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INVITED SURVEY PAPER

Evolution Trends of Wireless MIMO Channel Modeling towards
IMT-Advanced

Chia-Chin CHONG†a), Fujio WATANABE†, Nonmembers, Koshiro KITAO††, Tetsuro IMAI††,
and Hiroshi INAMURA†, Members

SUMMARY This paper describes an evolution and standardization
trends of the wireless channel modeling activities towards IMT-Advanced.
After a background survey on various channel modeling approaches is in-
troduced, two well-known multiple-input-multiple-output (MIMO) chan-
nel models for cellular systems, namely, the 3GPP/3GPP2 Spatial Channel
Model (SCM) and the IMT-Advanced MIMO Channel Model (IMT-Adv
MCM) are compared, and their main similarities are pointed out. The per-
formance of MIMO systems is greatly influenced by the spatial-temporal
correlation properties of the underlying MIMO channels. Here, we inves-
tigate the spatial-temporal correlation characteristics of the 3GPP/3GPP2
SCM and the IMT-Adv MCM in term of their spatial multiplexing and spa-
tial diversity gains. The main goals of this paper are to summarize the cur-
rent state of the art, as well as to point out the gaps in the wireless channel
modeling works, and thus hopefully to stimulate research in these areas.
key words: channel model, IMT-Advanced, MIMO, multipath, spatial di-
versity, spatial multiplexing

1. Introduction

Accurate knowledge of the wireless propagation channel is
of great importance when designing radio systems. A real-
istic radio channel model that provides insight into the radio
wave propagation mechanisms is essential for the design and
successful deployment of wireless systems. Unfortunately,
the mechanisms that govern radio propagation in a wireless
communication channel are complex and diverse. There-
fore, a better understanding of the propagation mechanisms
is key towards the development of a realistic channel model.
Consequently, channel modeling has been a subject of in-
tense research for a long time [1]–[5].

Standard channel models are essential for the develop-
ment of new radio systems and technology. These mod-
els if implemented as channel simulators allow the per-
formance evaluation of different transmission technologies,
signal processing techniques and receiver (RX) algorithms
through computer simulations. Therefore, this can avoid the
necessity to build hardware prototype or to perform field-
trials for every configuration to be considered. Generally
speaking, if accurate channel models are available, it is pos-
sible to design transmission technologies and RX algorithms
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that can achieve good performance by exploiting the prop-
erties of the propagation channel. While the channel mod-
els should be accurate enough in order to capture sufficient
properties from the real propagation effect, these models
should also be simple enough to allow feasible implemen-
tation and reasonable short simulation times. Therefore,
a tradeoff between “accuracy” and “simplicity” should be
taken into consideration when developing a good channel
model depending on the type of system to be evaluated.

The type of channel model that is desired depends crit-
ically on the carrier frequency, bandwidth, the type of en-
vironment and system under consideration. For example,
different types of channel models are needed for indoor
and outdoor environments, and for narrowband, wideband
and ultrawideband systems. Early channel modeling work
aimed to develop models which could provide an accurate
estimate of the mean received power and to study the be-
havior of the received signal envelope. This lead to pathloss
models such as the Okumura-Hata model [6], Lee’s model
[7], COST∗ 231 Walfish-Ikegami model [8]–[10] and the
conventional statistical models for the fading signal enve-
lope [2], [4], [5]. Since these models were typically devel-
oped for narrowband systems, the temporal domain such as
delay spread for the power delay profile (PDP) was largely
neglected. As the need for higher data rates increased, larger
bandwidths became necessary. In order to accurately model
wideband systems, narrowband channel models were en-
hanced to include the prediction of the temporal domain
properties such as the delay spread of the PDP. The COST
207 model [11], which was used in the evaluation of the
Global System for Mobile Communication (GSM) systems,
as well as the ITU-R∗∗ IMT-2000∗∗∗ model [12] are exam-
ples of such wideband channel models. Due to the evolution
of analog to digital wideband systems, these models were
important when analyzing digital modulation over wireless
communication links and for cell planning in digital mobile
radio for second generation (2G) systems.

In the third generation (3G) and Beyond 3G
(B3G)/fourth generation (4G) cellular systems, higher data
rate transmissions and better quality of services are de-
manded in order to improve user experience. This moti-
vates the investigation of how efficiently the available ra-
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dio channel resources should be utilized in order to fully
exploit the time, frequency, and spatial domains. Smart
antennas exploit the spatial behavior of the mobile radio
channel and have been one of the key technologies to-
wards the successful introduction of 3G systems such as
Universal Mobile Telecommunication System (UMTS) and
CDMA2000. In order to exploit the spatial dimension ef-
ficiently, it is essential to have a profound knowledge of
the spatial-temporal propagation characteristics between a
base station (BS) and a mobile station (MS). However, in
most initial 3G systems such as Wideband Code Division
Multiple Access (WCDMA) Rel-99, High-Speed Downlink
Packet Access (HSDPA), High-Speed Uplink Packet Access
(HSUPA), CDMA2000 HRPD† Rel-0, HRPD Rev-A and
HRPD Rev-B, smart antennas were mainly deployed at the
BS only. Therefore, at that time, most spatial channel mod-
els available in the open literature only incorporated direc-
tional information at the BS side [13]–[17].

The B3G and 4G cellular systems such as Evolved
High-Speed Packet Access (HSPA+), Long Term Evolution
(LTE), LTE-Advanced, Ultra Mobile Broadband (UMB)
(a.k.a. HRPD Rev-C), and Mobile WiMAX (e.g., IEEE
802.16e, IEEE 802.16 m) all exploit spatial information at
both BS and MS. These systems deploy multiple-input-
multiple-output (MIMO) technology whereby multiple an-
tenna elements are being used at both ends of the transmis-
sion link. MIMO has emerged as one of the most promising
breakthroughs in wireless communications due to its capa-
bility of improving link reliability and to significantly in-
crease the link capacity [18]–[21] as long as the channel
provides sufficient scattering. Such advantages can enhance
the network’s quality of service and increase the operator’s
revenues due to higher spectral efficiency and throughput.
However, the actual performance of the MIMO systems is
very much influenced by the wireless channel under con-
sideration. For instance, the degree of spatial correlation
among the antenna elements, the local scattering angular
spread, the rank of the MIMO channel, etc. are some of the
important limiting factors for the achievable capacity and
diversity gains. Therefore, appropriate characterization and
modeling of MIMO propagation channels are essential for
designing MIMO transceiver and evaluating MIMO perfor-
mance.

