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PAPER

Marginalized Particle Filter for Blind Signal Detection with Analog
Imperfections

Yuki YOSHIDA†a), Student Member, Kazunori HAYASHI†, Member, Hideaki SAKAI†, Fellow,
and Wladimir BOCQUET††, Member

SUMMARY Recently, the marginalized particle filter (MPF) has been
applied to blind symbol detection problems over selective fading channels.
The MPF can ease the computational burden of the standard particle fil-
ter (PF) while offering better estimates compared with the standard PF.
In this paper, we investigate the application of the blind MPF detector to
more realistic situations where the systems suffer from analog imperfec-
tions which are non-linear signal distortion due to the inaccurate analog
circuits in wireless devices. By reformulating the system model using the
widely linear representation and employing the auxiliary variable resam-
pling (AVR) technique for estimation of the imperfections, the blind MPF
detector is successfully modified to cope with the analog imperfections.
The effectiveness of the proposed MPF detector is demonstrated via com-
puter simulations.
key words: particle filter, blind signal detection, IQ imbalance, CFO

1. Introduction

Particle filtering (PF) methods have become a popular class
of algorithm to solve non-linear and non-Gaussian esti-
mation problems numerically in an online manner [1]–[3].
While PF is fairly easy to implement, the main drawback is
its high computational complexity. One remedy is to ana-
lytically marginalize out the state by exploiting the linear-
ity and Gaussianity in the dynamics. The resulting PF is
called as marginalized PF (MPF), also known as Kalman PF
[3] or Rao-Blackwellised PF [4], and offers better estimates,
i.e., estimates with reduced variance, with reduced compu-
tational complexity compared with the standard PF∗ in some
class of problems [5], [6]. Recently, the MPF has been ap-
plied to the blind signal detection problem over selective
fading channels [7]. By marginalizing out the unknown
channel parameters, the MPF detector (MPFD) can obtain
the maximum a posteriori (MAP) estimate of the transmit-
ted sequence without explicit channel estimation. In [8],
[9], we can see the outstanding performance of the MPFD
compared with other blind approaches, such as using a per
survivor processing.

Meanwhile, one performance limiting issue in the im-
plementation of wireless communications systems is impair-
ments caused by imperfect analog devices. In most cases,
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such impairments cannot be efficiently or entirely elimi-
nated in the analog domain due to the limitations on power
consumption, size and cost of devices. Hence, there has
been a strong demand for efficient compensation techniques
in the digital baseband domain [10]. Significant examples
of such imperfections are carrier frequency offset (CFO)
and In-phase/Quadrature-phase imbalance (IQI) [11]. They
are introduced at the up/down frequency conversions at the
transmitter/receiver. The IQI is misalignment between the
I- and Q-paths and the CFO is mismatch of frequencies be-
tween the local oscillators (LOs) at the transceivers. Practi-
cally, degrees of such imperfections differ from devices and
are unknown to the receiver.

In this paper, we develop a particle based blind signal
detection method in the presence of the transmitter (Tx) and
receiver (Rx) IQIs, and the CFO. Under these imperfections,
the state-space representation of the problem results in non-
linear and non-Gaussian and the conventional MPFD can-
not be applied. The standard PF approach is applicable to
the situation however it is unattractive to lose the computa-
tional efficiency of the MPF approach due to analog com-
ponent imperfections while nothing changes on the physical
channel which is the dominant factor of the signal distortion
in radio propagation. Therefore some efficient adaptation
techniques for the MPFD are worth considering. We first
resort to the widely linear (WL) [12] modeling of the prob-
lem which enables to deal with improper complex-valued
signals [13] due to the IQIs. Based on the WL represen-
tation, we show how to adopt the MPF for the case where
the IQIs and the CFO parameters are a priori known to the
receiver. Next, we propose the imperfection parameter es-
timation method utilizing the auxiliary variable resampling
(AVR) technique [14], [15]. The AVR has been originally
proposed to cope with the essential weakness of PF, i.e.,
performance degradation due to the existence of outliers.
Here, we use the technique for a different purpose, i.e., to
generate sample estimate of the imperfection parameters by
exploiting particles of the previous time step. Finally, by
combining the WL modeling and the AVR, the computa-
tionally efficient MPF is applied to the detection problem
under the analog imperfections. The performance improve-
ment of the proposed MPFD is demonstrated via computer
simulations. Moreover, the computational efficiency of the

∗In this paper, we refer the PF methods without the marginal-
ization as the standard PF to distinct it from the MPF.
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proposed MPFD over the standard PF approach is evaluated
experimentally.

This paper is arranged as follows. We provide a brief
introduction of PF and the conventional MPFD in Sect. 2. In
Sect. 3, we propose an MPFD in the presence of the Tx/Rx
IQIs and the CFO. The results of the computer simulations
and conclusions appear in Sect. 4 and Sect. 5.

