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PAPER
Pattern Synthesis of Spatial Eigenmodes Exploiting Spherical
Conformal Array

Akira SAITOU†a), Ryo ISHIKAWA†, Members, and Kazuhiko HONJO†, Fellow

SUMMARY Unique spatial eigenmodes for the spherical coordinate
system are shown to be successfully synthesized by properly allocated com-
binations of current distributions along θ′ and φ′ on a spherical conformal
array. The allocation ratios are analytically found in a closed form with
a matrix that relates the expansion coefficients of the current to its radi-
ated field. The coefficients are obtained by general Fourier expansion of
the current and the mode expansion of the field, respectively. The validity
of the obtained formulas is numerically confirmed, and important effects
of the sphere radius and the degrees of the currents on the radiated fields
are numerically explained. The formulas are used to design six current
distributions that synthesize six unique eigenmodes. The accuracy of the
synthesized fields is quantitatively investigated, and the accuracy is shown
to be remarkably improved by more than 27 dB with two additional kinds
of current distributions.
key words: pattern synthesis, eigenmode, spherical conformal array, nu-
merical calculation

1. Introduction

The spatial eigenmode has been attracting interest both for
analytical and practical applications for antennas. It has
been utilized to analyze input impedances and radiation pat-
terns of various antennas and arrays [1]–[9]. One of the most
important features is the orthogonality among the eigen-
modes, and the complexity of the analysis has been remark-
ably reduced due to that feature.

The orthogonality is also exploited for practical appli-
cations, such as spatial multiplexing for high-speed Multi-
Input Multi-Output (MIMO) communication and more de-
tailed information for sensing. As for the sensing of
the direction of arrival, both the scalar sonic eigenmodes
and the vector electromagnetic eigenmodes are exploited
[10], [11]. On the other hand, Orbital Angular Momen-
tum (OAM) communication has recently been attracting at-
tention for line-of-sight communication, where orthogonal
vector OAM eigenmodes with different angular momenta
are exploited to realize independent communication chan-
nels [12]–[20]. A feature of the OAM eigenmode is its
spatial distribution of exp( jmφ) in the spherical coordinate
system, where m denotes the index that is called the phase
mode number or the magnetic quantum number. When dif-
ferent signal sequences are overlaid on n kinds of OAM
eigenmodes with different m~ OAMs, n-channel multiplex-
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ing communication becomes possible due to the orthogonal-
ity.

To extend the communication distance, higher gain has
been pursued, and horn antennas have been used to in-
crease the element gain. On the other hand, a communi-
cation scheme with paraboloids has been proposed by the
authors [18]–[20], where the far fields of the OAM eigen-
modes radiated by the loop antenna array are collimated by
the paraboloids. According to the geometric optics, electro-
magnetic field distribution around the receiving area is con-
sidered to be almost identical to that around the transmitting
area except the sign of the wave number vector. The cur-
rent distributions are also almost identical except their direc-
tions. In this case, where the current distribution at the trans-
mitting array is adjusted to radiate a unique mode, the re-
ceiver consisting of the same array receives only the unique
mode. Thus, the current distribution at the receiver becomes
almost identical to that at the transmitter. This behavior has
been confirmed by simulations and measurements.

However, there are many more independent eigen-
modes in free space, because each eigenmode is defined
by the OAM quantum number l as well as the magnetic
quantum number m for each Transverse Electric (TE) and
Transverse Magnetic (TM) wave. Thus, if the eigenmodes
are fully utilized, many more independent channels would
be available. Thus, optimal design method of MIMO an-
tenna directivities and corresponding current distributions
has been analyzed [21]. However, to extend the commu-
nication distance, synthesizing unique modes with respect
to both l and m for each TE and TM wave is anticipated for
the communication scheme with the paraboloids. For the
purpose of the synthesis, two-dimensional current distribu-
tion would be required, possibly because the OAM mode
radiated by the one-dimensional circular current is unique
only for m but degenerate with regard to l [18]. To synthe-
size fully unique modes, the spherical conformal array is a
viable candidate as it offers two-dimensional currents and
consistency with spherical coordinates. It is obvious that
many kinds of practical and essential problems should be
simultaneously addressed such as mutual impedance effects
[22]–[24] and design of element layout and assembly [25]–
[29]. Whereas the effects are neglected in this paper, the
current for the unique mode is also indispensable, because
it is the targeted current after compensating for the effects.

