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Interleaved Weighted Round-Robin: A Network Calculus Analysis

Seyed Mohammadhossein TABATABAEE†a), Jean-Yves LE BOUDEC†b), and Marc BOYER††c), Nonmembers

SUMMARY Weighted Round-Robin (WRR) is often used, due to its
simplicity, for scheduling packets or tasks. With WRR, a number of packets
equal to the weight allocated to a flow can be served consecutively, which
leads to a bursty service. Interleaved Weighted Round-Robin (IWRR) is
a variant that mitigates this effect. We are interested in finding bounds
on worst-case delay obtained with IWRR. To this end, we use a network
calculus approach and find a strict service curve for IWRR. The result is
obtained using the pseudo-inverse of a function. We show that the strict
service curve is the best obtainable one, and that delay bounds derived from
it are tight (i.e., worst-case) for flows of packets of constant size. Further-
more, the IWRR strict service curve dominates the strict service curve for
WRR that was previously published. We provide some numerical examples
to illustrate the reduction in worst-case delays caused by IWRR compared
to WRR.
key words: weighted round-robin, delay bound, worst-case delay, network
calculus, strict service curve

1. Introduction

Weighted Round-Robin (WRR) is a scheduling algorithm
that is often used for scheduling tasks, or packets, in real-
time systems or communication networks. The capacity is
shared among several clients or queues by giving each of
them a weight, which is a positive integer, and by provid-
ing more service to those with larger weights. Specifically,
queues are visited one after the other, and when a queue
i with weight wi has an emission opportunity, it sends wi
packets, or less if fewer packets are present. The advan-
tage of WRR is that it is fair and simple. However, the
service is bursty because up to wi packets can be served
consecutively for queue i, which can cause a large worst-
case waiting time for other queues. Interleaved Weighted
Round-Robin (IWRR) mitigates this effect [1]. With IWRR,
a queue i with weight wi has wi emission opportunities per
round and can send up to one packet at every emission op-
portunity. In contrast, with WRR, it has one emission op-
portunity per round and can send up to wi packets at every
emission opportunity. Hence, IWRR spreads out emission
opportunities of each queue in a round, which is expected
to result in a smoother service and lower worst-case delays.
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There exist several versions of IWRR; we focus on the sim-
plest one, where queue i has emission opportunities in the
first wi cycles within a round (see Sect. 3 for a formal de-
scription of IWRR and Sect. 4 for WRR variants).

We are interested in delay bounds for the worst case,
as is typical in the context of deterministic networking. To
this end, a standard approach is network calculus. Specif-
ically, with network calculus, the service offered to a flow
of interest by a system is abstracted by means of a service
curve. A bound on the worst-case delay is obtained by com-
bining the service curve with an arrival curve for the flow of
interest. An arrival curve is a constraint on the amount of
data that the flow of interest can send; such a constraint is
necessary to the existence of a finite delay bound. The exact
definitions are recalled in Sect. 2.

The network calculus approach was applied to WRR
in [2, Sec. 8.2.4], where a strict service curve is obtained.
As explained in Sect. 2, a strict service curve is a special
case of a service curve hence can be used to derive delay
(and backlog) bounds. Our first contribution is to obtain a
strict service curve for IWRR. Compared to WRR, the in-
terleaving in IWRR makes the analysis more difficult, and
the method of proof in [2] cannot easily be extended. To
circumvent this difficulty, we rely heavily on the method of
pseudo-inverse, recalled in Sect. 2. As expected, the IWRR
strict service curve dominates that of WRR, hence the result-
ing delay bounds for IWRR are always less than or equal to
those for WRR.

The strict service curve enables us to obtain delay
bounds by using network calculus, but such bounds might
not always be tight, i.e., they might not always be equal to
worst-cases. This is because the strict service curve is an ab-
straction of the system. Our second contribution is to show
that, for flows with packets of constant sizes, the strict ser-
vice curve obtained for IWRR provides tight delay bounds.
We show that the same result holds for the existing strict
service curve of WRR. Extending such results to flows with
packets of variable sizes is left for further study.

The strict service curve obtained for IWRR has some
description complexity, see also Fig. 3. Therefore, we pro-
vide simplified lower bounds that can be used, at the expense
of sub-optimality, when analytic, closed-form expressions
are important.

After giving some necessary background on network
calculus and the lower-pseudo inverse technique in Sect. 2,
we describe our system model in Sect. 3. We describe the
state of the art in Sect. 4. In Sect. 5, we present our strict
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service curve for IWRR. In Sect. 6, we show that both the
IWRR and WRR strict service curves are the best possible
and that they give tight delay bounds for a flow with con-
stant packet sizes. We use numerical examples to illustrate
the worst-case latency improvement of IWRR over WRR
obtained with our method in Sect. 7. We present proofs of
results in Sect. 8.

2. Background

We use the framework of network calculus [2]–[4]. A flow is
represented by a cumulative arrival function R ∈ F , where
F denotes the set of wide-sense increasing functions f :
R+ 7→ R+ ∪ {+∞} and R(t) is the number of bits observed
on the flow between times 0 and t. We say that a flow R
has α ∈ F as arrival curve if for all s ≤ t, R(t) − R(s) ≤
α(t − s). A frequently used arrival curve is α = γr,b, defined
by γr,b(t) = rt + b for t > 0 and γr,b(t) = 0 for t = 0 (token
bucket arrival curve, with rate r and burst b). An arrival
curve α can always be assumed to be sub-additive, i.e., to
satisfy α(s + t) ≤ α(s) + α(t) for all s, t.

For two functions f and g in F , the min-plus convo-
lution is defined by ( f ⊗ g)(t) = inf0≤s≤t{ f (t − s) + g(s)}.
An example of min-plus convolution used in this paper is
illustrated in Fig. 1.

Consider a system S and a flow through S with input
and output functions R and R∗ and let β ∈ F . We say that the
system S offers β as a service curve to the flow if R∗ ≥ R⊗β,
which often means that for every t ≥ 0 there exists some
s ≤ t such that R∗(t) ≥ R(s) + β(t− s) [2, Sec. 3.2.2]. We say
that system S offers a strict service curve β ∈ F to the flow
if R∗(t) − R∗(s) ≥ β(t − s) whenever (s, t] is a backlogged
period (i.e., R(τ) > R∗(τ) for all τ such that s < τ ≤ t).
If β is a strict service curve, then it is a service curve, but
the converse is not always true [3, Sec. 1.3]. A frequently
used service curve is the rate-latency function βr,T that is the
function in F defined by βr,T (t) = r[t − T ]+, where we use
the notation [x]+ = max {x, 0}. Saying that a system offers a
service curve βr,T to a flow expresses that the flow is guar-
anteed a service rate r, except for possible interruptions that
might impact the delay by at most T . Saying that a system
offers a strict service curve βr,T to a flow expresses that the

Fig. 1 Left: the stair function νa,b ∈ F defined for t ≥ 0 by νa,b(t) =

a
⌈

t
b

⌉
. Right: min-plus convolution of νa,b with the function λ1 ∈ F de-

fined by λ1(t) = t for t ≥ 0. When a ≤ b, the discontinuities are smoothed,
and replaced with a unit slope.

flow is guaranteed a service rate r, except for possible in-
terruptions that might not exceed T in total per backlogged
period. A strict service curve β can always be assumed to be
super-additive, i.e., to satisfy β(s + t) ≥ β(s) + β(t) for all s, t
(otherwise, it can be replaced by its super-additive closure
[2, Prop. 5.6]).

Assume that a flow, constrained by arrival curve α, tra-
verses a system that offers a service curve β to the flow and
that respects the ordering of the flow (FIFO per-flow). The
delay of the flow is upper bounded by h(α, β) (horizontal
deviation), defined by

h(α, β) = sup
t≥0
{inf{d ≥ 0|α(t) ≤ β(t + d)}} (1)

Our technique of proof uses the lower pseudo-inverse.
The lower pseudo-inverse f ↓ of a function f ∈ F is defined
by

f ↓(y) = inf{x| f (x) ≥ y} = sup{x| f (x) < y} (2)

We use the following property from [5, Sec. 10.1]:

∀x, y ∈ R+, y ≤ f (x)⇒ x ≥ f ↓(y) (3)

3. System Model

We consider a weighted round-robin subsystem that serves
n input flows, has one queue per flow, and uses a weighted
round-robin algorithm to arbitrate between flows. The arbi-
tration algorithm assumed in this paper is IWRR, shown in
Algorithm 1. When a packet of flow i enters the weighted
round-robin subsystem, it is put into queue i. The weight
of flow i is wi. IWRR runs an infinite loop of rounds. In
one round, each queue i has wi emission opportunities; one
packet can be sent during one emission opportunity. The in-
ner loop defines a cycle, where each queue is visited but only
those with a weight not smaller than the cycle number have
an emission opportunity. The send instruction is assumed to
be the only one with a non-null duration. Its actual duration
depends on the packet size but also on the amount of service
available to the entire weighted round-robin subsystem. See
Fig. 2 for an illustration.

The weighted round-robin subsystem is itself placed in
a larger system, and can compete with other queuing sub-
systems. For example, consider the case of a constant-rate
server with several priority levels, without preemption, and
where the weighted round-robin subsystem is at a priority
level that is not the highest, as in [6, Sec. 8.6.8.3]. Assuming
some arrival curve constraints for the higher priority traffic,
the service received by the entire weighted round-robin sub-
system can be modelled using a strict service curve [2, Sec.
8.3.2].

