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PAPER
ECG Signal Reconstruction Using FMCW Radar and a
Convolutional Neural Network for Contactless Vital-Sign Sensing∗

Daiki TODA†, Ren ANZAI†, Student Members, Koichi ICHIGE†a), Member, Ryo SAITO††,
and Daichi UEKI††, Nonmembers

SUMMARY Amethod of radar-based contactless vital-sign sensing and
electrocardiogram (ECG) signal reconstruction using deep learning is pro-
posed. A radar system is an effective tool for contactless vital-sign sensing
because it can measure a small displacement of the body surface without
contact. However, most of the conventional methods have limited evalua-
tion indices and measurement conditions. A method of measuring body-
surface-displacement signals by using frequency-modulated continuous-
wave (FMCW) radar and reconstructing ECG signals using a convolutional
neural network (CNN) is proposed. This study conducted two experiments.
First, we trained a model using the data obtained from six subjects breathing
in a seated condition. Second, we added sine wave noise to the data and
trained the model again. The proposedmodel is evaluated with a correlation
coefficient between the reconstructed and actual ECG signal. The results of
first experiment show that their ECG signals are successfully reconstructed
by using the proposed method. That of second experiment show that the
proposed method can reconstruct signal waveforms even in an environment
with low signal-to-noise ratio (SNR).
key words: frequency-modulated continuous-wave radar, convolutional
neural network, electrocardiogram, heartbeat

1. Introduction

Vital-sign monitoring—which is a key part of managing
people’s health— is attracting much attention in the medi-
cal and health-care fields. In particular, monitoring heart-
beat signals can detect cardiac diseases as well as evaluate
levels of fatigue and drowsiness [1], [2]. Electrocardio-
gram (ECG) signals, which record electrical responses of the
heartbeat, and photoplethysmography (PPG) signals, which
record changes in the volume of blood vessels, are among
the most-common ways to measure heartbeat signals [3].
However, these measurements usually require multiple mea-
surement devices to be in contact with the skin. They are
thus unsuitable for (i) monitoring of people with skin prob-
lems (such as rashes or burns) or long-termmonitoring (such
as during sleep or driving) due to the discomfort of contact,
and (ii) monitoring of a large number of people due to the
risk of infections such as COVID-19 [4], [5].

Vital-sign-sensing methods using radars [6]–[9] and
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optical cameras [10]–[12] to achieve contactless heartbeat
monitoring have already been investigated. In addition to
their ability to acquire the displacement signals from sub-
jects without contact, radar methods can protect privacy and
measure signals regardless of ambient brightness [13], [14].
Heartbeat signals have a very small amplitude compared to
noise such as respiration and body motion, so it is not easy
to extract their component from the displacement signals ac-
quired by radar. Most radar-based methods therefore aim
to estimate heart rate (HR) and R-R interval (RRI), which
represents the interval between heartbeats. However, in ad-
dition to the most-remarkable R-peak, features such as the
P-wave and T-wave may make it possible to detect cardiac
diseases, and more detailed features of heartbeats can be ob-
tained if waveforms of ECG signals could be reconstructed.
Doppler radar and deep-learning models have been used to
reconstruct ECG signals [9], and other approaches have re-
constructed ECG signals by using contact devices such as
PPG sensors [3], [15], [16]. The motivation of using deep-
learning technique is, as discussed in [6], the learning-based
methods are good at extracting features of heartbeat signals
while the linear approaches often fail to distinguish heartbeat
from breathing signals.

In consideration of actual environments of heartbeat
monitoring by a radar device, it is not desirable to impose a
stationary state on subjects. In situations in which the sub-
ject’s body is moving [17], for example, the device is used as
a driver-monitoring system (DMS) [2], or the device is fixed
to a moving object such as a drone [18], low signal-to-noise
ratio (SNR) often becomes a problem due to vibration and
other noise factors. A method to classify signals with high
SNR [19] and improve heartbeat-estimation accuracy when
using radar in a low-SNR situation has been proposed, but
it has not yet been applied to the problem of reconstructing
ECG signals.