In Sect. 2 of this paper, the current distribution for the
unique mode is analytically obtained by neglecting the mu-
tual impedance effect. With the matrix that relates the cur-
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rents to the fields, the current for the unique mode is an-
alytically found. To estimate the validity, the numerically
calculated results are shown in Sect. 3. After confirming
the consistency of the obtained formulas, important features
of the matrix elements are clarified. From the results, the
current distributions for the unique modes are numerically
found. In addition, the accuracy of the synthesized fields is
investigated and remedial measures are provided.

2. Analytical Expression for Relation of the Current
and Electric far Field with Matrices

Where some current distribution is given, its radiated elec-
tromagnetic field is analytically found with the vector poten-
tial. However, it is usually difficult to find the current dis-
tribution that yields some desired field. Here, to obtain the
far field of the unique mode, discreet coefficients for both
the current on the spherical array and radiated fields are de-
rived with the general Fourier expansion and the mode ex-
pansion, respectively. The relation of the coefficients is de-
scribed with a matrix, and the combinations of the currents
for the unique modes are found in closed form with the in-
verse matrix.

2.1 Discreet Expression of Current on Spherical Array

Figure 1 shows the analyzed configuration of the current
density on the spherical array. Each current source is
assumed to be realized by continuous infinitesimal ele-
ments and its input impedance is assumed to be impedance-
matched to the port impedance R0. P is an observation point
to estimate the radiated field. To discreetly express the cur-
rents flowing along θ′ and φ′ on a spherical array, their dis-
tributions are general Fourier–expanded with the spherical
harmonics as follows, where a and Pm

n (x) denote the radius
of the sphere and the associated Legendre function for the
degree of n and the order of m [30], respectively:

Jθ′ =

∞∑
n=0

n∑
m=−n

cθnm

√
(n − m)!(2n + 1)

2 · (n + m)!
Pm

n (cos θ′)e jmφ′

 δ(r − a)

(1)

Jφ′ =

∞∑
n=0

n∑
m=−n

cφnm

√
(n − m)!(2n + 1)

2 · (n + m)!
Pm

n (cos θ′)e jmφ′

 δ(r − a).

(2)

Fig. 1 Configuration of analyzed current density.

As the mutual impedances are neglected, the input power
for Jθ′ can be estimated as follows:

Pin(n,m) =
a2

2

" {
R0|Jθ′ |2

}
sin θ′dθ′dφ′ = πa2R0|cθnm|

2.

(3)

The input power is independent of n and m, and is propor-
tional to |cθn,m|

2. Similarly, the input power is proportional
to |cφn,m|

2.

2.2 Discreet Expression of Radiated Fields

In the far-field region, the electric field is given with the vec-
tor potential by (4) [31], where the assumed time convention
is exp(− jωt).

E = jω

 0
Aθ

Aφ

 . (4)

The far-field vector potential is found with the current
distribution, as follows:[

Aθ

Aφ

]
=
µ0

4π
e jkr

r

$
V

[
Jθ
Jφ

]
e− jka{sin θ sin θ′ cos(φ′−φ)+cos θ cos θ′}

r′2 sin θ′dr′dθ′dφ′. (5)

To obtain the vector potential elements for θ and φ, the cur-
rent density Jθ and Jφ is expressed with the coordinate trans-
formation formula as follows, where Jθ′ and Jφ′ are defined
by (1) and (2):

[
Jθ
Jφ

]
=

[
{cos θ′ cos(φ′ − φ) cos θ + sin θ′ sin θ}Jθ′ − cos θ sin(φ′ − φ)Jφ′

cos θ′ sin(φ′ − φ)Jθ′ + cos(φ′ − φ)Jφ′

]
.

(6)

Thus, the electric far fields radiated by the currents are
found with (4), (5) and (6).

Integration for θ′ and φ′ can be carried out with the
formulas of (7) and (8), and the electric field is found as
shown in (9) and (10), where Ecθnm and Ecφnm are electric
fields radiated by (n,m)th Jθ′ and Jφ′ , respectively.

