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SUMMARY Recently, a promising packet forwarding architecture
COPE was proposed to essentially improve the throughput of multihop
wireless networks, where each network node can intelligently encode mul-
tiple packets together and forward them in a single transmission. However,
COPE is still in its infancy and has the following limitations: (1) COPE
adopts the FIFO packet scheduling and thus does not provide different pri-
orities for different types of packets. (2) COPE simply classifies all packets
destined to the same nexthop into small-size or large-size virtual queues
and examines only the head packet of each virtual queue to find coding
solutions. Such a queueing structure will lose some potential coding op-
portunities, because among packets destined to the same nexthop at most
two packets (the head packets of small-size and large-size queues) will be
examined in the coding process, regardless of the number of flows. (3) The
coding algorithm adopted in COPE is fast but cannot always find good solu-
tions. In order to address the above limitations, in this paper we first present
a new queueing structure for COPE, which can provide more potential cod-
ing opportunities, and then propose a new packet scheduling algorithm for
this queueing structure to assign different priorities to different types of
packets. Finally, we propose an efficient coding algorithm to find appropri-
ate packets for coding. Simulation results demonstrate that this new COPE
architecture can further greatly improve the node transmission efficiency.
key words: multihop wireless networks, network coding, COPE architec-
ture, packet coding algorithm, transmission efficiency improvement

1. Introduction

One of the significant problems of multihop wireless net-
works is that their current implementations suffer from a se-
vere throughput limitation and do not scale well as the num-
ber of network nodes increases [1]–[3]. To improve network
throughput, the promising network coding technique [4] has
been proposed for network nodes to mix data and send the
resulting data.

The basic idea of network coding in wireless networks
is quite simple and can be illustrated using the scenario in
Fig. 1 (from Wu et al. [5]), where node A wants to send
packet P1 to node B and node B wants to send packet P2 to
node A with the help of intermediate node R. Assume node
R has received P1 and P2. In traditional transmission way,
node R transmits P1 and P2 separately. However, node R can
XOR P1 and P2 together and broadcast P1 ⊕ P2. Upon re-
ceiving P1⊕P2, node A can decode P2 by P2 = P1⊕(P1⊕P2).
Similarly, node B can decode P1 by P1 = P2 ⊕ (P1 ⊕ P2).
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Fig. 1 A simple scenario of wirelesses network coding.

Therefore, with the network coding function, node R can
forward two packets in a single packet transmission and its
transmission efficiency is improved by 100% when P1 and
P2 have the same size.

Following the study of the above basic scenario by
Wu et al. [5], recently, Katti et al. proposed the first prac-
tical network coding-based packet forwarding architecture
(called COPE) to essentially improve the network through-
put of multihop wireless networks [6]. In COPE, each node
can opportunistically overhear and store those native pack-
ets transmitted by its neighbors, which are not addressed
to itself. Each node can intelligently encode (XOR) multi-
ple packets destined to different nexthops such that multiple
packets can be forwarded in a single transmission, result-
ing in a significant bandwidth saving. Since the proposal
of promising COPE architecture, some efforts have been
made to theoretically evaluate the performance of COPE-
type wireless network coding [7]–[9]. In addition, it has
been shown that the optimal coding problem in COPE is
NP-complete [10].

Although COPE has demonstrated its capability of im-
proving the network throughput [6], it is still in its infancy
and has the following limitations: (1) COPE adopts the
FIFO packet scheduler and thus does not enforce different
priorities to different types of packets, like routing control
packets, voice packets, best-effort packets, etc. (2) COPE
simply classifies all packets destined to the same nexthop
into small-size or large-size virtual queues and examines
only the head packet of each virtual queue to find coding
solutions. Such a queueing structure will lose some poten-
tial coding opportunities, because among packets destined
to the same nexthop at most two packets (the head packets
of small-size and large-size queues) will be examined in the
coding process, regardless of the number of flows. (3) The
coding algorithm adopted in COPE, which finds appropriate
packets for coding, is fast but cannot always find good solu-
tions. In order to address the above limitations, in this paper
we first present a new queueing structure for COPE, which
can provide more potential coding opportunities, and then
propose a new packet scheduling algorithm for this queue-
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ing structure to guarantee different priorities for different
types of packets. Finally, we propose an efficient coding
algorithm to find appropriate packets for coding.

