
IEICE TRANS. COMMUN., VOL.E106–B, NO.12 DECEMBER 2023
1293

PAPER Special Section on Towards Management for Future Communications and Services in Conjunction with Main Topics of APNOMS2022

Secure Enrollment Token Delivery Mechanism for Zero Trust
Networks Using Blockchain∗

Javier Jose DIAZ RIVERA†a), Waleed AKBAR††, Talha AHMED KHAN††, Afaq MUHAMMAD††,
and Wang-Cheol SONG††, Nonmembers

SUMMARY Zero Trust Networking (ZTN) is a security model where
no default trust is given to entities in a network infrastructure. The first
bastion of security for achieving ZTN is strong identity verification. Sev-
eral standard methods for assuring a robust identity exist (E.g., OAuth2.0,
OpenID Connect). These standards employ JSON Web Tokens (JWT) dur-
ing the authentication process. However, the use of JWT for One Time
Token (OTT) enrollment has a latent security issue. A third party can in-
tercept a JWT, and the payload information can be exposed, revealing the
details of the enrollment server. Furthermore, an intercepted JWT could be
used for enrollment by an impersonator as long as the JWT remains active.
Our proposed mechanism aims to secure the ownership of the OTT by in-
cluding the JWT as encrypted metadata into a Non-Fungible Token (NFT).
The mechanism uses the blockchain Public Key of the intended owner for
encrypting the JWT. The blockchain assures the JWT ownership by map-
ping it to the intended owner’s blockchain public address. Our proposed
mechanism is applied to an emerging Zero Trust framework (OpenZiti)
alongside a permissioned Ethereum blockchain using Hyperledger Besu.
The Zero Trust Framework provides enrollment functionality. At the same
time, our proposed mechanism based on blockchain and NFT assures the
secure distribution of OTTs that is used for the enrollment of identities.
key words: zero-trust, blockchain, authentication, security, tokens

1. Introduction

Modern computer networks have evolved outside the bound-
aries of local infrastructure deployments. Nowadays, the
consumption of heterogeneous services with different user
requirements is handled by virtualized networks hosted as
IaaS by cloud providers. Although cloud computing pro-
vides great benefits for tackling the utilization demands re-
quired in current network environments, security issues still
arise [1], [2]. The line that delimits a network perimeter has
dissipated as organizations have a local network infrastruc-
ture and remote sites or cloud services for providing access
to enterprise resources. Furthermore, current network secu-
ritymodels are based on the castle-and-moat concept [3], [4].
This concept considers strict rules and verification for obtain-
ing access from outside the network perimeter, but everyone

Manuscript received January 10, 2023.
Manuscript revised March 31, 2023.
Manuscript publicized June 1, 2023.
†The author is with Department of Electronic Engineering, Jeju

National University, Republic of Korea.
††The authors are with Department of Computer Engineering,

Jeju National University, Republic of Korea.
∗This work was first presented at the 23rd Asia-Pacific Network

Operations andManagement Symposium (APNOMS2022) and has
been revised for this publication.

a) E-mail: ncl@jejunu.ac.kr
DOI: 10.1587/transcom.2022TMP0005

inside the perimeter is trusted by default. The castle-and-
moat method faces several difficulties in modern networks as
organizational resources are spread across cloud vendors in
different geographical regions, proving a challenge for hav-
ing a single security model for an entire distributed network.

Zero Trust Networking is a security concept that con-
siders no network entity (e.g., user, device, application, etc.)
as trusted [5]–[7]. Zero Trust can be deemed a new paradigm
where organizations continuously monitor their network as-
sets, analyze risks, protect, and execute mitigations when
necessary [8]. The first bastion of protection involves lim-
iting access to network resources to only identified entities
and regularly verifying and authorizing their identity for each
subsequent access request. As a result, various technologies,
such as OpenID and OAuth2.0, focus on the authentication
and authorization process.

Authentication technologies may vary in their methods
for handling the identity of the users. However, they com-
monly use JSONWeb Tokens (JWT) [9]–[11] to grant access
to resources or provide identity verification. Typically, other
forms of identity (e.g., secrets, certificates, signatures) are
paired with JWT to assure the ownership of the token. The
issue arises for cases where the JWT is used for One Time
Token (OTT) enrollment. In an authentication workflow, the
enrollment phase establishes the trust between parties, com-
monly represented by the issuance of a signed certificate
(e.g., X.509) from the enroller to the enrollee [12]. Before
enrollment, there is no guarantee that the holder of the JWT
is the intended enrollee. Techniques such as Multi-Factor
Authentication (MFA) or 2-Step verification can use the per-
sonal details of the intended enrollee to assure ownership.
Still, as OTT has a short period of validity, this added step
could induce delays in the enrollment phase, which may
render the token invalid.

Another latent issue of the JWT is that the payload,
which commonly contains the user ID and (in the case of
the OTT) the enrollment server information, can be decoded
by any holder of the JWT, raising the concern of a proper
delivery mechanism for the enrollment token. In Zero Trust
Networking, the actual physical location, IP address/DNS,
and the enterprise resources’ ports should not be publicly
disclosed. A deadlock issue occurs, as the enrollment tokens
should not be delivered to an untrusted party. However, an
entity can only be trusted if they possess an enrollment token.

This paper is an expanded version of [13] with ad-
ditional related work discussion and algorithm procedures,

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers



1294
IEICE TRANS. COMMUN., VOL.E106–B, NO.12 DECEMBER 2023

improved performance and stability results, and a compar-
ison between the proposed mechanism and conventional
JWT delivery methods. Our mechanism utilizes permis-
sioned blockchain technology and assigns a blockchain iden-
tity (i.e., blockchain private key, blockchain public key, and
blockchain public address) to each potential enrollee to se-
curely deliver the OTT. The OTT is encrypted using the
blockchain public key of the potential enrollee and then in-
cluded in a Non-Fungible Token (NFT) as part of its to-
kenURI. The permissioned blockchain ensures that only the
intended enrollee can receive and decrypt the token. Our so-
lution does not aim to replace standard authentication mech-
anisms such as OpenID Connect but rather to enhance their
operation by incorporating the blockchain for identity assess-
ment and using NFTs to encode authentication tokens. By
doing so, we aim to provide additional security assurances
as the encoded JWT can only be accessed and utilized by the
intended parties, without relying on a traditional Public Key
Infrastructure (PKI). The experimental setup was achieved
using a permissioned Ethereum blockchain deployed utiliz-
ing the Hyperledger Besu solution. The enrollment func-
tionality is provided by the emerging Zero Trust platform
OpenZiti. An RPC server has been integrated inside the
OpenZiti platform, where programmatic interaction with the
blockchain was added to accomplish our mechanism.

