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PAPER
Single UAV-Based Wave Source Localization in NLOS
Environments

Shinichi MURATA†a), Member and Takahiro MATSUDA†b), Senior Member

SUMMARY To localize an unknown wave source in non-line-of-sight
environments, a wave source localization scheme usingmultiple unmanned-
aerial-vehicles (UAVs) is proposed. In this scheme, each UAV estimates
the direction-of-arrivals (DoAs) of received signals and the wave source
is localized from the estimated DoAs by means of maximum likelihood
estimation. In this study, by extending the concept of this scheme, we
propose a novel wave source localization scheme using a single UAV. In
the proposed scheme, the UAV moves on the path comprising multiple
measurement points and the wave source is sequentially localized fromDoA
distributions estimated at these measurement points. At each measurement
point, with amoving path planning algorithm, the UAV determines the next
measurement point from the estimated DoA distributions and measurement
points that the UAV has already visited. We consider two moving path
planning algorithms, and validate the proposed scheme through simulation
experiments.
key words: wave source localization, unmanned aerial vehicle, non-line-
of-sight, direction of arrival

1. Introduction

Wave source or emitter localization is a technique for local-
izing unknown transmitters of radio signals [1]–[7]. Wave
source localization enables operators to control interference
between wireless communication systems, and can be uti-
lized to design reliablewireless networks in several situations
such as (1) spectrum sharing in cognitive radio networks, (2)
deployment of local 5G systems, and (3) detection of illegal
radios:

(1) In cognitive radio networks, different wireless commu-
nication systems share the frequency spectrum by al-
lowing users in secondary systems to access spectrum
holes unoccupied by users in the primary system [8].
Wave source localization can be adopted for highly ef-
ficient spectrum sharing in space and time [4].

(2) In the fifth generation mobile communication (5G) sys-
tem, closed networks, which are called local 5G net-
works, can be operated for users in specific sites such as
companies, schools, and municipalities. Base stations
in local 5G networks must be deployed without inter-
fering with other wireless systems including already
operated local 5G systems. Wave source localization
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can be utilized to manage interference in deploying lo-
cal 5G base stations. In [9], interference assessment
using unmanned-aerial-vehicles (UAVs) in private 5G
networks such as the local 5G networks is studied. In
addition to improving the utilization of frequency re-
sources, wave source localization techniques contribute
to the proper management of frequency resources.

(3) In Japan, wireless communication systems on licensed
band are properly managed by theMinistry-of-Internal-
Affairs-and-Communications (MIC). However, a few
illegal radio stations emitting radio signals without li-
cense exist. These illegal radio stations may trigger
interference to licensed radio stations. Wave source
localization for detecting illegal stations is a key tech-
nology to prevent the illegal radio interference. The
radio monitoring system DEURAS [10] is operated by
MIC to detect and eliminate these illegal radio stations.
In [11], a technique for estimating the source of illegal
radio waves has been studied.

We consider wave source localization using a UAVwith
an antenna array. In [6], [7], a wave source localization
scheme based on maximum likelihood estimation in non-
line-of-sight (NLOS) environments was proposed. In this
scheme, which is referred to as the MLE scheme, direction-
or-arrivals (DoAs) are estimated with array signal process-
ing [12] at multiple measurement points and a wave source
is localized with the estimated DoAs based on a property
that a distribution of DoAs at a measurement point is more
concentrated in the direction of the wave source as the dis-
tance between the wave source and the measurement point
increases.

Although MLE can localize a wave source in NLOS
environments, it still has two technical limitations. One
is the computational complexity for solving the likelihood
function, which is formulated as a joint probability of the
position of the wave source and concentration parameters of
DoA distributions at all measurement points. For N mea-
surement points, the likelihood function is a function with
N + 2 variables. In [6], [7], the wave source is localized by
iterative optimization of the likelihood function. The other
is how to determine measurement points. The MLE scheme
does not have any strategy to determine measurement points,
and measurement points are randomly determined within a
monitored area.

In this study, we address these two problem and pro-
pose a wave source localization scheme with a single UAV
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by extending MLE scheme. The proposed scheme adopts a
simplified estimator instead of the likelihood function, and
estimates the position of the wave source by superimposing
DoA distributions, each of which is estimated by a simple
calculation at eachmeasurement point. Moreover, eachmea-
surement point is sequentially determined from the previous
measurement points and a tentatively estimated position of
the wave source. To determine the measurement points, we
propose two moving path planning algorithms.

The remainder of this paper is organized as follows. In
Sect. 2, related studies on wave source localization methods
are reviewed and the contributions of this study are clarified.
Section 3 describes the system model and the MLE scheme.
In Sect. 4, the wave source localization method using a sin-
gle UAV is described. In Sect. 5, the performance of the
proposed method is evaluated with simulation experiments.
In Sect. 6, we summarize this study.

2. Related Work

Several wave source localization methods have been pro-
posed, which can be classified into three approaches:
received signal strength (RSS), time-difference-of-arrival
(TDOA), and DoA approaches.

In [3], a wave source localization method using RSS
was proposed. In this method, multiple UAVs receive sig-
nals from multiple wave sources, where each UAV has a
directional antenna, and a monitored rectangle region is di-
vided into sub-rectangles. From the angular field of views
of UAVs, the relationship between RSSs and the center po-
sitions of the sub-rectangles is formulated by a system of
linear equations, and the wave sources are localized with
compressed sensing [13], [14].