In response to the above-described circumstances, we
propose a method for (i) acquiring a signal representing dis-
placement of the body surface by using frequency-modulated
continuous-wave (FMCW) radar and (ii) reconstructing ref-
erence ECG signals (acquired by a contact sensor) by using
a convolutional neural network (CNN). The body-surface-
displacement signal is modified into two dimensions and
differentiated in a preprocessing step. It is then used as an
input to the CNN to estimate the normalized ECG signals.
We then trained the CNN on the radar signals with various
strengths and frequencies of noises added, and we confirmed
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that the CNN could accurately reconstruct the ECG signals.
We adopted a correlation coefficient with actual ECG signals
as an evaluation metric, and we calculated the value of RRI
by using an existing RRI estimation algorithm [20] and eval-
uated its mean absolute error (MAE). The main contribution
of this paper is as follows.

• We dealt with the problem of ECG signal reconstruc-
tion, and developed a novel model which can recon-
struct the signal as accurate as the conventionalmethods
under a stationary state.

• As an initial study, we investigated an environment with
low SNR; case of signals with additive sine wave noise.

2. Conventional Methods

Conventional methods related to this study are briefly in-
troduced hereafter. Many methods for reconstructing wave-
forms of ECG signals are based on contact sensors such as
those using PPG. For example, methods for reconstructing
ECG signals from PPG signals by using a discrete cosine
transform (DCT) [3], dictionary learning [15], and a trans-
formed attentional neural network (which is one representa-
tive deep-learning model [16]) have been proposed. How-
ever, all of those methods require contact devices to measure
ECG signals.

In contrast to waveform-reconstruction methods for
ECG signals, most methods for detecting heartbeats by using
radar focus on R-peaks. One such method [7] uses convolu-
tional long short-termmemory (LSTM) to construct a model
that takes a time-frequency representation of radar signal as
input, gives a band-pass filtered ECG signal as an output,
and calculates RRI by peak detection. Another method [6]
creates two triangular waves whose maxima match R and S-
peaks, and triangular waves are estimated from the radar sig-
nals by using a CNN and a recurrent neural network (RNN)
combined model. Another approaches estimates RRI by
inputting certain parts of filtered radar signals, classifying
whether a region contains a heartbeat, and then detecting a
peak in the region with a heartbeat component [21]. Another
method uses differential arithmetic, a band-pass filter, and a
Kalman filter [13]. Although thesemethods can detect heart-
beat intervals, they reduce detailed features of ECG signals,
so they are not preferable for advanced feature extraction
with detailed information of heartbeats.

A few methods for reconstructing an ECG signal use
radar signals. One method using Doppler radar and deep-
learning models has been proposed [9]. As for that method,
filtered in-phase and quadrature-phase (IQ) signals are both
used as input, and the ECG waveform is reconstructed by
using a CNN and LSTMmodel. RRI is then calculated from
the reconstructed ECG signal by using an existing method
of detecting the R-peak.

Although most radar methods are based on Doppler
radar [1], [4], [6]–[9], some of them are based on FMCW
radar [13], [17]. A method considering external environ-
mental noises from cars, trains, airplanes, and also from

men’s body movement, other than breathing has not been in-
vestigated. So it is important to consider the extent to which
the reconstruction result can be guaranteed in a low-SNR
environment.

3. Proposed Method

The proposed method of measuring body-surface-
displacement signals by using FMCW radar and reconstruct-
ing ECG signals by using a CNN model is described here-
after. The proposedmethod can be divided into two schemes:
in the first, body-surface displacement is measured; and in
the second, the signal is reconstructed. The overall configu-
ration of a system based on the proposed is shown in Fig. 1.
Note that the difference between the proposed method and
the method [9] are as follows.

• We developed the method of reconstructing ECG sig-
nals only by CNN, while the method [9] did not. We
did not use recursive construction and therefore could
reduce the computational cost.

• The estimation accuracy of the proposed method is
comparable with that in [9] even with lower compu-
tational cost.

• We added not only breathing signals but also noises.