This motivates us to assume that the aggregate of all
flows in the weighted round-robin subsystem receives a
strict service curve, say β ∈ F that we call “aggregate
strict service curve”. If the weighted round-robin subsys-
tem has exclusive access to a transmission line of rate c,
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Fig. 2 Emission opportunities on two successive rounds for IWRR with
three flows and w1 = 2, w2 = 3, w3 = 5. Mind that this is not the temporal
behaviour: each opportunity can lead to an empty interval if the queue is
empty at this time. Furthermore, the duration of each non-empty interval
depends on the packet size and the aggregate service available (we do not
assume constant rate service).

Algorithm 1 Interleaved Weighted Round-Robin
Input: Integer weights w1 ≤ w2 ≤ .. ≤ wn

1: wmax = max{w1, .., wn}

2: while True do . A round starts.
3: for C ← 1 to wmax do . A cycle starts.
4: for i← 1 to n do
5: if C ≤ wi then
6: if (not empty(i)) then
7: . A service for queue i.
8: print(now,i);
9: send(head(i));

10: removeHead(i);
11: end if
12: end if
13: end for
14: end for . A cycle finishes.
15: end while . A round finishes.

then β(t) = ct for t ≥ 0. We assume that β(t) is finite for
every (finite) t and, without loss of generality, we assume
β to be super-additive. Furthermore, we need an additional
technical assumption, primarily for establishing the tight-
ness result: we assume that β is Lipschitz-continuous, i.e.,
there exists a constant K > 0 such that β(t)−β(s)

t−s ≤ K for all
0 ≤ s < t; this does not appear to be a restriction as the rate
at which data is served has a physical limit.

Here, we use the context of communication networks,
but the results equally apply to real-time systems: Simply
map flow to task, packet to job, packet size to job execution
time and strict service curve to “delivery curve” [7], [8].

4. State of the Art

One of the first use of round-robin scheduling in the net-
work context appeared in [9], with a fairness objective, i.e.,
a fair way to share the bandwidth among sessions. It is also
mentioned in [10] as a way to implement “fair queueing”.

The term “Weighed Round-Robin” was coined in [1] as
a generalisation of round-robin to share the bandwidth “in
proportion to prescripted weights” in the context of ATM
(i.e., with constant-size packets). Two versions of the algo-
rithm are presented in [1]. The former is presented in Algo-
rithm 1: at cycle C (with C between 1 and wmax), only flows
with weight wi ≥ C can emit one packet. We call this ver-
sion IWRR. The latter version assumes that there exists for
each flow i a bit-list of length wmax, oi ∈ {0, 1}wmax , such that
wi =

∑wmax
k=1 oi[k]. A flow i can emit a packet at cycle C only

if oi[C] = 1. A strategy is given to build these vectors in [1]

and is refined with fairness objectives in [11]. Call LIWRR
(list-based IWRR) this version.

IWRR is modified into WRR/SB in [12] to enable some
flow to send slightly more packets than permitted in a cycle,
and to decrease accordingly at the next cycle.

As mentioned in Section 1, plain WRR (which we sim-
ply call “WRR”) enables each flow i to send up to wi pack-
ets every time it is selected [13]. A “Multiclass WRR” is
also defined in [13]. Surprisingly, the authors of [13] were
not aware of [1] and have re-invented LIWRR. Note that
even if WRR was designed for packets of constant size, it
has been applied in network of variable size packets such
as Ethernet [6, Sec. 8.6, Sec. 8.6.8.3, Sec. 37], in request
balancing in cloud infrastructures [14], in the LinuxVirtu-
alServer scheduling [15], in network of chip [16], and so
on. In fact, looking for expression “weighted round-robin”
in the title or abstracts of papers index by Scopus returns
more than 400 entries (March 2020), and Google references
more than 4000 patents with this expression (March 2020).
Unfortunately, when authors refer to WRR, they often do
not explicit which version of WRR it is.

A WRR server is also a latency-rate server, with la-
tency and rates given in [17] for packets of constant size.
The latency result is generalised to LIWRR in [18]. Even if
the notion of latency-rate server is very close to the one of
a service curve βr,T in network calculus, both notions are
slightly different, and results cannot be directly imported
from one theory to the other [19]. In [16], the authors con-
sider a Network on Chip (NoC), with WRR arbitration at the
flit level. A flit is the elementary data unit of the NoC, one
flit is sent per CPU/NoC cycle. Assuming that the weights
are such that packets are never fragmented by the arbiter, a
strict service curve βRi,Ti for flow i is found, with Ri = wi∑

k wk
,

Ti =
∑

j,i w j.
WRR arbitration in an Ethernet switch is also consid-

ered in [20], with the assumption that all flows of an output
ports have the same constant packet size. It then computes,
in the network calculus framework, a residual service with
service curve βRi,Ti with Ri = wi∑

k wk
C, Ti =

∑
j,i w j

C , where C is
the link rate. We assume that the missing packet size in the
Ti term was a typo. This network calculus result on conven-
tional WRR arbitration in Ethernet is refined in [21], con-
sidering packets of variable size, leading to residual service
with strict service curve βRi,Ti with Ri =

wilmin
i

wilmin
i +

∑
j,i w jlmax

j
C and

Ti =

∑
j,i w jlmax

j

C (cf. Eq. (1) and (2) in [21]) where lmin
i , lmax

i
are, respectively, lower and upper bounds on the size of the
packets in the flow i. It refines this result by subtracting the
part of the bandwidth not used by interfering flows (consid-
ering their arrival curves).

Observe that computing a residual service with a βR,T
curve is pessimistic as it assumes that, once the worst la-
tency is paid, each packet is served with the long-term resid-
ual rate. Whereas, in reality, each packet, when it is selected
for emission, is transmitted at full link speed up to comple-
tion. A residual service for the conventional WRR with a
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Fig. 3 Strict service curves obtained in Sect. 5 for an example with four input flows, weights =

{4, 6, 7, 10}, lmin = {4096, 3072, 4608, 3072} bits, lmax = {8704, 5632, 6656, 8192} bits and β(t) = ct
with c = 10 Mb/s (i.e., the aggregate of all flows is served at a constant rate). The figure shows the
IWRR service curve βi and the WRR strict service curve β′i for two of the flows; it also shows the non-
dominated rate-latency strict service curves βr∗0 ,T

∗
0

and βr∗k∗ ,T
∗
k∗

of Theorem 3 (in the top panel both are
equal).

curve that is an alternation of full services and plateaus is
given in [2, Sec. 8.2.4] . This effect of “full speed up to
completion” can also be captured when computing the local
delay of a server with βR,T service curve [22].

5. Strict Service Curves for IWRR

Our first result is a strict service curve for IWRR that, as we
show in Sect. 6, is the best possible. We compare it to WRR
and also give simpler, lower approximations.

Theorem 1 (Strict Service Curve of IWRR): Let S be a
server shared by n flows that uses IWRR as explained in
Sect. 3, with weight wi for flow i. Recall that the server of-
fers a strict service curve β to the aggregate of the n flows.
For any flow i, lmin

i [resp. lmax
i ] is a lower [resp. upper] bound

on the packet size.
Then, S offers to every flow i a strict service curve βi

given by βi(t) = γi(β(t)) with

γi = λ1 ⊗ Ui (4)

Ui(x)
def
=

wi−1∑
k=0

νlmin
i ,Ltot

([
x − ψi(klmin

i )
]+

)
(5)

Ltot = wilmin
i +

∑
j, j,i

w jlmax
j (6)

ψi(x)
def
= x +

∑
j, j,i

φi, j

 x
lmin
i

 lmax
j (7)

φi, j(x)
def
=

⌊
x
wi

⌋
w j +

[
w j − wi

]+

+ min(x mod wi + 1, w j) (8)

In the above, νa,b is the stair function, λ1 is the unit rate
function and ⊗ is the min-plus convolution, all are described
in Fig. 1.

Furthermore, βi is super-additive.

The proof is in Sect. 8.1. See Fig. 3 for some illustration
of βi. Observe that γi in Eq. (4) is the strict service curve
obtained when the aggregate strict service curve is β = λ1
(i.e., when the aggregate is served at a constant, unit rate). In
the common case where β is equal to a rate-latency function,
say βc,T , we have βi(t) = γi(c(t − T )) for t ≥ T and βi(t) = 0
for t ≤ T , namely, βi is derived from γi by a rescaling of the
x axis and a right-shift.

As mentioned in Sect. 2, any strict service curve that
is not super-additive can be improved, by replacing it by its
super-additive closure. The last statement in the theorem
guarantees that it is not possible to improve the obtained
service curve in this way.

We now compare to WRR. The best known service
curve for (non-interleaved) WRR is given in [2, Sec. 8.2.4]
and is

β′i(t) = (λ1 ⊗ νqi,Ltot )
([
β(t) − Qi

]+) (9)

with qi = wilmin
i and Qi =

∑
j, j,i w jlmax

j . In Sect. 6, we
show that β′i(t) is indeed the best possible strict service curve
for WRR. Furthermore, it is dominated by the strict service
curve for IWRR:

Theorem 2: With the assumptions in Theorem 1 and in
Eq. (9):

β′i ≤ βi (10)

The proof is in Sect. 8.2. Figure 3 illustrates how the strict
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service curve for IWRR improves on that for WRR, by pro-
viding a smoother, and generally larger, service.