In [1], [2], a wave source localization method using
TDOAwas proposed. Let ti denote the time of arrival (ToA)
from the wave source to nodes i, and TDOA ti, j (i , j) is de-
fined as ti, j = ti − tj . Moreover, let ri denote the distance be-
tween the wave source and node i. The relationship between
ti, j , ri , and rj is then given by cti, j = ri − rj , where c denotes
the light speed. Based on this relationship, the wave source
is localized from multiple measured TDOAs [1]. Fletcher et
al. [2] considered a TDOA-based localization scheme, where
a wave source is recursively localized with only two UAVs.

DoA-based wave source localization schemes are pro-
posed in [5]–[7]. Takase et al. [5] propose a wave source
localization scheme in LOS environments, where each path
between a UAV and the wave source includes a direct path
by placing the UAV at a sufficient height. Three UAVs are
randomly placed within an area and each UAV estimates the
DoA of the direct path by adopting compressed sensing. The
wave source is localized as the center of gravity in the trian-
gle formed by the estimated DoAs of the direct paths. The
MLE and proposed schemes are DoA-based wave source
localization schemes in NLOS environments.

Fig. 1 System model.

3. Wave Source Localization Using Multiple UAVs [6],
[7]

3.1 System Model

In this section, we describe the MLE scheme proposed
in [6], [7]. Figure 1 illustrates the system model. A
single wave source v0 is located in an area and N UAVs
vn (n = 1,2, . . . ,N) are deployed around the area. The
wave source is located at the height of hsrc and all the
UAVs are located at the height of hUAV. We assume that
hsrc < hUAV. Because the wave source and UAVs are
placed at different heights, the wave source localization
can be considered as a three-dimensional localization prob-
lem. However, in this study, we simply consider the two-
dimensional problem by projecting locations of the wave
source and UAVs onto the two-dimensional space A ⊂ R2.
Let r0 = (x, y)> ∈ A denote the location of the wave source
vo and rn = (xn, yn)> ∈ A (n = 1,2, . . . ,N) denote the lo-
cations of UAVs vn. Although wave sources may move in
actual situations, to investigate the basic performance of the
proposed method, we assume the wave source as stationary,
that is, the position of the wave source is fixed at r0 or the
wave source moves at a sufficiently slower speed than the
UAV.

A signal transmitted from the wave source v0 is prop-
agated on a multipath channel. Let Θn denote the random
variable to represent a DoA at UAV vn. We assume that Θn

follows a von-Mises distribution, which is known as a uni-
modal circular distribution [17], and the probability density
function pΘn (θ) of Θn is expressed as

pΘn (θ | µn, κn) , Pr(Θn = θ | µn, κn)

=
1

2πI0(κn)
exp{κn cos(θ − µn)},

where µn (0 ≤ µ ≤ 2π) and κn (κn ≥ 0) denote the mean di-
rection and the concentration parameter, respectively, while
Iν(κn) represents the ν-th order modified Bessel function of
the first kind. As κn → 0, pΘn (θ) converges to the uniform
distribution of θ ∈ [0,2π], and κn →∞, pΘn (θ) tends to the
point distribution at µn.
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Fig. 2 Relationship between DoA distribution and distance D between
UAV and wave source.

In the MLE scheme, DoAs are estimated at each UAV
with a compressed sensing-based DoA estimator, which is
described in Sect. 3.2, and v0 is localized from the esti-
mated DoAs. Let θ̂(k)n (n = 1,2, . . . ,N , k = 1,2, . . . ,Kn)
denote the k-th estimated DoA at vn, where Kn repre-
sents the number of estimated DoAs at vn. From the set
{θ̂
(k)
n | n = 1,2, . . . ,N, k = 1,2, . . . ,Kn} of the estimated

DoAs, r0 is estimated byminimizing the log-likelihood func-
tion, which is described in Sect. 3.3.

3.2 DoA Estimation

DoA estimation techniques have been studied extensively,
and several techniques have been proposed [12]. In this
study, we adopt a compressed sensing-based DoA estima-
tion technique [19], [20]. Compressed sensing [13], [14] is
a technique for solving an under-determined linear inverse
problem under the assumption that an unknown vector is
sparse. Regarding the DoA estimation using UAVs, com-
pressed sensing is effective because it is difficult for UAVs to
implement several antenna elements owing to the limitation
of the payload and hardware complexity.

In this study, we consider that each UAV implements
a UCA (Uniform Circular Array) as shown in Fig. 3, where
there are L antenna elements with the inter-element distance
d. Let (αl, βl) and ψk (k = 1,2, . . . ,K) denote the coordinate
of the l-th antenna element and incident angles, respectively.
We define a(ψk) = (a1(ψk) a2(ψk) · · · aL(ψk))

> as the steer-
ing vector corresponding to the k-th incident angle, where
al(ψk) is defined as

al(ψk) = exp
(
− j

2π
λ
(αl cosψk + βl sinψk)

)
,

where λ denotes the wavelength of signals. We also define
y = (y1 y2 · · · yL)

> and x = (x1 x2 · · · xK )>, where
yl (l = 1,2, . . . , L) denotes the received signal at the l-th an-

Fig. 3 Geometry of UCA.

tenna element and xk (k = 1,2, . . . ,K) denotes the complex
magnitude of the source signal corresponding to the k-th
incident angle. The relationship between y and x is then
expressed as

y =Ax + w,

A =(a(ψ1) a(ψ2) · · · a(ψK )),

where w denotes the noise vector.
For given y and A, x can be estimated by solving the

following optimization problem:

min
x

1
2
‖ y − Ax‖22 + µ ‖x‖1 , (1)

where ‖z‖p(p = 1,2) represents the `p norm of vector z
and µ represents the parameter which control the difference
between the squared error and the lp norm. And ‖z‖p is
expressed as

‖ z‖p =

(
N∑
n=1
|zn |p

)1/p

.