The rest of this paper is organized as follows. In Sect. 2,
we briefly review the COPE architecture and describe its
limitations. Section 3 presents a new packet queueing struc-
ture and a new packet scheduling algorithm. In Sect. 4, we
propose an efficient packet coding algorithm. Simulation re-
sults are presented in Sect. 5. Finally, Sect. 6 concludes this
paper.

2. Overview of COPE

2.1 COPE Architecture

In a COPE-based network [6], a node maintains one FIFO
queue (called output queue) and also maintains for each
neighbor vi two virtual queues Qi,1 and Qi,2 (one for small
packets whose sizes are smaller than 100 bytes and another
for large packets. See Fig. 2(a)). In addition to these queues,
each node also maintains a table, whose entry θm,n indicates
the probability that neighbor vm possesses packet Pn at the
current time, as illustrated in Fig. 2(b). We refer to the prob-
ability θm,n as packet possession indicator in this paper.

The COPE works as follows. Each node always snoops
on all communications over the wireless medium. On one
hand, when a node overhears a packet being delivered to an-
other node, it will store the overheard packet in its memory
for a limited period (say 0.5 s). On the other hand, when
a node successfully receives a native packet or retrieves a
native packet from an encoded packet delivered to it, if it
is the ultimate destination of this native packet, it delivers
the packet to the higher layers of the network stack; other-
wise, it first adds this native packet to the output queue, then
adds a pointer (pointing to this packet in the output queue) to

Fig. 2 The data inside a COPE-based network node with Nn neighbors.

the appropriate virtual queue based on the packet’s nexthop
and size, and finally updates the hash table by including the
probabilities that its neighbors possess this native packet.
In addition to overhearing and receiving packets, each node
also broadcasts reception reports to inform its neighbors the
packets it possesses by annotating the data packets or by
special control packets. Due to different reasons like packet
loss and severe congestion, a node cannot solely rely on re-
ception reports to decide which packets its neighbors pos-
sess and thus it may need to estimate the probability that a
neighbor possesses a particular packet. If a node learns from
reception reports that neighbor vm possesses packet Pn, then
θm,n = 1. Otherwise, it will estimate the value of θm,n.

The packet coding algorithm inside COPE makes cod-
ing decision in the following way. The COPE first dequeues
the head packet P0 of the output queue, and then checks
one by one the head packets of virtual queues with the same
packet size as P0 to find appropriate packets to encode with
P0. After exhausting the head packets of the same size as
P0, COPE then checks one by one the head packets of vir-
tual queues of another size. The following rule is adopted
to determine if a packet Pin is feasible to further encode
with the currently encoded packet. Suppose we have al-
ready decided to XOR n packets P0 ⊕ Pi1 ⊕ · · · ⊕ Pin−1 to-
gether, and are considering XOR-ing the (n + 1)’th packet
Pin with them. The packet coding P0 ⊕ Pi1 ⊕ · · · ⊕ Pin is
feasible only if the following constraint, namely probabil-
ity threshold (PT) constraint, is satisfied: each nexthop to
whom a packet Pi ∈ {P0, Pi1 , . . . , Pin } is headed can decode
its packet Pi with the probability greater than a threshold G
(in default, G = 0.8 in COPE [6]).

2.2 Limitations of the Available Queueing Structure

The current queueing structure of COPE is quite easy to
maintain. However, it has the following two limitations:
(1) In multihop wireless networks, it is quite necessary to
give priority to some special types of packets (like routing-
used control packets) over data packets [11]. Additionally,
it is also necessary to set priorities among data packets. Al-
though the FIFO scheduler is trivial to implement, it can-
not satisfy this QoS requirement and it also allows rogue
flows to capture an arbitrary fraction of the output band-
width. (2) We should notice that under the condition that
no packet reordering is allowed, theoretically all the old-
est packets of distinct flows† have the potential to code to-
gether for throughput improvement. However, the current
structure cannot fully explore this potential, because among
those packets to the same neighbor at most two packets (the
heads of two virtual queues) can be the candidate packets
for encoding with P0. More specifically, when more than
one flow with small packets (or large packets) are routed
to the same nexthop, only one oldest packet can locate at
the head of the virtual queue (i.e., serves as the candidate

†Inside a node, the oldest packet of a flow is the firstly arrived
packet among all the stored packets of this flow.
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Fig. 3 Limitation illustration of the current queueing structure.

packet). Therefore, this structure will significantly limit the
potential coding opportunities.