The concept of the double-directional channel was first
introduced in [22] and since then, many channel measure-
ment and modeling works based on this concept were re-
ported in the literature [23]–[31]. Such a model is useful
for MIMO systems since it includes angular information at
both the BS and the MS, and it is more well-known among
the industrials as simply MIMO channel. The standardiza-
tion of MIMO channel models were reported in 3GPP and
3GPP2 (i.e., 3GPP/3GPP2 Spatial Channel Model (SCM)
[32]), WiMAX Forum (i.e., Mobile WiMAX MIMO Chan-
nel Model [33]), IEEE 802.11n (i.e., TGn Channel Mod-
els [34]), and ITU-R Working Party 5D (WP5D) (i.e., IMT-
Advanced MIMO Channel Model (IMT-Adv MCM) [35])
for cellular, mobile broadband wireless access, wireless lo-

cal area networks (WLANs) and IMT-Advanced systems,
respectively. The main focus of this paper are the standard-
ized MIMO channel models used in both 3G and B3G/4G
cellular systems, namely, the 3GPP/3GPP2 SCM and the
IMT-Adv MCM. Other standardized models designed for
single-input-multiple-output (SIMO) or single-input-single-
output (SISO) channels will not be discussed here.

The paper is organized as follows. Section 2 estab-
lishes the fundamental concepts and background for vari-
ous channel modeling approaches; Sect. 3 discusses the two
well-known standard MIMO channel models, namely, the
3GPP/3GPP2 SCM and the IMT-Adv MCM, used in 3G
and B3G/4G cellular systems; Sect. 4 compares these two
MIMO channel models in term of their spatial multiplex-
ing and spatial diversity gains; finally, in Sect. 5 appropriate
conclusions are drawn.

2. Channel Modeling Approach

The requirement to model many different types of wireless
propagation channels has resulted in a large number of dif-
ferent modeling approaches reported in the literature [36]–
[38]. One reason for the abundance of modeling approaches
is due to the complex phenomena encountered by a transmit-
ted signal. The transmitted signal will usually arrive at the
RX via several paths, i.e., multipaths, where the signal en-
counters various propagation mechanisms such as reflection,
scattering and/or diffraction. Figure 1 illustrates a typical
wireless channel in outdoor environment whereby, a signal
transmitted by the BS is reflected by several objects within
the channel before reaching the MS. Therefore, many dif-
ferent types of simplifications and approximations are nec-
essary in order to obtain a simple yet accurate and reliable
model of the wireless communications channel. According
to [39], propagation channel models can be broadly divided
into two main categories, namely, deterministic approach
and stochastic approach (or statistical approach). In gen-
eral, these models differ in terms of their usage and the type
of underlying data. Under each category, channel models
can be further grouped according to the method by which
they were developed as summarized in Fig. 2. In this sec-
tion, some existing channel models in each category are re-
ferred. The list is not meant to be exhaustive, but merely
serve as a stepping-stone towards the discussion in the rest
of the paper.

2.1 Deterministic Approach

There are three different subcategories of deterministic ap-
proach, namely, closed-form approach, measurement-based
approach and ray-tracing approach. Deterministic models
may exist in closed-form for very simple channels such as a
two-path signal model. Such models are usually too restric-
tive to represent any realistic communication environment.
Direct measurement of the channel impulse response pro-
vides an empirical model for the measured scenarios. The
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Fig. 1 Illustration of a typical wireless channel in outdoor environment.

Fig. 2 Classification of channel modeling approaches.

data is usually collected with channel sounders by transmit-
ting known signals and comparing them with the received
signals. The main advantage of such an approach is that
the measured channel responses are usually very accurate.
However, the downside is that the measured data is very site-
specific and therefore, characterization of all types of chan-
nels by measurement becomes a non-trivial task due to the
requirement of vast amount of data. Furthermore, channel
measurements are very costly, which limits the amount of
data that can be collected. A number of measurement-based
deterministic channel models have been developed and re-
ported in the literature [40], [41].

Ray-tracing approach apply an electromagnetic simu-
lation tool such as ray launching and imaging methods to
obtain nearly exact propagation characteristics for a spec-
ified geometry. Firstly, a site-specific environment is gen-
erated from a detailed map, in which the BSs and MSs are
placed. Then, based on the known transmitting signals these
models describe the physics of the propagation mechanisms
(e.g., reflection, diffraction and scattering) in order to cal-
culate the received signals. Note that, these calculations re-
quire a far-field assumption to be feasible. The accuracy
of the models rely on the accuracy and detail of the site-
specific propagation medium [42]. Therefore, this approach
should be employed only when detailed environment data is
available such as the position, size and orientation of man-

made objects (e.g., buildings, bridges, roads, etc.) as well
as natural objects (e.g., trees, mountains, etc.). The basic
idea behind the ray-tracing approach is that, if the propaga-
tion environment is known to a sufficient degree, wireless
propagation is a deterministic process that allows determin-
ing its characteristics at every point in space. Typically, the
ray-tracing approach is used for cell and network planning.
The major advantage of ray-tracing models is that they of-
fer great accuracy with site-specific results. Ideally, any site
can be modeled if its physical characteristics are available,
and any channel parameter can be calculated by adjusting
these models. However, in reality these physical parame-
ters are either unavailable or cannot be perfectly obtained.
This subsequently could lead to degradation in the accuracy
of the ray-tracing model. Furthermore, these models have
several disadvantages. Firstly, the topographical and envi-
ronment data is always tied to a particular site and thus,
a huge amount of such data is required in order to obtain
a comprehensive set of different propagation environments.
Secondly, they are usually computationally expensive, es-
pecially when the environment is complex. Thus, detailed
physical characteristics of the simulated environment must
be known beforehand which is often time-consuming and
impractical. Numerous ray-tracing models for cellular net-
works have been reported in the literature such as [43]–[53]
and the references therein.

2.2 Stochastic Approach

Stochastic models are normally less complex than the deter-
ministic models, and can provide sufficiently accurate chan-
nel information. These models attempt to generate synthetic
channel responses that are representative of real propagation
channels. Firstly, measurements will be conducted in a large
variety of locations and environments in order to obtain a
database with good representation of the underlying statisti-
cal properties. Then, the probability density function (pdf)
of the channel parameters will be derived from the measure-
ment data which will be used to regenerate the channel im-
pulse responses. Since the stochastic approach is based on
probabilistic characterization of the wireless channel, mod-
els based on this approach can be tuned to imitate various
propagation environments by setting appropriate values for
the channel parameters. Note that fixed parameter settings
do not produce identical outputs on each simulation run but
stochastic processes are used to create variability within a
fixed environment type. For example, a particular set of pa-
rameters might generate a representative set of propagation
scenarios found in outdoor urban environments. Many chan-
nel models have been developed under this category for cel-
lular systems design and cell planning such as the Okumura-
Hata pathloss model [6], the widely used COST 207 model
[11], its successors UMTS Code Division Testbed (CODIT)
model [54] and Advanced Time Division Multiple Access
(ATDMA) model [55].

