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Abstract— Packet pacing is a well-known technique for reduc-
ing the short-time-scale burstiness of traffic, and software-based
packet pacing has been categorized into two approaches: a timer
interrupt-based approach and a gap packet-based approach. The
former was hard to implement for Gigabit class networks because
it requires the operating system to maintain a microsecond
resolution timer per stream, thus incurring a large overhead.
On the other hand, a gap packet-based packet pacing mecha-
nism achieves precise pacing without depending on the timer
resolution. However, in order to guarantee the accuracy of rate
control, the system had to have the capability to transmit packets
at the wire rate. In this paper, we propose a high-resolution timer-
based packet pacing mechanism that determines the transmission
timing of packets by using a sub-microsecond resolution timer.
With recent progress in hardware protocol offload technologies
and multicore-aware network protocol stacks, we believe high-
resolution timer-based packet pacing has become practical. Our
experimental results show that the proposed mechanism can work
on a wider range of systems without degradation of the accuracy
of rate control. However, a higher CPU load is observed when the
number of traffic classes increases, compared to a gap packet-
based pacing mechanism.

Keywords: packet pacing, high-resolution timer, TCP seg-
mentation offload

I. INTRODUCTION

The transmission Control Protocol (TCP) is widely used
on diversified computer networks, including the Internet, as
well as inside data centers. Some researchers have reported
TCP throughput collapse due to the TCP incast problem
on data center networks [1][2] and traffic burstiness over
long fat networks (LFNs) [3][4]. To address this issue, we
need an appropriate and easy to use technique for network
traffic control. Pacing is a well-known technique for reducing
the short-time-scale burstiness of traffic. However, it is not
often used. Some hardware based-pacing products have been
deployed, such as the Chelsio network interface card (NIC),
but such products are very rare on the market. On the other
hand, software-based pacing was found difficult to implement
for Gigabit class networks because it requires the operating
system to maintain a microsecond resolution timer per TCP
stream, thus incurring a large overhead.

To tackle this issue, we proposed PSPacer (Precise Software
Pacer) [5] [6], which is a software module that achieves
precise network bandwidth control and smoothing of bursty
traffic without any special hardware. The key idea was to

PC sends real packets and 
gap packets back to back.

Gap packets are discarded at
the input port of a router/switch.

real packet
gap packet

Fig. 1. Gap packet.

determine transmission timing of packets by the number of
bytes transmitted. We call this a byte clock. If packets are
transmitted back to back, the timing at which a packet is
sent can be determined by the number of bytes sent before
the packet. PSPacer fills the gaps between time aligned “real
packets” (the packets which are sent by the user program) by
“gap packets,” as shown in Figure 1. The real packets and gap
packets are sent back to back, and consequently, the timing of
transmission of each real packet can be precisely controlled
by adjusting the gap packet size. PSPacer can control the inter
packet gap with 8 nanosecond resolution for Gigabit Ethernet,
because 8 nanoseconds is taken to transmit 1 byte of data. The
IEEE 802.3x PAUSE frames are used as gap packets. PAUSE
frames are discarded at a switch input port, and only real
packets go through the switch, keeping the original intervals.

However, PSPacer has the following limitations in general
use. (1) PSPacer essentially requires the system to fully fill
the network pipe with packets. Therefore, the system has to
have the capability to transmit packets at the wire rate. For
instance, if a Gigabit Ethernet NIC is connected through a
33MHz/32bit PCI bus, the bottleneck is thus PCI bus, and then
the system can not transmit packets at 1 gigabit per second. As
a result, the output traffic becomes imprecise. (2) PSPacer uses
the IEEE 802.3x PAUSE frame as a gap packet. Therefore,
PSPacer only works on Ethernet. And also, PAUSE frames
can not be used for the original purpose. Therefore, the IEEE
802.3x flow control can not stop transmission from the switch
and/or router to the PC. (3) PSPacer can not support pseudo
network devices such as bonding and tap devices, because
these devices can not properly handle gap packets.