Notations used in the paper are as follows: Vectors or
matrices are indicated in bold letters respectively. Super-
scripts ∗, T, and H represent conjugate, transpose, and Her-
mitian transpose, respectively. In addition, | · | denotes the
determinant of a matrix, IL, an L×L identity matrix and 0I×J

is an I×J all zero matrix. We use xi: j := {xi, xi+1, · · · x j} for
any sequence xi, and p[x|y] stands for a conditional prob-
ability or a conditional probability density/mass function
(PDF/PMF) for a continuous/discrete random variable x for
given y.

2. Backgrounds

2.1 Fundamentals of Particle Filtering

First we briefly introduce PF in the context of sequential
importance sampling (SIS) and resampling [16].

Suppose that state xt is a first-order Markov process
with given initial PDF and transition PDF p[xt |xt−1] while
the observation yt is conditionally independent given xt with
the marginal PDF or likelihood p[yt |xt], where p[xt |xt−1] and
p[yt |xt] can be computed at least for given samples of xt

and xt−1, respectively. We consider sequential estimation
of the state sequence x0:t based on the current observations
y0:t. From Bayesian perspective, any estimate on x0:t re-
lies on the posterior PDF p[x0:t |y0:t], e.g., the MAP estimate
xMAP

0:t = arg maxx0:t p[x0:t |y0:t]. In order to achieve sequen-
tial estimation of the state, one can resort to the following
recursion of the posterior:

p[x0:t |y0:t] =
p[yt |xt]p[xt |xt−1]

p[yt |yt−1]
p[x0:t−1|y0:t−1]. (1)

However, the closed-form expression of the recursion is of-
ten intractable [3], e.g., the denominator cannot typically be
obtained analytically. PF provides a flexible framework to
obtain a Monte-Carlo approximate of the posterior sequen-
tially and recursively based on the SIS algorithm.

The idea behind the SIS is the importance sampling
(IS) [17]. Suppose that M samples {x(i)

0:t}
M
i=1, which are also

called as particles, are drawn from an importance function
(IMF) q[x0:t |y0:t] which is designed to have the same support
of the posterior PDF while the IMF is much easier to sample
from. The IS provides the approximate of the posterior as

p[x0:t |y0:t] ≈
M∑

i=1

w(i)
t δi. (2)

where δi = 1 if x0:t = x(i)
0:t and δi = 0 otherwise, and w(i)

t (> 0)
is the normalized importance weight given by

w(i)
t ∝

p[x0:t |y0:t]
q[x0:t |y0:t]

with
M∑

i=1

w(i)
t = 1. (3)

In the SIS algorithm, in order to sequentially obtain
such weighted particles {x(i)

0:t, w
(i)
t } ∼ p[x0:t |y0:t] from exist-

ing {x(i)
0:t−1, w

(i)
t−1} ∼ p[x0:t−1|y0:t−1] with an arrival of new ob-

servation yt, we consider the IMF in the form

q[x0:t |y0:t] ∝ q[xt |x(i)
0:t−1, y0:t]q[x(i)

0:t−1|y0:t−1]. (4)

This yields the sequential sampling of each x(i)
t without mod-

ifying x(i)
0:t−1. Furthermore, the weights to form (2) can be

recursively evaluated by substituting the recursion (1) in (3)
as

w(i)
t ∝

p[yt |x(i)
t ]p[x(i)

t |x
(i)
t−1]

q[x(i)
t |x

(i)
0:t−1, y0:t]

w(i)
t−1. (5)

Once the set {x(i)
0:t, w

(i)
t } are generated, any estimate on x0:t at

time t can be approximately obtained, e.g., the particle based
MAP estimate ŝMAP

0:t = s(imax)
0:t where imax = argi maxw(i)

t .
The procedure of PF at time t is summarized as follows:

With the particles {x(i)
0:t−1, w

(i)
t−1} ∼ p[x0:t−1|r0:t−1]

[SIS Step]

Sample x(i)
t ∼ q[xt |x(i)

0:t−1, y0:t],

Update weights w̃(i)
t =

p[yt |x(i)
t ]p[x(i)

t |x
(i)
t−1]

q[x(i)
t |x

(i)
0:t−1, y0:t]

w(i)
t−1,

Normalize weights w(i)
t =

w̃(i)
t∑M

i=1 w̃
(i)
t

,

[Resampling Step]

Sample j(i) from {1,· · · ,M} with probability p[ j]=w(i)
t

Replace {x(i)
0:t, w

(i)
t } by

{
x( j(i))

0:t ,
1
M

}

In the procedure, the resampling step is also included which
is commonly employed in PF to mitigate a drawback of
the SIS, namely weight degeneracy where all but one of
the weights are close to zero [16]. Resampling controls
the weights by repropagating the particles according to the
multinomial distribution of the weights {w(i)

t } so as to con-
struct a new uniformly weighted approximation

p[x0:t |y0:t] ≈
1
M

M∑
i=1

δi. (6)