The paper is divided as follows: Section 2 contains
the related work, Sect. 3 details the mechanism information,
Sect. 4 includes the implementation and results, and Sect. 5
concludes the manuscript.

2. Related Work

Several publications have presented their work on leveraging
authentication or authorization using JWT and blockchain
technologies. In [14], the authors propose a system that
employs a time-based one-time password (TOTP) and two-
factor authentication to overcome the security vulnerability
in the JWT. The authors referred to the sensitive informa-
tion included in the token payload, which an attacker could
eavesdrop on. The two-factor authentication supplements
the use of the JWT as an access token by creating a mirror
token as a one-time password (OTP). The OTP token is used
instead of the access token for authentication verification.
The authors mentioned that the drawback of their proposed
system was the increase in the authentication execution time,
but no performance metrics were provided.

The authors in [15] propose a blockchain-based smart
contract design and implementation for OAuth 2.0 authoriza-
tion tokens. The scenario presented by the authors considers
clients, authorization servers, resource servers, and resource
owners. The solution uses bearer tokens in JWT format
to specify the authorization requirements for accessing a
resource. The authors utilize Ethereum blockchain-based
smart contracts to create an ERC-721 (NFT) representation
of the base64url encoding of the JWT. The NFT provides
proof of possession of the bearer token as it can bemapped di-
rectly to the public blockchain address of the intended owner.

The authors mention security assumptions that should be in
place to guarantee the identity of resource servers and clients
(e.g., X.509 certificates). The authors present performance
and cost evaluation, where details of the blockchain transac-
tion costs are shown in a table. Furthermore, there ismention
of computational overhead related to the invocation of smart
contract functions, but no metrics or comparisons with stan-
dard OAuth 2.0 authentication methods are provided.

The authors in [16] tackle decentralized authentication
by proposing a mechanism named AuthChain, which relies
on blockchain functionality to provide a robust, transparent,
and secure method for user authentication. The motivation
of the research is centered on the latent security implications
of credential information storage in current authentication
systems, which may be susceptible to account hacking and
data breaches. To this end, blockchain technology is uti-
lized for decentralized authentication employing smart con-
tract operation. The authentication process is established
as a self-governed process programmed through a verifiable
set of rules. The mechanism leverage the functionality of
blockchain cryptography to hash and store the information in
the blockchain for verification. The benefits presented by the
authors rely on defense from man-in-the-middle attacks, as
possible intruders cannot generate valid verification hashes
due to not possessing the Public and Private keys used for the
hash function. Although the disclosed mechanism provides
a reasonable solution for decentralized authentication, the
implementation relies on a permanent hash record for con-
tinuous verification. This means that the blockchain does not
reflect the current state of the registered user, as the authenti-
cation system takes for granted that once a hash is registered
in the blockchain, it can trust any authentication request that
matches the hash. In contrast, a more dynamic solution can
leverage tokens that are generated, utilized, and discarded
once the authentication process is finished. The tokens can
guarantee that every authentication request is unique for ev-
ery point in time. The paper makes mention of tokens as
unique identifiers, but the authors do not elaborate on their
actual use for the proposed mechanism.

In [17], the authors proposed a blockchain-based au-
thentication and access control model for smart environ-
ments. The proposed model used a hybrid blockchain con-
sisting of a public Ethereum network connected to multiple
private Hyperledger fabric networks. The public blockchain
serves as integrated authentication management where users
can create their identity with their Ethereum account infor-
mation (blockchain public address), hashed secret, and per-
sonal information. A smart contract handles the creation of
the identity. The multiple private blockchain networks rep-
resent different organizations where the integrated ID can be
used to authenticate and access organization resources. Only
identities that have previously been registered from the pub-
lic blockchain network and verified by the private blockchain
can access specific resources from an organization. The
model proposed in this paper provides a tamper-proof record
of access history related to a specific ID. However, due to
the use of a public Ethereum network, creating an integrated



DIAZ RIVERA et al.: SECURE ENROLLMENT TOKEN DELIVERY MECHANISM FOR ZERO TRUST NETWORKS USING BLOCKCHAIN
1295

ID and registering the organization Token for a specific ID
can incur high transaction fees that the user must cover. The
authors do not mention any drawbacks related to the trans-
action costs. Furthermore, the validation token distribution
mechanism is not fully described, a reader may assume that
the token is transferred using blockchain methods, but no
reference to blockchain token standards (e.g., ERC-21 or
ERC-721) is disclosed in the paper. Also, any user (autho-
rized or not) can interact with the identity smart contract and
issue the creation of an integrated ID.

The proposed work in the present manuscript takes the
ERC-721 approach of [15] as its basis but applies it to au-
thentication instead of authorization. Our research aims to
provide a secure distribution mechanism for enrollment to-
kens to create a strong identity. As mentioned in the related
work of this section, JWT’s base64url encoding is by no
means a secure encryption. A mechanism should ensure
that the holder of a JWT has the rights to it. No other en-
tity should be able to decode the JWT, as any information
included in the payload could be sensible for revealing the
network location of enterprise assets. Nonetheless, JWT
has become a common approach in many systems requiring
access control. Due to this, our approach aims to securely
define the creation and distribution of JWT that serve as OTT
for identity enrollment to achieve the requirements of Zero
Trust networking.

This manuscript utilizes a permissioned Ethereum
blockchain alongside the OpenZiti platform to apply the
proposed mechanism for secure OTT delivery. The main
contributions of this paper are as follows:

• A secure mechanism for assuring tamper-proof of the
JWT payload based on blockchain Public key encryp-
tion of the JWT’s base64url.

• Identity management is based on permissioned
blockchain records where only authorized blockchain
public addresses are allowed to participate.

• Applying the ERC-721 token standard for NFT creation
where the tokenmetadata includes the encrypted JWT’s
base64url as part of the “onchain” information.

• The blockchain assures the proper delivery of the JWT
as the NFT provides a “proof-of-ownership” related
to mapping the intended enrollee’s public blockchain
address to the owner field of the NFT.

• An immutable ledger where every transaction can be
verified and audited by an authorized entity.