In order to resolve the above limitations of the original
PSPacer without degradation of the accuracy of rate control,
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we rethought the timer-based approach using a high-resolution
timer, which employs nanosecond time stamps instead of
using traditional millisecond resolution time ticks. A low-
resolution timer event is scheduled to be activated at one
of the periodic ticks, which involves several housekeeping
tasks such as deferred interrupt processing. Therefore, the
shorter the time periodic ticks the greater the CPU overhead.
On the other hand, a high-resolution timer is a more light-
weight mechanism, because it is dedicated to one purpose
and it can be scheduled at arbitrary times independently
of the periodic ticks. In addition, with recent progress in
protocol offload technologies for the NIC, and multicore-aware
network protocol stacks for the kernel, we believe the CPU
overhead problem can be overcome. In this paper, we propose
a high-resolution timer-based packet pacing mechanism called
PSPacer/HT (High-resolution Timer), which controls transmis-
sion timing by using a high-resolution timer run according to
the byte clock. This paper shows PSPacer/HT resolves the
limitations of the original PSPacer, and addresses issues with
the CPU load.

The rest of the paper is organized as follows. Section II
shows the details of byte clock scheduling and our imple-
mentation using a high-resolution timer. In Section III, we
describe an experiment methodology for evaluating the accu-
racy of packet pacing mechanisms. The experimental results
are shown in Section IV. In Section V, we briefly mention
related work on implementations and applications for packet
pacing. Finally, Section VI summarizes the paper.

II. HIGH-RESOLUTION TIMER-BASED PACKET PACING
MECHANISM

A. Software packet pacing and recent network interface cards
Ethernet NICs have evolved in speed from 10 megabits per

second to 10 gigabits per second. In addition, recent NICs
provide several hardware offload mechanisms to reduce the
CPU load by offloading protocol processing onto the NIC.
We discuss below our concerns with how packet pacing is
realized on these NICs.

The first concern is that a finer granularity is required as the
link speed gets faster. For instance, to regulate the transmission
rate to one half of the physical link speed, the inter packet gap
must have the same size as the preceding packet after every
packet. The upper half of Figure 2 shows a packet-level traffic
diagram of identical pacing on a 10 gigabit link, where the
target rate is 5 Gbps and the MTU size is 9 KB. The inter
packet gap is precisely 7.2 microseconds. Likewise, when the
MTU is 1.5 KB, the inter packet gap is 1.2 microseconds.
Therefore, a sub-microsecond resolution timer is required for
achieving packet pacing on 10 Gigabit links.

The second concern is TCP Segmentation Offload (TSO).
TSO enables software (i.e., protocol stack, device drivers, etc)
to send a pseudo large packet called a TSO packet, whose
size is usually up to 64 KB and is independent of the MTU
size. When the MTU size is set to 9 KB, the NIC divides the
TSO packet into, at most, 7 packets. That means 7 packets
are transmitted in burst when TSO is enabled, as shown in the

TABLE I
CPU UTILIZATION AND GOODPUT WITH CONFIGURATION COMBINATIONS

OF TCP SEGMENTATION OFFLOAD AND GENERIC SEGMENTATION

OFFLOAD.

TSO GSO CPU util. Goodput
enabled enabled 8.56 % 9631.86 Mbps
disabled enabled 13.21 % 9650.54 Mbps
disabled disabled 13.06 % 8053.49 Mbps

0 18K 36K 54K 72K

0 126K

90K 108K 126K

50.4 us

7.2 us  (inter packet gap)
TSO disabled:

TSO enabled:

TSO packet TSO packet

Byte clock

Byte clock

Fig. 2. Accuracy of pacing influenced by TCP segmentation offload.

bottom half of Figure 2. To realize the precise pacing shown in
the upper half of Figure 2, TSO has to be disabled. In addition,
the recent Linux kernel provides software-only segmentation
offloading, called Generic Segmentation Offload (GSO), in
which the segmentation processing is postponed from the
protocol stack to the device driver.

Table I shows CPU utilization and goodput (an actual
application level throughput) with configuration combinations
of TSO and GSO via 10 Gigabit Ethernet on Linux.1 TSO
provides a significant reduction in CPU utilization. If TSO or
GSO is enabled, transmission processing is distributed across
multiple CPUs. In these cases, 4 CPU cores are utilized. On
the other hand, if both TSO and GSO are disabled, goodput
degrades to only 8 Gbps. This is because only 1 CPU core is
utilized for transmission processing.

On the basis of the above discussion, we consider how
much scheduling granularity is required for practical use. TSO
introduces a trade-off between the accuracy of rate control and
the CPU load. If a switch has enough buffer capacity per port
to store a TSO packet (i.e., 64 KB), performance degradation
due to buffer overflow does not occur. We think this size buffer
is a reasonable assumption. Therefore, TSO may not introduce
the performance issue. We need to develop a packet pacing
mechanism coexistant with TSO.

