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SUMMARY Cognitive radio is a wireless technology aimed at improv-
ing the efficiency use of the radio-electric spectrum, thus facilitating a re-
duction in the load on the free frequency bands. Cognitive radio networks
can scan the spectrum and adapt their parameters to operate in the unoccu-
pied bands. To avoid interfering with licensed users operating on a given
channel, the networks need to be highly sensitive, which is achieved by
using cooperative sensing methods. Current cooperative sensing methods
are not robust enough against occasional or continuous attacks. This arti-
cle outlines a Group Fusion method that takes into account the behavior of
users over the short and long term. On fusing the data, the method is based
on giving more weight to user groups that are more unanimous in their de-
cisions. Simulations have been performed in a dynamic environment with
interferences. Results prove that when attackers are present (both reitera-
tive or sporadic), the proposed Group Fusion method has superior sensing
capability than other methods.
key words: cooperative sensing, hard data fusion, robustness, malicious
attacks

1. Introduction

The large amount of wireless network services available
today has led to an increase in the demand for the radio-
electric spectrum. The spectrum’s resources are limited and
controlled by government agencies that grant licenses for
their utilization. Only a small part of the spectrum is avail-
able for unlicensed use, and this band is becoming increas-
ingly overloaded. In contrast, the use of the other frequen-
cies does not exceed 15%. Thus, as stated by the Federal
Communications Commission (FCC) [1], the current distri-
bution and use of the spectrum is inefficient.

Cognitive radio networks are emerging as a key tech-
nology for optimizing the management of the available
bandwidth [2]. They are characterized to have the capability
to observe, learn, optimize, and change the transmission pa-
rameters according to the ambient radio environment. Thus,
the frequency spectrum can be shared among primary or in-
cumbent users (i.e., licensed) and secondary users (i.e., un-
licensed) to improve spectrum utilization while avoiding in-
terferences.

The main requirement for cognitive radio systems is to
avoid interfering with incumbents. However, this is a com-
plicated task owing to the nature of the wireless medium.
The signals can suffer deep fade due to the multipath ef-
fect or because they cross a medium with severe shadowing.
This effect can cause the hidden terminal problem in which
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a secondary node fails to detect a primary signal. To avoid
errors, cognitive radio systems must be significantly more
sensitive than primary receivers. Developing sensors that in-
dividually guarantee the sensitivity requirements needed for
a cognitive radio system is very costly. Thus, the solutions
that are usually adoptedmake use of a different strategy: co-
operative sensing [3].

Cooperative sensing techniques combine the results of
the spectrum monitoring carried out individually by several
secondary users and obtain a final decision on the presence
of a primary user in the operating band. As the multipath
effect and shadowing are local factors that degrade the de-
tection of only some network nodes, cooperative sensing
schemes can mitigate these effects in the final decision, thus
leading to an increase in the probability of primary user de-
tection. This paradigm, however, entails security risks as the
nodes can report false data that alters the final decision on
the spectrum status.

Although several proposals for cooperative sensing
methods can be found in the literature (see the reviews [4]
and [5]), few of them take into account the presence of ma-
licious users in the network that send erroneous data on pur-
pose. Those that do, generally require a priori information
on the conditions of the environment, whether that be the
profile of the system nodes, the characteristics of the signal
and the noise, the occupation frequency of the channels, etc.

This article introduces a new cooperative sensing fu-
sion method for cognitive radio systems that does not as-
sume the prior knowledge of the context and is robust
against malicious attacks. The proposed algorithm uses the
local decisions of multiple nodes and classifies them into
four groups according to the node’s hit rate, which takes
into account the results obtained both over the short and long
term. The groups make a decision based on the sensing re-
port of the majority of its members. Lastly, the group deci-
sions are fused, taking into account the global reputation of
the group and the unanimity of its decision.

The rest of the article is structured as follows: In sec-
tion 2, general aspects on the cooperative sensing of pri-
mary signals and on basic cooperative fusion methods are
described. The group data fusion method proposed is ex-
plained in section 3. In section 4, the results of the simula-
tions verify the operation of the proposed method compared
with basic methods. The conclusions of the article are out-
lined in section 5.
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2. Cooperative Sensing Techniques

This section first outlines the general aspects on the coop-
erative sensing techniques and then describes the most-used
basic cooperative fusion methods.

A cognitive radio network comprises a group of sec-
ondary users that scan their radio-electric environment pe-
riodically to detect the presence of incumbents. The sec-
ondary users are found under different conditions of attenu-
ation.