In general, stochastic approach can be classified into
two main subcategories, namely, ray-based approach (a.k.a.
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geometrically-based stochastic approach) and correlation-
based approach. The ray-based modeling approach is com-
monly used in MIMO channel modeling. This approach
assumes that a number of scatterers is distributed in space
according to some stochastic distribution around the trans-
mitter (TX) and RX ends. The channel gains are then
calculated for each antenna at both TX and RX ends by
summing the contribution from each reflected ray emerging
from the scatterer. Multiple rays, each with its own am-
plitude, angle-of-departure (AoD), angle-of-arrival (AoA),
time-of-arrival (ToA), and phase, add constructively and de-
structively, whereby the received signal can be modeled as a
superposition of rays. The summed received signal can then
be written as

h(t) =
N∑

n=1

αnexp ( j2π fnt + φn), (1)

where αn is the amplitude, fn is the frequency, and φn is the
phase of the n-th ray. Within this subcategory, the widely
deployed models are the 3GPP/3GPP2 SCM [32] and the
IMT-Adv MCM [35] for 3G and B3G/4G cellular systems,
respectively. Other examples of ray-based models are such
as [56]–[61].

The correlation-based modeling approach relies on the
channel second order statistics such as correlation and co-
variance matrices. In particular, this approach models the
transfer function of each transmit and receive antenna ele-
ment pair, and the signal correlations between them. The
generation of MIMO channel matrices based on channel
correlation matrix is defined as

R = E
[
vec (H)H vec (H)

]
, (2)

where E[·] denotes the expectation, (·)H denotes the Hermi-
tian transpose, vec(·) is the vectorization operator, and H is
the MIMO channel matrix. In order to simplify the analy-
sis, one example of such a model is the Kronecker model
in which the channel correlation matrix R can be written as
follows

R = RTx ⊗ RRx, (3)

where ⊗ is the Kronecker product and RTx and RRx are the
correlation matrices at the TX and RX, respectively. The
advantage of the Kronecker assumption is that (3) is a com-
putationally simpler operation than the full correlation ma-
trix in (2). The underlying assumption is that the directional
properties of the channel at the TX and RX are independent.

Both ray-based and correlation-based stochastic chan-
nel models have advantages and disadvantages. For in-
stance, the ray-based channel models can directly generate
channel coefficients, in which the spatial-temporal correla-
tion is implicitly present in the channel matrix generation.
However, since it does not specify the spatial-temporal cor-
relation properties explicitly, it is therefore difficult to con-
nect its simulation results with the theoretical analysis. Fur-
thermore, the implementation complexity of the ray-based

Fig. 3 Illustration of the ray-based MIMO channel model.

Fig. 4 Illustration of the correlation-based (Kronecker approach) MIMO
channel model.

models are usually high since many parameters have to be
generated such as antenna array orientations, mobile di-
rections, delay spread, angular spread, AoDs, AoAs, and
phases. On the other hand, for the correlation-based mod-
els, the spatial correlation is explicitly defined and gener-
ated by means of spatial correlation matrices. This provides
elegant and concise analytical expressions for the MIMO
channel and makes the correlation-based models easier to
be integrated into a theoretical framework. The main ad-
vantage of the correlation-based approach are its compu-
tational and modeling simplicity whereby it requires less
input parameters as compared to the ray-based approach.
However, despite its simplicity and analytical tractability,
the correlation-based model is restricted to model only the
average spatial-temporal behavior of the MIMO channels.
There are several other drawbacks of the correlation-based
approach. For instance, the correlation matrix is antenna
array dependent and hence has to be re-estimated for dif-
ferent array geometries. Also, the model parameteriza-
tion describes only the second-order statistics of the chan-
nel without any physical interpretation of the propagation
medium. In particular, with the Kronecker assumption, the
correlation-based models are deemed to over simplify the
MIMO channel characteristics since they are incapable of
reproducing the “pinhole” [50] or “keyhole” [62], [63] ef-
fects which results in low rank (hence low capacity) chan-
nels. Due to the above reasons, the ray-based model is pre-
ferred as it provides more insights of the variations of dif-
ferent MIMO channel realizations. Figures 3 and 4 illus-
trate the ray-based and the correlation-based (Kronecker ap-
proach) MIMO channel models, respectively.

3. Standard MIMO Channel Models for 3G and
B3G/4G Cellular Systems

In order to evaluate the performance of various air-interface
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Fig. 5 The overview of the 3GPP/3GPP2 SCM channel coefficients generation procedure [32].

technologies based on MIMO schemes, several MIMO
channel models have been developed in either standard orga-
nizations (e.g., 3GPP/3GPP2 SCM and IMT-Adv MCM) or
within large collaborative projects (e.g., IST Multi Element
Transmit and Receive Antennas (METRA) Channel Model
[25], IST Wireless World Initiative New Radio (WINNER)
model [64], COST 259 Directional Channel Model [29], and
COST 273 MIMO Channel Model [65]). In this section,
two MIMO channel models, i.e., the 3GPP/3GPP2 SCM
and the IMT-Adv MCM suitable for system-level simula-
tions will be reviewed and compared. Both models de-
ploy the geometrically-based stochastic modeling approach
as the channel model framework and can be applied for dif-
ferent environments (e.g., urban macro, urban micro, etc.).
Each environment has specific distributions and parameters.
By changing these specific distributions in angle and delay
domains as well as the environment specific parameters, dif-
ferent channel models under different environments and sce-
narios (e.g., line-of-sight (LOS) and non-LOS (NLOS)) can
be generated.

3.1 3GPP/3GPP2 Spatial Channel Model (SCM)

The SCM was developed within 3GPP/3GPP2 ad-hoc group
as a reference model for evaluating different MIMO tech-
niques. The model was first released in September 2003
[66] and was later updated in June 2007 [32]. It defines
three most commonly used environments in cellular sys-
tems, namely, suburban macro, urban macro, and urban mi-
cro. For all these scenarios, the number of paths (a.k.a. clus-
ters) are fixed to six and each path consists of 20 spatially
separated subpaths (a.k.a. rays). The SCM was parameter-
ized for systems with 5 MHz bandwidth and a center fre-
quency around 2 GHz. Therefore, it is valid for most 3G sys-

tems deploying MIMO techniques and may not be suitable
for system with bandwidth higher than 5 MHz. The SCM
was later extended by [67] as the Spatial Channel Model Ex-
tension (SCME) which support up to 100 MHz bandwidth in
order to evaluate the 3GPP LTE systems.