B. Byte clock scheduling

We have been developing PSPacer to achieve precise packet
pacing without any special hardware. The key to PSPacer is
determining the transmission timing of packets by the number
of bytes transmitted. If packets are transferred back to back,

1The experimental setting is that of PC A shown in Table 3. Note that CPU
utilization of 100% means 8 processor cores fully utilized.
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Some "idle time" is required
Byte clock

Fig. 3. Byte clock scheduling.

the transmission timing of a packet is determined by the
number of bytes sent before the packet.

Figure 3 shows an overview of byte clock scheduling. There
are two type of byte clocks: a global clock and a class clock.
A global clock keeps the number of bytes transmitted from a
network interface. Outgoing packets are classified into classes
according to filtering rules (e.g., source or destination IP
address, port number, etc). Each class has a class clock which
assigns the time trasmitted to the head-of-queue packet.

The packet scheduler selects a class in ascending order of
the class clock. If the class clock is smaller than the global
clock, it is time to transmit the head-of-queue packet of the
class. Otherwise, no packet is transmitted.

When a packet is transmitted, the global clock increases
by t(s), where t(s) is the time taken to transmit a packet
whose size is s. At the same time, the class clock increases
by (s, r), where r is the target transmission rate, and (s, r)
is the delta time between the current clock and the next packet
transmission on the class queue.

In byte clock scheduling, t(s) is equal to the packet size
s because the byte clock is the number of bytes transmitted.
(s, r) is calculated as follows:

(s, r) =
rmax

r
× s (1)

where rmax is the maximum transmission rate (i.e., the phys-
ical bandwidth of the network interface). Equation 1 means
the bandwidth is controlled according to the ratio of the target
bandwidth to the maximum transmission bandwidth of the
system. Note that if the packet is a TSO packet, s is added to
the size of IP and TCP headers generated by the NIC.

C. Timer subsystem on the Linux kernel

Before showing the implementation of PSPacer, we will
briefly introduce the timer subsystem of the Linux kernel. The
timer subsystem provides two types of timer mechanisms: a
low-resolution timer and a high-resolution timer. In particular,
we feel the latter type, which is supported by recent operating
systems like Linux, is suitable for packet scheduling.

Figure 4 shows the comparison between low- and high-
resolution timer events. The timer tick is a periodic timer

Ticks (Jiffies)1000 1001 1002 1003 1004

tick w/ low-res timer event
high-res timer event

tick w/o low-res timer event

Fig. 4. Low- and high-resolution timer events.

interrupt that is usually generated HZ times per second, with
the value of HZ varying between 100 to 1000, which depends
on the kernel configuration. The timer ticks are also called
jiffies in the Linux kernel. A low-resolution timer event is
scheduled to be activated at one of the jiffies. In contrast, a
high-resolution timer is set to be activated at the next required
event time. A high-resolution timer employs nanosecond time
stamps instead of using millisecond-resolution jiffies. The
high-resolution timer event is activated when an interrupt
occurs on the clock event device such as the CPU-local
Advanced Programmable Interrupt Controller (APIC) timer.
On the Intel IA32 architecture, the default clock source and
the clock event device are the Time Stamp Counter (TSC)
and the local-APIC timer, respectively2. In that case, the high-
resolution timer mechanism uses the local APIC timer with the
one-shot mode.

In Linux kernel 2.6.21 and earlier, the packet scheduling
subsystem used the low-resolution timer with a jiffies resolu-
tion. In Linux kernel 2.6.22 and later, it was changed to use the
high-resolution timer mechanism called hrtimer. After kernel
2.6.31, the timer resolution improved from 1 microsecond to
1/16 microsecond.

D. PSPacer and PSPacer/HT
The original PSPacer [5] [6] uses gap packets to control

the transmission interval between packets. PSPacer fills gaps
between real packets (i.e., “idle time”) with gap packets. The
real packets and gap packets are sent back to back. Gap packets
are discarded at a switch input port, and only real packets go
through the switch, keeping the original intervals. As the gap
packets on Ethernet, the IEEE 802.3x PAUSE frames [7] with
the pause time of zero are used. However, PSPacer has some
limitations in general use. The system (computer, network
interface, operating system, buffer settings, etc.) requires the
capability to transmit packets at the maximum transmission
rate (i.e., 10 Gbps for 10 Gigabit Ethernet, 1 Gbps for Gigabit
Ethernet). PSPacer can not support pseudo network devices
such as bonding and tap devices.

