2190

IEICE TRANS. COMMUN., VOL.E%94-B, NO.8 AUGUST 2011

| INVITED PAPER Special Section on Deployment and Operation of New Internet Technology: Challenges and Approaches

Flow-Based Measurement: IPFIX Development and Deployment

SUMMARY This paper presents a history of the IPFIX working group,
from initial chartering through development and testing, re-chartering and
further development, and looking ahead to future developments. As a stan-
dardised way of exporting information about traffic flows, IPFIX has at-
tracted a growing number of implementors, who have continued to develop
it in useful ways without changing its underlying architecture. This makes
it a good example of how to develop a new technology. Further, it demon-
strates widespread recognition of the importance of network measurement
in the development, deployment and production stages of networks and the
applications that depend on them.

key words: traffic flows, network data export, IPFIX

1. Introduction

From time to time every organisation will need to deploy or
modify a system to achieve some important goal. For exam-
ple, a company might need a new online ordering system,
a news organisation might upgrade their web servers, or an
Internet Service Provider (ISP) might upgrade their routers
or link capacities. When that happens, it’s important that the
system is monitored, and that its performance is measured.

Again, measurement is needed during every part of a
system’s life. We begin by deciding what characteristics of
the system will be most useful for indicating its behaviour;
for example, an ISP may need to know how many packets
or bytes flow through a link each minute, the news company
needs to know how many requests its system handles each
second, how long it takes before a user sees a response to
her mouse clicks, and so on. During system development,
we use our measurements to determine what happens when
we change system parameters. While testing we check to
see that everything is working as it should. In production
we may need to verify that performance is within the bound-
aries set by the system’s SLA. In short, measurement is vital
for any operational system —if we don’t measure, we don’t
know what’s happening!

Values of system characteristics can be measured at
Observation Points within one or more hosts, routers or
switches, either by the host operating system (for interface-
network- and transport-level characteristics), or within ap-
plications running on the host(s). We need to be able to
gather that data from each host so that it can be archived

Manuscript received December 1, 2010.
Manuscript revised March 2, 2011.

"The author is with the Faculty of Science, The University of
Auckland, New Zealand. He is a co-chair of the IETF’s IPFIX
Working Group.

a) E-mail: n.brownlee @auckland.ac.nz
DOI: 10.1587/transcom.E94.B.2190

Nevil BROWNLEE®, Nonmember

and analysed. Network management and monitoring, and
any applications that are distributed across many hosts, will
need to collect data from every host involved in the system.

Once our data is measured, we need a system to carry
the measurement data from the hosts where it’s generated to
our monitoring and analysis points. One method for doing
that is the Simple Network Management Protocol, SNMP.
SNMP uses a large set of MIBs for various kinds of devices;
these are essentially databases that contain a tree of Objects
and their current values. For example, interface packet and
byte counts show the total number of packets and bytes that
have passed in or out through an interface. Values of SNMP
Objects can be read by a management or monitoring system,
e.g. MRTG, an Open Source system that reads SNMP data,
archives them and plots them using various timescales.

Another widely-used method of monitoring Internet
traffic is flow analysis, which is based on grouping packets
into sets that have common properties. This field’s seminal
paper [1] was published in 1995; it used the set {IP proto-
col, source IP address, source port, destination IP address,
destination port} as the common properties, together with a
fixed timeout period. Such flows are usually described as
5-tuple flows; they have the same transport-layer start and
end points, are unidirectional and time out if no new pack-
ets are seen for 60 seconds. A more general approach to
flow measurement was taken by the IETF’s RTFM work-
ing group in 1999. RTFM [2] generalised flows, allowing
a larger set of ‘flow attributes’ to be used to specify flow
endpoints. RTFM also introduced bidirectional flows, hav-
ing two sets of attributes one for the forward (source-to-
destination), the other for the reverse direction. Flows pro-
vide a useful picture of Internet traffic for network opera-
tors. For example, the largest flows indicate the most-active
(‘heavy-hitter’) users, and ISPs can use source/destination-
based flows to produce a traffic matrix, allowing them to see
the busy paths within their network.

One example of a flow measurement system is Cisco’s
NetFlow, which was introduced in 1996. Because Cisco
made the NetFlow data format freely available by distribut-
ing the flowdata.h file that defined its message formats,
it became widely-used, and many NetFlow analysis tools
became available. Early versions of NetFlow were imple-
mented in routers, maintaining a table of flow information,
and exporting flow entries to a NetFlow collector. This was
a simple system, pushing the flow data over UDP transport
(unlike SNMP which pulls its data from hosts). However,
by the end of the 1990s there were several other flow-based

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers

BROWNLEE: IPFIX

systems, each with its own useful features. Hardware and
software implementors, as well as application developers,
had a difficult choice as to which flow measurement system
they should use.

In August 2000 the IETF held a Birds-Of-a-Feather
(BOF) session to consider working on flow-based measure-
ment. Late in 2000 the IP Flow Information eXport (IPFIX)
Working Group (WG) was chartered, with goals including:

e Define the notion of a “standard IP flow.” The flow
definition will be a practical one, similar to those cur-
rently in use by existing non-standard flow information
export protocols which have attempted to achieve simi-
lar goals but have not documented their flow definition.

e Devise data encodings that support analysis of IPv4
and IPv6 unicast and multicast flows traversing a net-
work element at packet header level and other levels of
aggregation as requested by the network operator ac-
cording to the capabilities of the given router imple-
mentation.

e Ensure that the flow export system is reliable in that it
will minimize the likelihood of flow data being lost due
to resource constraints in the exporter or receiver and
to accurately report such loss if it occurs.

