

In fingerprinting scheme, an appropriate interpolation can
not only reduce manpower cost in offline stage, but also
improve localization performance. Generalized extended
interpolation is a segmentation approximation method that
combines interpolation and fitting methods satisfies the in-
terpolation conditions at the segment boundary to ensure
good continuity between the segments, also combine the in-
ternal and external segments RPs to achieve the best fit in the
segment [22]. In the experiment and simulation verification
interpolation fingerprint, generalized extended interpolation
is more accurate than the conventional interpolation method
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[23].
Before interpolation, each RP is averaged, and the mean

vector of the i-thRP is csii =
[���Hi

1

��� ���Hi

2

��� . . . ���Hi

k

��� . . . ���Hi

K

���] ,
and any element is the average of all samples:���Hi

k

��� = 1
ni

1
P

ni∑
j=1

P∑
p=1

���Hi j
pk

��� (7)

For each element, a generalized extended interpolation
is used in the entire fingerprint database. The number
of new RPs depends on the step size and the distribu-
tion of the original RPs. After adding the original RPs,
there are M RPs in total, and the fingerprint is csim =(���Hm

1

��� , ���Hm

2

��� , . . . , ���Hm

k

��� , . . . , ���Hm

K

���) . The interpolated finger-
print database after generalized extended interpolation is

CSIinsert =
{(

csim, lm
)}M

m=1
, lm = (xm, ym). The mean CSI

test database is CSItest =
{(

csiq, lq
)}Q

q=1
, lq =

(
xq, yq

)
cor-

respondingly, where csiq is fingerprint of q-th test node and
Q is the number of test nodes.

We use data from CSI ′train as training data to construct
feature images. For ni samples of each RP, we use sliding
window to group in order. The size of the sliding window is
W, that is, W continuous samples are used to construct one
fingerprint until the rest of samples out of ni samples are less
than W. There are ni\W (\ is Integer Division) fingerprints
for the i-th RP. In the experiment, W is 8, and the CSI
amplitudes of the first pair of antenna pairs of 8 samples
are arranged in rows until the last pair of antenna pairs is
arranged. As shown in Fig. 1, one feature image has 32 rows
and 30 columns, and some features such as vertical lines
are easy to be captured by multiple samples instead of a
single-shot. Thus, we have the training fingerprint database:
FingerCSITrain =

{(
CSIWP×K ,i, li

)}NTrain
F

i=1 , where NTrain
F is the

number of fingerprints.
The constructionmethod of the test fingerprint database

in online stage is similar to the training fingerprint database
in offline stage. However, we use box plot instead of iForest
to eliminate abnormal samples, because the distribution of
test data is consistent in a short period of time. The test fin-
gerprint database is FingerCSITest =

{(
CSIWP×K ,i, li

)}NTest
F

i=1 .

3.3 CSI Localization DenseNet

DenseNet [24] is a convolutional neural network that stacks
the output of the previous layer of the network and the input
of the current layer on the channel dimension to alleviate
the vanishing gradient problem. On the one hand, the dense
connection not only alleviates the vanishing gradient and
model degradation problems, but also enhances the reuse
of features, which facilitates the transfer of information be-
tween layers, and also provides more possibilities for model
construction. On the other hand, the number of parameters
of DenseNet is significantly less than the Residual Network

(ResNets) that is also used to alleviate the vanishing gradient
problem. Moreover, it’s less than conventional convolutional
neural network, and DenseNet has high parameter efficient.
DenseNet has two main components, one is dense block, the
other is transition layer. The main body of DenseNet is al-
ternately stacked by dense blocks and transition layers, and
the head and tail are both dense blocks.