We implemented a high-resolution timer-based PSPacer
called PSPacer/HT. PSPacer/HT does not have the above
limitation of the original PSPacer. PSPacer/HT controls inter
packet gaps by using a high-resolution timer instead of in-
serting gap packets. PSPacer/HT determines the transmission

2Several clock sources, including Jiffies, Programable Interrupt Timer (PIT),
High Precision Event Timer (HPET), and TSC, are available, depending on
the platform. If a low-resolution clock source such as Jiffies is chosen, the
behavior of a high-resolution timer becomes similar to that of a low-resolution
timer.
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Fig. 5. Implementation of PSPacer.

timing of a packet and then registers the timing as a high-
resolution timer event. When the event is activated, the packet
is transmitted. PSPacer/HT can work with pseudo network
devices such as bonding and tap devices. This is because
PSPacer/HT does not need to handle gap packets.

Figure 5 shows an overview of the implementation of
PSPacer. Basically, both PSPacer and PSPacer/HT are im-
plemented as Queueing Discipline (QDisc) modules. QDisc
provides an algorithm that manages interface queues (IFQs) of
a corresponding NIC device. Currently, PSPacer is a classfull
queue which contains a multiple classes; PSPacer/HT is a
classless queue which contains single IFQ and no classifier.
We designed PSPacer/HT to be used as a leaf QDisc of a
classful QDisc. Of cource, PSPacer/HT can be implemented
as a classful QDisc. Users can configure parameters such as
the target rate and the filter rules of classification by means
of iproute2 tc command, which communicates with PSPacer
via a netlink socket interface.

III. METHODOLOGY

A. Definition of burstiness
A quantitative criterion is required for evaluating the accu-

racy of packet pacing. The burstiness of traffic is suitable for
this purpose, because paced traffic minimizes the burstiness.
In both cases mentioned in Figure 2, for instance, the average
bandwidths are the same, but TSO increases short-time-scale
burstiness. In this paper, we define burstiness as the queue size
of a bottleneck queue, as shown in Figure 6. This definition
is based on the fact that packets are queued, and then the
difference between ingress and egress rates is directly reflected
in the queue length, i.e., the amount of data stored at the buffer
before the bottleneck.

Our burstiness model assumes that the observed traffic goes
through via a virtual bottleneck (VB) with a given bandwidth
(a target rate) and an infinite queue (VBQ). The ingress traffic
may consist of chunks of packets. We call the number of
packets of a chunk its a burst size. If the ingress traffic exceeds

Virtual Bottleneck Queue
BurstinessBurst size

Ingress traffic Egress (paced) traffic

Target
rate

Fig. 6. Burstiness Model.

TABLE II
THEORETICAL BURST SIZE AND BURSTINESS (MAXIMUM BANDWIDTH

10 GBPS, TARGET BANDWIDTH 5 GBPS, AND MTU 9 KB).

burst size inter-burst maximum
time burstiness

high-res timer without TSO 1 7.2 us 1
high-res timer with TSO 7 50.4 us 4
low-res timer (1 ms) 70 504 us 35

the target rate, the excess traffic would be stored in a VBQ
and then the length of the VBQ increases, while if it is below
the target rate, the length decreases.

Assuming only one chunk of packets goes thought the
virtual bottleneck queue, the instant burstiness is estimated
as follows:

burstinessi =
⌈
burst size × (max rate − target rate)

max rate

⌉

(2)
The unit of burstiness is the number of packets.

However, we need to consider a series of chunks, and both
the interval and the burst size varies during transmission. The
maximum value of burstinessi over a period of measurement
time is called maximum burstiness.

Table II summarizes the relationship among burst size, inter-
burst time, and maximum burstiness, where intervals between
chunks are uniform. The maximum bandwidth is 10 Gbps, the
target rate is 5 Gbps, and the MTU is 9 KB. The maximum
burstiness of high-resolution timer-based pacing with TSO is
about 10 times smaller than that of low-resolution timer-based
pacing with 1 millisecond jiffies.

B. Experimental method
In this paper, we developed a methodology for off-line

measurement of burstiness. This work is based on a real-time
burstiness measurement method proposed in another paper [8].
Each experiment in the off-line method follows the steps
below:

1) Setting the target rate and choosing pacing mechanisms:
PSPacer, PSPacer/HT, HTB, and so on.

2) Capturing packets generated by a bulk transfer program
like the Iperf benchmark.

3) Analysing burstiness using a network simulation with
captured packets.

IV. EXPERIMENT

A. Experimental setting
We used two PC platforms. Each PC platform consisted

of a pair of the same specification PCs: PC A or PC B, as
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TABLE III
PC CLUSTER SPECIFICATIONS.