3.1 Displacement Measurement Using FMCW Radar

The method for measuring a body-surface-displacement sig-
nal by FMCW radar is described first. A FMCW radar
transmits a signal whose frequency varies linearly with time
(a so-called “chirp” signal) at transmission point Tx, and
receives the signal reflected from the subject’s body surface
at reception point Rx, as shown in the upper part of Fig. 1.
Phase information is then extracted by a mixer and range
fast Fourier transform (FFT), and the displacement is calcu-
lated from the amount of phase change in each chirp. The
frequency of the k-th chirp signal can be expressed as

Fig. 1 Overview of system.
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fk(t)

=
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fmin +

B
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(t − kTc), kTc < t < (k + 1)Tc,

0, otherwise,
(1)

where fmin is the lowest frequency, Tc is chirp interval, and
B is frequency bandwidth.

The radio wave transmitted from Tx is received at Rx
after round trip time τ = 2d/c with distance d and the speed
of light c. An intermediate-frequency (IF) signal is then
generated by a mixer and is expressed as

sIF,k(t)

=
At Ar

2
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(
j2π
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B
Tc
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Tc
τ2 + τ fmin

})
,

(2)

where At and Ar are the amplitudes of the transmitted and
received signals, respectively. After A/D conversion, the
body-surface displacement can be obtained as

sd(k) = ∠F
[
sIF,k(t)

]
( fd) ·

c
4π fmin

, (3)

where F [·] denotes the range FFT, and the desired frequency
is set to fd .

As for the proposed method, a 79-GHz FMCW radar
with one Tx element and one Rx element is used. Frequency
bandwidth is 3.2GHz, and sampling frequency of body-
surface displacement is 66.7Hz.

3.2 ECG Signal Reconstruction by CNN

Reference [6] proposed an deep-learning model using
CNN/RNN and triangular waves, and could extract the char-
acteristics of signals in a long-time span. However, their
approach seems to lose minute characteristics and requires
large computational cost due toRNN [22]. Hencewedevelop
a deep-learningmethod using the CNNwith convolution and
fully connected layers.

The proposed CNN model is described as follows. In
the case of time-series signals, features including relation-
ships with neighboring points are usually obtained by one-
dimensional convolution. The i-th signal sample in the
(` + 1)-th layer input x`+1

i is computed by using a kernel
of size P as follows:

x`+1
i = h ©­«

P−1∑
p=0

wpx`i+p
ª®¬ , (4)

where h(·) is an activation function and w is a weight. Ac-
cording to (4), the convolution operation only uses the data
of P points per layer. It is thus difficult to extract features
that relate the information of neighboring heartbeats, if the
frequency of the heartbeat signals is sufficiently smaller than
the sampling frequency of the body-surface displacement.
Therefore, as for the proposed model, a one-dimensional
signal xi are rearranged into a two-dimensional signal, with

height H and width W , denoted by x̃i, j . A two-dimensional
convolution operation is then applied to x̃i, j by using a kernel
with size of P ×Q as follows:

x̃`+1
i, j = h ©­«

P−1∑
p=0

Q−1∑
q=0

wp,q x̃`i+p, j+q
ª®¬ , (5)

where x̃i, j = xi+H j . According to (5), it is possible to learn
relationships not only between neighboring points but also
between points that are a little far apart.

The constructed two-dimensional CNN model with
three convolutional layers and three fully connected layers
is shown in Fig. 2. The input signal is preprocessed by

Fig. 2 Overview of CNN architecture.
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first-order differentiation. The preprocessed signal is then
extracted at a fixed time according to input size H ×W and
rearranged into two dimensions so that we can learn from
the input data in a wide range at a same time. The size
of the input signal is 12 × 42. The number of filters in
the convolutional layer is 30, and the kernel size is 3 × 3.
Each convolutional layer and fully connected layer (except
the output layer) uses a rectified linear unit (ReLU) function
as the activation function. The convolutional layers are in-
terspersed with batch-normalization layers to normalize the
data in each batch. The number of nodes in all the fully
connected layers is set to 900, and the output signal is the
normalized ECG signal. Note that the output becomes just
one sample of ECG signal, because the output node number
of the final output layer is one. Mean square error (MSE) is
used for the loss function, and the algorithm Adam is used
for the optimization function.