3. Mechanism Description

The design for our proposedmechanism can be seen in Fig. 1.
It is representative of a Zero Trust solution where no entity
is considered trusted by default requiring a verified identity
for connecting to the network infrastructure. All communi-
cations are based on digitally signed messages to prevent
eavesdropping or impersonation. The trustworthiness of
each component is constantly verified to ensure security.

The system’s main components are a permissioned

Fig. 1 Mechanism for secure OTT delivery.

blockchain, an RPC server, an enrollment server (as part
of a secure network overlay), and endpoints representing
clients or service providers that require enrollment into the
network. The enrollment server and RPC server require
their own private and public keys (PrK, PuK) to interact
with the blockchain, and a trustworthy administrator entity
should manage their initial setup. The blockchain verifies
trust and ensures that no malicious entities can compromise
the system. The external endpoints are subject to the au-
thentication mechanism described in this manuscript. Im-
personation cannot occur unless the private keys associated
with a blockchain account are exposed, ensuring that only
authorized entities are able to access the system.

In the context of standard authentication mechanisms
such as OpenID Connect or Security AssertionMarkup Lan-
guage (SAML), the Identity Provider (IdP) is responsible for
authenticating the user and providing an identity token to the
relying party or client application. The enrollment server,
blockchain, and RPC server in the discussed mechanism can
be seen as a modified version of an IdP, where the traditional
identity verification process leverages the security guaran-
tees provided by the blockchain.

3.1 Permissioned Blockchain

Blockchain technology creates a data structure with built-in
security features. It is based on encryption, decentralization,
and consensus principles, ensuring transaction confidence.
Most blockchains or distributed ledger technology (DLT)
data is organized into blocks containing one or more trans-
actions. Each new block in a cryptographic chain connects



1296
IEICE TRANS. COMMUN., VOL.E106–B, NO.12 DECEMBER 2023

Table 1 Identity struct.
registerIdentity(Address PuAddr, string name, string e-mail)

PuAddr The blockchain public address of the requesting enrollee
name Plain text name of the requesting enrollee
e-mail The e-mail of the requesting enrollee

to all the blocks before it, so tampering is nearly impossible.
A consensus mechanism validates and agrees on all trans-
actions within the blocks, ensuring that each transaction is
truthful and correct [18].

Most popular blockchains operate as a public ledger
where any entity can participate either as part of the con-
sensus or as a blockchain client that executes transactions.
Furthermore, the blockchain technology that provides a pro-
grammatic framework has allowed the creation of decentral-
ized applications that can accommodate various use cases
[19]. However, transaction costs must be carefully consid-
ered if businesses or organizations desire to use this technol-
ogy [20].

Private blockchains provide the benefits of public
blockchains plus functionality that can accommodate spe-
cific business rules of different organizations and enterprise
scenarios [21], [22]. Due to this, our solution considers
the use of a private/permissioned blockchain capable of pro-
grammatic interactions through the use of smart contracts.

The blockchain functionality required for our mecha-
nism is defined in 2 smart contracts, one for identity man-
agement and another for OTT issuance - ERC-721 (NFT).
The identity management smart contract handles the regis-
tration of blockchain public addresses (PuAddr) of entities
identified as part of an organization/enterprise by using the
method registerIdentity(). The information is handled as a
struct with the attributes seen in Table 1. The OTT issuance
smart contract is used to create the NFT that holds the en-
crypted JWT information as part of the tokenURI.

3.2 Enrollment Server

The enrollment server has two main functionalities. First, it
is in charge of generating the OTT for the verified identities
that exist in the blockchain. Second, it provides enrollment
of identities into the Zero Trust network by signing and
provisioning X.509 certificates. These certificates are used
for mutual Transport Layer Security (mTLS) connections
inside the Zero Trust network. The scope of this research
paper focuses on the first functionality (i.e., OTT creation). If
no verification method for the handler of the OTT is in place,
any entity that holds the token could trigger an enrollment
procedure and generate valid certificates that would grant
further entrance into the Zero Trust Network.

The enrollment server is considered part of the Zero
Trust network overlay. In our scenario, the enrollment capa-
bilities are provided by the OpenZiti framework developed
by Netfoundry [23]. The components of this framework are
the ziti controller and ziti routers (edge and fabric) that are
interconnected to form a secure overlay network that pro-
vides end-to-end encryption between dark services and ziti

{
"em": "ott",
"exp": 1647917167,
"iss": "https://ziti-edge-controller:1280}",
"jti": "716a8f15-5bf5-40dc-9320-1d2857b7759b",
"sub": "KIv6CJRUv"
}

Fig. 2 JWT payload contents.

clients. The enrollment server functionalities for identity
creation, OTT generation, and identity enrollment are inside
the ziti controller. By default, an authorized administrator
user can interact with the ziti controller to manually create
identities (e.g., CLI commands, API calls) and generate the
JWT used for OTT. However, OpenZiti has no integrated
mechanism for secure delivery of the generated JWT to the
intended entity. An example of the plaintext contents of a
JWT used for OTT can be seen in Fig. 2.

3.3 RPC Server

This server is the entity that handles the user requests for
identity creation, the execution of the smart contracts, and
the interactions with the enrollment server for secure OTT
creation. In essence, this server verifies that requesting en-
tities are part of the organization/enterprise to register them
in the blockchain. The RPC server must be aware of the
business rules and human resource information particular to
an organization. This work assumes that the RPC server has
these requirements fulfilled to apply a multi-factor authen-
tication (MFA) method based on verified personal contact
information.

When the users solve the MFA, the RPC server obtains
a cryptographically signed request. This signature is used to
obtain the PuK and the PuAddr of the requesting user. The
PuAddr is used to register the identity utilizing the identity
management smart contract, and the PuK is used for the
encryption of the JWT.The process of signing and recovering
the blockchain PuAddr and PuK is shown in Algorithm 1.