PC A
CPU Intel Quad-core Xeon E5430 2.66 GHz
Memory 8 GB DDR2-667
Ethernet(1) Myricom Myri-10GE
Ethernet(2) Intel Gigabit ET dual port (82576)
I/O Bus PCI-Express x8
OS ubuntu 9.10

Linux kernel 2.6.31-10
PC B

CPU Intel Xeon 3.0 GHz dual
Memory 1 GB DDR2-400
Ethernet Intel PRO/1000 (82541GI)
I/O Bus PCI 33MHz/32bit
OS CentOS 5.3

Linux kernel 2.6.31.13

TABLE IV
SYSCTL PARAMETERS.

net.core.netdev max backlog 250000
net.core.wmem max 16777216
net.core.rmem max 16777216
net.ipv4.tcp rmem 4096 87380 16777216
net.ipv4.tcp wmem 4096 65536 16777216
net.ipv4.tcp no metrics save 1

shown in Table III. PC A had two network interfaces: a 10
Gigabit Ethernet (Myricom Myri-10G) and a dual-port Gigabit
Ethernet (Intel Gigabit ET dual port). Each Myri-10G port
was connected through a 10 Gbps hardware network testbed
called GtrcNET-10[9]. PC B had a Gigabit network interface,
connected to a 33MHz/32bit PCI bus. This means that PC B
could not transmit packets at the rate of gigabits per seccond
due to the PCI bus bottleneck. PC A was used in all the
following experiments; PC B was only used in the experiment
in Section IV-E.

GtrcNET-10 consists of a large-scale Field Programmable
Gate Array (FPGA), three 10 Gbps Ethernet XENPAK ports,
and three blocks of 1 GB DDR-SDRAM. The FPGA is a
Xilinx XC2VP100, which includes three 10 Gbps Ethernet
MAC and XAUI interfaces. GtrcNET-10 provides many func-
tions, such as traffic monitoring in microsecond resolution,
traffic shaping, and WAN emulation at 10 Gbps wire speed.
In the experiment, GtrcNET-10 was used to observe traffic
monitoring and capture packets with a nanosecond-resolution
time stamp complying with the RFC 1305 Network Time
Protocol (NTP) format.

Each PC A was running the Ubuntu 9.10 server edition and
Linux kernel 2.6.31-10. The device driver of Myri-10G was
updated to version 1.5.1. Each PC B was running CentOS
5.3 and Linux kernel 2.6.31.13. Here we refer to two timer
related kernel configurations. The kernel timer interval was
set to 1 millisecond (i.e., CONFIG HZ=1000), because of the
accuracy of timer event handling. A more detailed explanation
is described in Section IV-F. On that note, the dynamic ticks
feature (i.e., CONFIG NO HZ), which allows for stopping

-0.4

-0.2

 0

 0.2

 0.4

 0  2  4  6  8  10

O
bs

er
ve

d 
ra

te
 - 

Ta
rg

et
 ra

te
 (G

bp
s)

Target rate (Gbps)

PSPacer/HT
PSPacer

PSPacer (max=9.7Gbps)
HTB (mtu 9KB)

HTB (mtu 64KB)

Fig. 7. Delta between the observed rate and the target rate.

TABLE V
MAXIMUM DELTA IN THE TRANSMISSION RATE AND THE ERROR RATE

BETWEEN THE OBSERVED RATE AND THE TARGET RATE.

PSPacer/HT +36 Kbps (0.0%)
PSPacer -287 Mbps (-5.7%)
PSPacer (max=9.7Gbps) -36 Mbps (-0.7%)
HTB (mtu=9KB) +473 Mbps (+9.5%)
HTB (mtu=64KB) +219 Mbps (+4.4%)

the periodic tick when the kernel is idle or does almost
nothing, was enabled. It caused no significant effect in this
experiment. Some networking sysctl parameters were changed
from the default value, as shown in Table IV, because default
parameters, such as socket buffer sizes, are not adequate for
a 10 Gigabit experiment. In addition, tcp no metrics save
disables reuse of the parameters of the previous connection.

Hierarchical Token Bucket (HTB), which is a variant of
class-based queueing implementations [10], was used as a
target for comparison. PSPacer/HT and HTB are based on the
same high-resolution timer mechanism.