2. IPFIX: Architecture and Information Model

Rather than attempting to develop a completely new system
the IPFIX WG began its activity by surveying existing flow-
based systems, partly to help frame the [IPFIX Requirements
document, and partly so as to help determine which would
become the starting point for the IPFIX system. In 2004
that work produced two RFCs, ‘IPFIX Requirements’ [3]
and ‘IPFIX Candidate Evaluation’ [4].

The WG began by considering commonly-used (in
2000) flow monitoring systems, choosing not to consider
systems that did not handle flows as they are defined above.
For example, sFlow' captures samples of packets as they
pass through switches, together with SNMP interface coun-
ters. The protocols evaluated by the WG were CRANE, Di-
ameter, LFAP, NetFlow version 9 and Streaming IPDR. RFC
3955 [4] gives brief summaries for each of them.

The WG reached consensus for a generalised IP flow
export system, rather than a “carrier-grade accounting pro-
tocol that could also be used to export flow information.” On
that basis, we chose NetFlow version 9 as our starting point,
and began work to develop:

e An Information Model that describes its Information
Elements (IEs), i.e. attributes to be exported, in a clear
and unambiguous manner.

e A simple protocol that exports flow data in compact
(binary) form as sets of IE values, with the IEs them-
selves specified in a list called a ‘Template.” IPFIX
messages are sent from IPFIX Exporters to IPFIX Col-
lectors.

IPFIX messages needed a congestion-aware and secure

2191

Table 1 Example information element, showing its defining properties.

Name: tepSynTotalCount

Description: Total number of packets of this

eseription: Flow with their TCP SYN flag set

Abstract Data Type: unsigned64

Data Type Semantics: | totalCounter

ElementId: 218

Units: packets

transport, and a means of reporting any IPFIX data losses
that might occur, As well, since we could see that I[PFIX
had many possible uses, it needed to be easily extensible.

The WG had important contributions from members of
DMTF (Desktop Management Task Force), resulting in our
using XML to describe the IPFIX Information Model. Apart
from these early interactions, the IPFIX WG has not had any
interactions with other standards bodies.

2.1 IPFIX Information Model

IPFIX’s ‘Information Model’ is essentially just a list of all
the IEs currently known to IPFIX. Its RFC [5] lists 238 IEs,
each with a name, element ID (an integer), description and
type. An example IE entry is shown in Table 1.

In an IE entry like this, the description must specify
exactly what quantity it represents, either directly or by re-
ferring to some other document. Note that IPFIX does not
make any measurements itself, an IPFIX Exporter must get
IE values from other systems that have access to them. IE
names begin with a lower-case letter, and have upper-case
letters for the first letter of each component, e.g. tcpSynTo-
talCount above. They appear in that form throughout this
paper.

In this example an unsigned64 may seem larger than
necessary, and therefore wasteful of space in IPFIX mes-
sages. However, ‘Abstract Data Type’ describes the IE’s
maximum possible value. A Data Template that uses an
integer-valued IE must specify its length in octets, allow-
ing implementors to decide on the actual maximum length
needed in their system.

The ‘standard’ IE list is maintained in an IANA Reg-
istry [6] in XML, so that implementors can download it and
use XML-based tools to help them generate code. If new
IEs are needed, they can be added using the procedure doc-
umented in [5], i.e. submit a request to IANA who will call
for an expert review. Again, individual organisations can
develop a set of their own IEs; these are identified in IP-
FIX messages by having the organisation’s Private Enter-
prise Number (PEN) appended as a suffix. In this way a
new set of IEs can be developed and tested — if they prove
useful one could ask for them to be added to the IPFIX IE
list.

2.2 IPFIX Protocol

The IPFIX protocol RFC [7], published in 2008, explains

http://www.sflow.org/

2192

the IPFIX terminology. In brief:

o packets are observed at an Observation Point,

e Flows are sets of packets that share a common set of
properties, passing an Observation Point during a cer-
tain time interval,

e Flows are defined using Flow Keys, i.e. a set of IEs and
their allowed values, and

e a Template is ‘an ordered sequence of <type, length>
pairs’ that specifies ‘the structure and semantics of a
particular set of information’ that can be exported.

IPFIX messages have a simple basic structure, beginning
with a header that specifies the message length, and meta-
data about this particular message. The header is followed
by one or more ‘Sets,” which may be

e Template Sets, containing one or more data templates,

e Data Sets, carrying data using already-defined tem-
plates, or

e Options Template Sets, carrying information such as
Flow Keys and Sampling Parameters for a specified
Exporter-related scope.

Other authors such as [8] give a more detailed description of
IPFIX messages. For this paper, I have used ripfix [9] to
create a minimal IPFIX Exporter and Collector. Their Ruby
source code, and examples of its ‘on the wire’ packets are
shown in Appendix.

Finding a congestion-aware transport for IPFIX took
the WG quite some time. TCP was the obvious choice,
but—since it is a reliable protocol—it could prove
memory-hungry where a router with multiple 10 Gb/s inter-
faces was exporting data over an unreliable path. The best
choice proved to be SCTP, using its ‘partial reliability’ ex-
tension [10], which allows one to say “resend a packet at
most n times,” so that transmission cannot be indefinitely
blocked by packet losses. Unfortunately, SCTP is often not
included by default in operating systems, so using it is a non-
trivial task; IPFIX can therefore use TCP instead. Again, in
environments where a high-rate UDP flow of IPFIX data can
be tolerated, e.g. within an ISP Point Of Presence, UDP can
also be used. IPFIX uses port 4739 (IPFX on a telephone
keypad) for SCTP, TCP and UDP.