To illustrate the limitation of current packet size-based
queue structure, we consider a simple example shown in
Fig. 3. In this example, Flows 1 and 2 with large-size pack-
ets are passing through node A and going to neighbor v1,
while Flow 3 also with large-size packets is passing through
node A and going to neighbor v4. Then, all packets of Flow
1 and 2 will be queued in the same virtual queue Q1,2, as
shown in Fig. 3(b). Suppose the coding P0 ⊕ P1 is infeasi-
ble and the coding P0 ⊕ P3 is feasible. During the search
for a feasible coding solution, however, the node A will only
check the feasibility of coding P0 ⊕ P1, without the consid-
eration of P0 ⊕ P3. Finally, P0 will be transmitted alone,
resulting in the loss of coding opportunity P0 ⊕ P3.

To address the above two limitations of the available
queueing structure in COPE, we propose a new queueing
structure and a corresponding packet scheduling algorithm
in Sect. 3.

2.3 Limitations of the Available Coding Algorithm

In the original literature of COPE [6], there is no metric
available for quantitatively measuring the “goodness” of a
coding solution. Here, we introduce a metric for such pur-
pose.

For a coding solution P0 ⊕ · · · ⊕ PL (L ≥ 0), let γ be
the ratio of the expected number of successfully decoded
bytes (after this encoded packet is transmitted) to the size of
encoded packet in byte, i.e.,

γ =
pr

0 · pd
0 · l0 + pr

1 · pd
1 · l1 + · · · + pr

L · pd
L · lL

max0≤i≤L li
, (1)

where lk is the size of packet Pk in byte, pr
k is the probability

that the encoded packet can be successfully received by the
intended nexthop of Pk, and pd

k is the probability that the

encoded packet can be decoded by the intended nexthop of
Pk, k = 0, . . . , L.

The size of encoded packet P0 ⊕ · · · ⊕ PL is approx-
imately equal to the size of the largest packet†. If this
encoded packet is transmitted, it is expected that in total∑L

i=0 pr
i · pd

i · li bytes will be successfully decoded at nex-
thops. Thus, this metric accurately reflects the transmis-
sion efficiency improvement that can be achieved during the
transmission period of encoded packet. By definition, we
can know that 0 ≤ γ < L + 1. According to this metric,
we can classify different coding solutions into the following
three categories. a) γ < pr

0: Node’s transmission efficiency
is lower than that of the non-coding transmission. b) γ = pr

0:
Node’s transmission efficiency keeps unchanged, i.e., it is
same as that of transmitting P0 alone. c) γ > pr

0: Node’s
transmission efficiency is improved in comparison with the
non-coding transmission.

The available coding algorithm does not take packet
size and delivery ratio into account when searching for the
coding solutions, and thus has the following limitations:

1) It skips all infeasible coding solutions, which may have
large γ;

2) Many potentially good coding solutions will not be
checked (After finding a feasible solution encoding k
native packets, the algorithm will stop checking those
unchecked solutions which encode k native packets,
and attempt to find another native packet to code with
the current k native packets.).

3) It may obtain a feasible coding solution which has a
small γ. For example, the γ will be small when pr

i ’s are
small.

Due to the above severe limitations, there usually exist much
better coding solutions than the one obtained by this al-
gorithm. We will present an efficient coding algorithm in
Sect. 4.

3. Packet Queueing and Scheduling

In this section, we present a new packet queueing structure
and also a packet scheduling algorithm.