The service curve found in Theorem 1 is the best pos-
sible one but has a complex expression. If there is interest in
a simpler expression, any lower bounding function is a strict
service curve; in particular, the strict service curve β′i for
WRR is also a valid, though suboptimal, strict service curve
for IWRR. There is often interest in service curves that are
rate-latency functions. Observe that, if the aggregate service
curve β is a rate-latency function, then replacing γi by a rate-
latency lower-bounding function also yields a rate-latency
function for βi, and vice-versa. Therefore, we are interested
in rate-latency functions that lower bound γi.

Among all of these, there is not a single best one, as
some have a smaller latency while others have a larger rate.
We say that a rate-latency function βr,T that lower bounds γi
is non-dominated if there is no other rate latency function
βr′,T ′ that lower bounds γi and dominates βr,T , i.e., such that
r′ ≥ r and T ′ ≤ T . The following result gives all such
non-dominated rate-latency functions. Let r∗ =

qi
Ltot

=
wilmin

i
Ltot

,
rwi−1 = 1, and

rk =
lmin
i

ψi((k + 1)lmin
i ) − ψi(klmin

i )
, 0 ≤ k < wi − 1 (11)

k∗ = min{0 ≤ k < wi | rk ≥ r∗} (12)
r∗k = min(rk, r∗), 0 ≤ k ≤ k∗ (13)

Theorem 3: With the assumptions in Theorem 1 and the
definitions (11)–(13), a rate-latency function βr,T lower
bounds γi and is non-dominated if and only if r = r∗k∗
and T = ψi(k∗lmin

i ) − k∗lmin
i
r , or r∗k−1 ≤ r < r∗k and T =

ψi(klmin
i ) − klmin

i
r for some integer k with 0 < k ≤ k∗. Among

all such rate-latency functions, the one with lowest latency
is βr∗0,T

∗
0

and the one with largest rate is βr∗k∗ ,T
∗

k∗
.

The proof is in Sect. 8.3. Figure 3 illustrates βr∗0,T
∗
0

and
βr∗k∗ ,T

∗

k∗
in some examples. Observe that k 7→ r∗k is wide-

sense increasing with k for 0 ≤ k ≤ k∗, but the values of r∗k
are not necessarily all distinct. It can also occur that k∗ = 0
(as in the top panel of Fig. 3); in which case, there is one
optimal rate-latency service curve. In general, however, this
does not occur, and a simple lower bounding approximation
can be obtained with the supremum of all non-dominated
rate-latency service curves, as given by the next theorem.

Theorem 4: With the assumptions in Theorem 3, the
supremum of all non-dominated rate-latencies is equal to
max

(
βr∗0,T

∗
0
, . . . , βr∗k∗ ,T

∗

k∗

)
, and it is the largest convex function

that lower bounds γi.

The proof is in Sect. 8.4. There is often interest in ser-
vice curves that are piecewise-linear and convex. Specifi-
cally, convex piecewise-linear functions are stable under ad-
dition and maximum and the min-plus convolution can be
computed in automatic tools very efficiently [2, Sec. 4.2].
The above theorem thus gives the best such strict service

curve.

6. Tightness

We first show that the strict service curve we have obtained
is the best possible. The proofs of all results in this section
are in Sect. 8.

6.1 Tightness of Strict Service Curve

Theorem 5: (Tightness of the IWRR Service Curve) Con-
sider a weighted round-robin subsystem that uses the IWRR
scheduling algorithm, as defined in Sect. 3. Assume the fol-
lowing system parameters are fixed: the number of input
flows, the weight w j allocated to every flow j, the bounds
on packet sizes lmin

j and lmax
j for every flow j, and the strict

service curve β for the aggregate of all flows. Let i be the
index of one of the flows.

Assume that bi ∈ F is a strict service curve for flow
i in any system that satisfies the specifications above. Then
bi ≤ βi where βi is given in Theorem 1.

Interestingly, we obtain a similar result for WRR. Recall that
β′i is the strict service curve for flow i, described in Eq. (9),
which was obtained in [2, Sec. 8.2.4].

Theorem 6: (Tightness of the WRR Service Curve) Theo-
rem 5 is also valid if we replace IWRR with WRR. Specif-
ically, using WRR as a scheduling policy, β′i is the largest
possible strict service curve for flow i.

6.2 Tightness of Delay Bounds with Constant Packet Sizes

Having obtained the best-possible strict service curve does
not guarantee that the delay bounds derived from it are tight,
i.e., are worst-case delays. This is because a service curve
is only an abstraction of the system; and we have obtained
a strict service curve, and non-strict service curves might
provide better results. However, we show that, for flows of
packets of constant size, we do obtain tight delay bounds.
We show that it holds for IWRR and for WRR.

Recall that a delay bound requires the knowledge of an
arrival curve αi for the flow of interest. If this flow generates
only packets of length l, then αi can be assumed to be a
multiple of l and sub-additive. A delay bound for this flow
is then equal to h(αi, βi) (see Eq. (1)).

Theorem 7: (Tightness of Delay Bound for IWRR with
Constant Packet Size) Consider a system, as in Theorem 5,
with the additional assumption that, for the flow of interest
i, lmin

i = lmax
i = l.

Let αi ∈ F be a sub-additive function that is an integer
multiple of l, and assume that flow i has αi as arrival curve.
The network calculus delay bound is tight, i.e, there exists a
trajectory where the delay of one packet of flow i is equal to
h(αi, βi).

Theorem 8: (Tightness of Delay Bound for WRR with
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Fig. 4 Box-and-whisker plots of difference between WRR and IWRR
delay bounds with weights {22, 27, 28, 30, 30, 34, 41, 45} and l = 7119 bit
with random arrival curves. Median WRR delay bounds are also provided.

Constant Packet Size) Theorem 7 is also valid for the WRR
policy.

7. Numerical Examples

To compare IWRR and WRR worst-case delays, we pro-
vide some numerical examples. First, we consider a sys-
tem of 8 input flows f1, . . . , f8 with respective weights
{22, 27, 28, 30, 30, 34, 41, 45} and lmin = lmax = l = 7119 bit.
Let the aggregate service, β, be a constant bit rate of 10
Mb/s. For every flow i, we compute the IWRR and WRR
strict service curves βi, β

′
i . Then, for every i, we generate

N = 1000 leaky-bucket arrival curves γr,bk , k = 1, . . . ,N,
with rate r = 0.5 Mb/s and burst bk picked uniformly at
random in [1, 20] packets. Then, we use αk

i = d
γr,bk

l el to
satisfy the conditions of Theorems 7 and 8 and to compute
dk

i = h(αk
i , βi) and ḋk

i = h(αk
i , β
′
i). Figure 4 gives the box-

and-whisker plots of the ḋk
i −dk

i series. The median of WRR
delay bounds ḋk

i are also provided to illustrate the improve-
ment.

Second, we repeated the same study for M = 10000
sets of system parameters. For each system, we choose the
weights of 8 flows by picking them uniformly at random be-
tween 10 and 50, and we pick a packet length l uniformly at
random between 64 to 1522 bytes. For each experiment, we
call flow 1 the flow with the smallest weight, flow 2 with sec-
ond smallest weight, and so on. As the scale of delay bounds
depends on the choices of weights and the packet length, the
ḋk

i − dk
i series are divided by ḋm̄

i , the median of WRR delay
bounds for flow i. Figure 5 gives the box-and-whisker plots
of the ḋk

i −dk
i

ḋm̄
i

series. Using IWRR improves worst-case de-
lays, as expected, and the improvement is larger for flows
with larger weights.

Fig. 5 Box-and-whisker plots of difference between WRR and IWRR
delay bounds normalized to the median of WRR delay bounds, for several
systems with weights picked uniformly at random in [10, 50], assigned to
flow by increasing order, and a packet length picked uniformly at random
in [64, 1522] bytes.

8. Proofs

8.1 Proof of Theorem 1

The idea of proof is as follows. We consider a backlogged
period (s, t] of flow of interest i, and we let p be the number
of packets of flow i that are entirely served during this pe-
riod. For every other flow j, the number of packets that are
entirely served is upper bounded by a function of p, given
in Lemma 3. Also, p is upper bounded by a function of the
amount of service received by flow i in Lemma 5. Com-
bining these two results gives an implicit inequality for the
total amount of service in Eq. (26). By using the technique
of pseudo-inverse, this inequality is inverted and provides a
lower bound for the amount of service received by the flow
of interest.

8.1.1 Key Variables and Basic Properties

Let (s, t] be a backlogged period of flow i. Let (τk, fk)
be couples of (instant, flow), printed at line 8 of Algo-
rithm 1. Note that τk < τk+1 as the send instruction has
a non-null duration (because the aggregate service curve
β is Lipschitz continuous). Let σ(0), σ(1), . . . be the se-
quence of service opportunities for flow i at or after s, i.e.,
σ(0) = min{m | τm ≥ s, fm = i} and σ(k) = min{m | τm >
τσ(k−1), fm = i}. The kth service opportunity for flow i occurs
at time τσ(k−1); we say that it is “complete” if τσ(k−1)+1 ≤ t,
i.e., the interval taken by this service is entirely in [s, t]. Let
p ≥ 0 be the number of complete service opportunities. Ob-
serve that it is possible that p = 0, and it might happen that
τσ(p) < t or τσ(p) ≥ t (see Fig. 6).

