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SUMMARY Channel state information (CSI) acquisition at the trans-
mitter side is a major challenge in massive MIMO systems for enabling
high-efficiency transmissions. To address this issue, various CSI feedback
schemes have been proposed, including limited feedback schemes with
codebook-based vector quantization and explicit channel matrix feedback.
Owing to the limitations of feedback channel capacity, a common issue
in these schemes is the efficient representation of the CSI with a limited
number of bits at the receiver side, and its accurate reconstruction based
on the feedback bits from the receiver at the transmitter side. Recently,
inspired by successful applications in many fields, deep learning (DL)
technologies for CSI acquisition have received considerable research in-
terest from both academia and industry. Considering the practical feedback
mechanism of 5th generation (5G) New radio (NR) networks, we propose
two implementation schemes for artificial intelligence for CSI (AI4CSI),
the DL-based receiver and end-to-end design, respectively. The proposed
AI4CSI schemes were evaluated in 5G NR networks in terms of spectrum
efficiency (SE), feedback overhead, and computational complexity, and
compared with legacy schemes. To demonstrate whether these schemes
can be used in real-life scenarios, both the modeled-based channel data
and practically measured channels were used in our investigations. When
DL-based CSI acquisition is applied to the receiver only, which has little
air interface impact, it provides approximately 25% SE gain at a moderate
feedback overhead level. It is feasible to deploy it in current 5G networks
during 5G evolutions. For the end-to-end DL-based CSI enhancements,
the evaluations also demonstrated their additional performance gain on SE,
which is 6% – 26% compared with DL-based receivers and 33% – 58%
compared with legacy CSI schemes. Considering its large impact on air-
interface design, it will be a candidate technology for 6th generation (6G)
networks, in which an air interface designed by artificial intelligence can be
used.
key words: Channel state information, deep learning, and downlink MIMO
transmission

1. Introduction

Massive multiple-input multiple-output (MIMO)[1] is a key
technology for 5th generation (5G) New Radio (NR). Chan-
nel state information (CSI) on the transmitter side plays a
key role in improving the spectrum efficiency of downlink
transmissions in massive MIMO systems. Such information
is necessary for downlink precoding schemes to improve the
signal-to-noise ratio (SNR) at dedicated receivers and elimi-
nate multiuser interference (MUI), which enables high-order
multiuser MIMO (MU-MIMO) downlink transmissions.
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Therefore, diverse technologies for CSI acquisition have
been studied in both academic research and the standardiza-
tion of mobile networks. Limited feedback schemes with
codebook-based vector quantization or explicit channel ma-
trix/eigenvector feedback have been introduced based on
legacy signal processing technologies. A common challenge
of these approaches is to find an efficient way to represent
CSI with a limited number of bits, which can be accommo-
dated by the feedback channel with an acceptable overhead.

Among them, limited feedback schemes[2] have been
widely used, especially for frequency division duplex (FDD)
systems and time division duplex (TDD) systems without
radio frequency (RF) calibration. For limited feedback
schemes, the base station (BS) transmits reference signals
to facilitate the user equipment (UE) estimating the down-
link channel, and the UE quantizes the CSI with a specified
codebook into a group of bits. These bits are fed back to
the BS via the uplink feedback channel and the BS recon-
structs the CSI based on them. The accuracy of the recon-
structed CSI is constrained by the overhead introduced by the
downlink reference signal and uplink feedback. For massive
MIMO systems with a large number of antenna ports, more
resources are necessary for transmitting downlink reference
signals, and it is also difficult to quantize a large-scale CSI
matrix into a limited number of bits without losing accuracy.

For example, NR Release 15[3] specified two CSI lim-
ited feedback schemes, namely, Type I and Type II CSI. Type
I CSI serves as a low-overhead scheme that quantizes the CSI
into one of the codewords in the codebook, whereas Type
II CSI uses a linear combination codebook, where multi-
ple codewords can be selected from the codebook and the
CSI is represented as a linear combination of selected code-
words. Both the index of the selected codeword and quan-
tized combination coefficients are sent back to the BS from
UE. To control the feedback overhead, NR Type II CSI uses
coarse quantization of combination coefficients and a large
frequency domain granularity. Coarse quantization intro-
duces severe nonlinear noise into feedback CSI. In addition,
the large frequency domain granularity introduces informa-
tion loss, which makes it difficult to reconstruct an accurate
CSI with smaller granularity.

As one of the key technologies in the new wave of arti-
ficial intelligence (AI), deep learning (DL) has been success-
fully used in many applications, such as image processing
and natural language processing[4]. Benefiting from the
large-scale parallel computing power provided by modern
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processors, such as graphics processing units (GPUs) or ten-
sor processing units (TPUs), DL networks trained with big
data can usually find a better efficient solution to intractable
problems compared with legacy optimization methods, espe-
cially for those in NP-hard families and those that are difficult
to mathematically model [5], [6]. Deep neural networks can
learn hidden mathematical models behind big data and fit
nonlinear functions. One related example is image com-
pression and super resolution[7]–[10], where a deep neural
network can learn the hidden structure inside images and
then utilize this to compress and recover images or recon-
struct high-resolution images based on their low-resolution
versions.