3.1 Packet Queueing

Rather than queues all packets in a single queue, the new
queueing structure is to maintain a dedicated FIFO queue
Q0, called control queue, for some special packets (like rout-
ing control packets) and maintain a FIFO queue Qi for each
active flow fi passing through the current node, i ≥ 1, as
shown in Fig. 4.

Such a queueing structure can provide more potential
coding opportunities. Let us still consider the example in
Fig. 3. With the proposed queueing structure, P3 will be at
the head of the queue maintained for Flow 2 and thus the

†In each encoded packet’s header, several symbols are used for
recording the number of native packets XOR-ed together, IDs of
native packets, etc.
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Fig. 4 Flow-oriented queueing structure.

coding algorithm can find the feasible coding solution P0 ⊕
P3. This example indicates that the new queueing structure
increases candidate packets and consequently increases the
coding opportunities.

Furthermore, this new queueing structure enables us to
not only easily give higher priority to those special packets
than to data packets, but also easily assign weights or prior-
ities among data packets.

3.2 Packet Scheduling

With the above queueing structure, we proceed to specify
how to assign transmission chances to data flows.

When a network node obtains a transmission chance
from the MAC layer, its packet scheduler first checks
whether the control queue is nonempty. If so, it will dequeue
the packet at the head of control queue and transmit it alone
(encoding it with other packets will decrease the probability
of its successful delivery). In other words, data packets have
no chance for transmission until there is no any packet in
the control queue. Note that since packets in control queue
only account for a small percentage of all buffered packets,
giving priority to these packets almost does not affect the
end-to-end delay of data packets [11].

In the following, we introduce how to schedule data
packets. Similar to IEEE 802.11e, In our scheduling algo-
rithm, traffic flows are also separated into the following three
classes: flows of voice packets, flows of video packets and
flows of best-effort packets, denoted by F1, F2 and F3, re-
spectively, as shown in Fig. 4. Let Ni denote the number of
flows belonging to class Fi for i = 1, 2 and 3, and let N
denote the total number of active flows (i.e. N =

∑3
i=1 Ni).

To achieve the target of giving higher priority to voice and
video packets than to best-effort packets, we allocate larger
weights to voice and video flows than to best-effort traffic
flows. Denote by wi the weight of flow fi, and let W be
W =

∑N
i=1 wi.We expect that the percentage of transmission

times assigned to flow fi is approximately equal to wi/W.
Now an obvious problem arising is the appropriate value
setting of wi. In the IEEE 802.11e standard which supports
multimedia applications such as voice and video over the
IEEE 802.11 WLANs, by default, the contention window

(CW) of best effort traffic is four times as large as voice
packets’ CW and two times as large as video packets’ CW.
Thus, a reasonable setting of wi is as follows: wi = 4 for
each voice flow fi, w j = 2 for each video flow f j and wk = 1
for each best-effort traffic flow fk. Note that, upon the spe-
cific requirement we can also separate packets into classes
in other ways and set their respective weights. For example,
among best-effort flows, web surfing can have larger weight
than FTP and email applications.

With the above specifications, we schedule packets in
a similar manner as round robin scheduling [13]. In order to
explain the scheduling algorithm, we first clarify two con-
cepts: small-round exploring and large-round exploring. A
round of exploring N flows one by one is called a small-
round exploring, and the conduction of max1≤i≤N wi times
of the small-round exploring is called a large-round explor-
ing. For the above setting, max1≤i≤N wi = 4. Let I denote the
ID of the flow which will be serviced at the current transmis-
sion time. In this scheduler, parameters Ri (1 ≤ i ≤ N) are
adopted to determine whether the scheduler will service a
flow or skip over it. When starting a new large-round ex-
ploring, for each i initialize Ri as Ri = wi and set I to 1. Ri

represents the number of times flow fi needs to be serviced
during the remaining services of the current large-round ex-
ploring. When a node obtains a transmission chance and the
control queue is empty, the scheduler dequeues the packet
at the head of QI and select by the coding algorithm ap-
propriate packets to code with PI . One important point we
should notice is that by using network coding, multiple na-
tive packets can be forwarded by the transmission of an
encoded packet. To achieve the target that the percentage
of transmission times assigned to flow fi is approximately
equal to wi/W, for each successfully decoded native packet
Pi let Ri = Ri − 1. If PI is successfully forwarded in the cur-
rent transmission, conduct I = I+1 until RI > 0. Otherwise,
keep I unchanged.