The model structure has been empirically determined,
while adjusting the number of convolution and fully con-
nected layers, and inserting pooling and Batch Normaliza-
tion layers. We found that the pooling layer often eliminated
the features and therefore we did not insert the pooling later
in the proposed model structure. The model parameters have
been optimized by using the library “optuna”, an automatic
hyperparameter optimization software framework.

Note that we use the data from one subject in both train-
ing and testing, as the conventional work [6] was using the
data in a similar manner. Indeed we assume a situation to
monitor one subject for a long time, for example, during
sleeping or driving and try to detect abnormalities. It would
also be valuable to learn data of multiple subjects at a same
time, and separate the subjects to be used as training and test-
ing data. That could be applicable to personal identification
applications, which is left as one of future subjects.

4. Experiments

The ECG signal was experimentally reconstructed in two
experiments. In the first experiment, “experiment I”, we in-
vestigated whether it is possible to reconstruct the waveform
of an ECG signal by using signals acquired by an FMCW
radar with the subject in stationary state. In the second ex-
periment, “experiment II”, experiment I was repeated with
artificial noise added to the radar signal.

Hereafter, the detailed specifications of the experiments
are described first, and the results of experiment I are then
presented. After that, the results of investigating noisy cases
in experiment II are presented.

4.1 Specifications of Experiments

The subjects of the experiments were six adult-male sub-
jects (A to F) without heart disease, and their heartbeats
when breathing in a relaxed state were measured (for 5min)
by a contact ECG sensor attached to the chest. Each sub-
ject’s heartbeat was also measured by radar. The sampling
frequency of the contact sensor was 250Hz, and the signal

Table 1 Radar specifications.
modulation method FMCW
detection range 5 to 10 cm

subjects 6 adult males
sampling freqency 66.7Hz

was resampled to 66.7Hz as the ground truth for the CNN.
The radar apparatus was placed behind the back of the chair
in which the subject were sitting and aimed at their back,
where the distance d from the apparatus to the chair in Fig. 1
was roughly about ten centimeters. Radar specifications are
summarized in Table 1.

The measured data for each subject were divided into
three-subsets. 70% (210 s) of each subject’s data was used as
training dataset, 10% (30 s) as validation dataset, and 20%
(60 s) as test dataset. The differential signal based on the
displacement data was then used as the input to the CNN.
Furthermore, a reported method for detecting RRI [20] was
applied to the reconstructed ECG signal after estimation of
CNN.

Correlation coefficient ρ between the reconstructed and
actual ECG signals is defined as

ρ =

M∑
m=1
(ym − ȳ)

(
ŷm − ¯̂y

)
√√√

M∑
m=1
(ym − ȳ)

2

√√√
M∑
m=1

(
ŷm − ¯̂y

)2

, (6)

and calculated as an evaluation metric, where M is the num-
ber of all sample points, and ym and ŷm are the estimated
and measured values of the m-th point of the ECG signal,
respectively. Moreover, ȳ and ¯̂y are their mean values.

Estimated RRI is evaluated by using mean µ, and stan-
dard deviation σ and the MAE are respectively defined as

µ =
1
N

N∑
n=1

RRIpred(n), (7)

σ =

√√√
1
N

N∑
n=1
(RRIpred(n) − µ)2, (8)

MAE =
1
N

N∑
n=1

��RRIpred(n) − RRIref(n)��, (9)

where N represents the number of all R-peaks in the each
subject’s subset, and RRIpred and RRIref are the predicted
(reconstructed) and the reference (actual) RRIs, respectively.

4.2 Experiment I

First, in experiment I, an ECG signal was experimentally
reconstructed in stationary state. Correlation coefficient and
RRI for each subject are summarized in Table 2, and the
waveforms for subjects A, C, and E are shown in Fig. 3 as
examples of the reconstructed ECG signals. According to
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Table 2 Behavior of correlation coefficient ρ and RRI in experiment I.