In each service of flow i, during a backlogged period,
it sends one packet with a length ≥ lmin

i , thus, for all k =



TABATABAEE et al.: INTERLEAVED WEIGHTED ROUND-ROBIN: A NETWORK CALCULUS ANALYSIS
1485

Fig. 6 Illustration of two possible cases of τσ(p) ≥ t and τσ(p) < t.

0 . . . (p−1), we have R∗i (τσ(k+1))−R∗i (τσ(k)) ≥ lmin
i , therefore

R∗i (τσ(p)) − R∗i (τσ(0)) ≥ plmin
i (14)

8.1.2 Amount of Service to Other Flows

In order to upper bound the number of emission opportuni-
ties for another flow j, we first find an expression, in Lemma
1, for the number of emission opportunities for flow j be-
tween two consecutive emission opportunities for flow i.
Lemma 2 then finds an upper bound on the number of emis-
sion opportunities for flow j in (s, τσ(p)), as a function of the
cycle number (variable C in Algorithm 1) at τσ(0). Lastly,
Lemma 3 maximizes the previous upper bound over all val-
ues of C.

Lemma 1: The number of emission opportunities for flow
j , i between two consecutive emission opportunities for
flow i, given that the latter emission opportunity for flow i
occurs at cycle C, is equal to

qg, f (C) =


0 if 1 < C ≤ wi and w j < C
1 if 1 < C ≤ wi and w j ≥ C[
w j − wi

]+
+ 1 if C = 1

(15)

Proof: According to Algorithm 1, flow i has emission op-
portunities only in the first wi cycles of each round. Both
emission opportunities are either in the same round (Case
1) or in two consecutive rounds (Case 2). As C is the cycle
number for the second emission opportunity for flow i, Case
1 can occur only when 1 < C ≤ wi, and Case 2 can occur
when C = 1. For Case 1, we further differentiate between
w j < C and w j ≥ C.

Case 1a: 1 < C ≤ wi and w j < C: Queue j does not
have an emission opportunity in cycle C because w j < C.
Also, we must have w j < wi, thus queue j does not have any
emission opportunity after i in cycle C − 1. Hence, qi, j(C) =

0.
Case 1b: 1 < C ≤ wi and w j ≥ C: If w j > wi, then

queue j has an emission opportunity after queue i in cycle
C − 1. If w j = wi, then queue j has an emission opportunity
before i in cycle C, or after i in cycle C−1. Else, C ≤ w j < wi
and queue j has an emission opportunity in cycle C, before
i. In all cases, qi, j(C) = 1.

Case 2: C = 1: The first emission opportunity for i

is in the last cycle of a round that includes i (cycle wi). If
w j > wi, then queue j has an emission opportunity in the
rest of cycle wi and also has emission opportunities during
the next (w j − wi) cycles of the last round. In this case,
qi, j(C) = w j − wi + 1, which is also the value in the last
line of Eq. (15). Else if w j = wi, queue j has an emission
opportunity before i in this cycle or after i in cycle wi of
the first round, thus qi, j(C) = 1, which is also the value in
the last line of Eq. (15). Else, w j < wi and queue j has
an emission opportunity before i in this cycle. Here too,
qi, j(C) = 1, the value in the last line of Eq. (15). �

Lemma 2: The number of emission opportunities for flow
j , i in (s, τσ(p)), for any backlogged period (s, t] of flow i
with p complete services, given that the first service starts
at cycle number C (cycle number at time τσ(0)) is upper
bounded by

q′i, j (C, p)
def
=

p∑
k=0

qi, j ((C + k − 1) mod wi + 1) (16)

Also, let C′(p) be the cycle number at τσ(p). Then,

C′(p) = (C + p − 1) mod wi + 1 (17)

Proof: By induction on p.
Base Case: p = 0
In this case, q′i, j (C, 0) is the number of emission op-

portunities for flow j between two consecutive emission op-
portunities for flow i that by Lemma 1, is equal to qi, j(C).
As 1 ≤ C ≤ wi, (C − 1) mod wi + 1 = C thus qi, j(C) =

qi, j ((C − 1) mod wi + 1). This shows Eq. (16). Also, by
definition, C′(0) = C; using again (C − 1) mod wi + 1 = C
shows that Eq. (17) holds.

Induction step:
We assume that Eq. (16) and Eq. (17) hold for p − 1,

and we want to show that they also hold for p.
First, let us prove Eq. (17). There are two possible

cases: (a) if 0 ≤ C′(p − 1) < wi, then both (p − 1)st
and pth emission opportunities occur in the same round,
thus C′(p) = C′(p − 1) + 1. By the induction hypothesis,
(C + p − 2) mod wi + 1 < wi, i.e., (C + p − 2) mod wi <
wi − 1. Note that, for any integer x

(x+1) mod w =

(x mod w) + 1 if (x mod w) < w − 1
0 otherwise

(18)

By using Eq. (18), we obtain that C′(p) is given by Eq. (17)
as required. (b) In the second case, C′(p − 1) = wi then
the next emission opportunity occurs in the first cycle of the
next round, thus C′(p) = 1. Here too, applying Eq. (18)
shows that C′(p) is given by Eq. (17) as required.

Then, we prove Eq. (16). Let N be the number of emis-
sion opportunities for flow j in [s, τσ(p)). N is the sum of
N1, the number of emission opportunities in [s, τσ(p−1)), and
N2, the number of emission opportunities in (τσ(p−1), τσ(p)).
By the induction hypothesis, N1 ≤ q′i, j (C, p − 1). Also, by
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Lemma 1, we have N2 ≤ qi, j(C′(p)). Thus, by using Eq. (17)
which was just shown to also hold for p, we obtain

N ≤
p−1∑
k=0

qi, j ((C + k − 1) mod wi + 1)

+ qi, j ((C + p − 1) mod wi + 1)

(19)

where the right-hand side is equal to q′i, j(C, p) as required.
�

Lemma 3: For any backlogged period (s, t] of flow i with p
complete services, the number of emission opportunities for
flow j , i in (s, τσ(p)) is upper bounded by φi, j(p), defined
in Eq. (8).

Proof: Lemma 2 gives the number of emission opportunities
for flow j , i in (s, τσ(p)), for any backlogged period (s, t] of
flow i with p complete services, when the first service starts
at cycle number C (cycle number at time τσ(0)). To obtain
the lemma, we maximize this result over C. We show the
following properties.
(P1) For any integer C ∈ [1, wi],

wi−1∑
k=0

qi, j ((C + k − 1) mod wi + 1) = w j (20)

The mapping k 7→ (C + k − 1) mod wi + 1 is one-to-one
from {0, ..., wi − 1} onto {1, ..., wi}, thus the left-hand side
of Eq. (20) is equal to

∑wi
k=1 qi, j (k) that as we show now,

is equal to w j. First, we have qi, j(1) =
[
w j − wi

]+
+ 1.

Also, qi, j(k) = 1 when k > 1 and w j ≥ k + 1. Thus,∑wi
k=2 qi, j (k) = min(wi − 1, w j − 1) and finally the left-hand

side is equal to
[
w j − wi

]+
+ min(wi − 1, w j − 1) + 1, which

is equal to w j.
(P2) For any integers C ∈ [1, wi] and p ≥ 0,

q′i, j (C, p) =

⌊
p
wi

⌋
w j +

p mod wi∑
k=0

qi, j ((C + k − 1) mod wi + 1)

(21)

qi, j is a periodic function with period wi. By (P1), the
sum over one complete period is w j. Also, we can write p =⌊

p
wi

⌋
wi + p mod wi. Thus, we have

⌊
p
wi

⌋
complete rounds,

and the sum in Eq. (21) is the remainder.
(P3) qi, j is a wide-sense decreasing function. This means
that for any integer k ∈ [1, wi), qi, j(k + 1) ≤ qi, j(k). If k = 1,
this follows from qi, j(1) ≥ 1 and qi, j(2) ≤ 1. Else if k ≤
w j < k + 1, then qi, j(k + 1) = 0 and qi, j(k) = 1. Else, they are
equal. Hence, in all cases the property holds.
(P4) For any integer C ∈ [1, wi] and p ≥ 0,

q′i, j (C, p) ≤ q′i, j (1, p) (22)

By using (P2), we should show that

p mod wi∑
k=0

qi, j ((C + k − 1) mod wi + 1)

is upper bounded by
∑p mod wi

k=0 qi, j (kmod wi + 1). Note that

here we have kmod wi = k. Both sides are the sum of a
def
= p

mod wi + 1 unique elements of the set {qi, j(k)}k∈[1,wi]. By
(P3), the right-hand side is the maximum sum of a unique
elements of this set.
(P5) For any integer p ≥ 0,

q′i, j (1, p) = φi, j(p) (23)

We apply (P2) with C = 1 to compute q′i, j (1, p).
Then, the sum in the right-hand side of Eq. (21) is equal
to

∑p mod wi
k=0 qi, j (k + 1), as kmod wi = k. Then, by using the

same argument after Eq. (20), it is equal to
[
w j − wi

]+
+ 1 +

min(p mod wi, w j−1), which, by Eq. (8), is precisely φi, j(p).
The lemma then follows directly from (P4) and (P5).