Now the scheduling algorithm is summarized as fol-
lows.

Scheduler

Dequeue the packet PI at the head of QI .
Find appropriate packets to code with PI by the coding algorithm
and transmit the encoded packet.
for each successfully forwarded Pi do

Ri = Ri − 1
end for
if PI is successfully forwarded then

I = I + 1
if I > N then

I = 1
end if

end if
if all Ri are equal to zero do

for i = 1 to N do
Ri = wi

end for
I = 1

else if RI = 0 do
while RI = 0 do

I = I + 1
end while

end if

Similar to the round robin scheduler, compared to the



770
IEICE TRANS. COMMUN., VOL.E92–B, NO.3 MARCH 2009

FIFO scheduler in COPE, such a scheduler has two impor-
tant advantages: first, it prevents a rogue source from arbi-
trarily increasing its share of the bandwidth; second, it sat-
isfies the QoS requirement of multihop wireless networks.

4. Efficient Packet Coding Algorithm

To take full advantage of the coding opportunities provided
by the new queueing structure, in this section, we present
a more efficient coding algorithm than the available one in
COPE.

As discussed previously, the available coding algo-
rithm has several limitations which may lead to the obtain-
ing of a not-so-good coding solution in the case there exist
good coding solutions. However, it is possible for us to have
a very efficient search for good coding solutions, due to the
following good properties:

P1: Good coding solutions usually have high decoding
probabilities, so they are very likely to satisfy the PT
constraint (i.e. be feasible coding solutions). There-
fore, we are able to greatly shrink the search space by
searching for a good coding solution only among the
feasible solutions.

P2: In most cases, encoding too many packets together will
result in small decoding probabilities. We can achieve
good performance by encoding not more than a given
number of native packets (say 4) in all cases, as indi-
cated in [6].

Based on the above properties, the goal of our coding algo-
rithm is to find the best coding solution (with the largest γ)
only among feasible coding solutions which encode at most
Nmax native packets. The appropriate value of Nmax will be
determined by virtue of simulation results. To describe this
new coding algorithm, we first introduce a special type of
directed graph, called coding graph.
Definition 2: (Coding Graph) Given knowledge (like packet
size) of packet PI being served by the packet scheduler and
knowledge of all packets Pi’s at the heads of queues, con-
struct a corresponding coding graph G(V,A) as follows:

• The vertex setV ofG is defined asV = {v1, v2, . . . , vN},
where node vi corresponds to packet Pi. Assign two
weights si = li and zi = pr

i to each node vi.
• The arc setA of G is defined as: for each vi (i � I) sat-

isfying θN(Pi),I > G and θN(PI),i > G, where N(Pi) repre-
sents the nexthop ID of Pi, there are an arc (vI , vi) with
weight p(vI ,vi) = θN(Pi),I and an arc (vi, vI) with weight
p(vi,vI ) = θN(PI ),i; between any two vertexes vi (i � I)
and v j ( j � I) from which there are arcs to vI , if
θN(Pj),i > G and θN(Pi), j > G, there are an arc (vi, v j) with
weight p(vi,v j) = θN(Pj),i and an arc (v j, vi) with weight
p(v j ,vi) = θN(Pi), j.

For a subgraph of G, call it a feasible coding subgraph
if:

(a) it contains vI ;

Fig. 5 An example of a feasible coding graph for G = 0.8.

(b) between any two different nodes ui and uj in it, these
are arcs (ui, uj) and (uj, ui);

(c) for each node of this subgraph, the product of weights
of all arcs entering this node is larger than G.

Note that a feasible coding subgraph G f (V f ,A f ) in G
corresponds to a feasible coding solution. Figure 5 shows a
simple feasible coding subgraph, whose corresponding fea-
sible coding solution is PI ⊕ P1 ⊕ P3.