Similar to image compression or super-resolution, a
complex model also hides behind the observed CSI, which is
difficult to obtain practically and helpful for CSI acquisition.
Motivated by this observation, DL technology has recently
been introduced for CSI acquisition. In [11], CsiNet was in-
troduced as an end-to-end CSI compression and reconstruc-
tion method. Inspired by image super-resolution, SRCNN[9]
was used for channel estimation based on IEEE 802.11ad ref-
erence signals as a receiver enhancement scheme[12]. Our
previous work adopted an advanced super-resolution net-
work VDSR[10] to use cases of both end-to-end CSI acqui-
sition[13] and receiver enhancements based on NR Type II
feedback [14].

The progress of DL in CSI acquisition has attracted the
attention of the industrial community. The 3rd Generation
Partnership Project (3GPP) will initiate the study of this
topic in the 2nd quarter of 2022[15]. The use cases of AI for
CSI and their potential performance gain in practical mobile
networks are the key objectives of this study. To address
this issue, we introduce our AI for CSI (AI4CSI) use cases
and evaluate their performance gains in NR networks. The
contributions of this study are as follows.

• Propose an enhanced end-to-end AI4CSI network based
on the CsiNet in [11] with better performance, and
extend our AI4CSI receiver in [14] to explicit feedback.

• Investigate the spectrum efficiency (SE), feedback over-
head, and computational complexity of legacy and DL-
based CSI feedback methods in a practical NR network,
including Type I and II limited feedback schemes speci-
fied in current NR standards, explicit feedback schemes,
and DL-based CSI for receiver enhancements (AI4CSI
Rx) and end-to-end enhancements (AI4CSI E2E).

• Investigate the performance of AI4CSI schemes with
measured channel data to verify their feasibility for
practical deployments.

Our study demonstrates the potential gain of AI4CSI
schemes in a practical mobile system with limited feedback
channel capacity. When AI4CSI is applied only to the re-
ceiver, which has little air-interface impact, it improves the
accuracy of CSI reconstruction and requires fewer downlink
reference signals. The performance gain in the SE of the
downlink transmissions is approximately 25%. Therefore, it
is feasible for deployment in current mobile networks dur-

ing network evolution. For AI4CSI E2E schemes, we show
their significant performance gain, especially for moderate
feedback overhead, and that it is feasible with practically
measured channel data. This shows the prospects of apply-
ing an AI/DL defined air-interface for CSI in future networks,
such as the 6th Generation (6G) mobile networks, where AI
will be a native component of the networks.

The remainder of this paper is organized as follows.
Section 2 introduces the proposed system. Section 3 de-
scribes the legacy and the proposed AI4CSI schemes. Per-
formance evaluations with model-based channel data and
practical channel measurements are presented in Sections 4
and 5. Finally, section 6 concludes the paper.

Notations: Vectors (lower case) and matrices (upper
case) are presented in boldface. (·)T, (·)H and (·)−1 denote
the transpose, conjugate transpose, and inverse, respectively.

2. 5G NR Systems

We studied the DL-based CSI feedback and reconstruction
in a typical 5G NR mobile network. Following LTE speci-
fications, NR also uses OFDM-based waveform and multi-
plexing schemes[16], in which the time-frequency domain
resources are divided into resource blocks (RBs), each of
which comprises 14 OFDM symbols in the time domain and
12 subcarriers in the frequency domain. These time-and
frequency-domain resources make up the resource grid of
an OFDM system, where all channels and reference signals
(RSs) are mapped onto the resource grid and then transmit-
ted.

Fig. 1 The diagram of CSI feedback and downlink transmissions.

A typical closed-loop downlink transmission procedure
with CSI feedback is shown in Fig. 1. In an NR system, CSI-
RSs are transmitted from the BS to the UE to facilitate UE
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Fig. 2 An example mapping pattern of NR CSI-RS.

downlink channel estimation[17]. The current NR specifi-
cations support up to 32 antenna ports for CSI-RS transmis-
sions. The signals of different ports are multiplexed using
a combination of frequency-division multiplexing (FDM),
time-division multiplexing (TDM), and code-division mul-
tiplexing (CDM). The frequency-domain density of NR CSI-
RS is 1 or 0.5 resource elements per port per RB. An example
of CSI-RS on an OFDM resource grid is shown in Fig. 2.

UEs estimate the downlink channel based on the re-
ceived CSI-RS and then generate CSI feedback, which is
transmitted to the BS via uplink feedback channels. When
CSI is available at the BS, it can use typical downlink MIMO
precoding, such as zero-forcing[18] to transmit data to mul-
tiple UEs with spatial multiplexing.

Feeding downlink CSI back to BS efficiently has been
discussed for decades , since MIMO technology was intro-
duced into mobile systems. In the next section, we first intro-
duce the basic signal model of the mobile system and then
introduce several typical CSI acquisition schemes, legacy,
and AI-based schemes.