B. Average bandwidth

We confirmed that PSPacer/HT works properly over 10
Gigabit Ethernet. We measured the average bandwidth over a
period of 5 seconds by using the Iperf benchmark. The target
rate was set from 100 Mbps to 10 Gbps every 100 Mbps.
Figure 7 shows the difference between the target rate and
the average transmission rate observed by GtrcNET-10. The
maximum differences in the transmission rate and the error
rate is summarized in Table V.

With PSPacer, the difference becomes larger linearly as
the target rate increases. The observed bandwidth is up to
about 0.3 Gbps less than the target rate. This is because Myri-
10G cannot achieve the wire rate speed in our experimental
setting. The label ’PSPacer (max=9.7 Gbps)’ indicates that the
maximum transmission rate (rmax in Equation 1) is set not to
10 Gbps but 9.7 Gbps to calibrate the gap size calculation.
In this case, the difference is almost negligible. In contrast,
PSPacer/HT achieves an accurate bandwidth control on 10
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Gigabit Ethernet, even if the system does not have enough
capability to transmit packets at wire rate speed. On the other
hand, HTB shows larger differences and wider variance than
PSPacer/HT. The observed bandwidth is up to about 0.5 Gbps
more than the target rate.

HTB controls the bandwidth in a stepwise manner, and so
the delta shows a saw-tooth shape. The estimation error in
the length to time lookup (l2t) table can be considered as
the reason for this. The l2t table is used to determine how
long it will take to transmit a packet given the size. QDisc
modules, other than PSPacer and PSPacer/HT, pass the l2t
table instead of the target rate from the tc command. The
mtu parameter, which is independent of the physical MTU
size, is used for calculating the l2t table. Setting a large
mtu parameter is effective as shown in the label ’HTB (mtu
64KB)’ case, but as a side-effect, some precision is lost for
short packets because of the estimation error in l2t lookup.
The l2t lookup table has only 256 slots. This paper does not
discuss this problem in more detail.

C. Burstiness
We confirmed the burstiness of PSPacer, PSPacer/HT,

PSPacer/HT with a low-resolution timer, and HTB, according
to the methodology described in Section III. PSPacer/HT with
a low-resolution timer emulates the behavior of the low-
resolution timer by setting the clock source to Jiffies. The
target rate is regulated at 5 Gbps. Using GtrcNET-10, we
captured 700 thousand packets with a nanosecond resolution
time stamp.

Table VI shows the results. The average burstiness of each
simulation step is also shown just for comparison. The max-
imum burstiness is slightly larger than the theoretical values
described in Table II. In the case where TSO is disabled, the
maximum burstiness of PSPacer is 2, and this is the smallest
value. In contrast, in the case where TSO is enabled, there is no
significant difference among PSPacer, PSPacer/HT, and HTB.
Switches and routers supporting 10 Gigabit Ethernet may be
equipped with enough buffer capacity to have a tolerance for
burstiness of less than 10 packets. Therefore, PSPacer/HT is
able to avoid degradation of the accuracy of rate control at a
sufficient level from a practical viewpoint.

Without TSO the size of all captured packets is the same
as the MTU size. On the other hand, with TSO we observed
no negligible short packets. The cause of this behavior is now
under investigation. Anyway, with TSO, the buffer usage in a
VBQ is smaller than burstiness × MTU, unlike without TSO.

To investigate the difference of burstiness in more detail, the
transmission interval between 2 successive captured packets
is plotted in Figure 8. Note that the Y-axis is logarithmic
scale. When packets are transmitted in burst, the interval is
7.2 microseconds. In this case (the target rate is 5 Gbps),
the theoretical interval is 14.4 microseconds. In the case
of PSPacer without TSO (Figure 8 (1)), there is a peak at
14.4 microseconds, and no burst transmission. Some intervals
spread up to 30 microseconds because the system does not
have enough capability to transmit packets at wire rate speed,

TABLE VI
BURSTINESS FOR 4 IMPLEMENTATIONS: PSPACER (GAP PACKET BASED),

PSPACER/HT (HIGH-RESOLUTION TIMER BASED),
PSPACER/HT (LOW-RESOLUTION TIMER BASED), AND HTB. THE TARGET

RATE IS 5 GBPS, AND MTU IS 9 KB.

TSO average maximum
burstiness burstiness

PSPacer disabled 1.73 2
enabled 3.08 7

PSPacer/HT disabled 2.06 7
enabled 3.27 9

HTB disabled 2.00 7
enabled 3.12 8

Low-res timer (1ms) enabled 17.5 39
Low-res timer (10ms) enabled 98.3 534

as described above. In the case of PSPacer with TSO (Figure 8
(2)), there are 8 spikes at a multiple of 7.2 microseconds,
because the interval is proportional to the TSO packet size. In
the cases of PSPacer/HT (Figure 8 (3), (4)) and HTB (Figure 8
(5), (6)), there are no significant differences. This is because
both are implemented based on the same high-resolution timer
mechanism. Here it should be noted that even if TSO is
disabled these two mechanisms transmit packets in burst. This
supports the increase in burstiness of both PSPacer/HT and
HTB.