Jm(x) =
1

2π

∫ 2π

0
exp[ j(mφ′ − x sin φ′)]dφ′ (7)

Jm(ka sin θ sin θ′) exp(− jka cos θ cos θ′)

=

∞∑
l=0

(− j)l+m(2l + 1) jl(ka)P−m
l (cos θ)Pm

l (cos θ′). (8)

To express the relation between the current and the
electric field with a matrix, the obtained fields were mode-
expanded with the spatial eigenmodes in the far field. For
the far fields, the electric field E and the magnetic field H
are uniquely related as shown in (12), and the electromag-
netic fields can be described only with the electric field.
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Ecθnm = αa(n,m)
e jkr

kr
cθnm(−1)me jmφ

∞∑
l=0

(− j)l (2l + 1)
2

jl(ka)

×


2 sin θP−m

l (cos θ)
∫ 1

−1

√
1 − x2Pm

n (x)Pm
l (x)dx − P−m+1

l (cos θ) cos θ
∫ 1

−1
xPm

n (x)Pm−1
l (x)dx − P−m−1

l (cos θ) cos θ
∫ 1

−1
xPm

n (x)Pm+1
l (x)dx

−
2m

ka sin θ
P−m

l (cos θ)
∫ 1

−1

x
√

1 − x2
Pm

n (x)Pm
l (x)dx

 (9)

Ecφnm = αa(n,m)
e jkr

kr
cφnm(−1)me jmφ

∞∑
l=0

(− j)l (2l + 1)
2

jl(ka)


2m cot θ

ka
P−m

l (cos θ)
∫ 1

−1

1
√

1 − x2
Pm

n (x)Pm
l (x)dx

−P−m+1
l (cos θ)

∫ 1

−1
Pm

n (x)Pm−1
l (x)dx − P−m−1

l (cos θ)
∫ 1

−1
Pm

n (x)Pm+1
l (x)dx

 (10)

α =
j(ka)2η

2
a(n,m) =

√
(n − m)!(2n + 1)

2 · (n + m)!
. (11)

Er = Hr = 0, Eθ = ηHφ, Eφ = −ηHθ. (12)

Accordingly, the orthogonal relation in the far field is also
described only with the electric fields, as shown in (13). R is
the radius of the sphere for the integration, and this sphere
encloses the spherical array.∫ 2π

0

{∫ π

0

{
1
2

Re
[
E1 ×H∗2

]}
r

R2 sin θdθ
}

dφ

=
1
2η

∫ 2π

0

{∫ π

0

(
E1 · E∗2

)
R2 sin θdθ

}
dφ = 0. (13)

The eigenmodes can also be described with only the electric
field, as shown in (14) and (15).

ET M
l′m′ = b(l′,m′)

1
r

e jkre jm′ϕ


0

−
∂Pm′

l′ (cos θ)
∂θ

− j
m′

sin θ
Pm′

l′ (cos θ)

 . (14)

ET E
l′m′ = b(l′,m′)

1
r

e jkre jm′ϕ


0

jm′

sin θ
Pm′

l′ (cos θ)

−
∂Pm′

l′ (cos θ)
∂θ

 (15)

b(l′,m′) = (− j)l′

√
(2l′ + 1)η

2πl′(l′ + 1)
(l′ − m′)!
(l′ + m′)!

(16)

1
2η

∫ 2π

0
dϕ

∫ π

0
|ET M

l′m′ |
2R2 sin θdθ

=
1
2η

∫ 2π

0
dϕ

∫ π

0
|ET E

l′m′ |
2R2 sin θdθ = 1. (17)

ET M
l′m′ and ET E

l′m′ denote TM- and TE-wave eigenmodes for
the degree of l′ and the order of m′, respectively. The eigen-
modes are orthogonal to each other and are normalized as
shown in (17). Thus, the radiated power for each eigenmode
is identically normalized irrespective of l′ and m′.

As the eigenmodes are complete, the electric fields
shown in (9) and (10) can also be uniquely expanded with

the eigenmodes as shown in (18) and (19), where ξ and ζ de-
note the expansion coefficients for TM- and TE-wave eigen-
modes, respectively:

Ecθnm = cθnm

∞∑
l′=1

l′∑
m′=−l′

(ξcθnm
l′m′ ET M

l′m′ + ζcθnm
l′m′ ET E

l′m′ ) (25)

Ecφnm = cφnm

∞∑
l′=1

l′∑
m′=−l′

(ξcφnm
l′m′ ET M

l′m′ + ζ
cφnm
l′m′ ET E

l′m′ ). (26)