The overall procedure for generating the SCM channel
coefficients can be summarized in three steps as illustrated
in Fig. 5. Firstly, one of the three environments as described
above will be chosen. After the number of BSs with their
respective cell layouts (e.g., hexagonal layout) and inter-site
distances have been determined, MSs are randomly posi-
tioned within each cell. Then, each of the MS will be given
a random antenna array orientation drawn from a uniform
[0, 360◦] distribution and a random velocity with its direc-
tion also drawn from a uniform [0, 360◦] distribution. Sec-
ondly, the channel parameters for the selected environment
will be determined. This can be categorized into large-scale
(LS) parameters such as delay spread (DS), angular spread
(AS) and shadowing fading (SF); and small-scale (SS) pa-
rameters such as paths’ powers, delays, AoAs and AoDs,
as well as subpaths’ AoAs and AoDs. Thirdly, the chan-
nel coefficients are generated. Based on the SCM, six paths
are generated, each with a given angular dispersion power,
AoA and AoD. This dispersion is due to the fact that there
are 20 subpaths within each path, and each subpath has a
slightly different AoA and/or AoD but with the same time
delay. Here, the paths’ powers, delays, and angular proper-
ties for both sides of the link are modeled as random vari-
ables (RVs) defined by pdfs and cross-correlations.

When generating channel coefficients using the SCM,
a number of “drops” are generated. A “drop” is defined as
a simulation run for a given number of cells/sectors, BSs,
and MSs over a short period of time. During a drop, the
channel undergoes fast-fading according to the motion of
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Table 1 The 3GPP/3GPP2 SCM channel model parameters [32].

Channel Scenario Suburban Macro Urban Macro Urban Micro

Number of paths, N 6 6 6
Number of subpaths per path, M 20 20 20
Mean AS at BS E(σAS ,BS ) = 5◦ E(σAS ,BS ) = 8◦, 15◦ NLOS: E(σAS ,BS ) = 19◦
AS at BS as a lognormal RV μAS = 0.69 For 8◦, μAS = 0.81 N/A
σAS = 10(εAS ·x+μAS ), εAS = 0.13 εAS = 0.34
where x ∼ N(0, 1) For 15◦, μAS = 1.18

εAS = 0.21
rAS = σAoD/σAS 1.2 1.3 N/A
Per-path AS at BS (fixed) 2◦ 2◦ 5◦ (LOS and NLOS)

BS per-path AoD distribution N(0, σ2
AoD), where N(0, σ2

AoD), where U(−40◦, 40◦)
standard deviation σAoD = rAS · σAS σAoD = rAS · σAS

Mean AS at MS E(σAS ,MS ) = 68◦ E(σAS ,MS ) = 68◦ E(σAS ,MS ) = 68◦
Per-path AS at MS (fixed) 35◦ 35◦ 35◦

MS per-path AoA distribution N(0, σ2
AoA(Pr)) N(0, σ2

AoA(Pr)) N(0, σ2
AoA(Pr))

DS as a lognormal RV μDS = −6.8 μDS = −6.18 N/A
σDS = 10(εDS ·x+μDS ), εDS = 0.288 εDS = 0.18
where x ∼ N(0, 1)
Mean total RMS DS E(σDS ) = 0.17 μs E(σDS ) = 0.65 μs E(σDS ) = 0.251 μs
rDS = σdelays/σDS 1.4 1.7 N/A
Distribution for path delays − − U(0, 1.2 μs)
Lognormal shadowing 8 dB 8 dB NLOS: 10 dB
standard deviation, σS F LOS: 4 dB
Pathloss model (dB), 31.5 + 35 log10(d) 34.5 + 35 log10(d) NLOS: 34.53 + 38 log10(d)
d is in meters LOS: 30.18 + 26 log10(d)

the MSs and for each of these drops, parameters describing
the channel such as DS, AS, SF, AoAs, etc. are assumed to
be fixed. For each new simulation drop, these parameters are
randomly drawn according to the specified distributions that
depend on the environment under invetigation. Furthermore,
the MS position is also drawn randomly for each new drop.
Since the model is antenna independent, for each simulation
run the antenna patterns, geometries and orientations can
be chosen arbitrary. Table 1 summarizes the SCM channel
parameters used in each of the environments.

In addition to the 3-steps procedure as described above,
the SCM offers four optional system simulation features for
special cases (see Fig. 5).

• Polarized arrays: The cross-polarized model is in-
cluded in additional to the vertical-polarized one as-
sumed in the baseline model. Cross-polarized antenna
arrays will most likely to be implemented on future
handheld devices in order to guarantee the compact
size of the devices.
• Far scatterer clusters: The far scatterer clusters repre-

sent bad-urban case where additional clusters are seen
in the environment. These can be due to reflection
or scattering caused by mountains, high-rise buildings,
etc. The far scatterers tend to increase both the delay
and angular spreads of the channel which can change
the MIMO channel characteristics significantly. Note
that this feature is limited to be used in the urban
macrocell only.
• Line-of-sight (LOS): The LOS modeling is based on

the Ricean-K factor and is available for urban micro-
cell only. By including the LOS path in the model, the

average delay and angular spreads are reduced, which
represent a highly correlated MIMO channel.
• Urban canyon: Urban canyon exists in dense urban

areas where signals propagate between buildings which
typically occur in both macrocells and over rooftop mi-
crocells. Under this environment, multipath arrive at
the MS are usually from similar angles which give rise
to narrow AS. Therefore, this tends to increase the cor-
relation at the MS. This feature is available for urban
macrocell and urban microcell.

Interested readers are referred to [32] and [68] for
more comprehensive description and evaluation of the
3GPP/3GPP2 SCM.

3.2 ITU-R IMT-Advanced MIMO Channel Model (IMT-
Adv MCM)

The Drafting Group Evaluation Channel Model (DG-EVAL
Channel Model) was formed within the ITU-R in order to
develop standard MIMO channel modeling approach for the
evaluation of IMT-Advanced candidate radio interface tech-
nologies (RITs). The DG-EVAL Channel Model was es-
tablished in May 2007 during the 22nd Meeting of ITU-
R Working Party 8F (WP8F) in Kyoto, Japan. The work
within the group was continued in January 2008 during the
1st Meeting of ITU-R WP5D in Geneva, Switzerland and
was finalized in July 2008 during the 2nd Meeting of ITU-
R WP5D in Dubai, United Arab Emirates. The IMT-Adv
MCM covers all the required test environments (TEs) and
scenarios as defined in the IMT-Advanced RITs Evaluation
Guidelines (IMT.EVAL) [35] which can be summarized as
below:
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Fig. 6 The ITU-R IMT-Advanced MIMO channel model [35].