To solve Eq.(1), we adopt fast iterative shrinkage thresh-
olding algorithm (FISTA) [21]. By employing FISTA, es-
timation x̂ = (x̂1 x̂2 · · · x̂K )> of x is obtained as a sparse
vector. Let { x̂i1 x̂i2 · · · x̂iKn

} denote the set of the non-zero
elements in x̂, where Kn (Kn ≤ K) represents the number of
non-zero elements. The set Tn = {θ̂(k)n | k = 1,2, . . . ,Kn} of
estimated DoAs is expressed as

θ̂
(k)
n =ψik (k = 1,2, . . . ,Kn,n = 1,2, . . . ,N).

3.3 Maximum Likelihood Estimation for Wave Source Lo-
calization

Figure 4 illustrates the relationship between the position rn
of UAV vn and position r0 of the wave source v0. We define
en (‖en‖2 = 1,n = 1,2, . . . ,N) as the reference vector of
vn. The direction of the wave source v0 from vn is given by
φn(r0), where for r ∈ A (r , rn), φn(r) is defined as
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Fig. 4 Relative relationships of positions between a UAV and wave
source.

φn(r) = cos−1
(
(r − rn)

>en
‖r − rn‖2

)
.

In [16], under an assumption that a direct path from a
transmitter to a receiver is infinitely attenuated, DoAs are
modeled by a Gaussian distribution with the mean oriented
to the wave source. By adopting this idea, the ML scheme
localizes the wave source by modeling DoAs at each UAV
with a von-Mises distribution. We assume that θ̂(k)n (k =
1,2, . . . ,Kn) follows the von-Mises distribution with mean
direction φn(r0) and concentration parameter κn, and then
define the likelihood function F(r0,κ) as

F(r0,κ) =
N∏
n=1

Kn∏
k=1

pΘn (θ̂
(k)
n | φn(r0), κn),

in addition the log-likelihood function F (r0,κ) is expressed
as

F (r0,κ) = log

(
N∏
n=1

Kn∏
k=1

pΘn (θ̂
(k)
n | φn(r0), κn)

)
=

N∑
n=1

Kn∑
k=1

log
(
pΘn (θ̂

(k)
n | φn(r0), κn)

)
=

N∑
n=1

Kn∑
k=1

{
κn cos(θ̂(k)n − φn(r0))

− log(I0(κn)) − log(2π)} ,

where κ = (κ1 κ2 · · · κN ). The wave source is localized
by determining the optimal r0 and κ to maximize F (r0,κ).
In [7], an iterative algorithm is adopted to optimize r0 and κ
alternatively.

4. Wave Source Localization Using Single UAV in
NLOS Environments

4.1 Overview of the Proposed Scheme

Figure 5 illustrates the basic idea of the proposedwave source
localization scheme using single UAV. In the ML scheme
described in the previous section, the likelihood function
F(r0,κ) comprises multiple probability density functions

Fig. 5 Wave source localization using single UAV.

pΘn (θ | φn(r0), κn) (n = 1,2, . . . ,N), and from DoAs es-
timated at multiple UAVs, the wave source is localized by
optimizing the log-likelihood function. However, in the pro-
posed scheme, a single UAVmoves to multiple measurement
points and DoAs are estimated at each measurement point.
From the estimated DoAs, the parameters of the von-Mises
distribution are estimated independently at each measure-
ment point. Subsequently, the wave source is localized by
superimposing the von-Mises distributions.

4.2 Wave Source Localization with Single UAV

We re-define rn as the position of the UAV at the n-th mea-
surement point (n = 1,2, . . . ,N) and Tn = {θ̂(k)n | k =
1,2, . . . ,Kn} as the set of DoAs estimated at rn. We as-
sume that DoAs at rn follows the von-Mises distribution
pΘn (θ | µ̂n, κ̂n), where µ̂n and κ̂n represent the mean direc-
tion and concentration parameter estimated from Tn, respec-
tively. Via the maximum likelihood estimation, µ̂n and κ̂n
are obtained by the following equations [17]

tan µ̂n =
∑Kn

k=1 sin θ̂(k)n∑Kn

k=1 cos θ̂(k)n

, (2)

I1(κ̂n)

I0(κ̂n)
=

(
1

Kn

Kn∑
k=1

cos θ̂(k)n

)
cos µ̂n

+

(
1

Kn

Kn∑
k=1

sin θ̂(k)n

)
sin µ̂n. (3)

For r ∈ A, we define Q(r) as

Q(r) =
N∏
n=1

qn(r),

qn(r) =pΘn (φn(r) | µ̂n, κ̂n) n = 1,2, . . . ,N,

where qn(r) indicates the possibility that the wave source
exists. r0 is estimated as r that maximizes Q(r), i.e.,

r̂0 = arg max
r

Q(r).

We refer to the above estimator as the simplified estima-
tor to distinguish it from the MLE scheme. The simplified
estimator and MLE scheme differ from the two perspectives.
First, while the MLE scheme estimates r0 and κ with the
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Fig. 6 Influence of measurement points on estimation error.

iterative algorithm, the proposed scheme can estimate these
values by simply solving Eqs. (2) and (3). Second, the pro-
posed method can sequentially localize the wave source by
determining measurement points from the tentatively esti-
mated position. In this study, we consider two algorithms
for determining an efficient moving path of the UAV, as de-
scribed in the following subsections.