The expansion coefficients are found as follows, due to the
orthogonality:

ξ
cφnm
l′m′ =

1
2ηcφm

n

∫ 2π

0
dφ

∫ π

0
(Ecφm

n ,ET M
l′m′ )r

2 sin θdθ

ζ
cφnm
l′m′ =

1
2ηcφm

n

∫ 2π

0
dφ

∫ π

0
(Ecφm

n ,ET E
l′m′ )r

2 sin θdθ

ξcθnm
l′m′ =

1
2ηcθnm

∫ 2π

0
dφ

∫ π

0
(Ecθm

n ,ET M
l′m′ )r

2 sin θdθ

ζcθnm
l′m′ =

1
2ηcθnm

∫ 2π

0
dφ

∫ π

0
(Ecθm

n ,ET E
l′m′ )r

2 sin θdθ.



(20)

After lengthy but simple calculations, the expansion
coefficients are found as shown in (21)–(24).

As the formulas are complex, important features of the
coefficients are listed below. As all the coefficients include
the Kronecker delta (δm,m′ ), m for the current and m′ for the
electric field are identical. On the other hand, even where n
for the current is unique, there exist radiated fields for infi-
nite kinds of l′.

The ξcφnm
l′m′ and ζcθnm

l′m′ are proportional to m. In the case
where m is zero, the TM wave is not radiated from the cur-
rent along φ′, and the TE wave is not radiated from the cur-
rent along θ′. In other words, the current along θ′ radiates
only TM waves, and the current along φ′ radiates only TE
waves.

The relation for the parity between n and l′ is limited,
as shown in Table 1. This relation can be derived by con-
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ξ
cφnm
l′m′ =

πmδm,m′

kη
αa(n,m)b(l′,m)(−1)m

∞∑
l=0

(− j)l−l′ (2l + 1)
2

jl(ka)
{

2
ka

∫ 1

−1
xP−m

l (x)
∂Pm

l′ (x)
∂x

dx ·
∫ 1

−1

1
√

1 − x2
Pm

n (x)Pm
l (x)dx

− j
∫ π

0

1
√

1 − x2
Pm

l′ (x)P−m+1
l (x)dx ·

∫ 1

−1
Pm

n (x)Pm−1
l (x)dx − j

∫ 1

−1

1
√

1 − x2
Pm

l′ (x)P−m−1
l (x)dx ·

∫ 1

−1
Pm

n (x)Pm+1
l (x)dx)

}
(21)

ζ
cφnm
l′m′ =

πmδm,m′

kη
αa(n,m)b(l′,m)(−1)m

∞∑
l=0

(− j)l−l′ (2l + 1)
2

jl(ka)
{

2 jm2

ka

∫ 1

−1

x
1 − x2 Pm

l′ (x)P−m
l (x)dx ·

∫ 1

−1

1
√

1 − x2
Pm

n (x)Pm
l (x)dx

+

∫ 1

−1

√
1 − x2P−m+1

l (x)
∂Pm

l′ (x)
∂x

dx ·
∫ 1

−1
Pm

n (x)Pm−1
l (x)dx +

∫ 1

−1

√
1 − x2P−m−1

l (x)
∂Pm

l′ (x)
∂x

dx ·
∫ 1

−1
Pm

n (x)Pm+1
l (x)dx

}
(22)

ξcθnm
l′m′ =

πδm,m′

kη
αa(n,m)b(l′,m)(−1)m

∞∑
l=0

(− j)l−l′ (2l + 1)
2

jl(ka)
[
−

2 jm2

ka

∫ 1

−1

1
1 − x2 Pm

l′ (x)P−m
l (x)dx ·

∫ 1

−1

x
√

1 − x2
Pm

n (x)Pm
l (x)dx

+2
∫ 1

−1

√
1 − x2P−m

l (x)
∂Pm

l′ (x)
∂x

dx ·
∫ 1

−1

√
1 − x2Pm

n (x)Pm
l (x)dx −

∫ 1

−1
xP−m+1

l (x)
∂Pm

l′ (x)
∂x

dx ·
∫ 1

−1
xPm

n (x)Pm−1
l (x)dx

−

∫ 1

−1
xP−m−1

l (x)
∂Pm

l′ (x)
∂x

dx ·
∫ 1

−1
xPm

n (x)Pm+1
l (x)dx

]
(23)