Most cooperative sensing techniques use a fusion cen-
ter that collects data sent by secondary nodes on the results
of their local sensing. The fusion center executes a given
fusion method on the data to obtain the final decision.

The fusion methods used by the fusion center can be
classified into two types: soft-combining data fusion meth-
ods and hard-combining data fusion methods. The first type
of methods fuses data on the measurement taken by each
node. The fusion provides very accurate information but the
nodes are required to send a very high volume of data to the
fusion centre. By contrast, hard decision combining meth-
ods fuse the local decisions on whether primary users are
present. All the local decisions are sent to the fusion center
in binary format. The main advantage of these methods is
that they reduce the amount of data sent.

The methods outlined in this article use hard decision
combining. Before presenting the different methods pro-
posed for implementing cooperative sensing, two important
parameters for assessing the data fusion techniques are de-
scribed.

The first parameter is detection probability, which is
defined as the probability of correctly detecting a primary
user. This probability indicates how good a method is at
avoiding interferences with primary users. When detection
probability is high, a high level of primary-signal protection
is achieved. The second parameter is false-alarm probabil-
ity, which is the probability of detecting a primary user when
there is actually no primary user. The lower the false-alarm
probability is, the more efficient the use of the free channels.

2.1 Hard-Combining Data Fusion Methods

This section describes the main hard-decision combining
techniques for cooperative sensing.

The OR, AND and Majority rules are the most basic
data fusion methods and can be adapted to any situation [6].
These techniques decide on channel occupation by summing
each of the decisions of N system nodes (ui) and comparing
the result with a threshold. The value of the decision thresh-
old value determines whether it is a case of the AND, OR or
Majority rule.

The OR rule declares that the primary user is present if
at least one of the nodes detects the primary user:

If

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N∑
i=1
ui ≥ 1 ⇒ primary signal present

else; ⇒ primary signal absent

With the AND rule, the decision threshold for declaring
there is a primary user is the total of N nodes:

If

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N∑
i=1
ui = N ⇒ primary signal present

else; ⇒ primary signal absent

With the Majority fusion rule, a channel is declared oc-
cupied when at least half the nodes detect the primary user:

If

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N∑
i=1
ui ≥ 12N ⇒ primary signal present

else; ⇒ primary signal absent

Another way of fusing the spectrum analysis data is
by performing the Likelihood Ratio Test (LRT) to obtain an
optimum final decision. On modeling the fusion process as
a probabilistic problem, it is necessary to have additional
information as well as to know the local decisions of the
nodes. In particular, the knowledge of the a priori condi-
tional probabilities of ui’s when u is zero or one are required.
LRT is calculated using the following expression:

∏
i

P (ui | H1)
P (ui | H0)

H1
>
<
H0

λ

where H0 is the hypothesis that the channel is free; H1, that
it is busy. The result of the LRT is compared with threshold
λ to obtain the final decision (H0 or H1). Bayesian detection
and Neyman-Pearson test [7] provide two mechanisms to
compute the threshold. These methods are particularly good
for static environments where certain system parameters are
known.

In general, cooperative sensing facilitates obtaining a
more accurate analysis of free frequency bands than by us-
ing one local sensing source. However, the correct operation
of these methods can be affected by the following problems.

First, the signals received by the secondary nodes may
be severely attenuated or simply may happen that the sec-
ondary terminal is not working correctly, thus performing
erroneous spectrum analyses. These causes lead to mistakes
in the node’s decision on sensing the primary signal. Sec-
ondly, the system may contain malicious users. Malicious
nodes send false sensing data to the fusion center in order to
alter the final decision. This type of attack leads to mistakes
when the data fusion algorithm is performed. This can pro-
duce effects such as false alarm and miss detection errors.
False alarms reduce system performance. Miss detections,
however, have more serious consequences as they can cause
interferences to primary users.

As a result of these problems, recent research has been
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done on new fusion methods that implement countermea-
sures to reduce the effects of data falsification attacks and of
faulty units that unwittingly send incorrect results.

Lim et al. proposed a binary data fusion method that
uses confidence vectors and reputations [8]. The confidence
vector is an index assigned by the node based on the confi-
dence that it has in the accuracy of the sensing result. The
reputation is the accuracy of a node with respect to the final
decisions in its sensing history.

Firstly, a node senses the spectrum, makes a decision
on channel occupation and determines the confidence value.
The node then adds a positive sign to the value of the confi-
dence vector if the node decided that the channel was occu-
pied; it adds a negative sign if it decided it was not.