The choice of the IMF q[xt |x(i)
0:t−1, y0:t] is essential because

it determines performance as well as complexity of the SIS
algorithm. Two major choices are prior and posterior IMFs:

Prior IMF: q[xt |x(i)
0:t−1, y0:t] = p[xt |x(i)

t−1], (7)
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Posterior IMF: q[xt |x(i)
0:t−1, y0:t] = p[xt |x(i)

0:t−1, y0:t]

=
p[yt |xt]p[xt |x(i)

t−1]∫
p[yt |xt]p[xt |x(i)

t−1]dxt

(8)

The prior IMF is much easier to sample from but often re-
sults in poor estimates, since no information is exploited
from the observation. On the contrary, the use of the poste-
rior IMF is known as optimal in the sense that it minimizes
the variance of the importance weights [16], but it is gener-
ally impossible to evaluate (8) analytically. In addition, the
SIS algorithm based on the prior IMF results in the well-
known bootstrap filter [1].

2.2 Blind MPFD

Next, we introduce the conventional MPFD based on the
SIS framework.

Suppose the transmitted signals st (t = 0, 1, · · · , T ) are
i.i.d. uniform random variables, i.e., st ∼ U(A) whereA =
{an}Nn=1 denotes a given complex-valued signal constellation.
By assuming that the channel coefficients h(t) (t = 0, · · · L−
1) are time-invariant for a duration of the frame T + 1, the
received signal rt is given by

rt =

L−1∑
l=0

h(l)ŝt−l + vt = hTst + vt, (9)

where st = [st · · · st−L+1]T (here we set st = 0 (t < 0) for
notational convenience), h = [h(0) · · · h(L − 1)]T and vt is
the proper complex Gaussian noise, i.e., vt ∼ Nc(0, σ2) [13].
We have the state-space representation of the system as

State: st = Tst−1 + ut,

Observation: rt = hTst + vt, (10)

where T is an L × L matrix given by

T :=

[
01×L

IL−1 0L−1×1

]
, (11)

and ut = [st 0 · · · 0]T. At time T , the main objective is to
detect s0:T based on the MAP criterion

sMAP
0:T = arg max

s0:T

{p[s0:T |r0:T ]}, (12)

with out concerning h.
The SIS approach requires to compute the likelihood

p[rt |s(i)
0:t, r0:t−1] at least for given s(i)

0:t, however it is impos-
sible due to the unknown h in this time. One simple rem-
edy is to jointly propagate sample estimate h(i)

t of h so as to
{s(i)

0:t, h
(i)
t , w

(i)
t } ∼ p[s0:t, h|r0:t]. Obviously, the posterior IMF

is intractable and hence the prior IMFs, say p[st |st−1] and
p[ht |ht−1] might be employed. We refer such approach as
the standard PF detector (PFD).

When the observation equation has a linear and Gaus-
sian substructure of the unknowns, that is our case, a
more sophisticated approach is to use the posterior IMF by

marginalized out the unknowns analytically, namely MPF.
Since p[st |st−1] = U(A), the posterior IMF can be com-
puted from the likelihood p[yt |x(i)

t ] and it can be written as

p[rt |s0:t, r0:t−1]

=

∫
p[rt |h, s0:t, r0:t−1]p[h|s0:t, r0:t−1]dh

=

∫
Nc(rt |hTst, σ

2) × p[h|s0:t−1, r0:t−1]dh. (13)

Hence, by assuming the Gaussian prior h ∼ Nc(h−1,R−1),
the integrand in (13) is inductively shown to be Gaussian
and has a well-known closed-form expression [17]. Such
marginalization is also known in the context of the Mixture
Kalman filter [18]. The posterior IMF is then obtained from
the likelihood as

q[st |s(i)
0:t−1, r0:t] =

p[rt |st, s
(i)
0:t−1, r0:t−1]∑N

n=1 p[rt |st = an, s
(i)
0:t−1, r0:t−1]

. (14)

and the weight update is give by

w(i)
t ∝ w

(i)
t−1

N∑
n=1

p[rt |st = an, s
(i)
0:t−1, r0:t−1]. (15)

The use of the optimum IMF leads to a better estimate than
the standard PFD. Moreover, the MPFD can avoid the com-
putational burden to generate additional particles h(i)

t [6].

3. Proposed Blind MPFD in the Presence of Analog Im-
perfections

3.1 Problem Formulation

The input-output relation in (9) implicitly assumes the ideal
response of radio devices. Here we reformulate it by tak-
ing the Tx/Rx IQIs and the CFO into consideration which
inherent in any practical radio devices.