The RPC server operates as a decentralized application
(dapp) that can combine the information obtained from the
methods of the identity management and the OTT issuance

Algorithm 1 Obtaining PuAddr and PuK from Signature
Input: M - MFA message

PrK - Blockchain private key of the endpoint
Output: PuAddr- Blockchain public address of the endpoint

PuK - Blockchain Public Key of the endpoint
1: procedure Endpoint signs message M
2: hashedM← hash.keccak256(M)
3: signedM← sign(PrK, hashedM)
4: solveMFA(hashedM, signedM)
5: procedure RPC server- recovers signer PuAddr and PuK
6: PuAddr← recover(signedM, hashedM)
7: PuK← recoverPublicKey(signedM, hashedM)
Note:
solveMFA(() - sends hashedM and signedM to RPC server
sign(), hash(), recover(), recoverPublicKey() - part of eth-crypto library



DIAZ RIVERA et al.: SECURE ENROLLMENT TOKEN DELIVERY MECHANISM FOR ZERO TRUST NETWORKS USING BLOCKCHAIN
1297

Algorithm 2 Secure OTT Delivery
Input: PuAddr - Blockchain public address of the endpoint

PuK - Blockchain Public Key of the endpoint
Output: OTT - Decrypted JWT ready to use for enrollment

1: procedure RPC Server - OTT creation and encryption
2: OTT← requestOTT(PuAddr)
3: expOTT, jtiOTT← extractMetadata(OTT)
4: encryptedOTT← encryptWithPublicKey(PuK ,OTT )
5: nftOTT← createNFT(encryptedOTT)
6: mapOTTinfo(tokenId, expOTT, jtiOTT)
7: transfer(tokenId, PuAddr)
8: procedure Endpoint - Receives nf tOTT and Decrypts
9: encryptedOTT← extractTokenURI(tokenId)
10: OTT← decryptWithPrivateKey(PrK, encryptedOTT)
Note:
requestOTT() - from RPC server to enrollment server
encryptWithPublicKey() - part of eth-crypto library
decryptWithPrivateKey() - part of eth-crypto library
requestOTT() - enrollment server replies to RPC server with OTT
expOTT - expiration time of OTT
jtiOTT - JWT identifier of OTT
mapOTTInfo() - Relationship between NFTs and OTT metadata
tokenId - Identifier of created NFT - nf tOTT
PrK - Blockchain Private Key of the endpoint

smart contracts. The mapping of the registered blockchain
PuAddr inside the identities struct is used to verify the own-
ership of the OTT and its status (e.g., active, expired).

The RPC server executes OTT creation requests to the
enrollment server for verified identities (i.e., registered in
the blockchain). This procedure requires the RPC server
to have the proper credentials for interaction. Our approach
considers the RPC server as an administrator type of user au-
thorized to execute API calls to the enrollment server, which
automatically replies with a JWT representing the OTT used
for enrolling. The OTT encryption uses the blockchain PuK
of the verified identities to guarantee that only the intended
owner of the token can utilize it for enrollment. The en-
crypted data is included as part of NFT metadata by interac-
tion with theOTT issuance smart contract. Furthermore, the
generated NFT tokenId is associated with the “jti” and “exp”
information of the JWT as part of the OTT issuance smart
contract functionality. Algorithm 2 showcases the process
of secure delivery of the OTT.

3.4 Endpoints

The endpoints represent the clients and service providers that
request identity creation and enrollment into the Zero Trust
network. Every endpoint is considered a blockchain client
that holds blockchain PrK and PuK alongside a blockchain
PuAddr. An endpoint is unaware of the enrollment server
until it receives the encrypted OTT. Initially, the endpoints
request to create an identity by interaction with the RPC
server that triggers an MFA procedure. The solution of the
MFA includes a call to a setApprovalForAll() method that
delegates the transfer of NFTs to the RPC server as follows.

setApprovalForAll(operator,approved) (1)

The method in Eq. (1) allows an operator to manage any

NFT held by the endpoint that initiated the call to themethod.
The operator is a string that refers to the PuAddr of the RPC
server, and the approved argument is a boolean that needs
to be set to True. When an endpoint receives an encrypted
OTT as an NFT, it initiates the enrollment procedure after
decryption of the tokenURI using its blockchain PrK. This
process triggers a state verification of the OTT by the RPC
server, which will “burn” the endpoint NFT as soon as the
OTT is used for enrollment or if the token has an “exp” date
already passed. The NFT “burn” is triggered by the method
transferFrom(), as seen in Eq. (2).

transferFrom(endpoint,genesis, tokenId) (2)

Algorithm 3 Token verification and burning
Input: OTT - decrypted One Time Token

signedEM - PrK signed jti of OTT
Output: trans f erFrom()- Burning of token

1: procedure Endpoint - enrollment request
2: enrollRequest(signedEM, OTT)
3: procedure Enrollment Server - process enrollment
4: isValid← isTokenValid(signedEM, OTT)
5: if isValid then
6: ottUsed(OTT)
7: procedure RPC server - Validate OTT
8: jtiOTT← extractJTI(OTT)
9: expOTT, tokenId← getOTTInfo(jtiOTT)
10: ownerPuAddr← ownerOf(tokenId)
11: if expOTT < block.timestamp then
12: burn(ownerPuAddr,tokenId)
13: return False

14: recPuAddr← recover(jtiOTT, signedEM)
15: if recPuAddr ! = ownerPuAddr then
16: burn(ownerPuAddr,tokenId)
17: return False

18: return True
19: procedure RPC server - Handle used OTT
20: jtiOTT← extractJTI(OTT)
21: tokenId← getOTTInfo(jtiOTT)
22: ownerPuAddr← ownerOf(tokenId)
23: burn(ownerPuAddr,tokenId)
24: procedure RPC server - Burn OTT
25: transferFrom(ownerPuAddr,genesis,tokenId)
Note:
enrollRequest() - from endpoint to enrollment server
isTokenValid() - OTT validation request to the RPC server
ottUsed() - from enrollment server to RPC server for burning a used token
extractJTI() - extracts JWT identifier from OTT
getOTTInfo() - obtains the expiration time and the blockchain tokenId
expOTT - expiration time of OTT
jtiOTT - JWT identifier of OTT
tokenId - identifier of the NFT - (OTT in the blockchain)
ownerOf() - obtains the blockchain PuAddr that owns the OTT
burn() - call to the burn procedure
recover() - obtains the PuAddr of the endpoint that is using the OTT
transferFrom() - transfers the token to the genesis address
PrK - Blockchain Private Key of the endpoint
genesis - 0x0000000000000000000000000000000000000000 address
ownerPuAddr - PuAddr that owns the OTT as an NFT
recPuAddr - PuAddr from the signed enrollment request - signedEM

The RPC server executes the transferFrom() method to



1298
IEICE TRANS. COMMUN., VOL.E106–B, NO.12 DECEMBER 2023

transfer the expired/used OTT (specified by a tokenId) from
an endpoint address to the genesis address. In a blockchain,
it is a common practice to execute a token “burn” by sending
them to the “0x0000000· · · 0000000” (i.e., genesis) address.
Algorithm 3 details the process that renders the tokens un-
usable, effectively removing them from the scenario.