Suppose that there are 𝑁𝑡 antenna ports in the BS to
serve 𝑀 UEs in a cell, and there are 𝑁𝑟 antenna ports for
each UE. For an OFDM waveform with 𝐾 subcarriers, a
general received CSI-RS at the UE can be written as

r𝑚,𝑘 = H𝑚,𝑘s𝑅𝑆,𝑘 + n𝑚,𝑘 , (1)

where 𝑚 = 1, · · · , 𝑀 is the index of UE and 𝑘 is the index
of the subcarriers where CSI-RS is transmitted. H𝑚,𝑘 ∈
C𝑁𝑟×𝑁𝑡 denotes the downlink channel in the 𝑘-th subcarrier,
s𝑅𝑆,𝑘 ∈ C𝑁𝑡×𝑁𝑡 is the transmitted CSI-RS signal, and n𝑚,𝑘 ∈
C𝑁𝑟×𝑁𝑡 denotes the thermal noise of the receiver. Without
loss of generality, we assume that the CSI-RSs for different
antenna ports are orthogonal. Therefore, s𝑅𝑆,𝑘 is a diagonal
matrix in which the transmitted signals of CSI-RS appear as
diagonal elements.

After receiving CSI-RS, UEs estimate the channel

based on the received signal and obtain the estimated chan-
nel Ĥ𝑚,𝑘 ,∀𝑘 = 1, · · · , 𝐾 . Although CSI-RS has a low
frequency-domain density, UEs can use interpolation meth-
ods to obtain channels for all subcarriers, for example, zero-
or first-order interpolation as a simple implementation. or
MMSE interpolation using the known channel statistics.

NR specifications define the frequency-domain feed-
back granularity as a subband comprising several RBs. For
subband feedback, UEs can calculate the subband equivalent
channel as

Ĥ(𝑠)
𝑚 = v𝑁𝑟

(
𝑘𝑒∑︁

𝑘=𝑘𝑠

ĤH
𝑚,𝑘Ĥ𝑚,𝑘

)
, (2)

where 𝑠 is the index of the subband, 𝑘𝑠 and 𝑘𝑒 are the start and
end indices of subcarriers for a subband, and v𝑁 (·) denotes
𝑁 eigenvectors corresponding to 𝑁 largest eigenvalues of a
matrix.

The CSI is usually decompensated into several compo-
nents for separate feedback. Channel gain is usually reported
as a factor of the channel quality indicator (CQI), which is the
signal-to-interference-and-noise ratio (SINR) derived from
the UE. The UE may also report a rank indicator (RI) that
indicates the expected MIMO transmission layer number ac-
cording to channel conditions.

Among these components, the one representing the
channel matrix is the most important. Because the channel
gain is reported implicitly in CQI, the normalized channel
matrix, which can be called channel direction information
(CDI), should be reported to the BS from UE. There are
many schemes that report CDI to BS explicitly or implic-
itly, which is the focus of our study and will be discussed in
Section 3.

After receiving feedback from the UEs, the BS can
reconstruct the channel matrix and prepare the downlink
transmissions. Define the channel matrix recovered by the
BS as H̃𝑚,𝑘 . The downlink channel of all serving UEs is
then

H̃𝑘 =
[
H̃H

1,𝑘 , H̃
H
2,𝑘 , · · · , H̃

H
𝑀,𝑘

]H
, (3)

where the BS can compute the downlink precoder P𝑘 by
following the steps in [18]. For a simplified example, when
the UE has one mounted antenna (𝑁𝑟 = 1), the dimension
of each H̃𝑚,𝑘 is 1 × 𝑁𝑡 . The zero-forcing precoder can be
obtained by

P𝑘 = H̃H
𝑚,𝑘

(
H̃𝑚,𝑘H̃H

𝑚,𝑘

)−1
. (4)

The received signal of downlink transmissions for all
UE antennas on 𝑘-th subcarriers is then

r𝑘 = H𝑘P𝑘s𝐷,𝑘 + n𝑘 , (5)

where H𝑘 = [HH
1,𝑘 , · · · ,H

H
𝑀,𝑘

, ]H, s𝐷,𝑘 ∈ C𝑀×1 represents
the data transmitted to the UE, and n𝑘 denotes the thermal
noise of the receiver.
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3. CSI Acquisition Schemes

As discussed in Section 2, the most important part of the
CSI feedback is CDI, whose dimension increases with the
number of antenna ports, and which becomes a large-scale
matrix in massive MIMO systems.

In legacy signal processing, the processing on CDI is
categorized as a quantization or compression scheme. The
objective is to represent the CDI through a limited number of
bits without losing much information. Many schemes have
been discussed over the decades, since MIMO technologies
have been used in mobile systems. We introduce two types of
legacy schemes in Section 3.1 and several DL-based schemes
in Section 3.2.