Two other issues were important for IPFIX: reliabil-
ity and security. The WG decided that IPFIX need not be
completely reliable, as explained above, but that it should
be possible for a Collector to detect when IPFIX messages
have been lost. IPFIX does that using a sequence number
in its message header. This gives an IPFIX user the choice
of full reliability (using either SCTP or TCP) for ‘billing” or
‘security monitoring” applications, or partial reliability (us-
ing SCTP or UDP) for monitoring network and application
behaviour. Each of the IPFIX RFCs have Security Consid-
erations sections that explore questions concerning security
when using IPFIX. Where data confidentiality or integrity
are important, TLS can be used over TCP, and DTLS over
SCTP or UDP.

The overall IPFIX Architecture is described in detail

IEICE TRANS. COMMUN., VOL.E%94-B, NO.8 AUGUST 2011

Flow Exporting
Table Process
Flow
Selection
Collecting
Process
Observation
Point
Files
Monitoring
Analysis Apps

Fig.1 IPFIX architecture overview. Packets are examined at an observa-
tion point, processed into flows by a selection process, and stored in a flow
table. From time to time they are exported over the network to a collector
for processing and archival.

in RFC 5470, an overview is shown here in Fig. 1. RFC
5470 did not include any standardised way to configure an
IPFIX Exporter, since that was outside the WG’s original
charter. Configuration is included in current IPFIX work,
see Sect. 4.4.

3. Developing IPFIX

During the development of the IPFIX Protocol and Informa-
tion Model several different groups were working on imple-
menting it. Those groups met three times in 2005 and 2006
and held IPFIX Interoperability Events. These events were
important because they revealed parts of the IPFIX Internet
Drafts that were unclear, and overall helped to improve the
system design. This early implementation experience was
documented in [11] and gave rise to a set of IPFIX Testing
Guidelines [12].

Since then other work has continued steadily, improv-
ing IPFIX by adding further features, as presented below.
Note that all these developments required new IEs, but did
not require changes to the IPFIX protocol.

3.1 Bidirectional Flows

IPFIX could originally only export one-directional flows.
However, experience with earlier systems (e.g. RTFM) had
shown that biflows (bidirectional flows) were useful since
they simplify the analysis of connection behaviour.

Adding biflows to IPFIX meant having IEs that could
be used for counters for each direction. That could have
been done by adding ‘reverse’ versions of IEs like octet-
DeltaCount and packetDeltaCount, but that would have re-
quired adding ‘reverse’ versions of all such IEs. IPFIX

BROWNLEE: IPFIX

Field Specifiers [7] contain one bit that indicates whether the
Field’s IE is ‘standard’ (in the IANA Registry), or belongs
to a Private Enterprise. The WG decided to register a PEN
for the “IPFIX Reverse Information Element Private Enter-
prise” (29305) as a general mechanism for creating ‘reverse’
versions of any IE that might be needed in a biflow. Some
have described this approach as “a hack,” but is a simple and
effective way to introduce ‘reverse IEs,” without adding an
arbitrary number of new IEs.

One new aspect of biflows is the question “how do we
know what ‘forward direction” means for this flow?” IPFIX
handled this using a single IE, biflowDirection, with values
indicating how an exported flow’s direction was determined.
Biflows are described in detail in [13].

3.2 Reducing Redundancy

Another potential problem for IPFIX was that flows with
common properties (e.g. same source IP address and port)
had to export values of those properties for every flow, thus
wasting export bandwidth. The WG addressed this issue in
[14] by introducing another IE, commonPropertiesID.

The idea here is that an IPFIX Exporter will maintain
a table of values for a specified set of common properties,
and that the commonPropertiesID value is an index into that
table. Values from that table will be exported as they are
created and deleted. Once the table is active, a Data Tem-
plate can use commonPropertiesID to indicate which set of
common property values belongs to a particular Exported
data set. This is described in [14] as allowing “Common
and Specific Properties” to be Exported separately.

The scheme depends on having an Exporter configured
so that it knows which Common Properties templates are
used in any particular Flow Key. However, it did not re-
quire any changes to the IPFIX protocol, and it can clearly
be useful in minimising the number of bytes to be exported.

3.3 Packet Sampling: PSAMP

From time to time a Network Operator may need to observe
a subset of the packets passing an Observation Point, and to
export some information from each packet. For example,
one might want to observe only DNS response messages
from nameservers within a single network prefix. One could
do that using tcpdump, but tcpdump can only write a trace
file; an Operator may wish to export sampled packets from
several Observation Points at different locations, and collect
them at a central point.

PSAMP is an IETF WG chartered to “define a standard
way to sample subsets of packets.” PSAMP was developed
in parallel with IPFIX, allowing it to influence the IPFIX
protocol early on. Since IPFIX simply exports specified sets
of IE values, it makes no difference whether those values
come from a single packet or a flow. Indeed, PSAMP re-
gards a single packet as a very short flow, with the IPFIX
protocol providing message headers that have timestamps
and sequence numbers.

2193

PSAMP packet selection is described in [15]. As well
as selection by matching packet properties (as in the exam-
ple above), PSAMP offers hash-based selection. Further, it
can select packets using one of five different sampling meth-
ods, e.g. count-based, time-based, etc. The PSAMP proto-
col [16] extends the IPFIX architecture by selecting packets
as they arrive at an Observation Point, then exporting them
using the IPFIX protocol. Note that this mechanism can be
used to select packets passed to a Metering Process for both
IPFIX (flows) and PSAMP (packets).