Let the weight W(G f ) of a feasible coding subgraphG f

be

W(G f ) =

∑
vi∈Vf

(
si · zi ·∏(v j ,vi)∈A f

p(v j ,vi)

)

maxvi∈V f si
. (2)

Clearly, the weight of a feasible coding subgraph is equal
to the γ of the corresponding feasible coding solution. For-
mally, the coding algorithm is as follows.

Packet Coding Algorithm

Input:
Value of I and size of each head packet Pi (1 ≤ i ≤ N)
Values of all θm,n’s (0 ≤ n ≤ N)
Packet delivery ratio pr

k (0 ≤ k ≤ N)
Procedure
Based on the input, construct the corresponding coding graph G.
Wmax = 0.
for k = 2 to min{Nmax, node number of G} do

for each subgraph G′ containing vI and also k − 1
other vertexes do

if G′ is feasible do
if W(G′) > Wmax do

Wmax = W(G′)
end if

end if
end for

end for
Exit: Return the feasible subgraph which includes node vI and has
the largest weight.

This new coding algorithm takes O(NNmax−1) time,
which is quite fast when Nmax is small. Simulation results
in the next section will demonstrate that setting Nmax to 3
can achieve good enough performance. Thus, this algorithm
only takes O(N2) time when Nmax = 3.

5. Simulation Results and Analysis

In this section, we investigate how much the node transmis-
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sion efficiency can be further improved by adopting the pro-
posed queueing structure and coding algorithm in COPE, as
compared with the original COPE.

Since the γ defined previously is used for measuring
the short-term (one packet transmission period) transmis-
sion efficiency improvement, we define here a new metric
to measure the long-term performance in terms of the node
transmission efficiency. Let Ec and Enc represent the aver-
age number of bytes delivered to neighbors per transmitted
byte when using coding-based transmission and using non-
coding (traditional) transmission, respectively. Using non-
coding transmission, network nodes transmit native pack-
ets and suffer packet loss. Thus Enc < 1. However, in the
COPE-based networks, network nodes can forward multiple
packets in a single packet transmission, so Ec can be larger
than one there. Then we define the node transmission effi-
ciency improvement (NTEI) ρ as

ρ = Ec/Enc. (3)

This metric clearly reflects the improvement in the node
transmission efficiency, independent of the adopted physical
layer protocol (i.e. the bit-rate) and the MAC layer protocol.

5.1 Simulation Setting

The performance evaluation is conducted on network con-
figurations randomly generated as follows. (a) Random
topology generation: First, place relay node A at coordi-
nate (0, 0). Then Nn neighbors are randomly and inde-
pendently distributed within the transmission range of unit
one. Each generated topology consists of one transmission
node and several neighbors. The transmission node contin-
uously transmits packets (which are native packets when us-
ing the non-coding transmission way and are encoded pack-
ets when adopting network coding) and the neighbors re-
ceive the packets. The Ec and Enc are the ratios of the total
number of successfully delivered bytes to the total number
of transmitted bytes when using the coding-based transmis-
sion way and the non-coding transmission way, respectively.
(b) Due to the small percentage of special packets link con-
trol packets, only data packets are considered in the simula-
tion. For each data flow, randomly select two neighbors X
and Y . If their distance d(X, Y) ≤ 1, randomly select two
neighbors again until d(X, Y) > 1†. Then this flow will be
routed through X → A → Y . Each best-effort TCP flow
comprises of a forward flow of data packets and a reverse
flow of ACK packets with size 40 bytes. The data packet
size of a flow remains unchanged and follows the packet
size distribution presented in [14]. In addition, we consider
the case that the flows are infinite and steady, and each flow
always has packets in the output queue.

For wireless channels we adopt the Rayleigh block fad-
ing model and approximate the packet error rate of a channel
with the probability that the instantaneous received SNR is
smaller than a fixed threshold γT [15]. Then packet pos-
session indicator θm,n is estimated based on the following
model proposed in [16]: θm,n = exp(− γT

K dα), where d is the

link distance, α is the path loss exponent and K is a con-
stant depending on the transmitting power, the antenna gain,
etc. The path loss exponent α is set to 4, and γT /K is set to
0.2, achieving a delivery ratio about 0.82 between two nodes
with unit distance.