Next, the nodes send their new confidence value to the
fusion center. The fusion center groups all the results using
a weighted majority fusion rule to obtain the final decision.
Weights are assigned based on the reputations of the nodes;
heavier weightings are given to the most reliable nodes. As
a result, the decisions of these nodes have a bigger influence
in the final decision.

The final decision u is obtained using the following ex-
pression:

u =
{
1, si

∑
i ciwi ≥ 0

0, si
∑
i ciwi < 0

where ci is the confidence vector for user i, and w i is the
reputation factor.

Other cooperative and binary fusionmethods have been
proposed for reducing the effects of malicious nodes ([9]–
[11]), but they are not so generally applicable as they require
knowledge of certain data on the environment.

3. Proposed Group Fusion Method

Up until now, the proposed hard-combining data fusion
methods have been designed for very-static wireless envi-
ronments in which there is a limited attacker presence. They
only assume the presence of ALWAYS-YES (always declare
the presence of a primary user in the network, even if they do
not sense it) and ALWAYS-NO (always deny the presence
of a primary user) attackers. However, nodes that normally
provide the community with reliable sensing of spectrum
channels can provide a skewed view of the system when
they themselves need a communication channel. A selfish
node can manipulate the system and say a channel is busy
when it is actually free so as to be able to use this channel
without having to share it with the other nodes in the com-
munity. A malicious node may also report that a channel is
free when it is busy just to cause interference and the denial
of service to primary nodes.

The main contribution of this paper is that it deals with
any typology of false responses, from long term attacks, to
punctual and sudden changes of behavior from some good
reputed users. To achieve this, nodes are classified in groups
based on their past behavior. The groups make a decision
based on the sensing of the majority of its members. Lastly,

the group decisions are fused giving heavier weightings to
user groups that have higher past-detection hit-rates and that
are more unanimous in their voting on the current decision.
A first approximation to this strategy was presented in [12].

3.1 Crediting the Nodes

The reputation of a node is a value that measures correct de-
tection decisions over the long term, i.e., when the node’s lo-
cal decision and the system’s global decision coincide. Rep-
utation ri ∈ [0, 1] of node i is:

ri =
∑Ni
k=1 ai(k)
Ni

where ai(k) is a function that returns 0 or 1 when node i in
period k fails to detect or correctly detects the primary node,
respectively, and Ni is the total number of sensing processes
that a node i has performed. Thus, t i is a global rating of
node i during its lifetime.

Node stability is a value that illustrates the contextual
or behavioral changes of a node over a brief period. Stability
ei is calculated using the latest four sensing operations of
node i. Using this short time frame, the system can have
and updated and precise view on how node’s are developing
their sensing tasks in a particular moment.

ei =
∑Ni
k=Ni−3 ai(k)
4

Reputation ri and stability ei are used to get the inci-
dence factor wi ∈ [0, 1] for node i in a particular time:
wi = ri · ei

3.2 Classifying the Nodes

The fusion center classifies the nodes in the network in four
groups (G1, G2, G3 and G4) according to their incidence
factor, a value that quantifies the confidence in these nodes’
reports. The nodes in the first group, G 1, are the ones with
the highest marks, while the nodes in G4 have the lowest.
The cut-off values between groups are determined by the
elements at positions 25%, 50% and 75% of a decending
ordered list of the nodes’ incidence factors. Thus, the nodes
are classified into groups in the following manner:

If

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ wi ≤ λ34; ⇒ ui ∈ G4
λ34 < wi ≤ λ23; ⇒ ui ∈ G3
λ23 < wi ≤ λ12; ⇒ ui ∈ G2
λ12 < wi ≤ 1; ⇒ ui ∈ G1

with λ12 = olw(�0, 25 · n�), λ23 = olw(�0, 5 · n�), λ12 =
olw(�0, 75·n�), and olw(x) a function that returns the element
in the x position of a descending ordered list of the incidence
factors w of the n active nodes of a CR network.

After this first categorization of nodes, the fusion cen-
ter verifies whether the groups meet two conditions: (1) any



4
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

non-empty group has at least 10% of the total number of
nodes, (2) groups are structured in a pyramidal way; i.e.
groups with higher incident factors must have less or the
same number of nodes than lower groups. The fusion centre
forces these conditions moving the nodes of a group to the
next lower group when required. These conditions prevent
the system from making decisions based on the view of too
few nodes, and that a small group of malicious nodes can
have a greater effect on the system than that of a good large
group.