The PSAMP Information Model [17] adds IEs 301-338
to IPFIX. Some of these are used to specify what kind of
filtering or sampling is being used, some carry observation
times (when a packet was observed, with ms or ns preci-
sion), and others carry packet properties (e.g. a specified
number of payload bytes).

3.4 IPFIX MIB

The WG developed a MIB module for monitoring IPFIX
[18]. The MIB contains tables for each component of an
IPFIX device, and gives an interesting overview of how one
might implement IPFIX. All the MIB’s objects have read-
only access clauses, since the MIB was intended only for
monitoring.

4. Current IPFIX Work

Once the IPFIX Protocol and Information Model standards
were published, in mid-2008 the Working Group rechartered
and began work on improving IPFIX’s infrastructure, as de-
scribed in this section.

4.1 IPFIX File Format

Users who collect IPFIX data on a long-term basis need to
have an effective way to store and archive it for later anal-
ysis, or for sharing with other users, e.g. flow data sharing
within the research community. Since the IPFIX Protocol
is compact and efficient, with the capacity to Export many
kinds of data ‘on the wire,” it seemed natural to also use it
for storage. The IPFIX File Format RFC [19] sets out the
requirements for IPFIX file storage, describing IPFIX files
as “another form of transport between IPFIX Exporters and
Collectors.” A File Writer can be co-located with an Ex-
porter, and a File Reader can be used as input to a Collector.
An IPFIX file is regarded as a complete IPFIX trans-
port session, so Templates must appear in the file before
Data Sets that use them. The files are intended to be free-
standing, so [19] introduces many new IEs that should be
used to specify when and where the File was written. IPFIX
files may use CMS detached signatures [20] for integrity
checking and ensuring the identity of IPFIX File writers.

4.2 Exporting Type Information

To handle any IE properly, IPFIX Exporters and Collectors

2194

need to know the IE’s specification. For standard IEs they
can do that by simply reading the IANA IE Registry [6]. For
Enterprise IEs, however, that information may not be readily
available. To solve this problem, the WG added eight new
IEs [21] that can be used to export the defining information
for an Enterprise IE. The ability to export type information
is specifically meant to address the question “how is this IE
encoded?” for archival data, when details for Enterprise IEs
may have been lost. This ability was developed in conjunc-
tion with the IPFIX file format.

Type definitions for Enterprise IEs may be exported
in an Options Template that uses the informationElement-
DataType/privateEnterpriseNumber IEs as its scope, with
other IEs including informationElementld and informa-
tionElementDataType that specify its properties. After
a Collector has received such Option Templates it can use
them to determine how it will handle data values for the IEs
they describe.

4.3 TPFIX Mediation

When monitoring small networks, one may use a single IP-
FIX Collector to receive and process that data from many
remote IPFIX Exporters. Unfortunately, such an approach
scales poorly. Large networks, say those with more than
about 1000 exporting nodes, are too big to have just a sin-
gle collector. Instead one needs a set of Collectors, each
reducing the incoming data in some way, e.g. for particular
geographic regions. The WG has generalised this idea as
‘IPFIX Mediation.’

The IPFIX Mediation Problem Statement RFC [22] de-
fines Mediation as “the manipulation and conversion of a
record stream for subsequent export using the IPFIX pro-
tocol.” An IPFIX Mediator is a device that receives IP-
FIX records, processes them using one or Intermediate Pro-
cesses, then Exports them using IPFIX. Figure 2 shows a
simplified overview of the IPFIX Mediation architecture.

Intermediate Processes considered so far are Anonymi-
sation, Flow Selection and Aggregation’

e The Anonymisation document [23] categorises ways to

e |

IPFIX

data

from

Exporters

/&

Exporters

Collecting
Process Intermediate
Processes

Fig.2 IPFIX mediator overview. IPFIX messages from one or more ex-
porters arrive at a collecting process. They pass through one or more in-
termediate processes and are then exported via one or more exporting pro-
cesses.

IEICE TRANS. COMMUN., VOL.E%94-B, NO.8 AUGUST 2011

anonymise data exported by IPFIX, for example by en-
crypting IP addresses, and discusses the trade-off be-
tween protecting data privacy and loosing information
detail

o Flow Selection means ‘selecting a subset of flows from
those appearing at an IPFIX Mediator (or Exporter).’
This is described in [24], together with a set of IEs for
describing how flows are selected

o The Aggregation draft [25] describes ways to combine
data either from a set of flows with common properties
(spatial) or over a period of time (temporal)

Other Intermediate Processes could be added when the need
for them becomes apparent; this remains as possible future
work for the IPFIX WG.

4.4 TPFIX Configuration Model

The WG’s original charter explicitly disallowed work on
configuring IPFIX devices —instead configuration was left
to individual implementors. That proved to be a sensible
approach, allowing the WG to focus on developing, testing
and refining the IPFIX Architecture and Information Model.
Now that these were well-defined, the WG began work on a
Configuration Data Model.

The IPFIX Configuration Data Model [26] will provide
a standard way to “configure and monitor Selection Pro-
cesses, Caches, Exporting Processes, and Collecting Pro-
cesses of IPFIX and PSAMP compliant Monitoring Devices
using the NETCONF protocol [27]. The data model is de-
fined using UML (Unified Modeling Language) class dia-
grams and formally specified using YANG [28].” Further,
the Configuration Data Model (currently an Internet Draft)
provides a clear description of how the various parts behave,
and how they interact within IPFIX devices.