4. Implementation and Results

To illustrate the operation of the proposed mechanism, a
private Ethereum blockchain was utilized. The deployment
was achieved by using the Hyperledger Besu blockchain [24]
implementation, which provides configuration for creating a
permissioned blockchain that supports a Proof-of-Authority
(PoA) consensus mechanism [25], [26]. In an ideal sce-
nario, an organization can identify and select trusted nodes
that may serve as validators inside the blockchain network.
For the results presented in this manuscript, a blockchain
consisting of 5 nodes utilizing the Clique consensus mech-
anism was configured. This consensus mechanism does
not require high computing power to produce and verify
blocks. Furthermore, the gas fee for the blockchain trans-
actions was configured with a value of “zero” to achieve a
no-fee blockchain network in order to exclude the transaction
costs for this private network.

4.1 Test-Bed Preparation

The identity management and OTT issuance smart contracts
have been coded using the solidity programming language
and deployed into the blockchain using the remix IDE. The
RPC server is a dapp developed using NodeJS and javascript.
It utilizes the eth-crypto [27] libraries to create its own
blockchain PrK, PuK, and PuAddr. The PuAddr of the RPC
server has been configured as the owner() of the deployed
smart contracts. Except for the setApprovalForAll(), all the
smart contract functions that generate a blockchain transac-
tion were modified only to accept calls by the owner.

A simple NodeJS app alongside Metamask was used
to illustrate the interaction that endpoints (representing
clients/service providers) can execute to identify themselves
in the Zero Trust Network. The NodeJS app utilizes the
eth-crypto libraries for the decryption of the NFT metadata.
Metamask handles the creation of the blockchain PrK, PuK,
and the PuAddr of the client. Multiple clients can be identi-
fied by their unique blockchain PuAddr.

OpenZiti was deployed as the Zero Trust network over-
lay. The enrollment functionalities of the ziti-controller,
namely the JWT generation and OTT enrollment, have been
identified and considered as the enrollment server for the
experiments. A Ziti administrator account for API interac-
tion was created and provided to the RPC server. Minimal
modification of the golang code for the ziti-controller was
done. Additional steps for verification of the OTT owner and
notification of the status of the enrollment token (e.g., used,
expired) have been added.

A simple e-mail-based MFA authentication has been

integrated with the RPC server. It utilizes predefined e-mail
addresses that serve as the “verified” contact information
of the endpoints that request enrollment into the Zero Trust
Network. The contents of the e-mail point to the dapp func-
tionality for signing the verification message and triggering
the setApprovalForAll() method.

4.2 Experiment

To verify the proposed mechanism, the following experi-
ment was conducted, which includes the numbered steps
illustrated in Fig. 1.

1. Auser creates its PrK, PuK, and PuAddr by usingMeta-
mask.

2. The user interacts with the RPC server and requests
enrollment by providing the following information:
a) PuAddr, Name, E-mail.

3. The RPC server verifies the information.
a) If the e-mail matches the organizational e-mail from

a database (Simplified in our scenario). It issues an
MFA verification.

b) Else, it denies the request.
4. The user opens a verification link from the e-mail.

a) Uses eth-crypto to sign a response to the RPC server
using its PrK.

b) The verification link includes a call to setApproval-
ForAll() and delegates NFT transfers to the RPC
server.

5. The RPC server registers the user information inside
the blockchain using the identity management smart
contract.
a) PuAddr, Name, E-mail.

6. The RPC server communicates with the enrollment
server for the creation of an OTT (JWT) for the reg-
istered user.
a) Ziti admin APIs are used.

7. The enrollment server issues an OTT in JWT format as
a reply to the RPC server.

8. The RPC server executes the following:
a) Extracts the “exp” and “jti” fields of the JWT.
b) Encrypts the JWT using the PuK of the user (Ob-

tained from the signature in step 4.a).
9. The RPC server creates an NFT by interaction with the

OTT issuance smart contract. The tokenURI of the
NFT contains the encrypted JWT.

10. The RPC server executes the mapOTTinfo() method
from the OTT issuance smart contract. It inputs the
following information.
a) tokenId, (of the created NFT from step 9, “jti” and

“exp” (from step 8.a).
11. The RPC server executes the transfer() method in the

OTT issuance smart contract, sending the NFT to the
PuAddr obtained in step 2. A smart contract event
for the transfer is triggered. The event contains the
following information.
a) sender PuAddr, recipient PuAddr, tokenId.

12. The user is notified of the transfer (by the event) and



DIAZ RIVERA et al.: SECURE ENROLLMENT TOKEN DELIVERY MECHANISM FOR ZERO TRUST NETWORKS USING BLOCKCHAIN
1299

queries the NFT’s tokenURI by the tokenId.
13. The user decrypts the JWT information using its PrK.
14. The user utilizes the decrypted information as an OTT

for enrollment by communicating with the enrollment
server.
a) It uses the native OpenZiti client API functionality

for enrollment.
b) It appends a PrK signed message to the request.

15. The enrollment server verifies the OTT validity and
ownership by interaction with the RPC server. isToken-
Valid() receives the OTT in JWT format and a signed
message to verify the blockchain information relative
to the OTT.
a) It uses the “jti” to query the “exp” field, tokenId,

and PuAddr that owns the tokenId registered in the
blockchain.

b) If “exp” is less than the current timestamp, the OTT
is invalid.

c) It recovers the user PuAddr from the signed message
in step 14.b. If the recovered PuAddr (recPuAddr) is
not equal to owner PuAddr (ownerPuAddr) the OTT
is invalid.

d) Invalid tokens are burned as per Eq. (2).

The enrollment server uses a valid OTT to complete the
enrollment procedure (not discussed in the manuscript). It
sends a notification to the RPC Server regarding the status of
the OTT using the ottUsed() method. The tokens that were
used are burned in accordance with Eq. (2). The identity
of the enrollee and the validity of the OTT are verified and
ensured throughout the entire enrollment process.

4.3 Results

The performance of the secure token delivery mechanism
was evaluated based on the total completion time (TCt ) of
the enrollment process. The criterion of the evaluation is
represented by Eq. (3). Where for an iteration i, Tβt is the
total transaction block time in milliseconds, Tεt is the total
signature, encryption, and decryption-related tasks time in
milliseconds, TQt is the total blockchain query time and
Tµt is the total time of tasks that are not measured with a
near-constant value of time (e.g., MFA verification, e-mail,
manual intervention, etc.).