For each setting of the numbers of flows and neigh-
bors, we generate 5000 random configurations. For each
configuration, we simulate the packet transmissions by us-
ing the non-coding transmission, the original COPE-based
transmission and the improved COPE-based transmission,
respectively. The observed NTEIs of the original COPE and
the improved COPE are finally averaged over 5000 config-
urations.

5.2 Shortcoming of Probability Threshold Constraint

The available coding algorithm in COPE aims to encode as
many as possible native packets together while satisfying
the PT constraint. However, the PT constraint only consid-
ers the probabilities of successful decoding at nexthops, but
does not take into account sizes of native packets and the
link delivery ratios of those links from the delay node to
nexthops. Thus, a feasible coding solution encoding many
packets does not necessarily have a large γ.

For a coding problem, let Nm be the maximum number
native packets which can be encoded together while satis-
fying the PT constraint. Figure 6 shows the distribution of
native packet number of the optimal coding solution, among
the cases with the same Nm. We can see that although at
most Nm packets can be encoded together while satisfying
the PT constraint, the optimal coding solutions are often
some solutions which encodes less than Nm. For example,
for those cases with Nm = 5, all the optimal coding solu-
tions encode less than five native packets. Therefore, the PT
constraint is not good enough as a metric for measuring the
“goodness” of a coding solution. It is quite necessary to take
into account sizes of native packets and the link delivery ra-
tios of those links from the delay to nexthops, as shown in
Equation (1).

5.3 NTEI versus Maximum Number of Packets Allowed
to Encode Together

Now we will investigate the appropriate setting of the maxi-
mum number Nmax of packets allowed to encode together in
the proposed coding algorithm. Figure 7 shows the average
NTEI under different values of Nmax. We can observe that
compared to the setting Nmax = 2, the setting Nmax = 3 leads
to a much larger average NTEI. However, setting Nmax to
4 or a larger value only very slightly increases the average
NTEI. Therefore, we can conclude that setting Nmax to 3 can
achieve good enough performance.

In order to clearly understand this performance charac-
teristic, we further examine in great detail the distribution of

†Traffic between in-range nodes does not need to be forwarded
by the relay.
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(a) Distribution among those cases
with Nm = 3.

(b) Distribution among those cases
with Nm = 4.

(c) Distribution among those cases
with Nm = 5.

Fig. 6 Distribution of the number of native packets in the optimal coding solutions.

Fig. 7 NTEI versus the maximum number of packets allowed to encode together.

Fig. 8 Distribution of number of packets coded together.

the number of native packets encoded together in Fig. 8. We
can see that it is very rarely happen to encoded four or more
packets together. This is easy to understand. Let us take the
case of encoding four native packets as an example. To en-
code four packets together, each one of four nexthops of the
encoded packet needs to possess other three packets except
the packet destined to it. This condition is so strict that it
can be rarely satisfied. Due to the low probability of encod-
ing four or more packets, setting Nmax to 3 can achieve good

enough performance and also lead to a low computational
complexity of the coding algorithm.

5.4 Comparison between the Original COPE and Im-
proved COPE

In this subsection, we investigate the improvement achieved
by adopting the new queueing structure and new coding al-
gorithm. Figure 9 shows the average NTEI achieved by the
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Fig. 9 Comparison between the original COPE and improved COPE.

Fig. 10 NTEI versus different settings of flow weight.

original COPE and the improved COPE, respectively. We
can see that the improved COPE always significantly out-
performs the original COPE. For example, the average NTEI
of nodes with 7 neighbors, one voice flow, one video flow
and four TCP flows, is improved by 15.6%. In addition,
the improvement increases as the number of active flows in-
creases. This is because compared to nodes with few active
flows, nodes with a lot of active flows have more potential
coding opportunities and thus remain larger scope for im-
provement.

5.5 NTEI under Different Settings of Flow Weight

In the scheduling algorithm, different types of flows are
assigned with different weights. Now we will investigate
whether the algorithm performance is sensitive to the as-
signment of flow weight. Figure 10 shows the average NTEI
under two different settings of flow weight. We can see that
the average NTEI almost keep unchanged under these two
settings. The same conclusion can be drawn when other set-
tings are used. Therefore, we can expect that the NTEI will
only slightly change when other schedulers like the one in
[12] are adopted for the proposed queueing structure.