3.1 Legacy CSI Acquisition Schemes

3.1.1 Limited Feedback of Precoding Matrix

NR uses a limited feedback scheme that quantizes the pre-
coding matrix expected by the UE into an index called the
precoding matrix index (PMI) and reports it to the BS in-
stead of reporting the CDI. The BS can then use the reported
PMI directly to downlink single-user MIMO (SU-MIMO)
transmissions. However, for MU-MIMO transmissions, the
original CDI is required for the BS to calculate the MIMO
precoder. Fortunately, the precoder matrix selected by the
UE is usually highly correlated with the downlink channel,
which means that we can treat the PMI as a representation
of the CDI and reconstruct the channel matrix from it.

The detailed procedure for NR feedback and recovery is
defined in [3]. The UE first calculates the feedback content
based on the subband equivalent channel Ĥ(𝑠)

𝑚 and sends the
feedback content to the BS. Here, we consider NR Type II
feedback, which uses a two-stage linear-combination code-
book. The BS can reconstruct the subband level feedback
channel based on the UE CSI feedback, which can be repre-
sented as

H̃(𝑠)
𝑚 = W𝑚,1W(𝑠)

𝑚,2, (6)

where W𝑚,1 consists of several DFT base vectors selected
by the UE to represent the CSI, which is wideband feedback
according to NR specifications, and W(𝑠)

𝑚,2 includes combi-
nation coefficients for subband 𝑠. If all base vectors are
included in W𝑚,1 and W(𝑠)

𝑚,2 is unquantized, there is no in-
formation loss in the PMI. However, to control the feedback
overhead, only a subset of the base vectors is selected, and
both the amplitudes and phases of the elements in W(𝑠)

𝑚,2 are
quantized into a few bits, which introduces severe quantiza-
tion noise.

The reconstructed channel is then used for downlink
transmissions. Because the feedback granularity is subband,
the downlink precoder usually has to be calculated with the
same granularity. Both quantization noise and large granu-
larity degrade the SE of the downlink transmissions.

3.1.2 Explicit Feedback

Another legacy CSI approach is explicit CDI feedback since
itself is more expected for MU-MIMO precoding. CDI or
its equivalent forms can be reported to the BS directly in
explicit feedback schemes.

As a typical explicit feedback scheme, we consider di-
rect CDI feedback with scalar quantization in this study. The
real and imaginary parts of the nonzero elements in Ĥ𝑚,𝑘

are quantized into a specified number of bits. Considering
the feedback overhead constraint in practical systems, there
are typically insufficient resources to transmit all nonzero
elements in Ĥ𝑚,𝑘 . Therefore, subband level feedback is also
used to control the feedback overhead.

Note that the vector quantization schemes used for im-
plicit feedback can also be used for explicit feedback. In such
a case, a similar performance is expected because quantiza-
tion noise is the dominant factor in the performance.

3.2 Deep Learning based CSI Schemes

3.2.1 DL-based CSI Reconstruction at Receiver (AI4CSI
Rx)

With the constraint of feedback overhead, limited informa-
tion can be transmitted and received via feedback channels.
To obtain a more accurate reconstructed CSI from limited in-
formation, the reconstruction algorithm should have detailed
information on the inter-structure of the channel, which de-
pends on the detailed radio propagation procedure. Practi-
cal over-the-air channels usually consist of many multi-path
components, each of which is composed of many rays. If
radio propagation can be mathematically described and accu-
rately estimated, the CSI can be reconstructed accurately as
well. However, it is a challenging task to model and estimate
radio propagation using legacy signal processing technolo-
gies. The practical model is hidden behind the observable
channels. By training with big data, DL networks can learn
the hidden structure from a large number of channel samples
and utilize the information it learns to reconstruct the CSI.
Therefore, we consider using DL to reconstruct CSI from the
inaccurate feedback of UEs.

DL networks have been used for image super-resolution,
which reconstruct a high-resolution image from its low-
resolution copy[7]. During the training stage of networks,
the mapping between low-resolution and high-resolution im-
ages or the inner structure information can be learned using
a large set of training data. A typical super-resolution net-
work can process an image with multiple channels, improve
the resolution of the images, and filter noise. For both im-
plicit and explicit feedback, the feedback CSI is also two-
dimensional data with multiple channels, such as real and
imaginary parts or amplitude and phase parts. The CSI with
large feedback granularity can be viewed as a low-resolution
copy, and quantization noise is introduced, which should be
filtered.
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Fig. 3 System structure for CSI reconstruction during training stage and
deployment stage. (a) AI4CSI Rx. (b) AI4CSI E2E.

Motivated by the similarity between CSI reconstruc-
tion and image super-resolution, we adopted image super-
resolution networks to reconstruct the CSI with NR Type II
feedback in [14]. General diagrams of the networks in the
training and deployment stages are presented in Fig. 3 (a),
respectively.

The proposed AI4CSI Rx network is deployed on the
BS side. Because both NR and explicit feedback introduced
in Section 3.1 can be viewed as low-resolution versions of
CSI, the proposed network can accept either of them as
inputs. After receiving UE feedback, the BS can reconstruct
the channel matrix with any legacy interpolation method
and then convert the complex numbers into real ones. The
real and imaginary parts of the channel matrix are stored
separately in the tensors and treated as two channels of the
input data for the DL network.