TCt =

∑n
i=0(Tβti + Tεti + TQti

+ Tµti )

n
(3)

Figure 3 displays the average results in seconds for 50
iterations of the enrollment process for different block-time
configurations (e.g., 2 seconds, 5 seconds, 15 seconds). The
results show that theTβt plays a key role in improving the per-
formance of the proposed enrollment process. Nonetheless,
a lower block time might reach a diminishing improvement
as the total competition time gets affected by the Tµt , which
includes tasks that have high variance in time for differ-
ent iterations (not constant). As per our experiments, the
encryption, decryption, and signature tasks do not greatly

Fig. 3 Mechanism’s performance measured in seconds.

Fig. 4 Stability of the blockchain system.

affect the enrollment process; each task has an average of 20
milliseconds to complete.

Figure 4 illustrates the results of the test conducted in
order to assess the stability of the system. The configured
block time (βt ) for the test was 2 s with a total of 1000
OTT trans f er() transactions executed simultaneously us-
ing a multi-threaded python environment. The blockchain
system can handle a load of transactions employing a trans-
action pool per node that acts as a queue of unprocessed
transactions. The distribution of transactions per node is
uniform which denotes good node synchronization and im-
mediate block propagation.

The best performance achieved by the proposed mech-
anism for delivering an OTT to a requesting enrollee is
3600 ms when considering a βt of 2 s (not including the
burning step). The standard operation (base OpenZiti with-
out blockchain) of token delivery using a JWT as an OTT
completes in approximately 100 ms. There is still a great
margin for improvement of our mechanism in order to com-
pete with standard JWT implementations when considering
only the performance requirements. Nonetheless, the base
JWT delivery utilized in OpenZiti can be a target for security
breaches where an attacker can intercept, decode and utilize
the JWT before the intended enrollee. The main benefits our
mechanism brings to the security of the JWT delivery are
disclosed in Table 2, which are achieved by the encryption



1300
IEICE TRANS. COMMUN., VOL.E106–B, NO.12 DECEMBER 2023

Table 2 Base JWT delivery vs proposed mechanism.

Scheme Hidden
Payload

Ownership
Verification Revocation

OpenZiti -
JWT as OTT not provided not provided not provided

Proposed
Mechanism provided provided provided

of the JWT payload, the mapping proof-of-ownership of the
JWT as NFT, and the revocation capabilities given by the
smart contract functionality.

5. Conclusion

A mechanism for secure enrollment token distribution for
Zero Trust networks using blockchain was presented in this
manuscript. The fundamental requisite of securing a strong
identity for Zero Trust is realized through blockchain tech-
niques such as non-fungible tokens (NFT). The proof of
ownership that NFT provides allows for a trustable verifica-
tion of potential enrollees into the system. Furthermore, the
protection of the enrollment information is achieved by en-
crypting the metadata of the NFT. Without blockchain tech-
nology, a centralized approach that requires a complex PKI
infrastructure and database management would be required
to achieve similar results. Even though the proposed mecha-
nism follows the principles ofZeroTrust (“never trust, always
verify”), it is important to implement appropriate measures
to protect the blockchain private keys of each component to
prevent breaches that can compromise the network system’s
security.

The private permissioned blockchain can be tailored
to match the business rules of specific organizations with
more flexible approaches compared to the public blockchain
implementations (e.g., block time, transaction fee, number
of validators, consensus algorithm). Nonetheless, planning
is required to achieve the mechanism’s best performance.
Reducing the block does not necessarily improve the mech-
anism’s completion time and could lead to issues such as
breaking the synchronization of block validators. (Depend-
ing on the size and load of the blockchain). As blockchain
technology matures, the performance of our mechanism can
improve and close the gap of the performance margin be-
tween baseline JWT technologies.

The proposed mechanism can potentially be applied
to other systems that utilize authentication and authoriza-
tion mechanisms similar to OpenID Connect, SAML, or
OAuth2.0 by replacing the traditional Identity Provider
functionality with the enrollment server, permissioned
blockchain, and RPC server components. However, the spe-
cific implementation and integration of the proposed mech-
anism would depend on the requirements and architecture of
each particular system.

Currently, the RPC server’s role is to operate the smart
contracts’ functionality and forward requests from the end-
points to the enrollment server. Extended work could im-
prove the operation of the RPC into a more intelligent ap-

proach that handles the smart control of access policies re-
lated to the use of the Zero Trust network resources. This
requires a more complex system where real-time monitoring
and analysis of the operation state of all the resources that
form part of the Zero Trust network is considered. Further
research is oriented in this direction.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education (NRF-
2016R1D1A1B01016322).

References

[1] I. Odun-Ayo, O. Ajayi, and S. Misra, “Cloud computing security:
Issues and developments,” Proc. World Congress on Engineering
2018 (WCE), London, U.K., vol.1, pp.175–181, July 2018.

[2] G. Kumar, “A review on data protection of cloud computing security,
benefits, risks and suggestions,” United International Journal for
Research & Technology (UIJRT), vol.1, no.2, pp.26–34, 2019.

[3] A. Deshpande, “A study on rapid adoption of zero trust network
architectures by global organizations due to COVID-19 pandemic,”
New Visions in Science and Technology, vol.1, ed. S.M. Lawan,
pp.26–33, B P International, India, 2021.

[4] G. Sorrentino, “The human variable: Designing a security strategy
for a future in flux,” Cyber Security: A Peer-Reviewed Journal, vol.5,
no.1, pp.6–12, 2021.

[5] A. Deshpande, “Relevance of zero trust network architecture amidts
and it’s rapid adoption amidts work from home enforced by COVID-
19,” Psychology and Education Journal, vol.58, no.1, pp.5672–5677,
2021.

[6] P. Assunção, “A zero trust approach to network security,” Proc. Digi-
tal Privacy and Security Conference 2019, Porto, Portugal, pp.65–72,
Jan. 2019.

[7] E. Bertino, “Zero trust architecture: Does it help?,” IEEE Security
Privacy, vol.19, no.5, pp.95–96, 2021.

[8] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust
architecture,” NIST Special Publication 800-207, National Insti-
tute of Standards and Technology, U.S.A. 2020. DOI: 10.6028/
NIST.SP.800-207

[9] Y. Sadqi, Y. Belfaik, and S. Safi, “Web oauth-based SSO systems
security,” Proc. 3rd International Conference on Networking, Infor-
mation Systems & Security (NISS), Marrakech, Morocco, pp.1–7,
March 2020.