4.3 Efficient Moving Path Configuration for UAV

Owing to the limited battery power of theUAV, amoving path
with a shorter distance should be established. Hence, before
describing the algorithms to establish the moving path, we
discuss how positions of measurement points influence the
localization performance in terms of direction uniformity
and distance variation. We define An(qth) = {r | qn(r) >
qth} as a potential area that the wave source exists with a
higher probability, as illustrated in Fig. 6(a), and A(qth) =⋂3

n=1An(qth), which is the area obtained by superimposing
potential areas for three measurement points.

(1) Direction Uniformity

Figures 6(b) and 6(c) present two examples of measurement
points placed in a circle. The measurement points are uni-
formly placed in Fig. 6(b); however, they are placed closely
in Fig. 6(c). In these figures, the red areas correspond to
A(qth). From these figures, we infer that the non-uniform
placement causes a wider area of A(qth).

(2) Distance Variation

Figure 7 presents another example of measurement points,

Fig. 7 Influence of distance variation on estimation error.

where one measurement point is placed farther away from
the wave source than the other two measurement points. Al-
though µ̂3 coincides with the direction of the wave source v0
in Fig. 7(a), µ̂3 does not in Fig. 7(b). The variance of DoAs
can be modeled with a decreasing function of distance be-
tween the wave source and the measurement point [7], [16].
Therefore, if several measurement points are placed far from
the wave source, these measurement points may significantly
influence the performance of the wave source localization.
In Fig. 7(b), we observe that the red area does not include the
wave source, which implies that the localization error may
increase.

From the above discussion, the moving path planning
algorithms, which are described in the following two sub-
sections, are based on two ideas:

• measurement points on a moving path surround the
tentatively estimated wave source, and

• they are located at comparable distances to the wave
source.

In this study, the two moving path planning algorithms are
proposed. Algorithm 1 sets the measurement points on a
circle centered at a tentatively estimated wave source. Algo-
rithm 2 combines multiple polygons, and the measurement
points are placed at the vertices of each polygon.

4.4 Moving Path Planning Algorithm 1

Figure 8 illustrates the moving path planning algorithm 1.
Let r̂ (n)0 denote the tentatively estimated position of the wave
source obtained after the n-th measurement point. We define
ψn (n = 2,3, . . .) as the angle between two vectors rn −

r̂ (n)0 and rn+1 − r̂ (n)0 . The (n + 1)-th measurement point
rn+1 is determined with r̂ (n)0 , rn−1, and rn. Specifically,
the algorithm 1 sets rn+1 such that ‖rn+1 − r̂ (n)0 ‖ = D and
ψn+1 + ψn = π/2. The algorithm 1 is described as follows:

1. The origin O is set to an arbitrary point in the area.
2. Set n := 1. r1 is set randomly, and a set T1 = {θ̂(k)1 |

k = 1,2, . . . ,K1} of DoAs is estimated at r1 with the
compressed sensing-based DoA estimator described in
Sect. 3.2.
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Fig. 8 Moving path planning algorithm 1.

Fig. 9 Idea of moving path planning algorithm 2.

3. Set n := 2. r2 is set by rotating r1 π/4 around the origin
O, and a set T2 = {θ̂(k)2 | k = 1,2, . . . ,K2} of DoAs is
estimated at r2.

4. A tentative position r̂ (2)0 of the wave source is obtained
with estimated DoAs at r1 and r2.

5. Set n := n+1. rn is set such that ‖rn − r̂ (n−1)
0 ‖ = D and

ψn + ψn−1 = π/2. A set Tn = {θ̂(k)n | k = 1,2, . . . ,Kn}

of DoAs is estimated at rn, and r (n)0 is estimated from
{Tn′ | n′ = 1,2, . . . ,n} with the estimator described in
Sect. 4.2.

6. Terminate the algorithm if n = N; otherwise, go to step
5.

4.5 Moving Path Planning Algorithm 2

Figure 9 illustrates the concept of the moving path plan-
ning algorithm 2, where measurement points are placed at
vertices on multiple polygons. Let Npoly denote the num-
ber of vertices of each polygon, where Figs. 9(a), 9(b), and
9(c) correspond to Npoly = 3 (triangle), Npoly = 4 (quadri-
lateral), and Npoly = 5 (pentagon), respectively. We define
Ln1 ,n2 = ‖rn1 − rn2 ‖ (n1,n2 = 1,2, . . . ,N). The algorithm 2

Fig. 10 Moving path planning algorithm 2 for Npoly = 3.

is described as follows.

1. By adopting the same procedure as presented in Steps
1–4 of algorithm 1, measurement points, r1 and r2, and
tentative measurement points r (2)0 are determined. Set
n := 2.

2. Set measurement points rn+i (i = 1,2, . . . ,Npoly) as
the measurement points corresponding to vertices on a
regular polygon with Npoly and ‖rn+i − r (n)0 ‖ = D for
∀i = 1,2, . . . ,Npoly.

3. Estimate Tn+i (i = 1,2, . . . ,Npoly) at rn+i . The tentative
position r

(n+Npoly)

0 of the wave source is estimated from
{Tn′ | n′ = 1,2, . . . ,Npoly + 2}. Set n := n + Npoly and
k := 1.