ζcθnm
l′m′ =

πmδm,m′

kη
αa(n,m)b(l′,m)(−1)m

∞∑
l=0

(− j)l−l′ (2l + 1)
2

jl(ka)
[
−2
ka

∫ 1

−1
P−m

l (x)
∂Pm

l′ (x)
∂x

dx ·
∫ 1

−1

x
√

1 − x2
Pm

n (x)Pm
l (x)dx

−2 j
∫ 1

−1
P−m

l (x)Pm
l′ (x)dx ·

∫ 1

−1

√
1 − x2Pm

n (x)Pm
l (x)dx + j

∫ 1

−1

x
√

1 − x2
P−m+1

l (x)Pm
l′ (x)dx ·

∫ 1

−1
xPm

n (x)Pm−1
l (x)dx + j∫ 1

−1

x
√

1 − x2
P−m−1

l (x)Pm
l′ (x)dx ·

∫ 1

−1
xPm

n (x)Pm+1
l (x)dx

]
. (24)

Table 1 Relation for the parity between n and l′.

sidering the parity of the integrant for the expansion coeffi-
cient. Where the integrant is an odd function, the value of
integration becomes null. It should be noted that the parity
of the associated Legendre function is determined by l + m
as follows:

Pm
l (−x) = (−1)l+mPm

l (x). (25)

2.3 Combination of Currents for Radiating Unique Eigen-
mode

The matrix that relates the expansion coefficients for the
(n,m)th current and (l′,m′)th radiated field has been obtained
with (21)–(24). In addition, as m′ is identical to m, the co-
efficient for the l′th field is related with that for the nth cur-
rent by a matrix for each m. The relation is under the con-
straint of the parity shown in Table 1. For example, where n
for the current along θ′ is odd, even-degree TM waves and
odd-degree TE waves are radiated. Whereas the expansion

coefficients are different, fields of the identical degrees are
radiated by even-degree currents along φ′, as shown in Ta-
ble 1. Thus, even-degree TM eigenmodes and odd-degree
TE eigenmodes can be synthesized by properly combining
the currents along θ′ and φ′.

Here, let a mth-order desired electric field be Ed(m). It
can also be expanded by the eigenmodes only for the mth

order, as follows:

Ed(m) =

∞∑
l′=1

{
βT M

l′ (m)ET M
l′m + βT E

l′ (m)ET E
l′m

}
. (26)

This field can be radiated by the currents as follows,
where the variables are renamed simply as shown in (28):

Ed(m) =

∞∑
n=0

∞∑
l′=1

{
(cφn(m)ξφl′n(m) + cθn(m)ξθl′n(m)) ET M

l′m

+ (cφn(m)ζφl′n(m) + cθn(m)ζθl′n(m)) ET E
l′m

}
(27)

cθn(m) ≡ cθnm cφn(m) ≡ cφnm

ξθl′n(m) ≡ ξcφnm
l′m ξφl′n(m) ≡ ξcφnm

l′m

ζθl′n(m) ≡ ζcφnm
l′m ζφl′n(m) ≡ ζcφnm

l′m .

 (28)

By comparing the coefficients for the eigenmodes, the
following equations are obtained.

βT M
l′ (m) =

∞∑
n=0

{cθn(m)ξθl′n(m) + cφn(m)ξφl′n(m)} (29)
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β ≡



βT E
l′1

(m)
...

βT E
l′1+2N−2(m)
βT M

l′2
(m)
...

βT M
l′2+2N−2(m)

βT E
l′1+2N(m)

...
βT M

l′2+2N(m)
...



=



ζθl′1,n1 (m) · · · ζθl′1,n1+2N−2(m) ζφl′1,n2 (m)
... ζφl′1,n2+2N−2(m)

...
. . .

...
...

. . .
...

ζθl′1+2N−2,n1 (m) · · · ζθl′1+2N−2,n1+2N−2(m) ζφl′1+2N−2,n2 (m) · · · ζφl′1+2N−2,n2+2N−2(m)
ξθl′2,n1 (m) · · · ξθl′2,n1+2N−2(m) ξφl′2,n2 (m) · · · ξφl′2,n2+2N−2(m)

...
. . .

...
...

. . .
...