The unique structure of DenseNet is very conducive to
building the model of CSI and spatial position. In this paper,
we modify the original DenseNet to adapt to CSI fingerprint
location classification. First of all, CSI data at a fixed loca-
tion sometimes has multiple clusters, and it contains noise
generally. In the original network, the activation function is
Rectified Linear Unit (ReLU), which is fragile during train-
ing. When a large gradient flows through a ReLU to update
weights, it may no longer be activated by other data, which
is not conducive to the network to learn the correspondence
between CSI fingerprint and location. We substitute Expo-
nential Linear Unit (ELU) [25] for the original activation
function ReLU. When the input is negative, the derivative of
ELU is not equal to zero, which can alleviate the problem of
‘dead neuron’. The activation function formula is

f (x)=
{

x x > 0
α(exp(x) − 1) x ≤ 0 , f ′(x)=

{
1 x > 0
f (x)+α x ≤ 0

(8)

where α is the ELU hyperparameter. Another advantage of
ELU is that its derivative goes to zero when the input goes
to negative infinity, which is conducive to deal with noise of
CSI.

Secondly, we use multiple fully-connected layers at the
end of the network. The features extracted by the convolu-
tional layer at the front of the network are integrated through
the fully-connected layer, and then the data is non-linearly
transformed to complete the classification. The input data
is CSI feature images from FingerCSItrain, and the output
label is a one-hot position classification vector with dimen-
sion N: Label = (L1, L2, . . . , Li, . . . , LN ). The output layer
is calculated by softmax function:

pi =
ehii

N∑
ii=1

ehii
(9)

where (h1, h2, . . . , hi, . . . hN ) is the output of the last hidden
layer, and the cross-entropy [26] is used as the loss function.

Loss = −
N∑
i=1

Li log (pi) (10)

During the training stage, we use Adaptive Moment Esti-
mation (Adam) [27] and the backpropagation algorithm to
optimize the weight of the network until the training loss is
less than or equal to a threshold.
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3.4 Probability Weighted Localization Algorithm Based
on Neural Network

After continuously sampling at a fixed location to obtain C
feature images and inputting them into the trained network
mentioned in 3.2, we can get C prediction results. There are
N probability values

(
pc1, p

c
2, . . . , p

c
N

)
for the c-th prediction

result, where represent the probability of the feature image at
each RP. We use probability weighted method [28]–[30] to
estimate location. The coordinate of each RP is multiplied
by the corresponding probability weight, and the coordinate
obtained after the summation can be taken as the estimated
location of the c-th prediction result. We use average value
as the estimated location for C feature images.

LNet
test =

1
C

C∑
c=1

N∑
i=1

pci · li (11)

3.5 CSI Correction Localization Algorithm

K-nearest neighbors, weightedK-nearest neighbor (WKNN),
support vector machine (SVM), Bayesian estimator and neu-
ral networks, as popular algorithms, have been applied for
localization based on fingerprinting, and the key to most of
them is similarity function, which is used to measure the
similarity between two sets of data. In statistics, correlation
coefficients that reflect the direction and degree of trends be-
tween two variables are often used to analyze whether there
is a correlation between two variables. Common similarity
functions include Euclidean distance, Mahalanobis distance,
Bhattacharyya distance [31], Pearson Product-moment cor-
relation coefficient, Spearman’s rank correlation coefficient
and so on. If we can find an appropriate way to combine var-
ious localization algorithm that can complement each other,
the accuracy and robustness of localization can be further
improved.

The prediction results based on neural network can be
roughly divided into two situations. Considering one pre-
diction result, let pmax be the maximum probability out of
N probabilities pi . When the maximum probabilities pmax
of prediction results are generally large, it can be consid-
ered that the network has a high credibility for the current
output. The number of prediction results whose maximum
probability value is not less than threshold ρ is C ′. The pro-
portion is defined as R (pmax ≥ ρ), and ρ is not less than 0.5
normally. In this situation, the probability weighted localiza-
tion algorithm mentioned in 3.4 is used to estimate location.
When the maximum probabilities pmax of prediction results
are generally small, it can be considered that the network
has a low credibility for the current output. In this situation,
other localization algorithm should be utilized to correct the
position. We choose KNN in this paper.