Among the image super-resolution networks, we se-
lected the VDSR network[10] to reconstruct the CSI. It is a
very deep convolutional neural network (CNN) with 16–20
convolution layers, using which inner structure information
is extracted from the training data. As the output of the net-
work is an enhanced version of the input, VDSR also applies
a global residual network architecture that is widely used for
image processing.

During the training stage, we used a perfect channel ma-
trix as the tag to train the entire network. The mean square
error (MSE) between the output of the network and the per-
fect channel matrix was calculated and then backpropagated
to update the coefficients of the CSI reconstruction network.
During this stage, the CSI reconstruction network learns the
structure between the low-resolution CSI and the expected

perfect CSI. After training, the network was deployed to the
BS.

Fig. 4 Network architectures of AI4CSI networks (a) The balanced de-
sign. (b) The Lean UE design.

We consider two alternatives to AI4CSI Rx. One is
AI4CSI Rx (Type II), the CSI reconstructed from NR Type
II feedback, and the other is AI4CSI Rx (Explicit), the CSI
reconstructed from the explicit feedback. The performance
of both alternatives is investigated in Section 4.

3.2.2 DL-based End-to-end CSI Acquisition (AI4CSI
E2E)

As introduced in Section 1, DL-based end-to-end enhance-
ments have received considerable research interest in recent
years. The ultimate objective of communication systems is
to transmit information from one end (transmitter) to an-
other (receiver) with minimal errors. For CSI feedback and
reconstruction, the objective is to let the BS reconstruct a per-
fect CSI with feedback information from the UE. Existing
feedback schemes are usually designed heuristically because
it is difficult to jointly optimize all the factors in a typical
feedback scheme, such as codebook selection, quantization
method, quantization levels, and quantized bit allocation.
DL provides an alternative approach in which DL networks
design UE feedback and BS reconstruction, which is an end-
to-end solution.

In AI/DL technologies, an auto-encoder based on self-
supervised learning has an end-to-end structure. The input of
the network is also used as training data to train the network
output. Therefore, the network is trained to generate outputs
that are similar to the inputs. The autoencoder can be divided
into two parts: an encoder and decoder. The last layer of the
encoder, that is, the output layer of the encoder, can be viewed
as a compression layer. Its output is the feedback content
generated by the auto-encoder, the overhead of which can be
controlled by restricting the number of nodes in this layer.
Under such overhead constraints, the task of the decoder
network is to recover the input with minimal error.

Based on this feature of the auto-encoder, existing works
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use it for CSI feedback and reconstruction [11]. A diagram
of the autoencoder-based CSI schemes is shown in Fig. 3
(b). On the UE side, the encoder network can be used to
encode CDI into a small-scale vector, which is then quantized
and transmitted to the BS. Subsequently, the BS can apply
the decoder network to recover the CDI as shown in the
deployment stage in Fig.3 (b). The output of the encoder is a
vector of real numbers that should be compressed and tends
to be uniformly distributed. We then use scalar quantization
to quantize each element of the vector into bits for feedback.

Following the principle of the auto-encoder and pio-
neering work on its application to CSI feedback[11], we
consider two types of end-to-end CSI feedback and recon-
struction networks. One is an enhanced network based on
CsiNet [11], the architecture of which is shown in Fig. 4 (a).

Our proposed enhanced network considers a balanced
design between the encoder and decoder, similar to CsiNet, in
which the computational complexity of the encoder and de-
coder is comparable. Inspired by the fact that most data com-
pression schemes transform the original data into a proper
domain where the transformed data are sparse, we add a
full connection layer before the original version of CsiNet
to emulate the domain transformation operation. Unlike the
domain transformation in existing compression schemes, the
transformation in DL networks is obtained by training with
big data rather than a predefined one. It is expected that
the DL network can find a better domain to compress CSI
than any domain used in legacy compression schemes. An
inverse domain transformation layer is also added at the de-
coder side.

Another AI4CSI E2E network to be evaluated has a
lean-UE design. For AI4CSI E2E, the encoder is deployed
in the UE and the decoder is deployed in the BS. Therefore,
the complexity of the encoder is negligible to avoid increas-
ing the UE processing complexity. Motivated by this, we
consider a network with a lean UE design introduced in
[13]. The architecture of the network is illustrated in Fig. 4
(b). For the lean UE network, only one necessary compres-
sion layer is maintained at the encoder side. On the decoder
side, after the linear layer to recover the dimension of the
CSI, super-resolution networks are still used to recover the
full-resolution CSI and filter the noises.

The two implementations introduced in this subsection
are named AI4CSI E2E (balanced) and AI4CSI E2E (lean
UE).

4. Performance Evaluations with Simulated Channels

4.1 Simulation Setup

We evaluate the performance of all the proposed algorithms
introduced in Section 3.1 and Section 3.2 in a typical NR
network. The major simulation assumptions are listed in
Table 1, and follow those used in the study of NR systems.