4. Set n1 = n + k − Npoly, and n2 = n1 + 1 if k < Npoly,
n2 = n + 1 − Npoly if k = Npoly.

5. Set measurement points rn+k as ‖rn+k − r̂ (n)0 ‖ = D and
rn+k − r̂ (n)0 crosses the midpoint of rn1 and rn2 .

6. If k < Npoly, set k := k + 1 and go to step 4.
7. Estimate Tn+i (i = 1,2, . . . ,Npoly) at rn+i . The position

r0 of the wave source is estimated from {Tn′ | n′ =
1,2, . . . ,2Npoly + 2}.

Figure 10 presents an example of measurement points ob-
tained by algorithm 2 for Npoly = 3. Note that the number N
of measurement points is given by N = 2Npoly + 2 in algo-
rithm 2, while the arbitrary number of measurement points
can be set in algorithm 1.

5. Simulation Experiments

5.1 Simulation Environments

Simulation experiments are conducted to evaluate the per-
formance of the proposed single UAV-based wave source
localization scheme. The proposed scheme adopts two dif-
ferent ideas from the MLE scheme. One is that the pro-
posed scheme employs the simplified estimator described in
Sect. 4.2. To evaluate the effect of the simplified estimator,
we compare the performance of the proposed scheme with
that of the MLE scheme by setting the same measurement
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Table 1 Wave source localization schemes evaluated with simulation
experiments.

Estimator Measurement points
SingleUAV1 Simple Algorithm 1
SingleUAV2 Simple Algorithm 2

ML1 ML Same as SingleUAV1
ML2 ML Same as SignelUAV2

SingleUAVRandom Simple Random
MLRandom ML Random

points as the proposed scheme. The other is that measure-
ment points are sequentially placed by adopting the moving
path planning algorithm 1 or 2 described in the previous
section. To determine the effect of the moving path plan-
ning algorithms, we evaluate the performance of the sim-
plified estimator and the MLE scheme for randomly placed
measurement points. In Table 1, we summarize the wave
source localization schemes evaluated in the simulation ex-
periments. In the table, “Simple” and “ML” represent the
simplified estimator explained in Sect. 4.2 and the maxi-
mum likelihood estimator explained in Sect. 3, respectively.
“Algorithm 1”, “Algorithm 2”, and “Random” represent the
moving path planning algorithm 1, 2, and random placement
of measurement points, respectively.

We assume that the UAV has a UCAwith element spac-
ing d = 0.5λ, and the number L of antenna elements is set to
L = 10. The steering vector includes λ of incident signals.
This implies that the proposed method requires the center
frequency of the signals transmitted from the wave source.
Therefore, before applying the proposed method, the center
frequency must be obtained. The method to obtain the cen-
ter frequency depends on situations in which the proposed
method is applied. For example, in spectrum sharing within
cognitive radio networks, the center frequency is obtained
by that of the secondary system. In an illegal radio detec-
tion system, by analyzing the frequency spectrum, the center
frequency must be identified in advance. In this study, we
assume an ideal situation that the correct center frequency is
known in advance.

We set Npoly = 3 for the moving path planning algo-
rithm 2, i.e., N = 8. To evaluate the wave source localization
schemes with the same resource, we set N = 8 for the mov-
ing path planning algorithm 1. We consider two models for
DoAs at each reception point: the probabilistic and the ray-
tracing. In the probabilistic model, DoAs at each reception
point are generated according to the von-Mises distribution.
In the ray-tracing model, DoAs are generated by utilizing a
ray-launching-based ray-tracing radio propagation simulator.

(1) Probabilistic Model

The simulation area is set as a 900 [m] × 900 [m] area, and
the wave source is set in the center of the area. DoAs at
measurement point vn (n = 1,2, . . . ,N) are generated by the
von-Mises distribution with mean value µn and concentra-
tion parameter κn. µn is set to coincide with the direction
of the wave source. κn can be defined as an increasing func-
tion of the distance Dn = ‖rn − r0‖ between measurement

Fig. 11 Relationship between distance Dn = ‖rn − r0 ‖ and concentra-
tion parameter κn [7].

Table 2 Parameter set.
Coefficient Value

α3 2.01 × 10−7

α2 −0.0001
α1 0.021
α0 −0.221

point vn and wave source v0 [7], [16]. We determined the
shape of function using ray-tracing simulation results. The
model used for the simulation corresponds to Furumachi-
area in Niigata city. The area is delimited by a 5-m grid, and
ray-tracing simulations are performed with each point on the
grid as a receiving point. The concentration parameters of
the von Mises distribution at the NLOS points are plotted as
a scatter plot as shown in Fig. 11. The red curve in the fig-
ure represents a regression curve with the cubic polynomial,
expressed in equation, where we adopt the same parameter
set of the regression curve as in [7]. The parameter sets are
shown in Table 2.

κn(Dn) = α3D3
n + α2D2

n + α1Dn + α0. (4)

In the probabilistic model, the DoAs at each receiving point
are provided according to the von Mises distribution. The
mean value µn corresponds to the direction of the wave
source and concentration parameter κn of the distribution is
obtained from Eq. (4). The number of directions of arrival
at each receiving point is set to 10, and each signal is as-
sumed to have equal power. The correlation between each
signal is assumed to be perfectly coherent because they are
transmitted from the same wave source.

(2) Ray-Tracing Model

In the ray-tracing model, propagation paths from the wave
source to measurement points are computed by the ray-
tracing simulator, and DoAs are measured at each mea-
surement point according to the path. In the ray-tracing
simulator, we use the Furumachi area in the Niigata city. In
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Fig. 12 Simulation area.