RRI [ms]
Subject ρ MAE Reconst. ECG Actual ECG

µ σ µ σ

A 0.806 58.2 772.8 30.4 797.3 32.6
B 0.825 134.8 643.1 43.2 658.3 28.8
C 0.957 118.1 829.1 52.2 830.8 24.3
D 0.831 50.9 738.9 27.6 736.0 30.5
E 0.894 133.4 911.8 115.1 909.4 72.1
F 0.852 117.6 598.6 26.5 593.5 27.0

Average 0.861 102.2 — — — —

Fig. 3 Behavior of actual and reconstructed signals in experiment I.

Fig. 4 Behavior of actual and estimated RRIs in experiment I (subject
A).

the table and figure, that the correlation coefficient exceeds
0.80 for all the subjects, and that result confirms that the ECG
signal could be accurately reconstructed. Also, Fig. 4 shows
that the mean and standard deviation of RRI were estimated
accurately. Table 2 and Fig. 3 confirm that correlation coeffi-
cient ρ is large for subject C, because the R-peak is lower and
the T-peak is higher than those of the other subjects. It is also
clear that standard deviation σ is large for subject E, whose
baseline potential fluctuates as shown in Fig. 3(c). One of
the reasons for the variation in estimation accuracy among
the subjects is that the ECG waveform differs greatly from
subject to subject. In addition, the ECG waveform shows
different characteristics depending on sweating, breathing
depth, blood pressure, and many other conditions. The ref-
erence ECG waveforms may have been affected by the fixed
position of the contact device, which is normally attached to a
specific position on the body of each subject when acquiring
ECG waveforms.

Averaged correlation coefficient ρ and averaged MAE
of the conventional [9] and proposed methods are compared
in Table 3. It is clear from the table that the correlation coef-
ficients are the same, indicating that the proposed method is
as accurate as the conventional method [9]. However, MAE
of RRI estimated by the proposed method is much higher
than that estimated by the conventional method [9]. This is
because the sampling frequency of the conventional method
is 1,000Hz, while that of the proposed method is 66.7Hz;
that is, the difference in sampling frequency was around 15
times. As a result, the conventional method gives an error
of 1ms when the estimated R-peak has an error of just one
sample, but the proposed method gives an error of 15ms.
This large error can be reduced by introducing a system for
acquiring body-surface displacement with a higher sampling
rate.

4.3 Experiment II

4.3.1 Adding Artificial Vibration Noise

In case that the proposed measurement system (a subject and
the radar device) vibrates, the measurement of the displace-
ment waveform by radar may be less accurate due to the
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Table 3 Comparison of averaged correlation coefficient ρ and averaged
MAE.

Methods ρ MAE [ms]
Ref. [9] 0.86 17.8

Proposed method 0.86 102.2

inclusion of undesired noisy components such as reflected
waves from the subject’s skin at non-target points. Accord-
ingly, instead of re-measuring the displacement waveform
when the system was under vibration, we added artificial
sine wave noise to the measured data when the system was
in stationary state, in which the frequency overlaps the over-
tone component of the heartbeat and the amplitude is larger
than that of the heartbeat. This is because we want to in-
vestigate how much they affect the accuracy of the proposed
deep-learning model in an environment in which only SNR
is degraded.

In an actual environment, various kinds of noiseswill be
added to observed signals. However, there have not been any
conventional work how much noises affect to the accuracy
of vital-sign sensing using machine learning. Therefore, as
an initial study, we added a sine wave noise whose frequency
and amplitude are known in advance, and investigated which
frequency and/or amplitude affects to the accuracy of signal
reconstruction.

Frequency range of a normal heartbeat is generally from
0.5 to 2Hz at rest [1], and displacement of the body surface
caused by the heartbeat is empirically known to be about
10 to 100 µm. In experiment II, sine waves with amplitudes
of 25 µm, 250 µm, and 2,500 µm and frequencies of 0.48Hz,
1.2Hz, 2.4Hz, 4.8Hz, and 12Hzwere added to the displace-
ment signal acquired in experiment I. Examples of Subject
A’s input signals before and after adding noise signals with
different amplitudes but fixed frequency of 1.2Hz are shown
in Fig. 5. It is clear from the figure that displacement due to
respiration is large in the case of 25-µm noise; therefore, the
displacement signal with 25-µm noise would be similar to
the noiseless signal. However, there are fluctuations due to
noise in the signal with 250-µm noise as large as respiration,
and the noise component is much larger than the noiseless
signal in the signal with 2,500-µm noise. How much such
noise signals affect estimation accuracy is discussed in the
next subsection.