�

Lemma 4: For every flow j , i,

R∗j(t) ≤ R∗j(τσ(p)) (24)

Proof: If t ≤ τσ(p), the result follows from R∗j being wide-
sense increasing. Else, we have t > τσ(p); this implies that
flow i is served during [τσ(p), t]; thus for any other flow j,
R∗j(t) = R∗j(τσ(p)). �

8.1.3 Amount of Service to Flow of Interest

Lemma 5: The number of complete services, p, of flow of
interest, i, in (s, t] is upper bounded by

p ≤

R∗i (t) − R∗i (s)

lmin
i

 (25)

Proof: First, R∗i (s) ≤ R∗i (τσ(0)), as s ≤ τσ(0) and R∗i is wide-
sense increasing. Second, consider the two cases in 8.1.1.
If t ≥ τσ(p), the property holds. Else, the scheduler in not
serving flow i in [τσ(p−1)+1, τσ(p)), thus, R∗i (t) = R∗i (τσ(p)).
Hence, in both cases R∗i (t) ≥ R∗i (τσ(p)). By Eq. (14), R∗i (t) −
R∗i (s) ≥ plmin

i . Then, observe that p is integer. �

8.1.4 Total Amount of Service

Lemma 6: For any backlogged period (s, t] of the flow of
interest i,

β(t − s) ≤ ψi
(
R∗i (t) − R∗i (s)

)
(26)

where ψi is defined in Eq. (7).

Proof: As the interval (s, t] is a backlogged period, by the
definition of the strict service curve for the aggregate of
flows, β(t − s) ≤

∑
j R∗j(t) − R∗j(s). We upper bound R∗j(t)

for all j , i by applying Lemma 4,

β(t − s) ≤ (R∗i (t) − R∗i (s)) +
∑
j, j,i

R∗j(τσ(p)) − R∗j(s) (27)

Each flow j has at most φi, j(p) emission opportunities during
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(
s, τσ(p)

)
(Lemma 3) and can send at most one packet of

maximum size in each. Thus,

β(t − s) ≤ (R∗i (t) − R∗i (s)) +
∑
j, j,i

φi, j(p)lmax
j (28)

Also, Lemma 5 finds an upper bound on p. Thereby,

β(t − s) ≤ (R∗i (t) − R∗i (s))

+
∑
j, j,i

φi, j

R∗i (t) − R∗i (s)

lmin
i

 lmax
j

(29)

where the right-hand side is equal to ψi(R∗i (t) − R∗i (s)). �

8.1.5 Lower Pseudo-Inverse of ψi

Our next step is to invert Eq. (26) by computing the lower-
pseudo inverse of ψi. As the calculus of pseudo inverses
applies to wide-sense increasing functions, we first show:

Lemma 7: ψi, defined in Eq. (7), is wide-sense increasing.

Proof: It is sufficient to show that φi, j, defined in Eq. (8),
is a wide-sense increasing function. For any non-negative
integers x and y such that y ≤ x, we can write x = kwi + (x
mod wi) and y = k′wi + (y mod wi), where k and k′ are
non-negative integers. We must have k ≤ k′. If k = k′, we
know that (y mod wi ≤ x mod wi) and

⌊
x
wi

⌋
=

⌊
y
wi

⌋
. Hence,

φi, j(y) ≤ φi, j(x). Else, k > k′ and
⌊

x
wi

⌋
>

⌊
y
wi

⌋
. Thereby,

φi, j(x) is at least one w j larger than φi, j(y). Hence, φi, j(y) <
φi, j(x). �

Lemma 8: Let g0, g1, . . . , gk, . . . be a non-negative se-
quence such that gk+1 − gk ≥ 1. The sequence can be ex-
tended to a function in F by g(x) = gbxc and let g↓ be its
lower pseudo-inverse, so that g↓(y) = k + 1 ∈ N ⇔ gk <
y ≤ gk+1. Define f ∈ F by f (x) = gbxc + xmod 1. Then,
f ↓ = λ1 ⊗ g

↓.

Proof: Observe that convolving g↓ with λ1 consists in
smoothing the unit steps with a slope of 1 (Fig. 1). Thus
(λ1 ⊗ g

↓)(y) = k + y − gk whenever gk ≤ y ≤ gk + 1 and
(λ1 ⊗ g

↓)(y) = k + 1 whenever gk + 1 ≤ y ≤ gk+1.
Also, f is piecewise linear and can be inverted in closed

form on every interval where it is linear. A direct calculation
gives f ↓(y) = k + y − gk whenever gk ≤ y ≤ gk + 1 and
f ↓(y) = k + 1 whenever gk + 1 ≤ y ≤ gk+1. �

Lemma 9: Let f ∈ F and l,m > 0. Define h ∈ F by
h(x) = m f

(
x
l

)
. Then, for all y ≥ 0, h↓(y) = l f ↓

(
y
m

)
.

Proof: Let B( f , y)
def
= {x ≥ 0, h(x) ≥ y} so that f ↓(y) =

inf B(y, f ). Observe that x ∈ B(h, y)⇔ x
l ∈ B

(
f , ym

)
. �

Lemma 10: Let a ∈ F and l > 0. Define b ∈ F by
b(x) = l f

(
x
l

)
. Then, for all x ≥ 0, (λ1⊗b)(x) = l(λ1⊗a)

(
x
l

)
.

Do the change of variable u = lv in the expansion (λ1 ⊗

b)(x) = inf0≤u≤x (u + b(x − u)) and obtain (λ1 ⊗ b)(x) =

inf0≤v≤ x
l

(
lv + a

(
x
l − v

))
= l (λ1 ⊗ a)

(
x
l

)
. �

We can now compute the lower-pseudo inverse of ψi.
First, define the sequence g by gk = 1

lmin
i
ψi

(
klmin

i

)
. As in

Lemma 8, g can be extended to a piecewise constant func-
tion whose lower-pseudo inverse, g↓, can be directly com-
puted:

g↓(x) =
1

lmin
i

wi−1∑
k=0

νlmin
i ,Ltot

(
lmin
i

[
x − gk

]+) (30)

Second, observe that for all x ≥ 0, ψi(x) =

ψi(b x
lmin
i
clmin

i ) + xmod lmin
i . Define f and h from g as in Lem-

mas 8 and 9 with l = m = lmin
i , so that h = ψi. Apply Lem-

mas 8 and 9 and obtain ψ↓i (x) = lmin
i

(
λ1 ⊗ g

↓
)

( x
lmin
i

). Now

apply Lemma 10 with a = g↓, l = lmin
i , and b = Ui to obtain

ψ↓i = λ1 ⊗ Ui (31)

Proof of Theorem 1: Lemma 6 gives, in Eq. (26), an upper
bound on the total amount of service as a function of the
service received by the flow of interest. We invert Eq. (26)
by the lower-pseudo inverse technique in Eq. (3) and obtain
R∗i (t)− R∗i (s) ≥ ψ↓i (β(t − s)). The lower-pseudo inverse of ψi
is given by Eq. (31), thus

R∗i (t) − R∗i (s) ≥ (λ1 ⊗ Ui) (β (t − s)) = βi (t − s) (32)

Lastly, we need to prove that βi is super-additive. This
follows from the tightness result in Theorem 5 (the proof
of which is independent of rest of this proof). Indeed, the
super-additive closure β̄i of βi is also a strict service curve,
and β̄i(t) ≥ βi(t) for all t [2, Prop. 5.6]). By Theorem 5, we
also have β̄i(t) ≤ βi(t) for all t, hence β̄i = βi. �

8.2 Proof of Theorem 2

Proof: The WRR strict service curve [2, Sec. 8.2.4] is de-
fined by β′i(t) = γ′i (β(t)) with

γ′i = (λ1 ⊗ νqi,Ltot )
(
[t − Qi]+) (33)

ψ′i(x)
def
= x +

∑
j, j,i

φ′i, j

 x
lmin
i

 lmax
j (34)

φ′i, j(x)
def
=

(
1 +

⌊
x
wi

⌋)
w j (35)

where γ′i is the lower-pseudo inverse of ψ′i . We know that
for IWRR, γi is also the lower-pseudo inverse of ψi (defined
in Eq. (7)). We first show that ψi ≤ ψ

′
i .

It is sufficient to prove that for all j , i and for all
k ∈ N, φi, j(k) ≤ φ′i, j(k). From the definition of φi, j and as
min(xmod wi + 1, w j) ≤ min(wi, w j),

φi, j(x) ≤
⌊

x
wi

⌋
w j +

[
w j − wi

]+
+ min(wi, w j) (36)

Observe that
[
w j − wi

]+
+min(wi, w j) = w j. Hence, the right-

hand side is φ′i, j(x). This shows that
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ψi ≤ ψ
′
i (37)

In [5, Sec. 10.1], it is shown that

∀ f , g ∈ F , f ≥ g⇒ f ↓ ≤ g↓ (38)

Apply Eq. (38) to Eq. (37) to conclude the proof. �

8.3 Proof of Theorem 3

Lemma 11: Consider some integers w ≥ 1 and 0 ≤ k ≤
w−1, a finite sequence g0, g1, . . . , gw−1, and a number a ∈ R
that satisfy

1. ∀` ∈ N if 0 ≤ ` ≤ w − 2 then g`+1 − g` ≥ 1
2. ∀` ∈ N if 0 ≤ ` ≤ w − 3 then g`+2 − g`+1 ≤ g`+1 − g`
3. if k ≤ w − 2 then a ≥ gk+1 − gk else a ≥ 1
4. if k ≥ 1 then a ≤ gk − gk−1

Define f : [0, w) → R by f (x) = gbxc + xmod 1 and
h:[0, w)→ R by h(x) = a(x − k) + gk. Then h ≥ f .