D. CPU load

The operating system maintains a high-resolution timer per
TCP flow, which could incur lots of overhead. To evaluate
the CPU overhead of high-resolution timer-based pacing as
compared to gap packet-based pacing, we measured the CPU
load while varying the number of traffic classes. Each traffic
class is set to be a one-to-one mapping with a single flow at
the same time. The CPU load is measured by the iostat
command.

Table VII shows the CPU utilization. Note that “CPU
utilization is 100%” means 8 processor cores fully utilized.
Each column indicates the target rate per stream setting: the
same as the total target rate, 100 Mbps, and 50 Mbps. In the
case of the setting when the total target rate is 1 Gbps and the
target rate per stream is 100 Mbps, the number of streams is
10. This means the traffic distributes 10 traffic classes whose
target rate is 100 Mbps.

In both PSPacer/HT and HTB, the CPU load increases
more rapidly as the number of traffic classes increases as
compared with PSPacer. This is because of the overhead of
timer handling with higher frequency. Comparing PSPacer/HT
with HTB, the load is lower when the total target rate is
8 Gbps. However, the CPU load is higher when the total target
rate is 4 Gbps and lower. The reason is under investigation.
In order to reduce the CPU load, several timer events can
be combined with a trade-off between the CPU load and the
accuracy of packet scheduling in mind. It is an open issue.
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Fig. 8. Histograms of packet transmission interval.

TABLE VII
CPU UTILIZATION AND THE NUMBER OF STREAMS.

Total PSPacer PSPacer/HT HTB
target rate Target rate 100 Mbps 50 Mbps Target rate 100 Mbps 50 Mbps Target rate 100 Mbps 50 Mbps
1 Gbps 0.66 0.94 1.04 0.71 0.81 0.91 0.84 0.76 0.82
2 Gbps 1.80 2.12 2.16 1.60 1.93 2.44 1.83 1.72 1.88
4 Gbps 3.74 4.29 4.78 3.66 5.81 8.19 3.92 4.15 4.49
8 Gbps 7.67 10.11 11.19 8.35 11.09 17.04 8.88 12.32 25.55

Each column indicates the target rate per stream: target rate, 100 Mbps, and 50 Mbps.
The label ’target rate’ means the number of streams is 1.

E. Operation check on a wider rage of systems
We confirmed that PSPacer/HT works properly with Gigabit

Ethernet connected thought a 32MHz/32bit PCI bus (PC B in
Table III) and dual port Gigabit Ethernet bonding link (PC A
Ethernet (2) in Table III).

Table VIII shows the goodput of the Iperf benchmark on PC
B. In this setting, the maximum goodput is around 810 Mbps
because of the bottleneck of the PCI bus. The theoretical
value is calculated by ((MTU − sizeof(IP hdr))/(MTU +
sizeof(Ethernet hdr)))×target rate, where MTU is 1500,
and both sizeof(IP hdr) and sizeof(Ethernet hdr) are
20. PSPacer underestimates the target rate by from 8 % to
10 %. In contrast, the result of PSPacer/HT is identical with
the theoretical value.

F. Timer event accuracy of the packet scheduler
PSPacer/HT determines the transmission timing of a packet

and registers its timer event that is going to activate at a
required point of time. When the high-resolution timer is fired,
the packet is transmitted. The accuracy of generating timer
events is important to achieve precise packet scheduling.

TABLE VIII
COMPARISON OF GOODPUT ON PC B (GIGABIT ETHERNET CONNECTED

THROUGH A 32MHZ/32BIT PCI BUS).

Target rate Theoretical PSPacer PSPacer/HT
500 Mbps 487 Mbps 448 Mbps 487 Mbps
600 Mbps 584 Mbps 535 Mbps 584 Mbps
700 Mbps 682 Mbps 620 Mbps 681 Mbps
800 Mbps 779 Mbps 707 Mbps 780 Mbps

We observed the difference in the time between setting of
a timer event and activating a timer event handler. Here we
call the difference timer event latency. Figure 9 shows the
results with a kernel timer interval of 1 or 10 milliseconds.
In both cases, the timer events are delayed up to the kernel
timer interval. The larger the timer event delay, the larger its
burstiness. With a 1 millisecond interval, the burstiness is 9 as
shown in Table VI. On the other hand, with a 10 millisecond
interval, the burstiness is increased to 53. These results show
that the kernel timer interval is an important parameter, even
if a high-resolution timer is employed. Therefore, we set the
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Fig. 9. Timer event latency of PSPacer/HT.

kernel timer interval to 1 millisecond.