ξθl′2+2N−2,n1 (m) · · · ξθl′2+2N−2,n1+2N−2(m) ξφl′2+2N−2,n2 (m) · · · ξφl′2+2N−2,n2+2N−2(m)
ζθl′1+2N,n1 (m) · · · ζθl′1+2N,n1+2N−2(m) ζφl′1+2N,n2 (m) · · · ζφl′1+2N,n2+2N−2(m)

...
...

...
...

. . .
...

ξθl′2+2N,n1 (m) · · · ξθl′2+2N,n1+2N−2(m) ξφl′2+2N,n2 (m) · · · ξφl′2+2N,n2+2N−2(m)
...

. . .
...

...
. . .

...





cθn1 (m)
...

cθn1+2N−2(m)
cφn2 (m)

...
cφn2+2N−2(m)


≡ Ac

(31)
n1 = m, n2 = m + 1, l′1 = m, l′2 = m + 1 i f m : odd
n1 = m + 1, n2 = m, l′1 = m + 1, l′2 = m i f m : even.

}
(32)

βT E
l′ (m) =

∞∑
n=0

{cθn(m)ζθl′n(m) + cφn(m)ζφl′n(m)} . (30)

Where N kinds of degrees n are used for both the cur-
rents along θ′ and φ′, the equations are expressed with a
matrix, as shown in (31) and (32). The constraint shown in
Table 1 is explicitly included in (32). Where n is less than
|m|, the value of the associated Legendre function is null.

Here, we assume doubtfully that higher-degree modes
can be neglected so that N kinds of TM waves and N kinds
of TE waves may be dominant. Validity for the assump-
tion is quantitatively checked by numerical calculations in
Sect. 3.1.

With the assumption, the relation can be approximated,
as shown in (33), where the reduced matrix Ar(m) and the
reduced field vector βr

i (i = 1, 2, . . . , 2N) are defined by a
2N × 2N matrix and a 2N-element column vector, respec-
tively.

Br(m) = Ar(m)C(m) (33)
Br(m) ≡ (βr

1(m),βr
2(m), · · · ,βr

2N(m))
C(m) ≡ (c1(m), c2(m), · · · , c2N(m)).

}
(34)

Thus, the matrix C(m), consisting of the current expansion
coefficients, can be found in the closed form with the matri-
ces of [Ar(m)]−1 and Br(m) for the desired field, as follows:

C(m) = [Ar(m)]−1Br(m). (35)

For the unique mode, βr
i is a unit vector, and 2N kinds of

the current expansion coefficients to synthesize the unique
mode are found by the column vector elements of [Ar(m)]−1.
Thus, 2N kinds of eigenmodes are synthesized by 2N kinds
of currents. In addition, by substituting the obtained C(m)
into (36), the exact coefficients of the fields are obtained as
follows, where βi is an infinite element column vector:

B(m) = A(m)C(m) (36)

B(m) = (β1(m),β2(m), · · · ,β2N(m)). (37)

For the currents to synthesize the unique modes, the matrix
B(m) consists of a 2N × 2N unit matrix U2N,2N and an ∞ ×
2N matrix H(m) that explains the expansion coefficients for
undesired higher modes, as follows:

B(m) =

[
U2N,2N
H(m)

]
. (38)

In other words, whereas a unique mode is synthesized for
the 2N kinds of TM and TE eigenmodes, some amount of
undesired higher modes is also generated. The amount is
quantitatively estimated with H(m).

Thus, the unique modes for even-degree TM eigen-
modes and odd-degree TE eigenmodes have been synthe-
sized by the currents ci(m) (i = 1, 2, . . . , 2N), at least ap-
proximately. The remaining eigenmodes can also be syn-
thesized by the currents along θ′ and φ′ with the remaining
parity.

3. Numerical Calculation for Relation of Current and
Radiated far Field

With the analytical formulas, numerical calculation was car-
ried out. After checking the validity of the obtained formu-
las, features of the radiated fields are numerically looked
into. Finally, combinations of current distributions to syn-
thesize eigenmodes are investigated.

3.1 Estimation of Consistency for Obtained Formulas

The fields radiated by the currents along θ′ and φ′ were
given by the integration shown in (4)–(6). The integra-
tion was analytically carried out, and identical fields were
expressed by (18), (19) and (21)–(24). Thus, to estimate
the consistency for the obtained formulas [32], the identi-
cal fields obtained in two ways were compared numerically
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Fig. 2 Configuration for half of the analyzed discreet array.

with MathematicaT M . For one of the two ways, with mode
expansion, the sum for (18) and (19) was carried out up to
l′ of the 20th degree. In addition, as the continuous current
distribution used for these two ways is not practical, the field
generated by a discreet array was compared as a third way.