Proof: First we show that

∀` ∈ {0, . . . , w − 1} , gk − g` ≥ a(k − `) (39)

Case 1: ` < k. Then gk −g` =
∑k−1

k′=`(gk′+1−gk′ ). By 2) every
term in the sum is ≥ gk − gk−1, by 4) is also ≥ a and there
are (k − `) terms, which shows Eq. (39).
Case 2: ` = k. Then Eq. (39) is obvious.
Case 3: ` > k. Then g` − gk =

∑`−1
k′=k(gk′+1 − gk′ ). By 2)

every term in the sum is ≤ gk+1 − gk; note that we must have
k ≤ w− 2 thus by 3), every term in the sum is also ≤ a; also,
there are ` − k terms. Thus g` − gk ≤ a(` − k), which shows
Eq. (39) in this case.

We now proceed with the proof of the lemma. Consider
some arbitrary x ∈ [0, w) and let ` = bxc. Then

f (x) = x − ` + g` (40)
h(x) = a(x − `) + a(` − k) + gk (41)

h(x) − f (x) = (a − 1)(x − `)︸          ︷︷          ︸
A

+ gk − g` − a(k − `)︸                ︷︷                ︸
B

(42)

Observe that we must have a ≥ 1: if k = w − 1 this follows
from 3), and if k ≤ w − 2 it follows from 3) and 1); thus
A ≥ 0. Also B ≥ 0 by Eq. (39). �

Lemma 12: Let T > 0 and P a bounded, wide-sense in-
creasing function [0,T ) → R. Extend P to a function
P̄ ∈ F by ∀x ≥ 0, P̄(x) =

⌊
x
T

⌋
P(T−) + P(xmod T ) where

P(T−)
def
= sup0≤t<T P(t).

Also, consider an affine function L, defined by L(x) =

ax + b for some a ≥ P(T−)
T and some b ∈ R.

If L(x) ≥ P(x) for all x in [0,T ) then L ≥ P̄.

Proof: Observe that, for x ≥ 0, L(x) = a
⌊

x
T

⌋
T +L(xmod T ).

Now L(xmod T ) ≥ P(xmod T ) by hypothesis. Thus

L(x) ≥ a
⌊ x
T

⌋
T + P(x mod T ) (43)

≥
P(T−)

T

⌊ x
T

⌋
T + P(x mod T ) = P̄(x) (44)

�

Lemma 13: Let f ∈ F and a rate-latency function βr,T
such that r > 0, T > 0, and βr,T ≤ f . Assume that βr,T (x1) =

f (x1) for x1 > T .
Then there is no other rate-latency function βr′,T ′ (i.e.,

with (r′,T ′) , (r,T )) such that βr,T ≤ βr′,T ′ ≤ f .

Proof: Assume that βr,T ≤ βr′,T ′ ≤ f . The proof consists in
showing that (r,T ) = (r′,T ′).

First, we know that βr,T (x1) = f (x1) and x1 > T ; thus
r(x1 − T ) = f (x1) and

T = x1 −
f (x1)

r
(45)

Second, observe that we must have T ′ ≤ T , since oth-
erwise βr,T (T ′) > 0 = βr′,T ′ (T ′).

Third, observe that f (x1) = βr,T (x1) ≤ βr′,T ′ (x1) ≤
f (x1) thus βr′,T ′ (x1) = f (x1) and

T ′ = x1 −
f (x1)

r′
(46)

Combining the last three paragraphs, it follows x1 −
f (x1)

r′ ≤ x1 −
f (x1)

r , i.e., r′ ≤ r. Also, we must have
r′ ≥ r, since otherwise ∀x > x0, βr,T (x) > βr′,T ′ (x) with
x0 = rT−r′T ′

r−r′ . Thus, r′ = r, and it follows from Eq. (45) and
Eq. (46) that T ′ = T . �

Now we proceed with the proof of Theorem 3.
1) We first show that rk ≤ rk+1 for k = 0, . . . , wi − 2.

Define sequence g by gk = 1
lmin
i
ψi

(
klmin

i

)
for k = 0, . . . , wi−1.

By definition, we have gk+1 − gk =

1 +
1

lmin
i

∑
j, j,i

(
min(k + 2, w j) −min(k + 1, w j)

)
lmax

j (47)

Observe that
(
min(k + 2, w j) −min(k + 1, w j)

)
is equal to 1

if k + 1 < w j, and equal to 0 otherwise. Thus, gk+2 − gk+1 ≤

gk+1 − gk for 0 ≤ k < wi − 2, which shows that rk ≤ rk+1
for k = 0, . . . , wi − 3. Also, observe that gk+1 − gk ≥ 1, i.e.,
rk ≤ 1, for 0 ≤ k ≤ wi − 2. Hence, rwi−2 ≤ rwi−1.

2) Let r ∈ [r∗0, r
∗
k∗ ] and let T (r) be the value of T defined

in the Theorem, namely, T (r)
def
= ψi(klmin

i ) − klmin
i
r , where k is

defined by r∗k−1 ≤ r < r∗k if r ∈ [r∗0, r
∗
k∗ ) and k = k∗ if r = r∗k∗ .

We now show that βr,T (r) ≤ γi.
We consider two cases: r∗0 ≤ r < r∗k∗ or r = r∗k∗ . For the

former case, for any r, apply Lemma 11 with w = wi, g as
defined in 1), k as defined in the paragraph above, and a = 1

r .
As by construction 1

rk
< a ≤ 1

rk−1
and 1

rk−1
= gk − gk−1, 3) and

4) are satisfied. For the latter case, apply again Lemma 11
with the same g and w = wi but now with k = k∗ and a =
1
r = 1

r∗k∗
. By construction, we have 1

r∗k∗
≥ 1

rk∗
= gk∗+1 − gk∗

and 1
r∗k∗
≤ 1

rk∗−1
= gk∗ − gk∗−1. Thus, conditions 3) and 4) of

Lemma 11 are satisfied. Let f be the corresponding function
f in Lemma 11, i.e., f (x) = gbxc + xmod 1 for 0 ≤ x < wi.
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Note that for both cases f is the same. Also, let fr be the
corresponding function h in Lemma 11, i.e., fr(x) = 1

r (x −
k) + gk for 0 ≤ x < wi. By Lemma 11, fr ≥ f .

Observe that f (w−i ) = 1
lmin
i

(
ψi((wi − 1)lmin

i ) + 1
)

=

1
lmin
i

(
wilmin

i +
∑

j, j,i w jlmax
j

)
=

Ltot

lmin
i

= wi
r∗ . Then, as fr(x) ≥

f (x) for 0 ≤ x < wi and 1
r ≥

1
r∗ =

f (w−i )
wi

, we can apply
Lemma 12 with P = f and L = fr. It gives us f̄ defined by
f̄ (x) = b x

wi
c

Ltot

lmin
i

+ f (xmod wi) such that fr ≥ f̄ .

Then, by using Eq. (38), f ↓r ≤ f̄ ↓. Also, as f̄ ↓ ≥ 0,
we have

[
f ↓r

]+
≤ f̄ ↓. Note that for an increasing, linear

function L, defined by ∀x ≥ 0, L(x) = ax + b with some
a > 0 and b > 0, we have

[
L↓

]+
= β 1

a ,b
; and observe that

fr(x) = x
r + gk −

k
r = x

r +
T (r)
lmin
i

. Hence,
[
f ↓r

]+
= βr, T (r)

lmin
i

.

Until now, we have shown that βr, T (r)
lmin
i

≤ f̄ ↓. Lastly, we

show that lmin
i f̄ ↓( x

lmin
i

) = γi(x) and lmin
i βr, T (r)

lmin
i

( x
lmin
i

) = βr,T (r)(x).

Observe that lmin
i f̄ ( x

lmin
i

) = b x
wilmin

i
cLtot + ψi(( x

lmin
i

mod wi)lmin
i ).

Also, ψi(x) = b x
wilmin

i
cLtot + ψi(xmod wilmin

i ). Hence, we

have ψi(x) = lmin
i f̄ ( x

lmin
i

). By using Lemma 9 with l =

m = lmin
i , lmin

i f̄ ↓( x
lmin
i

) = ψ↓i (x) = γi(x). Also, observe that

lmin
i βr, T (r)

lmin
i

( x
lmin
i

) = βr,T (r)(x).

Combine the last paragraphs to conclude that βr,T (r) ≤

γi for all r in [r∗0, r
∗
k∗ ].

3) We now show that for any r ∈ [r∗0, r
∗
k∗ ], βr,T (r) is a

non-dominated lower-bound of γi. Let r′ ≥ 0,T ′ ≥ 0 such
that βr,T (r) ≤ βr′,T ′ ≤ γi. We have to show that r′ = r and
T ′ = T (r).

First, if r in [r∗0, r
∗
k∗ ), observe that βr,T (r)(x) = γi(x) for

x = ψi(klmin
i ) > ψi(klmin

i )− klmin
i
r = T (r). Then, apply Lemma

13 with βr,T = βr,T (r) and f = γi to conclude that r′ = r and
T ′ = T (r).

Second, if r = r∗k∗ , observe that βr,T (r)(x) = γi(x) for
x = ψi(k∗lmin

i ) + Ltot > T (r). Again, apply Lemma 13 with
βr,T = βr,T (r) and f = γi to conclude that r′ = r and T ′ =

T (r).
4) We now show that there is no other non-dominated

rate-latency function, βr′,T ′ , that is upper bounded by γi.
First, we must have T ′ ≥ T (r∗0). This is because γi(x) =

0 for x ≤ ψi(0) = T (r∗0).
Second, we must have r′ ≥ r∗0. Otherwise, we have

r′ < r∗0 and we previously showed T ′ ≥ T (r∗0). Thus, βr′,T ′ ≤

βr∗0,T (r∗0) ≤ γi, which is in contradiction with βr′,T ′ being non-
dominated.