4.3.2 Results of Experiment II

In experiment II, experiment I was repeated with artificial
noise added to the radar signal. Values of correlation co-
efficient ρ in relation to frequency and amplitude of added
noise in experiment II (for subject A and the average for all
the subjects) are listed in Tables 4(a) and 4(b). To evaluate
the results strictly, the results for subject A are independently
shown in Table 4(a) because that subject had the lowest cor-
relation coefficient ρ of the subjects in experiment I. It is
clear from the table that ρ is large enough in most cases,
except the case of large noise amplitude, 2,500 µm, and high
noise frequency, 12Hz. This finding confirms that the ECG

Fig. 5 Example of noiseless and noisy inputs (1.2Hz).
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Table 4 Behavior of correlation coefficient ρ in experiment II.
(a) subject A

Noise Noise amplitude [µm]
Frequency [Hz] 25 250 2,500

0.48 0.800 0.725 0.715
1.2 0.793 0.682 0.677
2.4 0.769 0.677 0.779
4.8 0.737 0.690 0.702
12 0.743 0.761 0.028

(b) average for all the subjects
Noise Noise amplitude [µm]

Frequency [Hz] 25 250 2,500
0.48 0.849 0.826 0.827
1.2 0.845 0.820 0.799
2.4 0.836 0.822 0.569
4.8 0.826 0.813 0.563
12 0.827 0.837 0.302

signal could be accurately reconstructed even in the case of
noise amplitude of 2,500 µm, which was very large for a
heartbeat amplitude and has frequency overlap. We also see
that the behavior of the correlation coefficient ρ for all the
subjects in Table 3(b) looks similar to the behavior of that
for the subject A in Table 3(a). However, the correlation
coefficient ρ becomes very small for some subjects in case
of 2500 µm noise. We confirmed that the very large noise of
2500 µm had affected to the average performance as well.

Behaviors of the actual and reconstructed signals and
RRIs in the case of Subject A, 1.2Hz and 2,500-µm noise
are shown in Fig. 6. It is clear from Fig. 6(a) that the recon-
structed R-peak and T-wave peaks are slightly lower than the
actual ones, indicating that the accuracy of the reconstruc-
tion based on the correlation coefficient is lower, but the
characteristics of the ECG signal are maintained. Fig. 6(b)
shows actual and estimated RRIs. It is clear from the figure
that some R-peaks were not detected in the first 15 s because
of large noise signals, but RRI in the following period is esti-
mated accurately. So far, we have not determined the reason
for the inaccurate estimation result shown in Fig. 6(b) in the
first 15 s, so that task remains as part of future studies.

It was also observed that the waveform could not be
reconstructed under the condition of large noise frequen-
cies and large noise amplitudes. This result clearly shows
that higher frequency and larger displacement will have a
greater effect on waveform-reconstruction accuracy than the
case that the heartbeat frequency overlaps the noise fre-
quency. Improving reconstruction accuracy under such high-
frequency noise also remains as one of our future studies.

5. Conclusion

A method of measuring body-surface-displacement signals
by using FMCW radar and reconstructing ECG signals by
using a CNN was proposed. It was confirmed that the pro-
posed method can reconstruct ECG signals as accurately as
the conventional method when the subject is in a stationary
condition. Furthermore, the proposed method can recon-

Fig. 6 Behaviors of signals and RRIs in experiment II (in case of 1.2Hz
and 2,500-µm noise).

struct ECG waveforms—even under severe conditions of
low SNR—by adding artificial noise signals.

As discussed in Sect. 4, sampling frequency of body-
surface displacement should be increased to improve accu-
racy of the deep-learning model.

The following issues (a)–(d) remain as future studies:
(a) develop an improved measurement system with a higher
sampling rate, (b) improve the system which can correspond
to the ground truth of P and T peaks, (c) learn the data of
multiple subject at the same time, and (d) experiments under
various kinds of noises.
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