Ltest =


LNet

test R (pmax ≥ ρ) ≥ α

1
k

(
LNet

test +

k−1∑
i=1

lsort
i

)
R (pmax ≥ ρ) < α

R (pmax ≥ ρ) =
C ′

C

(12)

Calculate the similarity between the fingerprint in CSItest
of the test node and the interpolated fingerprint database
after generalized extended interpolation CSIinsert to obtain
the position lsort

i of each RP in descending order of similarity.
Different similarity functions have different standards

for measuring the similarity of CSI, and each has its own ad-
vantages and disadvantages. Euclidean distance usually has
fine accuracy in localization based on fingerprinting. How-
ever, since the CSI amplitudes of 30 subcarriers at different
times at a fixed location often have similar changing trends,
or shapes, and their amplitudes may increase or decrease
overall, the Euclidean distance does not fully extract and uti-
lize CSI features that may cause largematching errors. Some
researchers proposed to use Pearson correlation coefficient
(PCC) as CSI fingerprint similarity function [10], [11]. PCC
ranges from −1 to 1. Two variables are positively linearly
related given PCC is 1, and negatively linearly related given
PCC is−1. When the absolute value of PCC is 1 the variables
are perfectly linearly related, and when PCC is 0 there is no
linear correlation between the variables. Spearman’s rank
correlation coefficient is calculated based on the order of the
data, so it may miss some information compared to PCC.
Bhattacharyya distance performs well in histogram match-
ing, which may enhance the CSI feature mentioned above
perfectly. In this paper, we use Bhattacharyya distance to
make similarity function defined as blow.

B
(
csim,csiq

)
= 1 − η

(
csim,csiq

)
= 1 −

√√√√√√√√√√√√√√√√1 −

K∑
k=1

√���Hm

k

��� · ���Hq

k

���√√√ K∑
k=1

���Hm

k

��� · K∑
k=1

���Hq

k

���
(13)

where X , Y are two fingerprints to be checked, and η(X,Y )
stands for Bhattacharyya distance.

4. Analysis and Validation

In the experiment, we used Mi Router 4C as access point
(AP) and ASUS laptop equipped with IWL 5300 NIC as
mobile device. We installed the 64-bit version of 12.04 LTS
Ubuntu Linux on the laptop, and CSI data receiving and
reading was done through CSI Tool [32]. The data receiving
process is that the mobile device first pings the AP at 100Hz,
and then the AP sends back a CSI data packet. There are
4 pairs of antenna pair and 30 subcarriers in each CSI data
packet.

As shown in Fig. 5, there are 35 RPs that are 0.6 meters
apart, which are red dots, and 15 test nodes that spread in
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Fig. 5 Layout of the corridor for RPs and test nodes.

Table 1 Comparison of similarity functions.

the environment randomly, which are blue triangles. In this
5m × 6m environment, the AP is placed closed to the wall.
We collect 1000 CSI data packets at each RP in offline stage
and 200 CSI data packets at each test node in online stage.

The anomalies of training data are eliminated by iFor-
est. The parameters of iForest are described as follows: the
number of training rounds is 1, the number of isolated trees
is 85, the size of subsampling is 200, and the proportion of
abnormal samples eliminated is 0.5%. And then we have
CSI training data set with 35 RPs. In this paper, we propose
CSI localization DenseNet in 3.2, and the network is trained
in offline stage.

In online stage, we get the coordinate of test node
roughly by probabilityweighted localization algorithmbased
on neural network, and the coordinates of R (pmax ≥ 0.5) <
80% test nodes are corrected by KNN based on Bhat-
tacharyya distance.

4.1 Effect of Different Similarity Functions

Different similarity functions have different measurement
standers. As shown in Table 1 and Fig. 6, Bhattacharyya dis-
tance has the smallest mean localization error and standard
deviation localization error. Considering all kinds of errors,
the Bhattacharyya distance is used as the similarity function
of the correction localization algorithm.