Let εtx denotes the amplitude imbalance and φtx is the
phase imbalance between the I and Q branches introduced
at the transmitter, complex baseband expression for the IQI
effect on the ideal symbol st is given by [11]:

ŝt = (1 + εtx)�{st} cosφtx − (1 + εtx)�{st} sinφtx

− j · (1 − εtx)�{st} sin φtx + j · (1 − εtx)�{st} cosφtx

= αst + βs
∗
t , (16)

where �{·} and �{·} denote the real and imaginary parts,
respectively, and

α := cosφtx + j · εtx sin φtx, (17)

β := εtx cosφtx − j · sin φtx. (18)

The degree of the IQI is commonly evaluated by an image
rejection ratio (IRR) which is

IRR = E[|αst |2]/E[|βs∗t |2] = |α|2/|β|2. (19)
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With practical imbalance values, the IRR is in the order of
20–30 dB [19] and these IRR levels are insufficient in many
practical transceiver with high modulation level. The re-
ceived signal r̂t before the Rx IQI and the CFO is given by

r̂t = αhTst + βhTs∗t + vt. (20)

The time domain effect of the CFO f [Hz] on r̂t is a phase
rotation θ = exp{ j2π f } proportional with time. As in [20],
when the CFO is present together with the Rx IQI, the re-
sulting baseband signal rt can be written by

rt = γθ
t r̂t + δθ

−t r̂∗t , (21)

where γ and δ are the Rx IQI parameters defined by using
the amplitude imbalance εrx and the phase imbalances φrx,
i.e.,

γ := cosφrx + j · εrx sinφrx, (22)

δ := εrx cosφrx − j · sinφrx. (23)

The Rx IQI level is also represented by IRR = |δ|2/|γ|2.
Consequently, we have the state-space representation of the
problem as

State: st = Tst−1 + ut,

Observation: rt = αγθ
thTst + β

∗δθ−thHst

+ βγθthTs∗t + α
∗δθ−thHs∗t + γnt + δn

∗
t , (24)

where nt := θtvt for convenience and it is clear that the
rotated version of vt is still circular Gaussian, i.e., nt ∼
Nc(0, σ2).

Unknowns of the problem are st, h and analog imper-
fection parameters B := {εtx, φtx, εrx, φrx, f }. Clearly, the ex-
istence of B rules out the application of the conventional
MPFD. One hasty solution is the use of standard PFD by
employing prior IMFs for each of st, B, h and draw sam-
ples as {s(i)

0:t, h
(i)
t ,B

(i)
t , w

(i)
t } ∼ p[s0:t, h,B(i)

t , w
(i)
t |r0:t], but it is

unattractive to lose the efficiency of the MPF.

3.2 Blind MPFD for Known Analog Imperfections

Firstly, we deal with the case where B is a priori known to
the receiver. In this case, the posterior IMF is propotional to
the likelihood and, as in (13), the likelihood can be written
as

p[rt|s0:t, r0:t−1,B]

=

∫
p[rt |h, st,B] · p[h|s0:t−1, r0:t−1,B]dh. (25)

For given st and B, the observation (24) is not linear and
Gaussian of h. However, in fact, it is a WL and improper
Gaussian of h [12], [13]. By stacking signals and their com-
plex conjugate in (24), we have

rt =

(([
αγθt βγθt

α∗δθ−t β∗δθ−t

]
⊗ IL

) [
st

s∗t

])T [
h
h∗

]
+ [γ δ]

[
nt

n∗t

]

= ((Λt ⊗ IL) s̄t)
T h̄ + zt, (26)

where ⊗ denotes the Kronecker product, and

s̄t :=

[
st

s∗t

]
, h̄ :=

[
h
h∗

]
, zt := [γ δ]

[
nt

n∗t

]
,

Λt :=

[
αγθt βγθt

α∗δθ−t β∗δθ−t

]
. (27)

Now it is clear that, (26) is a linear system of the extended
channel vector h̄ for given st and B. As for the noise, zt is
no more proper complex Gaussian but improper Gaussian
[13], [21]. According to [13], by defining z̄t = [zt z∗t ]T, the
PDF of zt is given by

p[zt] = p[z̄t] = N̄c

(
[0 0]T,Φ

)
, (28)

where N̄c(·) denotes the improper complex Gaussian PDF†

and

Φ =

[
(γγ∗ + δδ∗)σ2 2γδσ2

2γ∗δ∗σ2 (γγ∗ + δδ∗)σ2

]
. (29)

Correspondingly, p[rt |h, st,B] also becomes an improper
complex Gaussian and, by defining r̄t = [rt r∗t ]T, it follows
that

p[rt |h, st,B] = p[r̄t |h, st,B] = N̄c

(
Γth̄, Φ

)
, (30)

where

Γt =

[
((Λt ⊗ IL) s̄t)

T

((Λt ⊗ IL) s̄t)
H D

]
,D :=

[
0L×L IL

IL 0L×L

]
. (31)

Meanwhile, the posterior of the channel p[h|s0:t , r0:t,B] is
also proportional to the integrand in (25):

p[h|s0:t, r0:t,B] ∝ p[rt |h, st,B]p[h|s0:t−1, r0:t−1,B].
(32)