• Base Coverage Urban TE: Urban macrocell (UMa)
scenario and suburban macrocell (SMa) scenario tar-
geting on continuous coverage for pedestrian up to fast
vehicular users. Note that SMa is defined as an optional
scenario for evaluation within the WP5D.
• Microcellular TE: Urban microcell (UMi) scenario

targeting on pedestrian and slow vehicular users in
higher user density area.
• Indoor TE: Indoor hotspot (InH) scenario targeting on

stationary and pedestrian in isolated cells.
• High Speed TE: Rural macrocell (RMa) scenario tar-

geting on high-speed vehicular and trains.

The IMT-Adv MCM consists of a Primary Module
(PM) and an Extension Module (EM) as illustrated in Fig. 6.
The PM defines the mandatory channel model definition and
parameter tables required for evaluation of IMT-Advanced
candidate RITs in four mandatory scenarios i.e., UMa, UMi,
InH and RMa. The EM is an optional feature available for
UMa, RMa and SMa scenarios to cover cases beyond IMT-
Advanced. In the rest of the paper, only the mandatory PM
will be discussed.

The framework of the PM is based on the WINNER
II channel model [64] which was developed within the Eu-
ropean collaborate research project IST-WINNER. The PM
is based upon the SCM methodology and is further ex-
tended to support system with larger bandwidths (i.e., up to
100 MHz) and different carrier frequencies (i.e., 2–6 GHz)
in larger variety of different scenarios (i.e., from outdoor
to indoor). The model parameters are determined from ex-
tensive wideband MIMO radio-channel measurement cam-
paigns performed within IST-WINNER project and from re-
sults obtained in the literature. Within the PM, two models
are defined, namely, the generic model and the clustered de-
lay line (CDL) model. The generic model which is described

Fig. 7 The elements of the MIMO channel model as defined in the PM
[35].

by one mathematical framework through different parame-
ter sets will be used as the mandatory system-level model,
while the CDL model is a reduced variability model with
fixed parameter sets will only be used for calibration pur-
poses.

Figure 7 illustrates the elements of the MIMO channel
as defined in the PM. The MIMO channel transfer matrix is
given by

H(t; τ) =
N∑

n=1

Hn(t; τ), (4)

where t is time, τ is delay, N is the number of paths, and
n is the path index. The channel between the TX antenna
element s and RX antenna element u for path n is expressed
by

Hu,s,n(t; τ) =
M∑

m=1

[
FRx,u,V

(
ϕn,m
)

FRx,u,H
(
ϕn,m
)
]T
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Table 2 The ITU-R IMT-Adv MCM channel model parameters for the generic model of PM [35].

Channel Scenario InH UMi UMa RMa SMa
LOS NLOS LOS NLOS O-to-I LOS NLOS LOS NLOS LOS NLOS

Number of paths, N 15 19 12 19 12 12 20 11 10 15 14

Number of subpaths, M 20 20 20 20 20 20 20 20 20 20 20

Mean DS [ns] 20 39 65 129 240 93 365 32 37 59 74

Mean AS at BS [◦] 40 42 16 26 58 14 26 8 9 59 75

Mean AS at MS [◦] 42 59 56 69 18 65 74 33 33 30 45

Delay spread (DS ), μ −7.70 −7.41 −7.19 −6.89 −6.62 −7.03 −6.44 −7.49 −7.43 −7.23 −7.12
log10([s]) σ 0.18 0.14 0.40 0.54 0.32 0.66 0.39 0.55 0.48 0.38 0.33

AoD spread (AS D), μ 1.60 1.62 1.20 1.41 1.25 1.15 1.41 0.90 0.95 0.78 0.90
log10([◦]) σ 0.18 0.25 0.43 0.17 0.42 0.28 0.28 0.38 0.45 0.12 0.36

AoA spread (AS A), μ 1.62 1.77 1.75 1.84 1.76 1.81 1.87 1.52 1.52 1.48 1.65
log10([◦]) σ 0.22 0.16 0.19 0.15 0.16 0.20 0.11 0.24 0.13 0.20 0.25

Shadow fading (S F), [dB] σ 3 4 3 4 7 4 6 4 8 4 8

K-factor (K), [dB] μ 7 N/A 9 N/A N/A 9 N/A 7 N/A 9 N/A
σ 4 N/A 5 N/A N/A 3.5 N/A 4 N/A 7 N/A

Cross-correlation:
σAS D vs. σDS 0.6 0.4 0.5 0 0.4 0.4 0.4 0 −0.4 0 0

σAS A vs. σDS 0.8 0 0.8 0.4 0.4 0.8 0.6 0 0 0.8 0.7

σAS A vs. σS F −0.5 −0.4 −0.4 −0.4 0 −0.5 0 0 0 −0.5 0

σAS D vs. σS F −0.4 0 −0.5 0 0.2 −0.5 −0.6 0 0.6 −0.5 −0.4

σDS vs. σS F −0.8 −0.5 −0.4 −0.7 −0.5 −0.4 −0.4 −0.5 −0.5 −0.6 −0.4

σAS D vs. σAS A 0.4 0 0.4 0 0 0 0.4 0 0 0 0

AS D vs. K 0 N/A −0.2 N/A N/A 0 N/A 0 N/A 0 N/A

AS A vs. K 0 N/A −0.3 N/A N/A 0 N/A 0 N/A −0.2 N/A

DS vs. K −0.5 N/A 0.7 N/A N/A −0.4 N/A 0 N/A 0 N/A

S F vs. K 0.5 N/A 0.5 N/A N/A 0 N/A 0 N/A 0 N/A

Delay distribution Exponential
AoD and AoA distribution Laplacian Wrapped Gaussian
Delay scaling parameter, rτ 3.6 3 3.2 3 2.2 2.5 2.3 3.8 1.7 2.4 1.5

XPR [dB] μ 11 10 9 8 9 8 7 12 7 8 4

Cluster AS D 5 5 3 10 5 5 2 2 2 5 2

Cluster AS A 8 11 17 22 8 11 15 3 3 5 10

Per cluster shadowing 6 3 3 3 4 3 3 3 3 3 3
standard deviation, ζ [dB]
Correlation distance [m] DS 8 5 7 10 10 30 40 50 36 6 40

AS D 7 3 8 10 11 18 50 25 30 15 30
AS A 5 3 8 9 17 15 50 35 40 20 30
S F 10 6 10 13 7 37 50 37 120 40 50
K 4 N/A 15 N/A N/A 12 N/A 40 N/A 10 N/A

×
[
αn,m,VV αn,m,VH

αn,m,HV αn,m,HH

] [
FTx,s,V

(
φn,m
)

FTx,s,H
(
φn,m
)
]

× exp
(

j2πλ−1
0
(
ϕ̄n,m · r̄Rx,u

))
× exp

(
j2πλ−1

0
(
φ̄n,m · r̄Tx,s

))
× exp

(
j2πνn,mt

) · δ (τ − τn,m
)
, (5)

where FRx,u,V and FRx,u,H are the antenna element u field pat-
terns for vertical and horizontal polarization, respectively,
αn,m,VV and αn,m,VH are the complex gains of the vertical-to-
vertical and vertical-to-horizontal polarizations of ray n,m,
respectively, λ0 is the wavelength of the carrier frequency,
φ̄n,m and ϕ̄n,m are the AoD and AoA unit vector, respectively,
r̄Tx,s and r̄Rx,u are the location vectors of element s and u, re-
spectively, and νn,m is the Doppler frequency component of
ray n,m.