In our simulations, an array with 32 antenna elements
was mounted on the BS with a 4 × 4 × 2 layout (horizontal
× vertical × polarization), and one antenna was mounted

on each UE. We consider four UEs that periodically report
their CSI every 5 ms. After collecting their CSI reports, the
BS transmits downlink data using ZF precoding[18] with
the CSI it receives, which is obtained in different ways, as
introduced in Section 3.

In our evaluations, we considered different feedback
configurations with different frequency-domain granularity
and quantization accuracy. For NR CSI feedback schemes,
the feedback overhead differs from these configurations, as
shown in Table 2. Note that we extended the range of the
parameters specified in the current NR specification[3] to
generate feedback content with different overheads.

Table 1 Simulation Assumptions
Parameter Values

Carrier Frequency 4 GHz
Bandwidth 100 MHz

Subcarrier Spacing 30 kHz
Subcarrier Number 3276 (273 RBs)

Channel Model 3GPP NR CDL
BS Antenna Array 32 (4 × 4 × 2)

UE Antenna 1
UE Number 4
UE velocity 3 kmph

Maximum Doppler frequency 11 Hz
Feedback Period 5 ms

SNR 25 dB
Feedback Overhead 10 kbps — 8.8 Mbps (per UE)

CSI-RS Configuration 1/2 — 1/64 RE per port per RB

Table 2 NR Type I/II Feedback Configurations
Overhead Subband Codeword Phase Amplitude

(kbps) Number Number Quantization Quantization
10 18 1 3 bit 3 bit
94 18 4 3 bit 3 bit
330 36 6 3 bit 3 bit
570 54 6 4 bit 3 bit
1100 108 6 4 bit 3 bit

For explicit channel matrix feedback, the feedback over-
head is controlled by feedback granularity, The density of the
CSI-RS is also adjusted according to the feedback granular-
ity. In the current NR specification, the frequency domain
density of the CSI-RS can be as low as 1/2 resource elements
(RE) per port per RB. In our evaluations, in addition to 1/2
RE per port per RB, we further reduced the density of the
CSI-RS and lowered the density to 1/128 RE per port per
RB. The evaluation configurations for explicit channel feed-
back are shown in Table 3. For all cases shown in Table 3,
we use 5 bits to quantize both the real and imaginary parts of
the complex numbers. We also evaluated the performance of
implicit feedback methods with different CSI-RS densities
to test their super-resolution capability.

The feedback overhead of AI4CSI E2E scheme can be
controlled by configuring the encoder network. In this work,
we consider that each output of the compression layer is
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quantized into 5 bits, the same as the bit width used for ex-
plicit feedback schemes. Therefore, we can flexibly adjust
the overhead of AI4CSI E2E schemes according to require-
ments.

We used the NR CDL channel models specified in [19]
to generate the training, verification, and test datasets for all
schemes. There are multiple models with different power-
delay profiles defined in [19]. To avoid overfitting of the DL
network, our training dataset consisted of channel samples of
different models and root mean square (RMS) delay spreads
(DS). More specifically, we generated the datasets by mixing
CDL-A, CDL-B, and CDL-C models, each of which con-
sists of 23–24 multipath components with different powers
and delays. The RMS DS of CDL models can be scaled to
simulate different practical channel conditions. In the sim-
ulations, the training data set has 100’000 channel samples,
each of which is generated by randomly selecting one of the
three CDL models, and then randomly selecting its RMS
DS from short (30 ns), nominal (100 ns), and long (300 ns).
The DL network can learn more propagation conditions from
these training datasets. We also generate verification and test
data sets, each of which has 1’000 samples, following the
same way.

Table 3 Explicit Channel Feedback Configurations
Overhead CSI-RS Density Port Number

(kbps) (RE/RB/Port)
17 1/128 8
68 1/128 32
270 1/64 32
550 1/32 32
1100 1/16 32

Fig. 5 SE of schemes with different feedback overhead.

4.2 Spectrum Efficiency

Fig. 5 shows the performance of the baseline and AI4CSI

Fig. 6 SE of implicit feedback schemes with different CSI-RS density.

schemes. First, we discuss the tendency of legacy signal
processing algorithms. As shown in the figure, the achiev-
able SE of the two legacy schemes tends to be linear with
the feedback overhead. For NR Type II feedback, the vector
quantization used in the schemes exhibits better performance
at a low overhead level. However, explicit feedback can pro-
vide a more accurate CSI with medium to high overheads.
There is a large area on the upper left of both curves, where
a better trade-off between the SE and feedback overhead can
be achieved. This is the objective of AI4CSI schemes.

It is illustrated in Fig. 5 that AI4CSI Rx schemes can
recover the channel matrix with higher accuracy compared
with legacy schemes. Using the reconstructed CSI, there is
an SE gain of approximately 25% when AI4CSI Rx is used
with NR Type II feedback.