Third, we must have r′ ≤ r∗k∗ . We proceed to prove
this by contradiction. If T ′ ≥ T (r∗k∗ ) and r′ > r∗k∗ , ob-

serve that βr′,T ′ (x0) = βr∗k∗ ,T (r∗k∗ )
(x0) with x0 =

r′T ′+r∗k∗T (r∗k∗ )
r′−r∗k∗

and ∀x, x > x0 ⇒ βr′,T ′ (x) > βr∗k∗ ,T (r∗k∗ )
(x); for any ar-

bitrary, non-negative integer k, let xk be defined by xk =

ψi(k∗lmin
i ) + kLtot. Then observe that βr∗k∗ ,T (r∗k∗ )

(xk) = γi(xk).
Choose some k large enough such that xk > x0; then,

βr′,T ′ (xk) > βr∗k∗ ,T (r∗k∗ )
(xk) = γi(xk), which is in contradiction

with βr′,T ′ ≤ γi. Also, if T ′ < T (r∗k∗ ) and r′ > r∗k∗ , we have
∀x, x > T ′ ⇒ βr′,T ′ (x) > βr∗k∗ ,T (r∗k∗ )

(x). Choose some k large
enough such that xk > T ′; then, βr′,T ′ (xk) > βr∗k∗ ,T (r∗k∗ )

(xk) =

γi(xk), which is in contradiction with βr′,T ′ ≤ γi. Therefore,
r′ > r∗k∗ is in contradiction with βr′,T ′ ≤ γi.

Therefore, we must have r′ in [r∗0, r
∗
k∗ ]. We now show

that T ′ = T (r′). Because otherwise, if T ′ < T (r′), we
have βr′,T (r′) ≤ βr′,T ′ ≤ γi, which is in contradiction with
βr′,T (r′) being a non-dominated rate latency function. Also,
if T ′ > T (r′), we have βr′,T ′ ≤ βr′,T (r′) ≤ γi, which is in con-
tradiction with βr′,T ′ being non-dominated. �

8.4 Proof of Theorem 4

Let us call the supremum of all non-dominated rate-
latency functions B. We want to show that B =

max
(
βr∗0,T

∗
0
, . . . , βr∗k∗ ,T

∗

k∗

)
. The proof consists on three steps.

1) B(x) = 0 for all x in [0, lmin
i g0].

2) B(x) = βr∗k−1,T
∗
k−1

(x) for all x in [lmin
i gk−1, lmin

i gk] and
k = 1 . . . k∗.

3) B(x) = βr∗k∗ ,T
∗

k∗
(x) for all x ≥ lmin

i gk∗ .
To prove 1), as every non-dominated rate-latency func-

tion is equal to zero before lmin
i g0, we have B(x) = 0 for all

x in [0, lmin
i g0].

To prove 2), we consider two cases for any other non-
dominated rate-latency βr′,T (r′): First, r∗0 ≤ r′ < r∗k−1. Sec-
ond, r∗k−1 < r′ ≤ r∗k∗ .

For the former case, we show that

βr′,T (r′)

(
lmin
i gk−1

)
≤ βr∗k−1,T

∗
k−1

(
lmin
i gk−1

)
(48)

Then, as r′ < r∗k−1, it follows βr′,T (r′)(x) ≤ βr∗k−1,T
∗
k−1

(x) for all
x in [lmin

i gk−1, lmin
i gk].

Let k′ defined by r′ ∈ [r∗k′−1, r
∗
k′ ). Then, by definition

βr′,T (r′)

(
lmin
i gk−1

)
=

r′
(
lmin
i gk−1 − lmin

i gk′
)

+ k′lmin
i (49)

=r′
 k−2∑

e=k′
ge+1 − ge

 lmin
i + k′lmin

i (50)

≤r∗k′

 k−2∑
e=k′

ge+1 − ge

 lmin
i + k′lmin

i (51)

=

∑k−2
e=k′ ge+1 − ge

gk′+1 − gk′
lmin
i + k′lmin

i (52)

Then, as ge+1 − ge is decreasing, we have
∑k−2

e=k′ ge+1 − ge ≤

(k − 1 − k′) (gk′+1 − gk′ ). Combine it with Eq. (52) to con-
clude that βr′,T (r′)

(
lmin
i gk−1

)
≤ (k − 1) lmin

i ; lastly, observe

that βr∗k−1,T
∗
k−1

(
lmin
i gk−1

)
= (k − 1) lmin

i . Therefore, Eq. (48) is
proven.

For the latter case, we show that

βr′,T (r′)

(
lmin
i gk

)
≤ βr∗k−1,T

∗
k−1

(
lmin
i gk

)
(53)

Then, as r′ > r∗k−1, it follows βr′,T (r′)(x) ≤ βr∗k−1,T
∗
k−1

(x) for all
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x in [lmin
i gk−1, lmin

i gk].
Let k′ defined by r′ ∈ [r∗k′−1, r

∗
k′ ). Then, by definition

βr′,T (r′)

(
lmin
i gk

)
=

r′
(
lmin
i gk − lmin

i gk′
)

+ k′lmin
i (54)

=r′
− k′−1∑

e=k

ge+1 − ge

 lmin
i + k′lmin

i (55)

≤r∗k′

− k′−1∑
e=k

ge+1 − ge

 lmin
i + k′lmin

i (56)

≤
−

∑k′−1
e=k ge+1 − ge

gk′+1 − gk′
lmin
i + k′lmin

i (57)

Then, as ge+1 − ge is decreasing, we have −
∑k′−1

e=k ge+1 −

ge ≤ (k − k′) (gk′+1 − gk′ ). Combine it with Eq. (57) to
conclude that βr′,T (r′)

(
lmin
i gk

)
≤ klmin

i ; lastly, observe that

βr∗k−1,T
∗
k−1

(
lmin
i gk

)
= klmin

i . Therefore, Eq. (53) is proven.
Combining these two cases, 2) is proven.
To prove 3), for any other non-dominated rate-latency

βr′,T (r′), we show that

βr′,T (r′)

(
lmin
i gk∗

)
≤ βr∗k∗ ,T

∗

k∗

(
lmin
i gk∗

)
(58)

Then, as r′ < r∗k∗ , it follows βr′,T (r′)(x) ≤ βr∗k∗ ,T
∗

k∗
(x) for all

x ≥ lmin
i gk∗ .
Let k′ defined by r′ ∈ [r∗k′−1, r

∗
k′ ). Then, by definition

βr′,T (r′)

(
lmin
i gk∗

)
=

r′
(
lmin
i gk∗ − lmin

i gk′
)

+ k′lmin
i (59)

=r′
k∗−1∑

e=k′
ge+1 − ge

 lmin
i + k′lmin

i (60)

≤r∗k′

k∗−1∑
e=k′

ge+1 − ge

 lmin
i + k′lmin

i (61)

≤

∑k∗−1
e=k′ ge+1 − ge

gk′+1 − gk′
lmin
i + k′lmin

i (62)

Then, as ge+1 − ge is decreasing, we have
∑k∗−1

e=k′ ge+1 − ge ≤

(k∗ − k′) (gk′+1 − gk′ ). Combine it with Eq. (62) to con-
clude that βr′,T (r′)

(
lmin
i gk∗

)
≤ k∗lmin

i ; lastly, observe that

βr∗k∗ ,T
∗

k∗

(
lmin
i gk∗

)
= k∗lmin

i . Therefore, Eq. (58) is proven.
Until now, we have shown 1), 2), and 3). Let A =

max
(
βr∗0,T

∗
0
, . . . , βr∗k∗ ,T

∗

k∗

)
. Observe that first, by 1), it follows

A = 0 for all x in [0, lmin
i g0]; second, by 2, it follows A(x) =

βr∗k−1,T
∗
k−1

(x) for all x in [lmin
i gk−1, lmin

i gk] and k = 1 . . . k∗;
lastly, by 3), A(x) = βr∗k∗ ,T

∗

k∗
(x) for all x ≥ lmin

i gk∗ . There-

fore, A = B, i.e., B = max
(
βr∗0,T

∗
0
, . . . , βr∗k∗ ,T

∗

k∗

)
.

We now want to show that B is the largest convex func-
tion upper bounded by γi, i.e., if f is a convex function and
is upper bounded by γi, then f ≤ B.

Pick an arbitrary x ≥ 0. Let Gx be a subgradient of f
at x. Note that a subgradient exists because f is convex [23,

Sec. 5.4]. By definition of subgradient [23, Sec. 5.4], for L,
defined by ∀x′ ≥ 0, L(x′) = Gx(x′−x)+ f (x), we have L ≤ f ;
then, as f ≤ γi, we have L ≤ γi. We now consider two cases
for Gx and proceed the proof to show that f (x) ≤ B(x) in
both cases.

Case 1: Gx ≤ 0
As L(0) ≤ γi(0) = 0, we have L ≤ 0; also, observe that

B ≥ 0. Hence, L ≤ B. It follows L(x) = f (x) ≤ B(x).
Case 1: Gx > 0
Define βr,T with r = Gx and T = x − f (x)

Gx
. Observe that

r ≥ 0 and as L(0) ≤ γi(0) = 0, it follows T ≥ 0. We now
proceed to show that βr,T ≤ γi. As L ≤ γi and γi ≥ 0, we
have [L]+ ≤ γi; also, observe that [L]+ = βr,T . Therefore,
βr,T ≤ γi.