Table 3 Details pertaining to each area.
Area Number M hi [m] ηi [%]

Area 0 232 15.3 75
Area 1 142 12.1 94.5
Area 2 327 12.7 87.1
Area 3 151 15.6 84.3
Area 4 145 14.9 94.8
Area 5 119 17.7 63.9
Area 6 258 14.5 100
Area 7 208 14.0 100
Area 8 97 17.6 99

both the probabilistic and the ray-tracing models, the area
has a size of 900 × 900 [m2] and is divided into 9 sub-areas
A0, A1, . . . , A8 with the same size of 300 × 300 [m2], as il-
lustrated in Fig. 12. Table 3 lists the environment of the
Furumachi area. Specifically, Mi , hi , ηi (i = 0,1, . . . ,8) in
the table denote the number of buildings, average height of
buildings, and probability that arbitrary point in the area is
an NLOS environment in area Ai , respectively. The wave
source v0 is set randomly within the sub-area A0. When
using the moving path planning algorithm 1 or 2, the initial
position r1 is set randomly within the area

⋃8
i=1 Ai . When

measurement points are placed randomly, i.e., the moving
path planning algorithms are not adopted and all measure-
ment points are placed randomly within the area

⋃8
i=1 Ai .

In both the probabilistic and ray-tracig models, sim-
ulations are conducted 500 times for each scheme. Let
r̂ (i)0 (1 ≤ i ≤ 500) denote the wave source location obtained
from the i-th simulation. We define the wave source estima-
tion error ε (i) as

ε (i) = ‖ r̂ (i)0 − r0‖. (5)

Root means square error ε̄ is defined as

ε̄ =

√√√
1

500

500∑
i=1

ε (i). (6)

Fig. 13 Empirical cumulative distribution function of localization error
ε (i).

5.2 Simulation Results

Figure 13(a) illustrates the empirical cumulative distribu-
tion function (ECDF) of the localization error ε (i) and the
second column in Table 4 presents the mean localization
error ε̄ in the probabilistic model. We observe that Sin-
gleUAV1 and SingleUAV2 exhibit lower mean estimation
errors than SingleUAVRandom. Therefore, the moving path
planning algorithms are effective in improving the localiza-
tion error. ML1 and ML2 exhibit the better performance
than SingleUAV1 and SingleUAV2. DoAs are generated
according to the von-Mises distribution in the probabilistic
model, and the likelihood function is formulated based on
the same distribution. Therefore, ML1 and ML2 can obtain
the optimal positions in terms of the maximum likelihood
criterion.

Figure 13(b) illustrates the ECDF of the localization
error ε (i) and the third column in Table 4 presents the mean
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Table 4 Mean localization errors ε̄ .
Probabilistic Model Ray-Tracing Model

SingleUAV1 14.3 [m] 36.6 [m]
SingleUAV2 12.8 [m] 35.1 [m]

ML1 11.8 [m] 29.2 [m]
ML2 12.6 [m] 26.3 [m]

SingleUAVRandom 16.2 [m] 50.7 [m]
MLRandom 15.2 [m] 39.6 [m]

localization error ε̄ in the ray-tracing model. Similar to
the probabilistic model, we observe that SingleUAV1 and
Single UAV2 exhibit lower mean localization errors than
SingleUAVRandom in the ray-tracing model. Comparing
the wave source localization schemes in the probabilistic
and ray-tracing models, mean localization errors ε̄ in the
ray-tracing model are larger than those in the probabilistic
model. We localize the wave source under the assumption
that the mean value of DoAs coincides with the direction of
the wave source. Furthermore, in the probabilistic model,
DoAs are given such that the mean value coincides with the
direction of the wave source. Therefore, in the probabilistic
model, the wave source is localized with higher accuracy.
Conversely, in the ray-tracing model, the DoA distribution
highly relies on the structures around the wave source and
measurement points. DoA does not necessarily coincide
with the direction of the wave source. For example, if there is
a large structure in a particular direction, then the DoAs from
that direction cannot be obtained, and the mean of the DoAs
deviates from the direction of the wave source. Figure 14
shows the empirical cumulative distribution function of the
differences between the mean DoAs obtained for each UAV
and the direction of the wave source for SingleUAV1 in the
ray-tracing model. The figure shows that in most cases,
the mean value of DoAs and direction of the wave source
coincide. However, there are cases where the difference is
more than 1 [rad]. This difference deteriorates the accuracy
of wave source estimation.

In both the probabilistic and ray-tracing models, Sin-
gleUAV2 exhibits better performance than SingleUAV1.
Therefore, although the moving path planning algorithm 2
cannot set an arbitrary number of measurement points, it
can achieve finer localization than the moving path planning
algorithm 1.

Note that both SingleUAV1 and SingleUAV2 cannot
outperform ML1 and ML2, as demonstrated in the simu-
lation results. However, the performance of the proposed
scheme (i.e., SingleUAV1 and SingleUAV2) can be improved
by extending it with the ML estimator. Figure 15 presents
the extended scheme for the moving path planning algo-
rithm 1. In the extended scheme, there are two estimators
for the wave source v0. In the moving path planning al-
gorithm 1, r (n)0 is sequentially estimated by the simplified
estimator, as described in Sect. 4.4. After N measurement
points are determined, the ML estimator estimates r0 with
{Tn | n = 1,2, . . . ,N}. Evidently, the extended scheme has
the same performance as ML1. Similarly, we can extend the
moving path planning algorithm 2. In this case, the extended

Fig. 14 Empirical cumulative distribution function of error inmean value
of DoAs and direction of a wave source.

Fig. 15 Extension of the proposed schemewith the moving path planning
algorithm 1.

scheme can achieve the same performance as ML2.