In Fig. 6, we plotted the SE of schemes with differ-
ent CSI-RS densities. It is shown that AI4CSI Rx provides
18%—27% SE gain. When the density of CSI-RS is 1/64
per port per RB, which is 1/32 of the current specified den-
sity, AI4CSI Rx provides similar spectrum efficiency as the
legacy schemes with current CSI-RS density. This demon-
strates its capability of working with very low frequency-
domain granularity, which is benefitted from the capability
of super-resolution networks.

From the results shown in Fig. 5, AI4CSI Rx applied
on explicit feedback can also improve the SE compared with
the baseline schemes. When explicit feedback can provide
a sufficiently accurate channel matrix, the super-resolution
network can recover CSI accurately enough for MU-MIMO
transmissions, which makes the SE approach the ideal CSI
upper bound. Similar to the performance of legacy implicit
and explicit feedback schemes, the DL-based approach with
explicit channel matrix feedback is not superior to the same
network with implicit feedback. The two curves cross in the
moderate feedback overhead region. This hints at consid-
ering detailed feedback schemes and CSI-RS configurations
according to the acceptable feedback overhead that can be
accommodated in uplink channels.

Both AI4CSI E2E networks can improve the SE-
feedback overhead tradeoff when the feedback overhead is
moderate, that is, approximately 100 kbps per UE. The per-
formance gain on the SE is 33% – 58% compared with the
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Table 4 The computational complexity the schemes under investigation.
Scheme BS Complx. UE Complx.

(GFLOPS) (GFLOPS)
NR Type II < 0.1 0.9

Explicit < 0.1 < 0.1
AI4CSI Rx (Type II) 243 0.9
AI4CSI Rx (Explicit) 243 < 0.1

AI4CSI E2E (Lean UE) 243 0.5
AI4CSI E2E (Balanced) 3 1

NR Type II feedback. However, these two networks cannot
outperform the NR feedback at very low feedback overhead
levels, that is, when the feedback overhead is approximately
10–30 kbps for each UE. Under such feedback overhead con-
ditions, the number of nodes in the compression layer of the
network is constrained to 10–30. The network must find a
scheme to represent a large-scale channel matrix with only
10 real numbers. This is difficult and requires more channel
data to train the network for this objective.

Between the two different end-to-end networks, the net-
work with the lean UE design exhibits better performance in
most cases. Although the complexity of the UE network is
significantly reduced, we used a large and very deep CNN on
the BS side. With the price of complexity, it achieves better
performance than a balanced design. This complexity issue
is discussed in the following subsections.

4.3 Computational Complexity

Following the simulation assumptions in Table 1, we ana-
lyzed the computational complexity of each scheme. We
used the number of float operations per second (FLOPS) to
denote the computational complexity of the algorithms. The
complexity is evaluated when the feedback overhead is 550
kbps (570 kbps for NR Type II feedback because its feedback
overhead cannot be adjusted flexibly). The computational
complexity of operations for pre-and post-processing, such
as basic matrix calculations and fast Fourier transforms, was
also evaluated.

The computational complexities for each scheme are
listed in Table 4. Because the UE needs to calculate and
select the codeword from the codebook with NR CSI feed-
back schemes, where operations such as vector correlation
or even singular value decomposition may be involved, the
complexity of NR Type II feedback on the UE side cannot be
ignored. However, the complexity on the BS side is trivial
because it only needs to combine the vectors reported by
UE. However, for practical systems, we usually expect that
computational complexity can be on the BS side with a lean
UE design.

By enlarging the network scale as well as the complex-
ity on the BS side, AI4CSI E2E schemes can have a lean
UE design and still have a performance gain compared with
legacy methods. The UE can easily compress the CSI with
a network that has only one layer. Even when considering
a balanced complexity design, the UE complexity is compa-
rable with existing schemes, and the BS complexity can be

dramatically reduced.

5. Performance Evaluations with Real-life Channel
Measurements

We evaluated the performance of AI4CSI schemes with
channels generated by models used in 3GPP, which is a
kind of stochastic spatial correlation channel model. How-
ever, such channels are more deterministic than those in
real life and can be easily managed by deep learning. The
generalization performance of deep learning for communi-
cations, that is, whether it is still superior to legacy methods
in practical deployments, is a major concern in using them
in practical systems. In this section, we provide initial trials
of AI4CSI schemes with real-life channel samples. Since
AI4CSI E2E schemes have shown their potential gain with
moderate feedback overhead in the simulations, we focus on
their performance in the evaluations with real-life channels.

Table 5 MSE of end-to-end CSI feedback and recovery with realistic
channel measurements.

Scheme BS Complx. UE Complx. SE
(GFLOPS) (GFLOPS) (bps/Hz)

NR Type II < 0.1 0.9 5.7
AI4CSI E2E (Balanced) 2 1 14.5
AI4CSI E2E (Lean UE) 60 0.5 15.4
AI4CSI E2E (Lean UE) 240 0.5 20.9
AI4CSI E2E (Lean UE) 960 0.5 26.3

Although there is no common dataset for AI-based
physical layer design in mobile systems, we attempt to uti-
lize some open datasets to test whether the AI4CSI schemes
can be deployed in real-life scenarios. The channel mea-
surements used for the evaluations shown in this section are
introduced in [20]. The channels are measured in an indoor
office scenario on the 3.5 GHz band with 100 MHz band-
width. The MIMO configuration is 4 × 4. The measured
channel dataset contains 320’000 samples that are measured
at different locations in the scenario. During the measure-
ments, the receiver moved at a speed of 1.5m/s.