The generic model is a stochastic model with three lev-
els of randomness [35]. Firstly, the LS parameters are drawn
randomly from the tabulated distribution functions (see Ta-
ble 2). These parameters are assumed to be constant over

some large area of several wavelengths. Secondly, the SS
parameters are drawn randomly according to the tabulated
distribution functions and random LS parameters. Finally,
by randomly selecting different initial phases, an infinite
number of different realizations of the model can be gen-
erated. Similar to the approach used in the SCM, the drop
concept will also be used by the generic model to simulate
the time-evolution conditions. In general, the overall proce-
dure for generating the channel coefficients based on the PM
of the IMT-Adv MCM can be summarized in three stages
as illustrated in Fig. 8. The first stage consists of two steps
i.e., the propagation scenario selection, and the network lay-
out and antenna configuration determination. In the second
stage, both LS and SS parameters are defined. Finally, in
the third stage, channel coefficients are computed. Note
that, the PM channel model creation process is similar to
the SCM one as described in Sect. 3.1. Table 2 summarizes
the generic model channel parameters used in each of the
TEs and scenarios. Here, the number of paths are fixed to
different values for different scenarios, ranging from 10 to
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Fig. 8 The overview of the channel coefficients generation procedure based on the PM of the
IMT-Adv MCM [35].

Table 3 The ITU-R IMT-Adv pathloss models [35].

Channel Scenario Pathloss [dB] SF Std [dB] Default Values

InH LOS PL = 16.9 log10(d) + 46.8 + 20 log10( fc/5.0) σ = 3 3 < d < 100 [m]
hBS = 3 − 6 [m]
hMS = 1 − 2.5 [m]

InH NLOS PL = 43.3 log10(d) + 25.5 + 20 log10( fc/5.0) σ = 4 10 < d < 150 [m]
hBS = 3 − 6 [m]
hMS = 1 − 2.5 [m]

InH FAF For any of the above, add Floor Attenuation σ = 4 nf : number of floors between
(Optional) Factor (FAF) if the BS and MS are in different floors: the BS and the MS (nf > 0)

FAF = 20 + 6(nf − 1) [dB]

UMi LOS PL = 22 log10(d) + 42 + 20 log10( fc/5.0) σ = 3 10 < d1 < d′BP [m]

PL = 40 log10(d1) + 9.2 − 18 log10(h′BS) σ = 3 d′BP < d1 < 5000 [m]
−18 log10(h′MS) + 2 log10( fc/5.0) hBS = 10, hMS = 1.5 [m]

where d′BP = 4h′BSh′MS fc/c, c = 3 × 108 m/s
h′BS = hBS − 1 and h′MS = hMS − 1

UMi NLOS Manhattan grid layout (optional):
PL = min (PL(d1, d2), PL(d2, d1)) σ = 4 20 < d1 + d2 < 5000 [m]
where PL(dk , d1) = PLLOS(dk) + 20 − 12.5nj w/2 < min(d1, d2)
+10nj log10(d1) + 3 log10( fc/5.0), w = 20 [m] (street width)
with nj = max(2.8 − 0.0024dk , 1.84), hBS = 10, hMS = 1.5 [m]
PLLOS is the pathloss of UMi LOS, and k, l ∈ {1, 2} where d1 is the distance from the BS to the

center of the perpendicular street, and d2 is
the distance from the MS along the
perpendicular street. When
0 < min(d1, d2) < w/2, the LOS PL
is applied.

Hexagonal layout:
PL = 36.7 log10(d) + 40.9 + 26 log10( fc/5.0) σ = 4 10 < d < 2000 [m]

hBS = 10, hMS = 1 − 2.5 [m]

UMi O-to-I PL = PLb + PLtw + PLin σ = 7 3 < dout + din < 1000 [m]
Manhattan grid layout (optional): hBS = 10, hMS = 3(nFl − 1) + 1.5 [m]
PLb = PLB1(dout + din) where PLb: basic pathloss,
PLtw = 14 + 15(1 − cos(θ))2 PLB1: loss of UMi outdoor scenarios,
PLin = 0.5din PLtw: loss through wall, PLin: loss inside,

dout: distance from BS to wall next to MS,
din: perpendicular distance from wall to MS,
θ: angle between LOS to wall.

Hexagonal layout:
PLtw = 20, other values remain the same.



2782
IEICE TRANS. COMMUN., VOL.E92–B, NO.9 SEPTEMBER 2009

Table 4 (continued) The ITU-R IMT-Adv pathloss models [35].

Channel Scenario Pathloss [dB] SF Std [dB] Default Values

UMa LOS PL = 22 log10(d) + 42 + 20 log10( fc/5.0) σ = 4 10 < d < d′BP [m]

PL = 40 log10(d1) + 9.2 − 18 log10(h′BS) σ = 4 d′BP < d < 5000 [m]
−18 log10(h′MS) + 2 log10( fc/5.0) hBS = 25, hMS = 1.5 [m]

(d′BP, hBS and h′MS are defined in UMi LOS.)

UMa NLOS PL = 101.04 − 7.1 log10(w) + 7.5 log10(h) σ = 4 h = 20 [m] (average building height)
−(24.37 − 3.7(h/hBS)2) log10(hBS) w = 20 [m] (street width)
+(43.42 − 3.1 log10(hBS))(log10(d) − 3) hBS = 25, hMS = 1.5 [m],
+20 log10( fc) − (3.2(log10(11.75hMS))2 − 4.97) The applicability ranges: [m]

5 < h < 50, 5 < w < 50,
10 < hBS < 150, 1 < hMS < 10,
50 < d < 5000

RMa LOS PL = 20 log10

(
4π(d)

300/ fc

)
+min(0.03h1.72, 10) log10(d) σ = 4 10 < d < dBP [m]

−min(0.044h1.72, 14.77) + 0.002 log10(h)d

PL = 40 log10(d) − 20 log10(hBS) − 20 log10(hMS) σ = 6 dBP < d < 10, 000 [m]
+5 log10( fc) + 11 log10(h) − 7.1 log 10(w) − 2.45 hBS = 32, hMS = 1.5 [m]

w = 20, h = 5 [m]
where dBP = 2πhBShMS fc/c
(The applicability ranges of h, w, hBS, hMS

are same as in UMa NLOS)