4.5 Exporting Structured Data

At present IPFIX can export any one of its Information El-
ements. It cannot, however, export any kind of structure
made up of [Es. Such an ability would be useful, for ex-
ample one could export a variable length set of IP addresses
for hosts that had sent TCP SYN packets to a server. The
WG is producing a method of exporting structured data by
introducing IPFIX encodings for Lists, a ‘semantic’ that de-
scribes the relationship among the IEs in a List, and three
new IEs: basicList, subTemplateList and subTemplateMul-
tiList. Examples of how to construct structured data objects
in Templates are given in [29].

These will allow IPFIX to export arbitrarily complex
data structures, though its main use, at least initially, will
be for simple basicLists. This has been possible without
changing the IPFIX Protocol or Information Model — it was
achieved simply by finding new ways to use them for this
purpose.

T Anonymisation and Flow Selection are current IPFIX work,
Aggregation is a proposal for future work.

BROWNLEE: IPFIX

5. Future IPFIX Work

At the time of writing (November 2010) the WG is close
to completing its charter, but it is still very active. Possible
work items for a new charter include those discussed in this
section.

5.1 1IE Doctors: Managing the Information Model

Since the IPFIX Information Model was published in 2008
[5], it has been extended in three ways —in RFCs that de-
fine new sets of IEs for a particular application area, such
as PSAMP, by RFCs that define a few new IEs such as File
Format, and by requests to IANA for new IEs a few at a
time, subject to Expert Review. Recently, other IETF Work-
ing Groups such as SIPCLF have become interested in us-
ing IPFIX to export measurement data for new application
areas. Such efforts have generated requests for help on how
to use IPFIX, how to design new sets of IEs, and on how to
register them with IANA. This need is addressed in an Inter-
net Draft [30], “IE Doctors,” a set of guidelines about IPFIX
Information Elements for Draft authors and IE reviewers.

The first attempt to use these guidelines is an Internet
Draft on “IEs for Flow Performance Measurement” [31]. It
proposes sets of performance related IEs at the Transport,
User and Application layers of the networking stack. This
draft was discussed at IETF 80; WG consensus was that
“the IPFIX WG should not define any metrics or ways to
measure them. That should be done in other WGs,” e.g. IP
Performance Measurement (IPPM).

In future, when network devices have IPFIX Exporters
built-in, it would be useful for developers to create new sets
of IEs for their applications areas. For example, one obvious
area would be IEs for usage-based billing. These might be
developed either within the IPFIX WG, in other WGs, or by
the WG in co-operation with other standards organisations.

5.1.1 Rethinking the Definition of Flows

The IPFIX WG was originally chartered to “standardise ex-
isting practice for exporting IP flow data,” hence that was
the main goal of its Protocol and Information Model RFCs.
However, the Information Model contains many IEs that are
not IP-related. For example:

e ingressInterface, egressinterface
e mplsLabelStackSection, mplsLabelStackSection2, etc
e wlanChannellD, wlanSSID

Recently there has been considerable interest in exporting
more information about level-2 network behaviour, moti-
vated by [32]. That Draft has generated considerable dis-
cussion, suggesting that IPFIX’s definition of Flow should
be widened further. Since flow information is exported at
regular intervals, its most important feature is that it pro-
duces time sequences of the flow data. Therefore, any pro-
cess that generates data at intervals may be considered to be

2195

a flow. Having a new Flow definition could make it simpler
for other applications to use IPFIX to export measurement
data.

Another application that generates sequential data is
logging of event data. This is current work in the IETF’s SIP
Common Log Format (SIPCLF) Working Group. Two for-
mats proposed were ‘Indexed ASCII’ and IPFIX. ‘Indexed
ASCII’ aims to make searching the logs easier, alternatively
the application receiving SIPCLF IPFIX data could simply
store the collected IPFIX records in a database. A possible
set of IPFIX IEs for SIPCLF was presented in [33]. Al-
though IPFIX was ultimately not adopted for SIPCLF, work
is in progress elsewhere on extending IPFIX for SIP layer 7
export.

It might also be possible to create a set of IPFIX IEs for
system logging, as an alternative to syslog. Such a logging
system would need to coexist with syslog for many years.

5.1.2 Exporting MIB Variables

Another interesting use for IPFIX could be to export MIB
variables. SNMP is a ‘pull’ protocol, so applications such
as MRTG must read the values of MIB variables at regular
intervals, say every five minutes. When Flows are being
measured and exported, it would be useful to also export
values of relevant MIB variables. As well, this could be an
effective way for an application to ‘push’ data to a remote
collector. A draft proposing this has already been published
[34].

6. Deployment and Use

More than two years have elapsed since the first Standards-
Track IPFIX RFCs were published. This section briefly sur-
veys current usage of IPFIX, and considers how it is likely
to be deployed.

Firstly, researchers find IPFIX attractive because it pro-
vides a simple and effective way to export almost any kind
of data. Several research groups have produced open-source
implementations, for example:

o [ibipfix from Fokus, a C library for constructing
Exporters and Collectors’
e Maji from WAND, an IPFIX meter that supports
50 standard IEs, and allows user-defined templates’™
e Vermont from Berlios, an IPFIX meter and
collector [35], supporting IPFIX and PSAMPTT

IPFIX has been used to collect data in FP7 PRISM,
“a European Union-funded research project that addresses
privacy and scalability in network monitoring” [8]. That
project used three separate IPFIX implementations, and
used IPFIX files in its data processing infrastructure. Other
research work using IPFIX is reported in papers such as
[36].

http://libipfix.sourceforge.net
Thttp://research.wand.net.nz/software/maji.php
T http://vermont.berlios.de/start

2196

Secondly, developers of network management systems
have extended them to accept IPFIX input. These sys-
tems include Scrutinizer (Open Source)’ and commercial
offerings such as Orion NetFlow Analyzer'™ and ntop +
nProbe’™ . This move allows users of such systems, i.e. Net-
work Operators, to continue using them, accepting IPFIX
input from stand-alone probes and — as vendors implement
IPFIX Export — from routers and switches. As well, imple-
mentors will be able to develop new applications that mon-
itor new network devices and systems, using IPFIX as an
easily-extensible standard infrastructure.