Table 1 The average solution search time under different numbers of
passing flows. N1 = 1, N2 = 1 and Nn = 7.

N3 1 2 3 4 5
Average search time (μs) 2.81 3.18 4.48 5.02 5.80

5.6 Packet Delay

Here we investigate the delay performance of the improved
COPE.

First, the storing function will not increase the packet
delay. The COPE’s storing function at one node is used only
to store the overheard packets (not the forwarded packets)
for a period in a particular buffer, which is not the buffer for
queueing the packets to be forwarded. The packets needing
to be forwarded wait in their own queue for getting their
transmission chances, just like the current packet forwarding
architecture.

Then we investigate the average running time for the
search of coding solution. Table 1 shows the average run-
ning time for finding a set of packets for coding under dif-
ferent numbers of passing flows. From this table we can
see that the solution search time is at the microsecond level
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(a) Average delay of all
packets.

(b) Average delay of voice
packets.

(c) Average delay of video
packets.

(d) Average delay of TCP
packets.

Fig. 11 Average queueing delays of different schemes. (N1 = 1, N2 = 1, Nn = 4.)

and is very small as compared with other parts like queue-
ing delay. As for packet coding (i.e. XOR-ing) and packet
decoding, they are linear operations and consume almost ne-
glectable time.

Finally, we compare the queuing delay performance
between the non-coding transmission with FIFO buffer, the
current COPE-based transmission and our improved COPE-
based transmission in the following way: each flow passing
through node A has 4 packets in the buffer queue and we
simulate the average packet queueing delay during the trans-
mission of these buffered packets. Here we assume that node
A continuously transmits packets and each transmission take
a time slot of fixed duration. Figure 11 shows the average
delay of all packets, the average delay of voice packets, the
average delay of video packets and the average delay of TCP
packets, respectively. First, we can observe that both the
COPE-based transmission and the improved COPE-based
transmission greatly outperform the traditional non-coding
transmission, because they can much faster deliver buffered
packets of a node to this node’s neighbors. In addition,
from Figs. 11(b) and 11(c) we can see that, compared to
the COPE-based transmission, the improved COPE-based
transmission leads to a smaller average delay of voice pack-
ets and a smaller average delay of video packets. This is
because the improved COPE-based transmission gives high
priority to the voice packets and video packets, at the cost
of slightly increasing the average delay of TCP packets (as
shown in Fig. 11(d)).

5.7 The End-to-End Throughput

The node-level transmission efficiency improvement and de-
lay performance improvement shown above can also suggest
that the end-to-end throughput will be improved. We can un-
derstand this in the following way. Using the network cod-
ing technique to forward multiple packets via one packet
transmission, is just like using a larger transmission band-
width to improve the node transmission rate. Our improved
COPE can forward more packets per packet transmission
than the current COPE by more effectively utilizing the net-
work coding technique. Therefore, the improve COPE can
further improve the node-level performance (the transmis-
sion rate and packet delay) and consequently will improve
the network-level performance.

6. Conclusion

In this paper, we presented for the COPE architecture a new
flow-oriented queueing structure which can increase the po-
tential coding opportunities and are convenient for the allo-
cation of priorities to packets, and also proposed a new ef-
ficient packet coding algorithm. Rather than adopting FIFO
scheduler, allocating priorities to different flows can satisfy
the QoS requirement of multihop wireless networks for sup-
porting real-time services such as voice applications. To our
knowledge, this is the first time to take the QoS issue into
account in the literature of wireless network coding. Simu-
lation results demonstrate that by adopting the new queue-
ing structure and new coding algorithm, COPE can further
greatly improve the node transmission efficiency.

As the first step, in this work we investigate the node-
level performance improvement by using the new COPE ar-
chitecture. In the future, it is quite interesting to extend this
work by investigating how much the network-level perfor-
mance (like the end-to-end throughput) can be improved un-
der different workloads, routing protocols, etc.
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