RMa NLOS PL = 101.04 − 7.1 log10(w) + 7.5 log10(h) σ = 8 50 < d < 5000 [m]
−(24.37 − 3.7(h/hBS)2) log10(hBS) hBS = 32, hMS = 1.5 [m]
+(43.42 − 3.1 log10(hBS))(log10(d) − 3) w = 20, h = 5 [m]
+20 log10( fc) − (3.2(log10(11.75hMS))2 − 4.97) (The applicability ranges of h, W, hBS, hMS

are same as in UMa NLOS)

SMa LOS PL = 20 log10

(
4π(d)

300/ fc

)
+min(0.03h1.72, 10) log10(d) σ = 4 30 < d < dBP [m]

(Optional) −min(0.044h1.72, 14.77) + 0.002 log10(h)d

PL = 40 log10(d) − 20 log10(hBS) − 20 log10(hMS) σ = 6 dBP < d < 5000 [m]
+5 log10( fc) + 11 log10(h) − 7.1 log 10(w) − 2.45 hBS = 32, hMS = 1.5 [m]

w = 20, h = 10 [m]
(The applicability ranges of h, w, hBS, hMS

are same as in UMa NLOS. dBP is defined
in RMa LOS.)

SMa NLOS PL = 101.04 − 7.1 log10(w) + 7.5 log10(h) σ = 8 50 < d < 5000 [m]
(Optional) −(24.37 − 3.7(h/hBS)2) log10(hBS) hBS = 25, hMS = 1.5 [m]

+(43.42 − 3.1 log10(hBS))(log10(d) − 3) w = 20, h = 10 [m]
+20 log10( fc) − (3.2(log10(11.75hMS))2 − 4.97) (The applicability ranges of h, W, hBS, hMS

are same as in UMa NLOS)

20 and each path consists of 20 fixed subpaths.
Tables 3 and 4 summarize the pathloss models for all

the TEs and scenarios. In this table, distance d is in meters
and center frequency fc is in GHz. These models can be
applied in the frequency range from 2–6 GHz and for dif-
ferent antenna heights. The RMa pathloss formula can also
be applied to the desired frequency range around 800 MHz.
Here, the shadow fading is assumed to be lognormal dis-
tributed and the standard deviation (Std) for each scenario is
given in the table.

4. Performance Metrics Evaluation of SCM and IMT-
Adv MCM

Two performance metrics often used to characterize the
MIMO channel models are the spatial multiplexing gain and
the spatial diversity gain. These two parameters have a cru-
cial impact on the wireless communications system deploy-
ing MIMO techniques. For instance, for the same band-

width, spatial multiplexing can offer a linear capacity in-
crement proportional to the number of antennas at the BS
and MS without additional power expenditure [69]. Note
that, this can only be achieved when different data bits are
transmitted via several independent spatial channels. On the
other hand, spatial diversity utilizes two or more antennas to
combat fading in order to improve the quality and reliability
of a wireless link. The two most frequently used spatial di-
versity techniques in MIMO system are the receive diversity
and the transmit diversity. The 3GPP/3GPP2 SCM has been
widely used for the Beyond 3G/4G cellular system evalu-
ation. However, the IMT-Adv MCM is a fairly new chan-
nel model and has not been well studied. Table 5 compares
the similarities and differences of these two MIMO channel
models.

In this section, the spatial multiplexing and spatial di-
versity gains of these channel models are evaluated for dif-
ferent environments (e.g., urban macro, suburban macro,
and urban micro). The MIMO channel coefficients for both
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Table 5 The 3GPP/3GPP2 SCM vs. ITU-R IMT-Adv MCM.

Parameters 3GPP/3GPP2 SCM IMT-Adv MCM

Environments/scenarios Urban Macro (NLOS) Urban Macro (LOS & NLOS)
Urban Micro (NLOS & LOS) Urban Micro (LOS, NLOS & O-to-I)

Suburban Macro (NLOS) Suburban Macro (LOS & NLOS)
− Rural Macro (LOS & NLOS)
− Indoor Hotspot (LOS & NLOS)

Frequency range 2 GHz 2 − 6 GHz
Maximum bandwidth 5 MHz 100 MHz
Mobility Up to 120 km/h Up to 350 km/h
Number of paths, N 6 4 − 20
Number of subpaths per path, M 20 20
BS angle spread 5 − 19◦ 6 − 42◦
MS angle spread 68◦ 30 − 74◦
Delay spread 170 − 650 ns 20 − 365 ns
Shadow fading standard deviation 4 − 10 dB 1 − 1.8 dB
Correlation between LS parameters No Yes

models are generated using methods described in Sect. 3.1
and Sect. 3.2. The time-delay domain MIMO channel ma-
trix can be expressed as follows

hn,t,d =
(
hu,s,n,t,d

)
U×S , (6)

where U and S are the total number of antenna elements
at the MS and BS, respectively, u and s are the index of
MS and BS antenna elements, respectively, n is the index
of delay paths, and t is the index of time-sample in the d-
th drop. In this paper, we will consider a downlink system
where a BS transmits to a MS. The same principle can be ap-
plied to uplink systems as well. By taking a discrete Fourier
transform in the delay domain, the time-frequency domain
MIMO channel matrix is given by

H f ,t,d =
(
Hu,s, f ,t,d

)
U×S
, (7)

where f is the index of the narrowband frequency bins. The
channel frequency response are then normalized in order to
obtain unity power. The average power over all samples Pf

are calculated as follows

Pf =
1

US FT D

F∑
f=1

T∑
t=1

D∑
d=1

∥∥∥H f ,t,d

∥∥∥2F . (8)

where ‖·‖F denotes the Frobenius norm, F, T , and D are the
total number of narrowband frequency bins, the total time-
samples, and the total number of simulation drops, respec-
tively. The normalized channel coefficients can be obtained
by

H f ,t,d =
Hf ,t,d

Pf
, (9)

where the normalized channel matrix is given by

H f ,t,d =
(
H f ,t,d

)
U×S
. (10)

4.1 Spatial Multiplexing

For each (U × S ) channel matrix H realization, the narrow-
band capacity CNB can be computed as follows [20], [21]

CNB = log2

[
det
(
I +
ρ

S
HHH

)]
, (11)

where I is the identity matrix, and ρ is the average per-
receiver-antenna signal-to-noise ratio (SNR). For wideband
channels, the wideband capacity CWB is computed by inte-
grating over all frequencies and is given by [70]

CWB =
1
B

∫
B

log2 det
(
I +
ρ

S
HH ( f )H( f )