Lastly, IPFIX usage should increase as equipment ven-
dors implement Exporters in more network devices. Of
course, Network Operators will not deploy a new technol-
ogy unless it provides some real benefit to them. For IPFIX,
that benefit should come from being able to extend monitor-
ing to new devices and systems. One area of particular in-
terest may be network security monitoring, using PSAMP to
observe ‘unusual’ features of packets and report their prop-
erties using IPFIX [35], [37].

7. Conclusion

IPFIX development started with the formation of the IETF
Working Group in 2000. Background work was published
in 2004 and the first IPFIX RFCs in 2008. Since then the
working group has been re-chartered and has produced a
continuing stream of IPFIX extensions, taking it into new
areas a long way from simply ‘standardising current prac-
tice.”

During its ten-year history the WG has had strong in-
volvement from researchers (e.g. Fokus, ETH and WAND),
from industry (e.g. Cisco), and from network operators
(e.g. NTT). As a consequence, there were many implemen-
tations —in IETF terms ‘running code’ — early on. One IP-
FIX feature that has proved useful to implementors is its
XML Information Model; that allows automated code gen-
eration for IE handling, simplifying implementation. Im-
plementations were tested during repeated interoperability
events, refining and improving the protocol, and produc-
ing RFCs on Implementation and Testing — a somewhat un-
usual output for an IETF WG.

Many implementations have been reported. Current
Open Source implementations are discussed in Sect. 6, and
at least one network equipment vendor (Nortel) has imple-
mented IPFIX in their hardware. We trust that more ven-
dors will implement IPFIX soon, that the developers of Flow
Analysis tools will convert them to work with IPFIX, and
that new tools will be developed using the IPFIX data and
file formats.

This steady development over ten years shows that IP-
FIX fills a real need. I believe that demonstrates that the net-
work community understands the need for measurement —
particularly flow measurement — at all stages of the system

http://www.plixer.com
Thttp://www.solarwinds.com
T http://www.ntop.org

IEICE TRANS. COMMUN., VOL.E%94-B, NO.8 AUGUST 2011

life-cycle. Overall, IPFIX has proved to be an effective and
easily extensible system; that can surely continue into the
foreseeable future!

Acknowledgments

My activity in the IPFIX WG is generously supported by
The University of Auckland (New Zealand), and by CAIDA
(University of California, San Diego). Thanks to Brian
Trammell for his helpful comments, and for his develop-
ment and support of ripfix. Thanks also to the anonymous
reviewers and to Brian Trammel; their feedback certainly
improved this paper.

References

[1] K.C. Claffy, H.W. Braun, and G.C. Polyzos, “A parameterizable
methodology for Internet traffic flow profiling,” IEEE J. Sel. Areas
Commun., vol.13, no.1, pp.1481-1494, 1995.

[2] N. Brownlee, C. Mills, and G. Ruth, “Traffic flow measurement:
Architecture,” RFC 2722 (Informational), Oct. 1999.

[3] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for IP
flow information export (IPFIX),” RFC 3917 (Informational), Oct.
2004.

[4] S. Leinen, “Evaluation of candidate protocols for IP flow informa-
tion export (IPFIX),” RFC 3955 (Informational), Oct. 2004.

[5] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer, “Informa-
tion model for IP flow information export,” RFC 5102 (Proposed
Standard), Jan. 2008.

[6] TANA, “IPFIX Information Element Registry,” http://www.iana.org/
assignments/ipfix/ipfix.xhtml

[7] B. Claise, “Specification of the IP flow information export (IPFIX)
protocol for the exchange of IP traffic flow information,” RFC 5101
(Proposed Standard), Jan. 2008.

[8] B. Trammell and E. Boschi, “An introduction to IP flow information
export,” IEEE Commun. Mag., vol.49, no.4, pp.89-95, April 2011.

[9] B. Trammell, “Ripfix: Rapid prototyping and debugging of IPFIX
applications in ruby,” Proc. Network Management Research Group,
2010. IETF 78, Maastricht.

[10] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad, “Stream
control transmission protocol (SCTP) partial reliability extension,”
RFC 3758 (Proposed Standard), May 2004.

[11] E. Boschi, L. Mark, J. Quittek, M. Stiemerling, and P. Aitken, “IP
flow information export (IPFIX) implementation guidelines,” RFC
5153 (Informational), April 2008.

[12] C. Schmoll, P. Aitken, and B. Claise, “Guidelines for IP flow infor-
mation export (IPFIX) testing,” RFC 5471 (Informational), March
2009.

[13] B. Trammell and E. Boschi, “Bidirectional flow export using IP flow
information export (IPFIX),” RFC 5103 (Proposed Standard), Jan.
2008.

[14] E. Boschi, L. Mark, and B. Claise, “Reducing redundancy in IP flow
information export (IPFIX) and packet sampling (PSAMP) reports,”
RFC 5473 (Informational), March 2009.

[15] T.Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, “Sam-
pling and filtering techniques for IP packet selection,” RFC 5475
(Proposed Standard), March 2009.