6. Conclusion

In this study, we proposed a single UAV-based wave source
localization scheme that superimposes DoAs distributions
estimated at measurement points of the UAV. To determine
measurement points in the proposed scheme, we proposed
two moving path planning algorithms. The performance of
the proposed method was evaluated with the simulation ex-
periments in the probabilistic and ray-tracing models. From
the simulation results, it can be inferred that the proposed
path planning algorithms are effective in actual urban envi-
ronments that may contain outliers of DoAs. In this study,
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the proposed method was evaluated under the assumption
that only a single wave source exists in the target area. In the
future, we will consider a method for multiple wave sources.

Acknowledgments

This work was supported in part by the MIC/SCOPE
No. JP215004001, TMU local 5G research project, andTMU
KAKENHI support.

References

[1] N. Okello, “Emitter geolocation with multiple UAVs,” Proc. 2006
9th International Conference on Information Fusion, July 2006.

[2] F. Fletcher, B. Ristic, and D. Mušicki, “Recursive estimation of emit-
ter location using TDOAmeasurements from two UAVs,” Proc. 2007
10th International Conference on Information Fusion, July 2007.

[3] D.J. Walter, K. Bryan, J. Stephens, C. Bullmaster, and V.
Chakravarthy, “Localization of RF emitters using compressed sens-
ing with multiple cooperative sensors,” Proc. 2012 IEEE National
Aerospace and Electronics Conference, pp.236–240, July 2012.

[4] X. Fu, N.D. Sidiropoulos, J.H. Tranter, and W.K. Ma, “A factor
analysis framework for power spectra separation andmultiple emitter
localization,” IEEE Trans. Signal Process., vol.63, no.24, pp.6581–
6594, Dec. 2015.

[5] S. Takase, K. Nishimori, R. Taniguchi, T. Matsuda, and T. Mitsui,
“Source location estimation via compressed sensing using UAVs,”
Proc. 2020 International Symposium on Antennas and Propagation
(ISAP 2020), pp.237–238, Jan. 2021.

[6] S. Murata, T. Matsuda, K. Nishimori, and T. Mitsui, “Circular
statistics-based maximum likelihood estimation for wave source
localization,” Proc. IEEE International Symposium on Antennas
and Propagation and North American Radio Science Meeting
(APS/URSI 2020), July 2020.

[7] S. Murata, T. Matsuda, and K. Nishimori, “Maximum likelihood
estimation for single wave source localization using multiple UAVs
in NLOS environments,” IEICE Trans. Commun. (Japanese Edition),
vol.J105-B, no.3, pp.229–239, March 2022.

[8] S. Haykin, “Cognitive radio: Brain-empowered wireless communi-
cations,” IEEE J. Sel. Areas Commun., vol.23, no.2, pp.201–220,
Feb. 2005.

[9] J. Urama, R. Wiren, O. Galinina, J. Kauppi, K. Hiltunen, J. Erkkilä,
F. Chernogorov, P. Eteläaho, M. Heikkilä, J. Torsner, S. Andeev,
and M. Valkama, “UAV-aided interference assessment for private
5G NR deployments: Challenges and solutions,” IEEE Commun.
Mag., vol.58, no.8, pp.89–95, Aug. 2020.

[10] DEURAS system, https://www.tele.soumu.go.jp/e/adm/monitoring/
moni/type/deurasys/index.htm

[11] A. Haniz, G.K. Tran, R. Iwata, K. Sakaguchi, J. Takada, D. Hayashi,
I. Yamaguchi, and S. Aarata, “Propagation channel interpolation
for fingerprint-based localization of illegal radios,” IEICE Trans.
Commun., vol.E98-B, no.12, pp.2508–2519, Dec. 2015.

[12] H. Krim and M. Viberg, “Two decades of array signal process-
ing research: The parametric approach,”IEEE Signal Process. Mag.,
vol.13, no.4, pp.67–94, July 1996.

[13] E.J. Candès and M.B. Wakin, “An introduction to compressive sam-
pling,” IEEE Signal Process. Mag., vol.25, no.2, pp.21–30, March
2008.

[14] K. Hayashi, M. Nagahara, and T. Tanaka, “A user’s guide to com-
pressed sensing for communications systems,” IEICE Trans. Com-
mun., vol.E96-B, no.3, pp.685–712, March 2013.

[15] K.T. Wong, Y.I. Wu, and M. Abdulla, “Landmobile radiowave
multipaths’DOA-distribution: Assessing geometric models by the
open literature’s empirical datasets,” IEEE Trans. Antennas Propag.,
vol.58, no.3, pp.946–958, March 2010.

[16] D.D.N. Bevan, A.G. Flaksman, V.T. Ermolayev, and I.M. Averin,
“Gaussian channel model for mobile multipath environment,”
EURASIP J. Adv. Signal Process., vol.2004, no.9, pp.1321–1329,
Aug. 2004.

[17] N.I. Fisher, Statistical Analysis of Circular Data, Cambridge Univer-
sity Press, 1993.

[18] S. Murata, T. Matsuda, K. Nishimori, and Tsutomu Mitsui, “Perfor-
mance evaluation of wave source localization method using UAVs
based on the maximum likelihood estimation,” Proc. 2020 Interna-
tional Symposium on Antennas and Propagation (ISAP 2020), Jan.
2021.

[19] S. Fortunati, R. Grasso, F. Gini, M.S. Greco, and K. LePage, “Single-
snapshot DOA estimation by using compressed sensing,” EURASIP
J. Adv. Signal Process., vol.2014, p.120. July 2014.