Thus, by assuming h̄ ∼ N̄c(h̄−1, R̄−1) and denoting h̄t and R̄t

as the mean and covariance of p[h|s0:t, r0:t,B], the integrand
of (25) can be written as

p[rt |h, st,B] · p[h|s0:t−1, r0:t−1,B]

= π−1−L|ΦR̄t−1|−
1
2 exp{−

1
2

[(h̄ − h̄t)
HR̄−1

t (h̄ − h̄t)

+ r̄H
t Φ
−1r̄t + h̄H

t−1R̄−1
t−1h̄t−1 − h̄H

t R̄−1
t h̄t]}, (33)

where

R̄−1
t = Γ

H
t Φ
−1Γt + R̄−1

t−1, (34)

h̄t = R̄t(Γ
H
t Φ
−1r̄t + R−1

t−1h̄t−1). (35)

Consequently, the likelihood can be found as

p[rt |s0:t, r0:t−1,B] = π−1|R̄t |
1
2 |ΦR̄t−1|−

1
2

†N̄c(x̄|µ̄, Σ̄) := π−n |Σ̄|− 1
2 exp [− 1

2 (x̄ − µ̄)HΣ̄−1(x̄ − µ̄)] where μ
is the mean and Σ is the covariance of x̄ = [xTxH]T.
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× exp

{
−1

2

[
r̄H

t Φ
−1r̄t + h̄H

t−1R̄−1
t−1h̄t−1 − h̄H

t R̄−1
t h̄t

]}
.

(36)

Therefore, the MPFD with the posterior IMF

q[st |s(i)
0:t−1, r0:t,B] =

p[rt |st, s
(i)
0:t−1, r0:t−1,B]∑N

n=1 p[rt |st = an, s
(i)
0:t−1, r0:t−1,B]

,

(37)

and the weight update

w(i)
t ∝ w

(i)
t−1

N∑
n=1

p[rt |st = an, s
(i)
0:t−1, r0:t−1,B], (38)

is applicable for the systems with known imperfections. We
summarize the algorithm in Algorithm 1.

Algorithm 1 Blind MPFD for known analog imperfections

Initialize R̄(i)
−1 = R̄−1 and h̄(i)

−1 = h̄−1 for each i

for t = 0, · · · ,T do
for i = 1, · · · ,M do

–Sample s(i)
t from the setA with (37)

–Update R̄(i)
t and h̄(i)

t according to (34) and (35)

–Calculate the weights w(i)
t by (38)

end for
–Normalize the weights
– Resampling if t < T (and Meff

t < 0.3M)
end for
return ŝ(MAP)

0:T = s(imax)
0:T where imax = arg maxi w

(i)
T

3.3 Imperfection Parameter Estimation via the AVR

In order to deal with the unknown imperfection param-
eters, we consider generating sample estimate B(i)

t =

{ε(i)tx t, φ
(i)
tx t, ε

(i)
rx t, φ

(i)
rx t, f (i)

t } together with {s(i)
0:t}. Moreover, to

enjoy the computational efficiency of the MPFD proposed
in the previous section, we resort to a two stage sampling
based on the following decomposition,

p[s0:t,B|r0:t] = p[B|r0:t]p[s0:t |r0:t,B]. (39)

The resulting SIS algorithm to obtain {s(i)
0:t,B

(i)
t } ∼

p[s0:t,Bt|r0:t]† can be written as

B(i)
t ∼ q1[Bt |r0:t], (40)

s(i)
t ∼ q2[st |s(i)

0:t−1,B
(i)
t−1, r0:t], (41)

w(i)
t ∝

p[rt |s(i)
0:t,B

(i)
t , r0:t−1]p[B(i)

t |B
(i)
t−1]

q1[B(i)
t |r0:t]q2[s(i)

t |s
(i)
0:t−1,B

(i)
t−1, r0:t]

w(i)
t−1, (42)

where we use the facts p[st,Bt|s(i)
0:t−1,B

(i)
t−1] = p[st |s(i)

0:t−1]

p[Bt |B(i)
t−1] and p[st |s(i)

0:t−1] = U(A), and q1[·] and q2[·] rep-
resent the IMFs to draw B(i)

t and s(i)
t , respectively. Clearly,

the posterior IMF as in (36) can be used for q2[·].