[16] B. Claise, A. Johnson, and J. Quittek, “Packet sampling (PSAMP)
protocol specifications,” RFC 5476 (Proposed Standard), March
2009.

[17] T. Dietz, B. Claise, P. Aitken, F. Dressler, and G. Carle, “Information
model for packet sampling exports,” RFC 5477 (Proposed Standard),
March 2009.

[18] T. Dietz, A. Kobayashi, B. Claise, and G. Muenz, “Definitions of

BROWNLEE: IPFIX

managed objects for IP flow information export,” RFC 5815 (Pro-
posed Standard), April 2010.

[19] B. Trammell, E. Boschi, L. Mark, T. Zseby, and A. Wagner, “Speci-
fication of the IP flow information export (IPFIX) file format,” RFC
5655 (Proposed Standard), Oct. 2009.

[20] R. Housley, “Cryptographic message syntax (CMS),” RFC 3852
(Proposed Standard), July 2004. Obsoleted by RFC 5652, updated
by RFCs 4853, 5083.

[21] E. Boschi, B. Trammell, L. Mark, and T. Zseby, “Exporting type
information for IP flow information export (IPFIX) information ele-
ments,” RFC 5610 (Proposed Standard), July 2009.

[22] A. Kobayashi and B. Claise, “IP flow information export (IPFIX)
mediation: Problem statement,” RFC 5982 (Informational), Aug.
2010.

[23] E. Boschi and B. Trammell, “IP flow anonymization support,” draft-
ietf-ipfix-anon: Internet Draft— Work in Progress.

[24] L. Peluso, T. Zseby, S. D’ Antonio, and C. Henke, “Flow selection
techniques,” draft-ietf-ipfix-flow-selection-tech: Internet Draft—
Work in Progress.

[25] B. Trammell, E. Boschi, A. Wagner, and B. Claise, “Exporting ag-
gregated flow data using the IP flow information export (IPFIX) pro-
tocol,” draft-trammell-ipfix-a9n: Internet Draft— Work in Progress.

[26] G. Muenz, B. Claise, and P. Aitken, “Configuration data model for
IPFIX and PSAMP,” draft-ietf-ipfix-configuration-model: Internet
Draft— Work in Progress.

[27] R. Enns, “NETCONF configuration protocol,” RFC 4741 (Proposed
Standard), Dec. 2006.

[28] M. Bjorklund, “YANG — A data modeling language for the network
configuration protocol (NETCONF),” RFC 6020 (Proposed Stan-
dard), Oct. 2010.

[29] B. Claise, G. Dhandapani, P. Aitken, and S. Yates, “Export of
structured data in IPFIX,” draft-ietf-ipfix-structured-data: Internet
Draft — Work in Progress.

[30] B.Trammell and B. Claise, “Guidelines for authors and reviewers of
IPFIX information elements,” draft-trammell-ipfix-ie-doctors: Inter-
net Draft— Work in Progress.

[31] A. Akhter, “Information elements for flow performance mea-
surement,” draft-akhter-ipfix-perfmon: Internet Draft— Work in
Progress.

[32] S. Kashima and A. Kobayashi, “Information elements for data
link layer traffic measurement,” draft-kashima-ipfix-data-link-layer-
monitoring: Internet Draft— Work in Progress.

[33] S.Niccolini, B. Claise, B. Trammell, and H. Kaplan, “A common log
format for sip using IPFIX files,” Internet Draft— Work in Progress.

[34] A. Johnson, B. Claise, and P. Aitken, “Exporting MIB variables
using the IPFIX protocol,” draft-johnson-ipfix-mib-variable-export:
Internet Draft — Work in Progress.

[35] R. Christoph, C. Sommer, G. Mnz, and F. Dressler, “Vermont— A
Versatile Monitoring Toolkit for IPFIX and PSAMP,” Proc. Work-
shop on Monitoring, Attack Detection and Mitigation (MonAM
2006), Sept. 2006. Tuebingen, Germany.

[36] F. Fatemipour and M. Yaghmaee, “Design and implementation of a
monitoring system based on IPFIX protocol,” Telecommunications,
2007. AICT 2007. The Third Advanced International Conference
on, May 2007.

[37] T. Zseby, E. Boschi, T. Hirsch, and L. Mark, “Ipfix/psamp: What
future standards can offer to network security,” Proc. FloCon 2006,
2006.

Appendix: Ripfix Example

To demonstrate the simplicity of IPFIX, this appendix gives
an example of a simple system using IPFIX to transfer data
from a probe monitoring DNS behaviour, together with a
commented version of the first few IPFIX messages sent by

2197

Table A-1 Example set of Information Elements for exporting DNS
performance data.

Information Element | Number | Type

dnsServerNumber 1 unsigned32

dnsResponseType 2 unsigned8

dnsResponseLength 3 unsigned16

dnsNbrQuestions 4 unsigned8

dnsTLD 5 string

dnsRttSeconds 6 float32

the Exporter.

For this example we defined a set of IEs using our Pri-
vate enterprise Number, 411. Our probe maintains a ta-
ble of nameserver addresses, we refer to them by their in-
dex in that table, dnsServerNumber. For each observed re-
quest/response DNS transaction the probe produces a set of
measures, as shown in Table A- 1.