[20] Q. Shen, W. Liu, W. Cui, and S. Wu, “Underdetermined DOA esti-
mation under the compressive sensing framework: A review,” IEEE
Access, vol.4, pp.8865–8878, Nov. 2016.

[21] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol.2,
no.1, pp.183–202, March 2009.

Shinichi Murata received his B.E. de-
gree from the Kanagawa Institute of Technology,
Japan, in 2013. He is currently a Ph.D. candidate
in the Department of Computer Science, Gradu-
ate School of Systems Design, TokyoMetropoli-
tan University. His research interests include
radio propagation and array antenna signal pro-
cessing. He received the Best Paper Award from
IEICE in 2023.

Takahiro Matsuda received his B.E. with
honors, M.E., and Ph.D. degrees in communi-
cations engineering from Osaka University in
1996, 1997, 1999, respectively. He joined the
Department of Communications Engineering at
the Graduate School of Engineering, Osaka Uni-
versity in 1999. In the same department, he
was an Assistant Professor from 1999 to 2005,
a Lecturer from 2005 to 2009, and an Associate
Professor from 2009 to 2018. He is currently a
Professor in the Department of Computer Sci-

ence, Graduate School of Systems Design, Tokyo Metropolitan University.
His research interests include performance analysis and the design of com-
munication networks and wireless communications. He received the Best
Tutorial Paper Award and the Best Magazine Paper Award from IEICE
ComSoc in 2012, and the Best Paper Award from IEICE in 2014 and 2023.
He is a member of IPSJ and IEEE.

http://dx.doi.org/10.1109/icif.2006.301587
http://dx.doi.org/10.1109/icif.2006.301587
http://dx.doi.org/10.1109/icif.2007.4408174
http://dx.doi.org/10.1109/icif.2007.4408174
http://dx.doi.org/10.1109/icif.2007.4408174
http://dx.doi.org/10.1109/naecon.2012.6531060
http://dx.doi.org/10.1109/naecon.2012.6531060
http://dx.doi.org/10.1109/naecon.2012.6531060
http://dx.doi.org/10.1109/naecon.2012.6531060
http://dx.doi.org/10.1109/tsp.2015.2464194
http://dx.doi.org/10.1109/tsp.2015.2464194
http://dx.doi.org/10.1109/tsp.2015.2464194
http://dx.doi.org/10.1109/tsp.2015.2464194
http://dx.doi.org/10.23919/isap47053.2021.9391189
http://dx.doi.org/10.23919/isap47053.2021.9391189
http://dx.doi.org/10.23919/isap47053.2021.9391189
http://dx.doi.org/10.23919/isap47053.2021.9391189
http://dx.doi.org/10.1109/jsac.2004.839380
http://dx.doi.org/10.1109/jsac.2004.839380
http://dx.doi.org/10.1109/jsac.2004.839380
http://dx.doi.org/10.1109/mcom.001.2000042
http://dx.doi.org/10.1109/mcom.001.2000042
http://dx.doi.org/10.1109/mcom.001.2000042
http://dx.doi.org/10.1109/mcom.001.2000042
http://dx.doi.org/10.1109/mcom.001.2000042
https://www.tele.soumu.go.jp/e/adm/monitoring/moni/type/deurasys/index.htm
https://www.tele.soumu.go.jp/e/adm/monitoring/moni/type/deurasys/index.htm
http://dx.doi.org/10.1587/transcom.e98.b.2508
http://dx.doi.org/10.1587/transcom.e98.b.2508
http://dx.doi.org/10.1587/transcom.e98.b.2508
http://dx.doi.org/10.1587/transcom.e98.b.2508
http://dx.doi.org/10.1109/79.526899
http://dx.doi.org/10.1109/79.526899
http://dx.doi.org/10.1109/79.526899
http://dx.doi.org/10.1109/msp.2007.914731
http://dx.doi.org/10.1109/msp.2007.914731
http://dx.doi.org/10.1109/msp.2007.914731
http://dx.doi.org/10.1587/transcom.e96.b.685
http://dx.doi.org/10.1587/transcom.e96.b.685
http://dx.doi.org/10.1587/transcom.e96.b.685
http://dx.doi.org/10.1109/tap.2009.2037698
http://dx.doi.org/10.1109/tap.2009.2037698
http://dx.doi.org/10.1109/tap.2009.2037698
http://dx.doi.org/10.1109/tap.2009.2037698
http://dx.doi.org/10.1155/s1110865704404028
http://dx.doi.org/10.1155/s1110865704404028
http://dx.doi.org/10.1155/s1110865704404028
http://dx.doi.org/10.1155/s1110865704404028
https://doi.org/10.1017/CBO9780511564345
https://doi.org/10.1017/CBO9780511564345
http://dx.doi.org/10.23919/isap47053.2021.9391146
http://dx.doi.org/10.23919/isap47053.2021.9391146
http://dx.doi.org/10.23919/isap47053.2021.9391146
http://dx.doi.org/10.23919/isap47053.2021.9391146
http://dx.doi.org/10.23919/isap47053.2021.9391146
http://dx.doi.org/10.1186/1687-6180-2014-120
http://dx.doi.org/10.1186/1687-6180-2014-120
http://dx.doi.org/10.1186/1687-6180-2014-120
http://dx.doi.org/10.1109/access.2016.2628869
http://dx.doi.org/10.1109/access.2016.2628869
http://dx.doi.org/10.1109/access.2016.2628869
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542