Now, our interest is the choice of q1[Bt |r0:t]. In fact, the
posterior p[Bt |r0:t] is intractable. Therefore, we first resort
to the discrete approximation of the posterior by exploiting
particles and weights at the previous time, i.e.,

p[Bt |r0:t] =∫
p[Bt |s0:t−1,Bt−1, r0:t]p[s0:t−1,Bt−1|r0:t]ds0:t−1dBt−1

≈ 1
M

M∑
i=1

p[Bt |s(i)
0:t−1,B

(i)
t−1, r0:t]p[s(i)

0:t−1,B
(i)
t−1|r0:t]

∝
M∑

i=1

p[rt |s(i)
0:t−1,Bt, r0:t−1]p[Bt |B(i)

t−1]w(i)
t−1. (43)

We then apply the idea of the AVR to sample B(i)
t from

this mixture distribution. In the AVR, instead of sampling
from the mixture p[Bt |r0:t] directly, we try to perform the
sampling in a higher dimension p[Bt, k|r0:t] where the in-
teger k (k = 1, · · · ,M) represents to choose the kth fac-
tor or stratum of the mixture (43). The integer k is so-
called auxiliary variable as it is present simply to aid the
task of the simulation and will be discarded later. The IMF
q1[Bt |r0:t] = q[Bt, k|r0:t] is designed by mimicking the kth
factor of (43) as

q[Bt, k|r0:t] ∝ p[rt |s(k)
0:t−1, B̂

(k)
t , r0:t−1]p[Bt |B(k)

t−1]w(k)
t−1,

(44)

where B̂(i)
t = {ε̂

(i)
tx t, φ̂

(i)
tx t, ε̂

(i)
rx t, φ̂

(i)
rx t, f̂ (i)

t } are some character-
ization of Bt for given B(i)

t−1, i.e., the averages, modes or
medians of p[Bt |B(i)

t−1]. From the factorization

q[Bt, k|r0:t] = q[Bt |k, r0:t]q[k|r0:t], (45)

by defining,

q[Bt |k, r0:t] := p[Bt |B(k)
t−1], (46)

it follows that

q[k|r0:t] ∝ p[rt |s(k)
0:t−1, B̂

(k)
t , r0:t−1]w(k)

t−1. (47)

This means that the samples {B(i)
t } can be obtained by firstly

simulating k with probability proportional to p[rt |B̂(k)
t ]w(k)

t−1,

and then sampling B(i)
t from p[Bt |B(k)

t−1] for given k.
Consequently, from (37) and (44), the overall IMF is

given by

q1[Bt, k|r0:t]q2[st |s(k(i))
0:t−1,B

(i)
t , r0:t]

∝ p[rt |s(k(i))
0:t−1, B̂

(k(i))
t , r0:t−1]p[B|B(k(i))

t−1 ]w(k(i))
t−1

·
p[rt |st, s

(i)
0:t−1, r0:t−1,B(i)

t ]∑N
n=1 p[rt |st = an, s

(i)
0:t−1, r0:t−1,B(i)

t ]
†Hereafter B is denoted by Bt to clarify the correspondence

between B(i)
t , but surely it is still a set of static unknown model

parameters, i.e., Bt = Bt−1.
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=

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

p[rt |st = an, s
(k(i))
0:t−1, B̂

(k(i))
t , r0:t−1]

⎞⎟⎟⎟⎟⎟⎠

·
p[rt |st, s

(i)
0:t−1, r0:t−1,B(i)

t ]p[B|B(k(i))
t−1 ]∑N

n=1 p[rt |st = an, s
(i)
0:t−1, r0:t−1,B(i)

t ]
w(k(i))

t−1 (48)

where k(i) denotes the auxiliary variable at the ith particle.
Correspondingly, the weights update (42) is obtained as

w(i)
t ∝

p[rt |s(i)
0:t,B

(i)
t , r0:t−1]p[B(i)

t |B
(k(i))
t−1 ]

q1[B(i)
t |r0:t]q2[s(i)

t |s
(k(i))
0:t−1,B

(i)
t−1, r0:t]

w(k(i))
t−1

=

∑N
n=1 p[rt |st = an, s

(k(i))
0:t−1,B

(i)
t , r0:t−1]∑N

n=1 p[rt |st = an, s
(k(i))
0:t−1, B̂

(k(i))
t , r0:t−1]

, (49)

The rest of the problem is the choice of B̂(k(i))
t and the

transition p[Bt |B(k(i))
t−1 ]. Since all the parameters in Bt are

static, it is natural to set B(i)
t = B

(k(i))
t−1 and B̂(k(i))

t = B(k(i))
t

without sampling. However, the inability to rejuvenate B(i)
t

makes the accuracy of the final estimate greatly sensitive to
the initial samples. Thus we introduce some perturbation
for each parameter in B(i)

t by employing a kernel smoothing
method [2]. For example, for the CFO parameter ft in Bt,

p[ ft | f (k(i))
t−1 ] = N( f̂ (k(i))

t , ξ2ρt−1), (50)

f̂ (i)
t = η f (i)

t−1 + (1 − η) f̄t−1, (51)

where f̄t−1 is a weighted average, i.e., f̄t−1 =
∑M

i=1 w
(i)
t−1 f (i)

t−1,
ρt−1 is a weighted sample covariance and N(·) denotes real
Gaussian PDF. It is suggested in [2] that η =

√
1 − ξ2, ξ2 =

1 − ((3ν − 1)/2ν)2 where ν is a discount factor in (0, 1], typ-
ically around 0.95 to 0.99. What is more, since the IQI and
the CFO will be limited in a certain range by the manufac-
turer, it would be more practical to use truncated real Gaus-
sian TN( f̂ (k(i))

t , ξ2ρt−1, fl, fu) in which samples constrained
in the region [ fl, fu], instead of (50).