Then, as βr,T is a rate-latency function upper bounded
by γi, it is dominated by one of non-dominated rate-latencies
or is equal to one of them. It follows βr,T ≤ B; also, observe
that βr,T (x) = f (x). Thus, f (x) ≤ B(x).

Lastly, the above result applies to any x ≥ 0, thus ∀x ≥
0, f (x) ≤ B(x), i.e., f ≤ B. �

8.5 Proof of Theorem 5

We use the following lemma about the lower pseudo-inverse
technique.

Lemma 14: For a right-continuous function f in F and
x, y in R+, f ↓ (y) = x if and only if f (x) ≥ y and there exists
some ε > 0 such that ∀x′ ∈ (x − ε, x), f (x′) < y.

Proof:
⇒:
Let S = {x′, f (x′) ≥ y} so that x = inf S (see Eq. (2)).

From the definition of an inf, there exists a sequence xn such
that xn ∈ S for all n, xn ≥ x, and limn→∞ xn = x. Since f
is right-continuous, limn→∞ f (xn) = f (x), which shows that
f (x) ≥ y. Also, again by definition of an inf, any x′ < x
does not belong to S , i.e. ∀x′ < x, f (x′) < y.

⇐:
By the first part of the hypothesis, x ∈ S therefore x ≥

inf S = f ↓ (y). Let also S ′ = {x′, f (x′) < y} so that f ↓ (y) =

sup S ′ (see Eq. (2)). By the second part of the hypothesis, S ′

contains the interval (x−ε, x) hence sup S ′ ≥ x, which shows
that f ↓ (y) ≥ x. Combining the two shows that f ↓ (y) = x.

�
Proof of Theorem 5
We prove that, for any value of the system parameters,

for any τ > 0, and for any flow i, there exists one trajectory
of a system such that

∃s ≥ 0, (s, s + τ] is backlogged for flow i
and R∗i (s + τ) − R∗i (s) = βi(τ)

(63)

Step 1: Constructing the Trajectory
1) Flows are labeled in order of weights, i.e., w j ≤ w j+1.
2) At time 0, the input of every queue j , i is a burst of

size
⌈
β(τ)
lmax

j

⌉
lmax

j + w jlmax
j .
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3) Every flow, j , i, is packetized according to its max-
imum packet size, lmax

j .
4) The output of the system is at rate K (the Lipschitz

constant of β) from time 0 to times s, which is defined as the
time at which queue i is visited at cycle wi in the first round,
namely

s =
1
K

∑
j, j,i

min
(
wi − 1, w j

)
lmax

j (64)

It follows that

∀t ∈ [0, s],R∗(t) = Kt (65)

5) The input of queue i starts just after time s, with a

burst of size
⌈
β(τ)
lmin
i

⌉
lmin
i .

6) Flow i is packetized according to its minimum
packet size, lmin

i .
7) After time s, the output of the system is equal to the

guaranteed service; by 2) and 5), the busy period lasts for at
least τ, i.e.,

∀t ∈ [s, s + τ],R∗(t) = R∗(s) + β(t − s) (66)

In particular,

R∗(s + τ) − R∗(s) = β(τ) (67)

If we apply ψ↓i to both sides of Eq. (67), the right-hand
side is equal to βi(τ). Thereby, we should prove

ψ↓i (R∗(s + τ) − R∗(s)) = R∗i (s + τ) − R∗i (s) (68)

Let y = R∗(s +τ)−R∗(s) and x = R∗i (s +τ)−R∗i (s). Our goal
is now to prove that

ψ↓i (y) = x (69)

From 5), we know that the first packet of flow i is
served at the first cycle of a round (C = 1 in Algorithm 1).
Thus, applying Lemma 2 and (P5) in Lemma 3, the number
of services to each flow j is equal to φi, j(p). From 2), flow j
sends packets with the maximum length. Thus∑

j, j,i

R∗j(s + τσ(p)) − R∗j(s) =
∑
j, j,i

φi, j(p)lmax
j (70)

Now there are two cases for s + τ (8.1.1).
Case 1: s + τ < τσ(p) In this case the scheduler is not

serving flow i in [τσ(p), s+τ] and x = plmin
i . Thus R∗i (s+τ) =

R∗i (τσ(p)). It follows that

ψi(x) = x +
∑
j, j,i

φi, j(b
x

lmin
i

c)lmax
j︸                 ︷︷                 ︸∑

j, j,i R∗j (τσ(p))−R∗j (s)

y = x +
∑
j, j,i

R∗j(s + τ) − R∗j(s)

(71)

and thus

ψi(x) ≥ y (72)

Let x − lmin
i < x′ < x; flow i’s output becomes equal to x′

during the emission of packet p − 1 thus

ψi(x′) = x′ +
∑
j, j,i

R∗j(τσ(p−1)) − R∗j(s) (73)

Hence

∀x′ ∈ (x − lmin
i , x), ψi(x′) < y (74)

Combining Eq. (72) and Eq. (74) with Lemma 14 shows
Eq. (69).

Case 2: s + τ ≥ τσ(p) In this case the scheduler is serv-
ing flow i in [τσ(p), s + τ]. For every other flow j, we have
R∗j(s + τ) = R∗j(τσ(p)). Hence,

ψi(x) = R∗i (s + τ) − R∗i (s) +
∑
j, j,i

φi, j(p)lmax
j = y (75)

As with case 1, for any x′ ∈ ((p− 1)lmin
i , x), we have ψi(x) <

y, which shows Eq. (69).
This shows that Eq. (63) holds. It remains to show that

the system constraints are satisfied.
Step 2: Verifying the Trajectory
We need to verify that the service offered to the aggre-

gate satisfies the strict service curve constraint. Our trajec-
tory has one busy period, starting at time 0 and ending at
some time Tmax ≥ τ. We need to verify that

∀t1, t2 ∈ [0,Tmax] with t1 < t2,R∗(t2)−R∗(t1) ≥ β(t2−t1)
(76)

Case 1: t2 < s
Then R∗(t2) − R∗(t1) = K(t2 − t1). Observe that, by the

Lipschitz continuity condition on β, for all t ≥ 0, β(t) =

β(t) − β(0) = β(t) ≤ Kt thus K(t2 − t1) ≥ β(t2 − t1).
Case 2: t1 < s ≤ t2
Then R∗(t2) − R∗(t1) = β(t2 − s) + K(s − t1). By the

Lipschitz continuity condition:

β(t2 − t1) − β(t2 − s) ≤ K(s − t1) (77)

thus R∗(t2) − R∗(t1) ≥ β(t2 − t1).
Case 3: s ≤ t1 < t2
Then R∗(t2)−R∗(t1) = β(t2)− β(t1) ≥ β(t2 − t1) because

β is super-additive. �

8.6 Proof of Theorem 6

Proof: The proof is very similar to the proof of Theorem 5.
The necessary changes in the proof are the following:

1) s is the time of the first visit to flow i.
2) Instead of functions ψi and φi, j, use functions ψ′i and

φ′i, j, defined in Eq. (34) and Eq. (35). �

8.7 Proof of Theorem 7

Proof: The proof contains the following steps:
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1) Consider the same trajectory as in the proof of The-
orem 5, yet with one difference: the input of flow i is
Ri(t) = αi(t − s) for t ≥ s and zero before s. Observer that
as αi is sub-additive, ∀t1, t2: t2 ≥ t1 ≥ s ⇒ Ri(t2) − Ri(t1) =

αi(t2) − αi(t1) ≤ αi(t2 − t1).
2) Define s′ = inf{u > 0|αi(u) ≤ βi(u)}. This is the first

time after zero that the service curve meets the arrival curve.
Note that s′ can be infinite as well.

3) Then, it is guaranteed that flow i is backlogged in
(s, s+s′]. Therefore, using Eq. (63), we have R∗i (t) = βi(t−s)
for t ≥ s and zero before s.

4) Combining 1 and 3, the horizontal deviation of Ri
and R∗i in (s, s + s′] is equal to the horizontal deviation of αi
and βi in [0, s′].

4) Using [2, Sec. 5.3.3], the horizontal deviation of αi
and βi can be restricted to [0, s′].

Thereby, we find a valid trajectory (verified in the proof
of Theorem 5) where the delay bound is achieved. �

8.8 Proof of Theorem 8

Proof: The same proof of Theorem 7 works here as well.
However, we use the trajectory defined in the proof of The-
orem 6. �

9. Conclusion

IWRR is a variant of WRR with the same long-term rate and
the same complexity. We have provided a residual strict ser-
vice curve for IWRR and have shown that it is the best pos-
sible one under general assumptions. For flows with packets
of constant size, we have shown that the delay bounds de-
rived from it are worst-case. We have proved that IWRR
worst-case delay is not greater than WRR and shown on ex-
periments that the gain is significant (20%–60%) in practice,
which speaks in favour of using IWRR as a replacement to
WRR. Our result assumes that the aggregate of all IWRR
queues receives a strict service curve guarantee, and we
find a strict service curve guarantee for every IWRR queue.
Therefore, our results apply to hierarchical schedulers. In
future research, we plan to improve the results with supple-
mentary hypotheses on flows, considering arrival curves and
packet size distribution, with “packet curves” [24].
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