)
d f , (12)

where H( f ) is the wideband channel frequency response,
and B is the channel bandwidth of interest. Using the nor-
malized channel matrix obtained from (10), the wideband
capacity for each channel realization under ρ SNR can be
calculated in the frequency domain by computing the aver-
age over the frequency bins as follows

CWB
t,d = lim

F→∞
1
F

F∑
f=1

log2

∣∣∣∣∣I + ρS H
H
f ,t,dH f ,t,d

∣∣∣∣∣ . (13)

From the wideband capacity samples {CWB
t,d }, the capacity

cumulative distribution function (cdf) FCap is given by

FCap(c) �
1

T D

T∑
t=1

D∑
d=1

I
(
CWB

t,d ≤ c
)
, (14)

where the outage capacity Cq can be obtained from FCap

such that FCap(Cq) = q. The wideband capacity for the
3GPP/3GPP2 SCM and the IMT-Adv MCM are evaluated
in urban macro, suburban macro, and urban micro environ-
ments under LOS and NLOS scenarios. Figures 9–11 show
the complementary cdf (ccdf) of the 1000 channel realiza-
tions in these environments with four antenna elements at
both BS and MS with ρ = 14 dB. Table 6 summarizes the
C0.05, C0.5, and C0.95 outage capacity of both channel mod-
els in these four environments.

From the results, we can see that the outage capacity
of the IMT-Adv MCM is less than the 3GPP/3GPP2 SCM
except for the urban macro environment. This implies that,
if the same space-time signal processing technique is being
deployed in both channel models, the system will experi-
ence lower capacity in the IMT-Adv MCM. In particular,
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the reduction of the spatial multiplexing gain in the IMT-
Adv MCM under the NLOS scenario could be due the pres-
ence of fewer dominant scatterers in the environment. This
tends to increase the channel correlation and cause the loss
of MIMO channel rank.

Fig. 9 The ccdf of the wideband capacity in urban macro environment
with four antenna elements and ρ = 14 dB.

Fig. 10 The ccdf of the wideband capacity in suburban macro
environment with four antenna elements and ρ = 14 dB.

4.2 Spatial Diversity

The spatial diversity gain of a MIMO channel is specified by
the eigenvalues, which define the number of independently
fading components and its associated power. The number of
significant eigenvalues specifies the maximum degree of di-
versity and the principal eigenvalue specifies the maximum
possible beamforming gain. The diversity order is defined
by the number of decorrelated spatial branches available at
the TX or RX [71] which depends on the SNR and the type
of RX. In order to contribute to the effective diversity or-
der, an eigenvalue has to be significant with respective to
the noise level and the strongest eigenvalue (which depends
on the dynamic range of the RX).

Using the normalized channel matrix obtained from
(10), the eigenvalues for each channel realization λu, f ,t,d can
be calculated through eigenvalue decomposition which are
ordered in descending order as

λ1, f ,t,d ≥ λ2, f ,t,d ≥ . . . λU, f ,t,d ≥ 0. (15)

The eigenvalue cdf F(u)
Div can be obtained from

Fig. 11 The ccdf of the wideband capacity in urban micro environment
with four antenna elements and ρ = 14 dB.

Table 6 The outage capacity of the 3GPP/3GPP2 SCM and the ITU-R
IMT-Adv MCM.

Environments/scenarios 3GPP/3GPP2 SCM IMT-Adv MCM
(4 × 4, ρ = 14 dB) (4 × 4, ρ = 14 dB)

C0.05 C0.5 C0.95 C0.05 C0.5 C0.95

Urban macro LOS − − − 7.4444 9.6001 12.7113
Urban macro NLOS 9.7130 13.9822 16.8070 11.6162 14.1740 16.7158
Urban micro LOS 10.5633 14.1624 16.9460 7.3768 9.6908 13.4272
Urban micro NLOS 11.8282 14.3828 17.0195 11.5602 11.1835 16.7211
Urban micro O-to-I − − − 10.6796 13.6156 16.3326
Suburban macro LOS − − − 7.0768 9.5202 13.7439
Suburban macro NLOS 10.1990 14.0846 16.8711 9.2947 13.3366 16.3602
Rural macro LOS − − − 7.4829 9.7582 12.9047
Rural macro NLOS − − − 9.1013 12.7466 15.8575
Indoor hotspot LOS − − − 7.8480 10.4266 13.5620
Indoor hotspot NLOS − − − 10.6864 13.6669 16.3880
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Fig. 12 The cdf of eigenvalues in urban macro environment with four
antenna elements and ρ = 14 dB.

Fig. 13 The cdf of eigenvalues in suburban macro environment with four
antenna elements and ρ = 14 dB.

Fig. 14 The cdf of eigenvalues in urban micro environment with four
antenna elements and ρ = 14 dB.

F(u)
Div(λ) �

1
T D

T∑
t=1

D∑
d=1

I
(
λu,t,d ≤ λ

)
, (16)

where {λu,t,d} are the samples of the average eigenvalues
given by

λu,t,d =
1
F

F∑
f=1

λu, f ,t,d . (17)

The spatial diversity metric λ(u)
q can be obtained from F(u)

Div

such that F(u)
Div(λ(u)

q ) = q. The spatial diversity for the
3GPP/3GPP2 SCM and the IMT-Adv MCM are evaluated
in urban macro, suburban macro, and urban micro environ-
ments under NLOS scenario. Figures 12–14 show the cdf
of the 1000 channel realizations in these environments with
four antenna elements at both BS and MS with ρ = 14 dB.
From the results, we can see that there are more significant
eigenvalues in 3GPP/3GPP2 SCM as compare to the IMT-
Adv MCM except in urban micro environment. This implies
that higher diversity order is available in the SCM. Particu-
larly in the urban macro environment, the strongest eigen-
value of the IMT-Adv MCM has much significant amount
of energy as compare to the other eigenvalues. Therefore,
for such an environment, technique such as beamforming is
preferred than any spatial diversity techniques in order to
exploit the multipath behavior of the channels.

5. Conclusion

In this paper, a survey of the propagation channel model-
ing works and the trend towards IMT-Advanced are pre-
sented. Firstly, various channel modeling approaches are
discussed. This was followed by a review of some stan-
dard MIMO channel models used in 3G and B3G/4G cel-
lular systems. In particular, the concepts that form the ba-
sis of the 3GPP/3GPP2 SCM and the IMT-Adv MCM are
compared and described in detail. This includes the model
mathematical framework, covered environments, and sim-
ulation procedure. Finally, two figure of merits that are
important for MIMO systems, namely, spatial multiplexing
and spatial diversity are used to compare the performance of
the 3GPP/3GPP2 SCM and the IMT-Adv MCM, and their
impacts on MIMO communication systems design are dis-
cussed.
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