Considering that the characteristics of the real-life chan-
nel are different from the ones obtained with models, the
AI4CSI networks were retrained with real-life channels. In
practice, it is usually possible to collect channel samples
from cells before the deployment of base stations and use
them to train the network. We randomly extracted 1’000
channel samples from all 320’000 samples to create a verifi-
cation dataset, and another randomly selected 1’000 samples
to set up the test dataset. The remaining data were used as the
training dataset. Similar to the simulations, we evaluated the
SE of the AI4CSI E2E schemes to demonstrate their overall
performance for downlink transmissions.

The network architecture of AI4CSI networks is the
same as the ones used in the previous section. Because
real-life channels are obtained with different MIMO config-
urations, the hyperparameters of the networks were adjusted
to accommodate the dimensions of the data. Following the
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feedback configurations in [20], we considered a 25.6 kbps
feedback overhead (128 bits for each feedback) for all cases.
The configurations of NR Type II CSI were also modified to
generate similar feedback overheads. The subband number
was configured to 10, the number of combined codewords
was three, and the combination coefficients were quantized
with 3 bits for amplitudes and 4 bits for phases.

During the trials, we noticed that it requires larger net-
work models to handle the real-life channel measurements
because the channel characteristics are more diverse than
that generated by models. The propagation conditions, that
is, line-of-sight or non-line-of-sight, and the distribution of
multipath components on different positions in the scenario,
are variant. Therefore, in addition to the networks used in
Section 4, we also consider more complex BS side networks
with larger widths, that is, larger channel numbers of the
convolution layers, to check if more complex networks can
handle real-life data. Because we do not want to introduce
additional complexity for the UE, the networks on the UE
sides are unchanged. The computation complexity of the
networks is shown in Table 5, which was evaluated with
the assumption of a 5 ms feedback period (200 feedbacks
per second). For AI4CSI E2E (balanced) network, because
it is not flexible enough to adjust the complexity owing to
its complex network architecture, we only tested one net-
work size configuration. For AI4CSI E2E (lean UE), the
network on the BS side is a very deep convolution neural
network whose width can be adjusted flexibly. We tested
more cases of different complexities. The width of the con-
volution layers in the network was 64 when the complexity
was 60 GFLOPS and 128 and 256 when the complexity was
240 GFLOPS and 960 GFLOPS, respectively. Note that the
complexity of networks with the same width is smaller than
that of the networks used in the previous section owing to the
different configurations of MIMO and feedback overhead.

It is shown in Table 5 that AI4CSI E2E schemes are
superior to NR Type II feedback schemes in terms of the
SE. During the evaluations, we found that if more complex
networks on the BS side are allowed, that is, the computa-
tional complexity is increased to 240 or 960 GFLOPS from
60 GFLOPS , the SE is continuously and rapidly improved
by the complexity of the networks. This verifies the capa-
bility of AI4CSI schemes to handle practical data in real-life
deployments, although the cost of computational complex-
ity should be considered. For the balanced design of the
network, although there is no easy way to scale it, it still pro-
vides a better tradeoff between complexity and performance
compared to the lean UE design. Because the information
is lost after air interface transmission between the encoder
and decoder, it is natural that more processing at the UE can
improve to the final performance.

In summary, from this trial with real-life channel data,
we find that the AI4CSI E2E schemes can still work as they
do with channels generated by the models. The feasibility of
these schemes was verified.

6. Conclusion

In this study, we investigated DL-based CSI acquisition
schemes for massive MIMO with the practical settings of
current 5G mobile networks. We investigated the SE, feed-
back overhead, and computational complexity of our pro-
posed two types of DL-based schemes, that is, DL-based
receiver enhancements and end-to-end design, as well as NR
CSI feedback and explicit channel matrix feedback.

The evaluations demonstrated the promising gain of
DL-based CSI acquisition for 5G evolution and 6G. At a
moderate feedback overhead level, that is, approximately
100 kbps per UE, the DL-based receiver enhancement in-
troduces approximately 25% performance gain on the SE of
downlink transmissions, and the end-to-end design provides
more performance gain on SE, up to 58%, compared with
legacy schemes. The performance gain of DL-based CSI
acquisition schemes was also tested with a dataset consisting
of channel measurements in a practical scenario, which ver-
ifies their feasibility for real-life deployments. As DL-based
receiver enhancement has little impact on the air interface,
it can be used in 5G networks with 5G evolution without
much standardization effort. DL-based end-to-end CSI ac-
quisition redefines the feedback air interface of the networks,
where the feedback content is designed by the DL network
itself. To obtain an additional performance gain, a new CSI
feedback framework with native AI support, which enables
CSI feedback and reconstruction designed by end-to-end DL
networks, can be considered in future 6G networks.
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