We used ripfix to create a Ruby IPFIX Exporter and Col-
lector for this data. An outline of the Ruby code is shown
below:

A.1 Ripfix Code Outline

require ’ipfix/model’ # Use IPFIX module
require ’ipfix/message’

require ’ipfix/exporter’

require ’ipfix/collector’

#Set up Information Model for our DNS IEs

model = IPFIX::InfoModel.new
model.add_spec(’dnsServerNumber(411/1)<unsigned32>[4]")

model .add_spec(’dnsResponseType(411/2)<unsigned8>[1]")

model .add_spec(’dnsResponselLength(411/3)<unsigned16>[2]")
model.add_spec(’dnsNbrQuestions(411/4)<unsigned8>[1]")
model.add_spec(’dnsTLD(411/5)<string>[65535]") # variable length
model.add_spec(’dnsRttSeconds(411/6)<float32>[4]")

Create symbols we can use to refer to our IEs
model.ie_for_spec(’dnsServerNumber’).hashkey = :server_nbr
model.ie_for_spec(’dnsResponseType’).hashkey = :resp_type
model.ie_for_spec(’dnsResponselLength’).hashkey = :resp_length
model.ie_for_spec(’dnsNbrQuestions’).hashkey = :n_questions
model.ie_for_spec(’dnsTLD’) .hashkey = :tld
model.ie_for_spec(’dnsRttSeconds’).hashkey = :rtt

templates = Array.new # Single template (531) in templates
templates << (Template.new(model, 531) <<

’dnsServerNumber’ <<

’dnsResponseType’ <<

’dnsResponselLength’ <<

’dnsNbrQuestions’ <<

7dnsTLD’ <<

’dnsRttSeconds’)

Code for an IPFIX Exporter

ep = TCPExporter.new(’collector.auckland.ac.nz’,
4739, # Collector listens on port 4739
model, # Our data model
7654) # Observation domain

ep.message.mtu = 576

templates(model).each { |t]| ep << t } # Export templates

loop do # Export data for DNS transactions
(constants shown in statement below)
h = { :_ipfix_tid => 531,
:server_nbr => s, :resp_type => d.rc,
:resp_length => msg.size, :n_questions => d.n_questions,
:tld => tld_ql, :rtt =>r }
ep << h # Export h
end

ep.close # Fimished exporting

2198

Code for an IPFIX Collector
cps = TCPCollectorServer.new(nil, 4739, model)
cp = cps.next_collector

cp.each do |h|
hash h is received here, exactly as sent above
end

cp.close; cps.close

A.2 Example IPFIX Session

To observe the IPFIX messages generated by ripfix we
used tcpdump to record them as they were sent by the Ex-
porter. The first few messages (after the TCP connection
was established) are shown below.

TCP Packet 4: length=637, data_len=567
00 0a 02 37 4d 61 b8 80 00 00 00 00 00 00 1d e6
Message Header:
Version 10, Length 567,
Export Time 2011-02-21 13:57:36
Sequence Number ®, Observation Domain ID 7654

00 02 00 38
Template Set, Length 56
Template 531, Field Count 6

80 01 00 04 00 00 01 9b

IE Number 1, PEN 411, Field Length 8
80 02 00 01 00 00 01 9%

IE Number 2, PEN 411, Field Length 8
80 03 00 02 00 00 01 9%

IE Number 3, PEN 411, Field Length 8
80 04 00 01 00 00 01 9%

IE Number 4, PEN 411, Field Length 8
80 05 ff ff 00 00 01 9%

IE Number 5, PEN 411, Field Length 8
80 06 00 04 00 00 01 %

IE Number 6, PEN 411, Field Length 8

02 13 01 ef
Data Set 531, Length 495
00 00 00 0a 03 00 67 01 02 6e 7a
seq ®: 10 3 103 1 ’'nz’ 0.0019
00 00 00 14 00 00 8a 01 03 6e 65 74
seq 1: 20 O 138 1 ’net’ 0.1375

00 00 00 32 00 60 8a 01 04 61 72 70 61
seq 30: 50 ® 138 1 ’arpa’ 0.3325

TCP Packet 5: ACK

TCP Packet 6: length=633, data_len=563
00 0a 02 33 4d 61 b8 80 60 00 00 1f 00 00 1d e6
Message Header:
Version 10, Length 563,
Export Time 2011-02-21 13:57:36
Sequence Number 31, Observation Domain ID 7654

02 13 02 23
Data Set 531, Length 547

00 00 00 22 03 00 61 01 03 6f 72 67
seq 31: 34 3 97 1 ’org’ 0.2886

00 00 00 46 00 60 8a 01 04 61 72 70 61
seq 64: 70 ©® 138 1 ’arpa’ 0.2782

TCP Packet 7: ACK

ripfix provides a simple and effective way to develop

IEICE TRANS. COMMUN., VOL.E%94-B, NO.8 AUGUST 2011

IPFIX systems. Since Ruby is an interpreted language,
ripfix Exporters and Collectors run more slowly than
those written in C. However, it is Open Source code, making
it very useful for developing prototype systems. See [9] for
more information about ripfix.

Nevil Brownlee has been an Associate Pro-
fessor in The University of Auckland’s Com-
puter Science Department since 2004; his teach-
ing and research focuses on the Internet, espe-
cially on Internet data collection and Measure-
ment. Nevil managed the University’s campus
network from its beginnings in 1985, its con-
nection to the Internet in 1989, and its further
development to about 1998, thus gaining experi-
ence in operating a medium-sized (14,000 hosts)
network. He has been active in the IETF since
1992, chairing its RTFM and IPFIX (IP Flow Information Export) Working
Groups. Since 2000 Nevil has been associated with CAIDA (the Coopera-
tive Association for Internet Data Analysis); his work there includes mea-
surement and analysis of Internet traffic flows, and of the behaviour of the
global Domain Name System (DNS). He is also associated with the WAND
Network Research group at the University of Waikato.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