[10] R. Watt, “Proof-of-possession tokens in microservice architectures,”
Master’s thesis, Department of Computing Science, Faculty of Sci-
ence and Technology, Umeå University, pp.1–43, 2018.

[11] I.P.A. Pratama Linawait, and N.P. Sastra, “Token-based single
sign-on with JWT as information system dashboard for gov-
ernment,” Telecommunication, Computing, Electronics and Con-
trol (TELKOMNIKA), vol.16, no.4, pp.1745–1751, 2018. DOI:
10.12928/TELKOMNIKA.v16i4.8388

[12] T.T. Mini, “Secure device identifiers and device enrollment in
industrial control system,” Proc. 13th IEEE International Con-
ference on Advanced Networks and Telecommunications Sys-
tems (ANTS), Goa, India, pp.1–5, Dec. 2019. DOI: 10.1109/
ANTS47819.2019.9118131

[13] J.J. Diaz Rivera, T.A. Khan, W. Akbar, A. Muhammad, and W.C.
Song, “Secure enrollment token delivery for Zero Trust networks
using blockchain,” Proc. 23rd Asia-Pacific Network Operations and
Management Symposium (APNOMS), Takamatsu, Japan, pp.1–6,
Sept. 2022. DOI: 10.23919/APNOMS56106.2022.9919940.

http://dx.doi.org/10.9734/bpi/nvst/v1/3640f
http://dx.doi.org/10.9734/bpi/nvst/v1/3640f
http://dx.doi.org/10.9734/bpi/nvst/v1/3640f
http://dx.doi.org/10.9734/bpi/nvst/v1/3640f
http://dx.doi.org/10.17762/pae.v58i1.2190
http://dx.doi.org/10.17762/pae.v58i1.2190
http://dx.doi.org/10.17762/pae.v58i1.2190
http://dx.doi.org/10.17762/pae.v58i1.2190
http://dx.doi.org/10.1109/msec.2021.3091195
http://dx.doi.org/10.1109/msec.2021.3091195
http://dx.doi.org/10.6028/nist.sp.800-207
http://dx.doi.org/10.6028/nist.sp.800-207
http://dx.doi.org/10.6028/nist.sp.800-207
http://dx.doi.org/10.6028/nist.sp.800-207
http://dx.doi.org/10.1145/3386723.3387888
http://dx.doi.org/10.1145/3386723.3387888
http://dx.doi.org/10.1145/3386723.3387888
http://dx.doi.org/10.1145/3386723.3387888
http://dx.doi.org/10.12928/telkomnika.v16i4.8388
http://dx.doi.org/10.12928/telkomnika.v16i4.8388
http://dx.doi.org/10.12928/telkomnika.v16i4.8388
http://dx.doi.org/10.12928/telkomnika.v16i4.8388
http://dx.doi.org/10.12928/telkomnika.v16i4.8388
http://dx.doi.org/10.1109/ants47819.2019.9118131
http://dx.doi.org/10.1109/ants47819.2019.9118131
http://dx.doi.org/10.1109/ants47819.2019.9118131
http://dx.doi.org/10.1109/ants47819.2019.9118131
http://dx.doi.org/10.1109/ants47819.2019.9118131
http://dx.doi.org/10.23919/apnoms56106.2022.9919940
http://dx.doi.org/10.23919/apnoms56106.2022.9919940
http://dx.doi.org/10.23919/apnoms56106.2022.9919940
http://dx.doi.org/10.23919/apnoms56106.2022.9919940
http://dx.doi.org/10.23919/apnoms56106.2022.9919940


DIAZ RIVERA et al.: SECURE ENROLLMENT TOKEN DELIVERY MECHANISM FOR ZERO TRUST NETWORKS USING BLOCKCHAIN
1301

[14] W.S. Park, D.Y. Hwang, and K.H. Kim, “A TOTP-based two fac-
tor authentication scheme for hyperledger fabric blockchain,” Proc.
Tenth International Conference on Ubiquitous and Future Networks
(ICUFN), Prague, Czech Republic, pp.817–819, July 2018. DOI:
10.1109/ICUFN.2018.8436784

[15] N. Fotiou, I. Pittaras, V.A. Siris, S. Voulgaris, and G.C. Polyzos,
“OAuth 2.0 authorization using blockchain-based tokens,” Proc.
Workshop on Decentralized IoT Systems and Security (DISS), San
Diego, U.S.A., pp.1–6, Feb. 2020. DOI: 10.14722/diss.2020.23002

[16] S.Y. Lim, P.T. Fotsing, O. Musa, and A. Almasri, “AuthChain: A
decentralized blockchain-based authentication system,” International
Journal of Engineering Trends and Technology (IJETT), pp.70–74,
2020. DOI: 10.14445/22315381/CATI1P212

[17] N. Choi and H. Kim, “A novel blockchain-based authentication and
access control model for smart environment,” Advances in Science,
Technology and Engineering Systems Journal (ASTES), vol.6, no.1,
pp.651–657, 2021. DOI: 10.25046/aj060171

[18] M. Smits and J. Hulstijn, “Blockchain applications and institutional
trust,” Front. Blockchain, vol.3, article 5, pp.1–13, 2020. DOI:
10.3389/fbloc.2020.00005

[19] W. Cai, Z. Wang, J.B. Ernst, Z. Hong, C. Feng, and V.C.M. Leung,
“Decentralized applications: The blockchain-empowered software
system,” IEEE Access, vol.6, pp.53019–53033, 2018. DOI: 10.1109/
ACCESS.2018.2870644

[20] D. Meva, “Issues and challenges with blockchain: A survey,” In-
ternational Journal of Computer Sciences and Engineering (IJCSE),
vol.6, no.12, pp.488–491, 2018. DOI: 10.26438/ijcse/v6i12.488491

[21] R. Yang, R. Wakefield, S. Lyu, S. Jayasuriya, F. Han, X. Yi, X.
Yang, G. Amarasinghe, and S. Chen, “Public and private blockchain
in construction business process and information integration,” Au-
tomation in Construction, vol.118, pp.1–21, 2020. DOI: 10.1016/
j.autcon.2020.103276

[22] Y. Hao, Y. Li, Z. Dong, L. Fang, and P. Chen, “Performance analysis
of consensus algorithm in private blockchain,” Proc. IEEE Sympo-
sium on Intelligent Vehicles, Changshu, China, pp.280–285, June
2018. DOI: 10.1109/IVS.2018.8500557

[23] OpenZiti, Netfoundry. [Online], https://openziti.github.io/, accessed
Jan. 3. 2023.