The fields were estimated both for the current along θ′

and φ′, where the degree and order were n of 2 and m of 1.
The value of ka was 9. For the discreet array, infinitesimal
radiating elements were located on the sphere at intervals of
10 degrees both for θ′ and φ′ directions as shown in Fig. 2,
where only half of the array is depicted. The elements on
the Z axis are not located. The observation points were at
intervals of 5 degrees for both the θ′ and φ′ directions.

Figure 3 shows the magnitudes of the electric field es-
timated in the three ways. As the magnitudes were indepen-
dent of φ for all of the estimated fields, they are shown only
along θ. Considering that the three kinds of fields are iden-
tical, the formulas for the eigenmode expansion coefficients
are considered to be accurate enough. In addition, the fields
can be realized with the discreet array.

The phase dependence on θ and φwas also identical for
the three ways, and was uniform and exp( jφ), respectively,
as expected from (14) and (15).

3.2 Features of Expansion Coefficients for Radiated Fields

The relation between the expansion coefficients for the cur-
rents and the radiated fields depends on ka as well as their
degrees and orders, as shown in (21)–(24). Thus, the ef-
fect of ka on the expansion coefficients was numerically es-
timated. For example, expansion coefficients of the fields
radiated by the current along φ’ are shown in Fig. 4, where
the degree and order for the current are n of 2 and m of 1.

Whereas the order of m′ is limited to being 1, there ex-
ist fields for infinite kinds of degrees of l′ for both the TM
and TE waves. As n is even for the current along φ′, degrees
for the TM waves are limited to being even, and those for TE
waves are odd, as expected from Table 1. The magnitude in-
creases with ka, and reaches a local maximum around l′ of
ka. Then, the magnitude repeatedly moves up and down.
This implies that where ka is considerably smaller than l′,
modes for the degrees larger than l′ are suppressed. In ad-
dition, to make the l′th-degree mode dominant, the value
of ka should not only be larger than l′ but also be prop-
erly adjusted for the expansion coefficient to be around a
local maximum. The relative magnitude depends also on

Fig. 3 Comparison of the electric fields estimated in three ways. Degree
and order of current: n=2, m=1.

Fig. 4 Magnitude of expansion coefficients for (l′, 1)th order fields. Or-
der of stimulated current along φ′: n=2, m=1. The numbers in the legend
denote degrees of l′ for the fields.

the relation between the degrees of n and l′. The smaller
the absolute value of difference for n and l′, the larger the
expansion coefficient becomes. In this case, the 2nd-degree
mode is dominant for the TM waves, because l′ is identical
to n. On the other hand, for the TE waves, as the 2nd-degree
mode is forbidden, as shown in Table 1, 1st- and 3rd-degree
modes become dominant, where the magnitude of the up-
per mode is slightly larger than that of the lower one, as
shown in Fig. 4(b). This implies that for an nth-degree cur-
rent, an (n+1)th-degree field can be dominantly radiated, ac-
cording to the condition shown in Table 1. Whereas higher
modes for an l′ larger than n were assumed to be neglected
in Sect. 2.3, the assumption would be more appropriate to
be changed so that those for l′ larger than n + 1 could be
neglected.
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Table 2 Combination of current to generate eigenmodes, shown in (34).

Fig. 5 Comparison of synthesized and eigenmode electric fields.

3.3 Synthesis of Unique Eigenmode by Properly Com-
bined Current Distributions

The combination of current distributions was numerically
estimated to synthesize unique eigenmodes according to the
procedure shown in Sect. 2.3. Six kinds of current distribu-
tions, cθ11/cθ31/cθ51/cφ21/cφ41/cφ61, were utilized to synthe-
size six kinds of targeted unique eigenmodes, TM21/TM41/

TM61/TE11/TM31/TM51, so that the currents may radiate
the identical eigenmodes with fairly large expansion coeffi-
cients. The value of ka was 5. Table 2 shows the calculated
combination of current, C(m) shown in (35), to synthesize
the eigenmodes.