V. RELATED WORK

Many burstiness mitigation schemes have been proposed.
Blanton, et al., [11] showed that packet losses caused by
micro-bursts are not frequent on the Internet since the size of
bursts is modest, while larger bursts increase the probability
of packet losses. Jiang, et al., [12] investigated the fact that
burstiness in sub-RTT scales can be significantly reduced
by TCP pacing [13] if a kernel timer has sufficiently fine
resolution. Recently some researchers have reported a catas-
trophic TCP throughput collapse, known as the TCP incast
problem [1][2], that occurs as many nodes send to a single
node. This phenomenon has been observed in distributed
storage, HPC parallel application, and MapReduce workloads.
Packet pacing may help the performance improvement for this
kind of problem.

Hardware offloading mechanisms are required for achieving
higher performance as the network speed becomes faster.
TCP offloading hardware assists are classified in terms of the
following two factors: stateful or stateless, and sender side or
receiver side.

TCP Segmentation Offload (TSO) and checksum offload
are stateless TCP offloading hardware assists on the sender
side. On the other hand, a TCP Offload Engine (TOE) (e.g.,
Chelsio T210) is a stateful technology designed to offload all
TCP/IP protocol processing to the NIC. These hardware assists
provide a significant reduction in CPU utilization. Linux
kernel developers are opposed to supporting TOE because of
reasons described in [14]. For instance, TOE does not support
many useful Linux networking features, including netfilter and
iproute2.

On the receiver side, some Linux NIC drivers support
Large Receive Offload (LRO) [15]. LRO aggregates incoming
packets into fewer but larger packets. Reduction of the number
of packets provides similar effects to those of TSO. A. Menon,
et al., reported that as ‘per-byte’ operations, including data
copying and checksumming, become cheaper due to hard-
ware prefetching, ‘per-packet’ operations, including header

processing and buffer management, become the dominant
performance factor in TCP receive side processing [16].

We require a pacing-aware or -friendly hardware offloading
mechanism. Chelsio TOE NICs provide micro-second gran-
ularity TCP pacing at a 10 Gigabit rate. Some NICs have
a function to set the inter frame gap by writing a requested
value into a certain register. T. Yoshino, et al., reported that
precise pacing using this type of functionality is effective in
optimizing performance of TCP/IP over 10 Gigabit Ether-
net [4]. However, the method cannot control the transmission
rate per stream. The controllable range of the inter frame gap is
limited, depending on the NIC, and it usually is not sufficient.
K. Kobayashi proposed a transmission timer approach for
rate-based pacing with a little hardware support [17]. In this
approach, the host software specifies the time that each packet
should be transferred, and the NIC inserts a precise inter
frame gap for the data stream. A combination of PSPacer and
this type of NIC, which controls an inter frame gap without
transmitting a gap packet, can be considered as effective.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a high-resolution timer-based
packet pacing mechanism, and shown it can work on a wide
range of systems without degradation of the accuracy of rate
control. Unlike a gap-packet based mechanism, the proposed
mechanism does not require the capability to transmit packets
at the physical link speed of the system, and supports pseudo
devices such as bonding and tap devices. The experimental
results show the proposed mechanism precisely controls the
transmission rate in several network settings: 10 Gigabit
Ethernet, Gigabit Ethernet connected thought a 32MHz/32bit
PCI bus, and a dual port Gigabit Ethernet bonding link.
However, higher CPU load is observed when the number
of traffic classes increases, as compared with a gap packet-
based packet pacing mechanism. As future work, we plan to
develop a new scheduling technique to optimize the trade-
off between the burstiness and the CPU load. In order to
mitigate high-resolution timer interrupts, several timer events
can be combined by considering the tolerance for burstiness
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on switches and routers.
This paper also has shown some problems in the HTB of the

Linux kernel: lack of accurate rate control and the difficulty
of parameter tuning. In order to improve the accuracy as well
as keeping it easy to gain the requested transmission rate,
reimplementing HTB based on the byte clock method is future
work. It might be of great benefit to many Linux users.
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