[24] Hyperledger Besu, Hyperledger Foundation. [Online], https://
www.hyperledger.org/use/besu, accessed Jan. 3. 2023.

[25] S.D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “PBFT vs proof-of-authority: applying the cap theorem
to permissioned blockchain,” Proc. Italian Conference on Cyberse-
curity, Venice, Italy, pp.1–11, Jan. 2017.

[26] N.A. Asad, T. Elahi, A.A. Hasan, and M.A. Yousuf, “Permission-
based blockchain with proof of authority for secured healthcare data
sharing,” Proc. 2nd International Conference on Advanced Informa-
tion andCommunication Technology (ICAICT), Dhaka, Bangladesh,
pp.35–40, Nov. 2020. DOI: 10.1109/ICAICT51780.2020.9333488

[27] eth-crypto, Daniel Meyer. [Online], https://github.com/pubkey/eth-
crypto, accessed Jan. 3. 2023.

Javier Jose Diaz Rivera received his B.S. in
Computer Systems Engineering fromMonterrey
Institute of Technology and Higher Education
(Mexico) in 2005, and M.S. degree in Computer
Engineering from Jeju National University (Ko-
rea) in 2019. He is currently pursuing a doctor-
ate in Electronics Engineering at Jeju National
University. His research interests include SDN,
NFV, Blockchain technology, and network secu-
rity.

WaleedAkbar received his B.S. in Telecom-
munication andNetworking in 2014 and hisM.S.
in Computer Science in 2018 from the Abbot-
tabad campus of COMSATS University (Pak-
istan). He received his Ph.D. in Computer En-
gineering from Jeju National University (Korea)
in 2022. He is currently working as a lecturer
at COMSATS University, Pakistan. His research
interests include SDN,NFV, big data processing,
network data analytics, and network monitoring.

Talha Ahmed Khan received his B.S. de-
gree in Computer Science from FAST- National
University of Computer and Emerging Sciences
(Pakistan). He received his M.S. and Ph.D.
degrees in Computer Engineering in 2019 and
2022, respectively, from Jeju National Univer-
sity, (Korea). His research interests include
the SDN, NFV, 5G Mobile Networks, Intent-
based Networking, Network Orchestration, Mo-
bile Edge Computing and VNF.

Afaq Muhammad received a B.S. degree
in Electrical Engineering from the University of
Eng. and Technology (Pakistan) in 2007. He
received a MS degree in Electrical Engineering
with an emphasis on Telecom from Blekinge In-
stitute of Technology, (Sweden) in 2010, and a
Ph.D. degree inComputer Engineering from Jeju
National University (Korea) in 2017. Currently,
he is working as a Postdoctoral Researcher at
Network Convergence Lab, Jeju National Uni-
versity. His research interests are cloud comput-

ing, SDN, NFV, wireless networks and protocols, machine learning, and
data science.

Wang-Cheol Song received a B.S. degree in
Food Engineering from Yonsei University (Ko-
rea) in 1986. He received B.S., M.S., and Ph.D.
in Electronics from Yonsei University, in 1989,
1991 and 1995, respectively. He has worked
as a full professor at the Department of Com-
puter Engineering, Jeju National University, Ko-
rea, Since 1996. His research interests include
VANETs and MANETs, SDN/NFV, IBN, and
network management.

http://dx.doi.org/10.1109/icufn.2018.8436784
http://dx.doi.org/10.1109/icufn.2018.8436784
http://dx.doi.org/10.1109/icufn.2018.8436784
http://dx.doi.org/10.1109/icufn.2018.8436784
http://dx.doi.org/10.1109/icufn.2018.8436784
http://dx.doi.org/10.14722/diss.2020.23002
http://dx.doi.org/10.14722/diss.2020.23002
http://dx.doi.org/10.14722/diss.2020.23002
http://dx.doi.org/10.14722/diss.2020.23002
http://dx.doi.org/10.14445/22315381/cati1p212
http://dx.doi.org/10.14445/22315381/cati1p212
http://dx.doi.org/10.14445/22315381/cati1p212
http://dx.doi.org/10.14445/22315381/cati1p212
http://dx.doi.org/10.25046/aj060171
http://dx.doi.org/10.25046/aj060171
http://dx.doi.org/10.25046/aj060171
http://dx.doi.org/10.25046/aj060171
http://dx.doi.org/10.3389/fbloc.2020.00005
http://dx.doi.org/10.3389/fbloc.2020.00005
http://dx.doi.org/10.3389/fbloc.2020.00005
http://dx.doi.org/10.1109/access.2018.2870644
http://dx.doi.org/10.1109/access.2018.2870644
http://dx.doi.org/10.1109/access.2018.2870644
http://dx.doi.org/10.1109/access.2018.2870644
http://dx.doi.org/10.26438/ijcse/v6i12.488491
http://dx.doi.org/10.26438/ijcse/v6i12.488491
http://dx.doi.org/10.26438/ijcse/v6i12.488491
http://dx.doi.org/10.1016/j.autcon.2020.103276
http://dx.doi.org/10.1016/j.autcon.2020.103276
http://dx.doi.org/10.1016/j.autcon.2020.103276
http://dx.doi.org/10.1016/j.autcon.2020.103276
http://dx.doi.org/10.1016/j.autcon.2020.103276
http://dx.doi.org/10.1109/ivs.2018.8500557
http://dx.doi.org/10.1109/ivs.2018.8500557
http://dx.doi.org/10.1109/ivs.2018.8500557
http://dx.doi.org/10.1109/ivs.2018.8500557
https://openziti.github.io/
https://openziti.github.io/
https://www.hyperledger.org/use/besu
https://www.hyperledger.org/use/besu
http://dx.doi.org/10.1109/icaict51780.2020.9333488
http://dx.doi.org/10.1109/icaict51780.2020.9333488
http://dx.doi.org/10.1109/icaict51780.2020.9333488
http://dx.doi.org/10.1109/icaict51780.2020.9333488
http://dx.doi.org/10.1109/icaict51780.2020.9333488
https://github.com/pubkey/eth-crypto
https://github.com/pubkey/eth-crypto