Synthesized electric far fields, estimated with the com-
bination of the currents and (27), were compared with those
of the targeted eigenmodes as shown in Fig. 5. The fields
agree fairly well, but the error is rather large for TM61 espe-

Table 3 Relative magnitude of higher modes expressed by B(m).

Fig. 6 Electric field for TE71.

cially around θ of 0 and 180 degrees.
For the MIMO communication, the error is quite im-

portant, because it is closely related with the signal to in-
terference ratio [18], [19]. Thus, to clarify the reason, the
effect of undesired higher-degree modes was quantitatively
analyzed with matrix B(m), shown in (36). As undesired
higher modes of TE71, TE91, TM81, TM10,1 are also radiated
by the currents, their magnitudes were estimated, as shown
in Table 3. Only among the targeted modes did each cur-
rent distribution realize a unique mode. However, they also
generate some amount of the higher modes. The magnitude
of TE71 is much larger than those of the other higher modes,
because TE71 is one of the dominant modes radiated by cφ61,
as explained in Sect. 3.2. The magnitude for c6 is as large
as 0.3173, which corresponds to −10.0 dB for the radiated
power compared with that of the targeted TM61. Thus, the
error shown in Fig. 5 is considered to be explained by the
field of TM71 shown in Fig. 6. As the magnitude of TM71
is large around θ of 0 and 180 degrees, the error of TM61
shown in Fig. 5(f) is large around the region.

As for the targeted five kinds of eigenmodes except
TM61, the error becomes less than 0.0878 (−21.3 dB). Thus,
if additional kinds of current distributions are used for the
six eigenmodes, the error would be remarkably reduced.
Thus, additional current modes cθ71 and cφ81 were included.
In this case, TE71 and TM81 are fully suppressed. Cal-
culated matrix H(m), shown in (38), is shown in Table 4.
Where only combinations of current distributions, c1∼c3
and c5∼c7, are used, the targeted six modes become dom-
inant. On the other hand, the error is reduced less than
−37.2 dB. The maximum error is reduced by more than
27 dB compared with that shown in Table 3.

With the obtained results, the upper bound in the num-



1238
IEICE TRANS. COMMUN., VOL.E105–B, NO.10 OCTOBER 2022

Table 4 Relative magnitude (dB) of higher modes estimated with H(m).

ber of the modes might be roughly discussed. Let the fol-
lowing modes be the targeted dominant ones.

−l ≤ m′ ≤ l′, 1 ≤ l′ ≤ L, L � 1 (39)

The number of the eigenmodes (N) is about 2L2 as shown
in (40), where there are TM and TE waves for each (l′,m′)th

mode.

N = 2L(L + 2) ≈ 2L2 (40)

To realize (l′,m′)th mode dominant, two conditions are re-
quired, as shown in Sect. 3.2. First of all, the current dis-
tribution shown in (1) and (2) should satisfy the following
condition.

n ≈ l′m = m′ (41)

To realize every m, the number of the array elements along φ
must be more than 2L+1 according to the sampling theorem.
Similarly, the number of the array elements along θ is con-
sidered to be more than L, possibly because the associated
Legendre function is similar to the trigonometric function.
Thus, the number of the required elements is similar to that
of the eigenmodes.

Secondly, ka should be larger than n or l′. For the
minimum radius of L/k to realize all eigenmodes, the spac-
ing along θ between the adjacent elements is about a half-
wavelength. However, the spacing along φ is rather nar-
rower especially around the north and south pole. Thus,
even where miniature elements are allocated, large mutual
impedance effect would result. On the other hand, the ef-
fect would be reduced for a larger spherical radius, but more
kinds of the current distributions should be utilized to sup-
press undesired higher modes.

4. Conclusion

Unique spatial eigenmodes for the spherical coordinate sys-
tem were shown to be successfully synthesized by properly
allocated combinations of current distributions along θ′ and
φ′ on a spherical conformal array. The allocation ratios were
analytically found in a closed form with a matrix that relates
the expansion coefficients of the current to its radiated field.
The coefficients were obtained by general Fourier expansion
of the current and the mode expansion of the fields. The va-
lidity of the obtained formulas was numerically confirmed,
and important effects of the sphere radius and the degrees
and orders of the current on the radiated fields were numer-
ically explained. The formulas were used to design current
distributions that synthesize six unique eigenmodes. The
accuracy was quantitatively investigated, and the accuracy

was shown to be improved by more than 27 dB with the two
additional kinds of current distributions.
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