We summarize the algorithm of the proposed MPFD
with the AVR in Algorithm 2. It should be mentioned that
the algorithm consists only of the SIS step utilizing the IMF
(48). In [15], the authors have pointed out that the SIS in-
cluding AVR possibly avoid the degeneracy without any re-
sampling procedure. Hence, from a view point of compu-
tational complexity, we omit a resampling step in the algo-
rithm. In addition, in [22], [23]), the authors have proposed
a similar algorithm through the different approach where a
suboptimal IMF called hybrid IMF is employed and, to over-
come a drawback of the IMF, the AVR is included in the
resulting PF.

4. Simulation Results

Here, we evaluate the performance of the proposed MPFDs
via computer simulations. In our experiments, we have as-
sumed a time-invariant frequency-selective fading channel
of length L = 3 with the prior p[h] = Nc(h−1,R−1) where

Algorithm 2 Blind MPFD with the AVR

Initialize R̄(i)
−1 = R̄−1 and h̄(i)

−1 = h̄−1 for each i

Draw M initial samples B(i)
−1 from (53)-(55)

for t = 0, · · · ,T do
(Step 1. Auxiliary variable resampling)
(If Meff

t < 0.3M)
for i = 1, · · · ,M do

–Compute B̂(i)
t as in (51)

end for
for i = 1, · · · ,M do

–Sample k(i) from the set {1, · · · ,M} with (47)
–Sample B(i)

t from (50)
end for

(Step 2. Sequential importance sampling)
for i = 1, · · · ,M do

–Sample s(i)
t from the setA with (37)

–Update R̄(i)
t and h̄(i)

t according to (34) and (35)

–Calculate the weight w(i)
t with (49)

end for
–Normalize the weights

–Replace s(i)
0:t = {s

(i)
t , s

(k(i))
t−1 , · · · , s

(k(i))
0 } for each i

end for
return ŝ(MAP)

0:T = s(imax)
0:T where imax = arg maxi w

(i)
T

h−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , R−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.2 0 0
0 0.1 0
0 0 0.05

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (52)

As for transmitted signal, differentially coded QPSK is em-
ployed for modulation scheme to mitigate the phase ambigu-
ity inherent in any blind receiver and we send T = 200 sym-
bols. Analog imperfection parameters are randomly gener-
ated as

εtx, εrx ∼ TN(0, 0.01, 0, 0.1), (53)

φtx, φrx ∼ TN(0, 0.01,−0.05, 0.05), (54)

f ∼ TN(0, 0.01,−0.01, 0.01), (55)

where the resulting Tx or Rx IRR are about 30dB. We
mainly test four detectors:

• Conventional MPFD as in Sect. 2.2
• Standard PFD
• Proposed MPFD for known analog imperfections in

Algorithm 1
• Proposed MPFD with the AVR in Algorithm 2

As for the standard PFD, the prior IMF is used for st while,
since both ht and Bt are static, the smoothing kernels are
employed to generate h(i)

t and B(i)
t where ν = 0.97. We em-

ploy the multinomial resampling technique [1], [24] in three
detectors other than the MPFD with the AVR. The number
of particles M = 300 and all the priors are assumed to be
known to the receiver. Following results are averages taken
over 2000 realizations of channels and analog imperfection
parameters.

We first evaluate the performance degradation of the
conventional MPFD due to the analog imperfections, and
the effectiveness of the proposed MPFDs. Fig. 1 shows the
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Fig. 1 BER performance versus SNR of the conventional and proposed
MPFDs.

bit error rate (BER) performance of the conventional MPFD
and the proposed MPFDs versus the transmitted signal-to-
noise power ratio (SNR), i.e., SNR = E[|st |2/|nt |2]. In the
figure, the BER performance of the conventional MPFD
without analog imperfections is included for comparison
purpose. Clearly, the imperfections seriously deteriorate the
performance of the conventional MPFD. On the other hand,
the MPFD with the AVR can avoid such deterioration and
moreover can achieve the comparable performance to the
MPFD for known analog imperfections. Fig. 2 shows the
root mean square-error (RMSE) of the estimate of the CFO
parameter f defined as

RMSE =
√

E[| f − f (imax)
t |2], (56)

versus time t in the MPFD with the AVR where the SNR
is 12dB. The figure shows that the proposed MPFD suc-
cessfully estimate the CFO parameter through its AVR step.
It should be mentioned that, it is difficult to evaluate ac-
curacy of the estimates of the other parameters, because
{εtx, εrx, φtx, φrx} or equivalently {α, β, γ, δ} have scale ambi-
guity between h.