Fig. 6 CDF of localization errors for CorFi with different similarity func-
tions.

Fig. 7 Mean distance error of different parameter K.

4.2 Effect of Parameter K

The parameter K is the number of nearest neighbors in KNN
algorithm. In CorFi, the prediction result of the network is
also included in KNN, so the number of nearest neighbors
needs to be exceed 1. When the parameter K is 1, CorFi
degenerates into probability weighted localization algorithm
based on neural network, which does not use other algo-
rithm for location correction. When K is too high, the RPs
far away from the test node are also introduced into location
estimation, and usually these RPs without effective informa-
tion diminish the localization performance, so we choose 3
as reasonable number of nearest neighbors in CorFi. (Fig. 7)

4.3 Effect of Interpolated Fingerprint

In the experiment, we use linear interpolation as a compar-
ison. Fig. 8 shows that the interpolated fingerprint database
achieves higher localization accuracy than original finger-
print database, and CorFi using generalized extended inter-
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Fig. 8 CDF of localization errors for CorFi with different interpolations.

Fig. 9 Mean distance error of different proportion thresholds.

polation is better than linear interpolation.

4.4 Effect of Proportion Threshold α

CSI Correction Localization Algorithmmentioned in 3.5 se-
lects localization method by judging whether the proportion
of prediction results whose maximum probability value is
greater than or equal to 0.5 is smaller than the proportion
threshold α. Figure 9 shows that the mean localization error
is largewhenα is too small or large. On the one hand, the pre-
diction results with large localization error are not corrected
when threshold α is too low. On the other hand, the pre-
diction results with small localization error are ‘corrected’
when threshold α is too high, resulting in poor localization
performance. According to Fig. 9, the proportion threshold
α in this paper is 0.8.

4.5 Comparison with Existing Indoor Localization Algo-
rithm

In this section, we compare probabilistic algorithm [33],
kNN, DeepFi [12], ConFi [28] and CorFi. As shown in
Fig. 10 and Table 2, ConFi has better localization perfor-

Table 2 Comparison of different indoor localization algorithms.

Fig. 10 CDF of localization errors for different indoor localization algo-
rithms.

mance than DeepFi, 80% of the localization errors of former
is within 1.217m, and 80% of the latter is within 1.342m.
CorFi further reduces the localization error, and effectively
solves the problem of excessive localization error when the
neural network localization performance is poor by correct-
ing the position of prediction results with larger errors. 80%
of the localization errors of CorFi is within 0.780m.

4.6 Comparison with Different Neural Networks

In this section, different neural networks are applied to com-
pare the localization performance in proposed algorithm.
We used LeNet5 [34] and VGG11 [35] to replace DenseNet,
and we use the same training fingerprint database to train
all neural networks. When the training loss is not greater
than the threshold, the test fingerprint database is applied to
verify each network. As shown in Table 3 and Fig. 11, CorFi
reduces the mean location error by 29% compared with the
probability weighted localization algorithm when Densenet
is used, while it is 5% and 8% when LeNet5 and VGG11 are
used, respectively.

5. Conclusions

In this paper, we presented a novel indoor localization al-
gorithm named CorFi. We combined the neural network
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Table 3 Comparison of different neural networks.

Fig. 11 CDF of localization errors for different neural networks.

fingerprinting with the KNN algorithm, which effectively
remedy the shortcomings of probability weighted localiza-
tion algorithm based on neural network, and improves the
localization accuracy and robustness. The proposed feature
image fully exploits the CSI information in time, frequency
and space domain. The improved DenseNet was used to
establish correspondence between CSI and spatial position,
and the probability weighted localization algorithmwas used
to estimate location. We expanded the fingerprint database
by generalized extended interpolation, which reduces man-
power costs and provides a high-precision interpolation fin-
gerprint database for correction localization algorithm dur-
ing online stage.
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