In practical PF approaches, one can reduce the com-
putational burden of PF without losing its performance by
skipping the resampling step when the degeneracy is not so
serious [3], [25]. However, this might not be the case with
the proposed MPFD with the AVR since the IMF as in (48)
including the AVR step itself. Therefore, we evaluate the
BER performance of the MPFD with the AVR with the com-
putational complexity reduction. A well-known measure of
degeneracy is the effective sample size [25] which is esti-
mated by

Meff
t =

1∑M
i=1(w(i)

t )2
. (57)

Figure 3 shows the BER performances of the conventional
MPFD without analog imperfections, the MPFD for known
analog imperfection, and the MPFD with the AVR where

Fig. 2 RMSE of f (imax)
t versus t of the proposed MPFD with the AVR.

Fig. 3 BER performance versus SNR of the conventional and proposed
MPFDs with the computational complexity reduction.

each detector only conducts their resampling step when
Meff

t < 0.3M. From the figure, we can see that the MPFD
with the AVR dose not lose its performance like the other
MPFDs even if the resampling step is partially omitted.
Hereafter, the reduction technique is employed for all the
detectors with Meff

t < 0.3M.
Next, in order to evaluate the efficiency of the proposed

method, we test the BER performances of the MPFD with
the AVR and the standard PFD versus the number of the
particles M where the SNR is set to be 12 dB. In Fig. 4, it is
clear that the MPFD with the AVR outperforms the standard
PFD for a given number of particles. Moreover, the pro-
posed MPFD quickly improve its performance with a small
number of particles, say M = 50 or 100. On the efficiency, it
is also interesting to compare the performance of these de-
tectors for given computational complexity. However, a fair
comparison of the standard PFD and the proposed MPFD
such as by equating the number of floating-point operations
(flops) faces many problems and is often useless. This is due
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Fig. 4 BER performance versus the number of particles of the proposed
MPFD and the standard PFD.

Fig. 5 BER performance versus the (a) IRR and (b) the CFO parameter
f of the proposed MPFD and the proposed MPFD with the AVR.

Table 1 Simulation settings for the IQI parameters.

IRR[dB] εtx εrx φtx φrx

34.5 0.01 0.005 0.01 0.005
25.8 0.04 0.01 0.04 0.01
21.2 0.06 0.02 0.06 0.02
16.5 0.08 0.04 0.08 0.04

to the facts that some steps in the algorithm, such as gener-
ating random variables, cannot easily measured in flops and
moreover the actual computational time largely depends on
their implementation, such as cache boundaries and local-
ity of the references [6]. Experimentally, the standard PFD
with M = 1000 takes 1.1 times longer computational time
than the proposed MPFD with M = 300 in our simulation
and thus, from Fig. 4, it is possible to conclude that the pro-
posed MPFD is much more efficient than the standard PFD
for given computational complexity.

In addition, we further investigate the impact of each

Fig. 6 BER performance versus SNR of the conventional and proposed
MPFDs in the 8-DPSK modulated system.

analog imperfection on the resulting BER. Fig. 5(a) repre-
sents the BER performance versus the Tx and Rx IRR of
the proposed and conventional MPFDs where the CFO is
f = 0 and Tx and Rx IQI parameters are set to be as in
Table 1. On the other hand, Fig. 5(b) shows the BER per-
formance versus the CFO parameter f while the IQI param-
eters εtx = εrx = φtx = φrx = 0. From the figures, in both
cases of the IQIs and the CFO, we can see the significant
performance deterioration of the conventional MPFD with
increasing imperfections and the effectiveness of the pro-
posed MPFD.

Finally, we test the proposed method with higher mod-
ulation level. Fig. 6 shows the BER performance of the pro-
posed MPFD with the AVR and the conventional MPFD
with or without analog imperfections where differential
coded 8PSK (8-DPSK) modulation scheme is employed. In
this time, we choose the discount factor ν = 0.7. Priors
for the analog imperfection parameters are set to be (54),
(53) and (55). Such a degree of the imperfections is rel-
atively severe for the 8-DPSK modulated system, however
the proposed MPFD still achieves much better performance
compared with the conventional MPFD as in Fig. 6.

5. Conclusions and Future Works

In this paper, by employing the WL modeling and the AVR
technique, we have applied the computational efficient MPF
to the blind detection problem in the presence of the Tx and
Rx IQIs and the CFO. We have shown the effectiveness of
the proposed MPFD via computer simulations. The pro-
posed MPFD can efficiently avoid the serious performance
degradation due to imperfection of analog front-ends which
is unavoidably occurs in realistic wireless devices.

In practice, an application of the MPFD is still limited
due to its computational burden. Meanwhile, as we have
shown, the MPFD is fairly easy to improve the robustness to
non-linear signal distortions such as analog imperfections.
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For future works, we plan to compare the MPFD and other
blind approaches based on, such as, subspace method or
higher order statistics in terms of computational complexity
with the additional costs for coping with non-linear distor-
tions and this will give some contributions for practical use
of PF in wireless communications.
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