3.3 Decision Algorithm

Nodes sense the spectrum and send their local decisions
di = {−1, 1} to the fusion center to indicate that the band
is free (−1) or occupied (1). The proposed fusion algorithm
is based on the Majority fusion rule, but instead of treating
the decisions of all the nodes as equal, the system weighs
them according to the incidence factor of the nodes and the
decision’s degree of unanimity.

The fusion center adds the data reported by the nodes
in the following manner:

γ = G1 + (1 −
∣∣∣G1∣∣∣)G2 + (1 − ∣∣∣G1∣∣∣)(1 − ∣∣∣G2∣∣∣)G3 +

(1 − ∣∣∣G1∣∣∣)(1 − ∣∣∣G2∣∣∣)(1 − ∣∣∣G3∣∣∣)G4 (1)

being Gx the average of the local decisions received by
group Gx. Hence, Gx can take values between −1 and 1.∣∣∣Gx∣∣∣ = 1 when the decision of all nodes in Gx is unanimous;∣∣∣Gx∣∣∣ = 0 when the disparity of the decisions between the
nodes of the group Gx is maximum, i.e., half of the nodes
decide that the spectrum band on which the sensing is done
is free and the other half decide that it is occupied.

The decision algorithm primarily takes into account the
decisions of the nodes that are in group G 1 to make a fi-
nal decision as these nodes have greater reputations and sta-
bilities in the system. However, when the decisions in this
group are very different (i.e., the absolute value of the data
average is low), the weighting given to this group drops and
the decisions of groupsG2, G3 andG4 become more impor-
tant. As done with G1, the uniformity of the decisions of
each groupGx is analyzed and the incidence of this group in
the final decision is weighted accordingly.

The global decision is made based on the resulting
value γ (1).

If
{
γ ≥ 1 ⇒ primary signal present
γ < 0 ⇒ primary signal absent

Once the fusion center has made a decision on channel
occupation, the reputations and stabilities of system nodes
can be updated. When reports of nodes are heterogeneous,
the value of |γ| is low, so final decision is not very confident.
Contrarily, when reports are homogeneous, the value of |γ| is
high and final decision is reliable. The system only updates
the reputation and stability of the nodes when the final deci-
sion has a certain degree of confidence, in particular, when

|γ| ≥ 0.5.
During the initial period of a user in a CR network its

reputation is not calculated, a neutral value its used. Only
when a node has accumulated some actions (e.g. 50) it can
be profiled and put in a high reputed group.

4. Simulations

This section illustrates the results of the simulations carried
out with the proposed schema using the ROC curves. The
ROC curves plot detection probability (sensitivity) versus
false alarm probability for different decision thresholds. The
detection capability for different cooperative sensing meth-
ods for general use -those that do not require a priori knowl-
edge on the application context- is analyzed.

The simulations were performed using ns-2. The test
scenario is comprised of 50 secondary users spread ran-
domly over an area of 500m x 500m. Users move at a speed
of 4km/h and hold an antenna at the ground level. The
fusion center is a static node located in the middle of sec-
ondary users’ squared area. Both secondary users and the
fusion center have a transmitter power of 0, 4W. All the an-
tennas have a gain of 1dB. The medium is exposed to white
and colored noise of -70dB.

The primary user is located 5km away from the secon-
daries, and is transmitting at 0, 8W using an antenna 10m
above the ground. We use a shadowing propagation model
with a standard deviation of 6, 8dB and a path loss exponent
of 2, 7. The propagation model is modified using an asym-
metric propagation [13] that simulates the effects of obsta-
cles in the medium.

All the secondary nodes use energy detectors to mon-
itor the spectrum. Therefore, users receive different SNRs
and, consequently, their sensing capabilities differ. They
take a local decision an report it to the fusion center, whether
positive or negative. We assume the reporting is error free.
Finally, the fusion center uses one of the fusion methods de-
scribed in sections 2 and 3 to reach a final decision.
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Fig. 1 ROC curve. Cooperative Detection with 50 users
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We have simulated the scenarios for a period of 5000
iterations, with each iteration comprising a sensing period
of 20ms.

In figure 1, the different fusion methods are compared:
the proposed Group Fusion method (referred to as GF), the
Confidence Vector method (referred to as CV), the AND
rule (referred to as AND), the Majority fusion rule (re-
ferred to as Majority), the OR rule (referred to as OR), and
the Neyman-Pearson Likelihood Ratio Test (referred to as
LRT). Additionally, a non-cooperative method (referred to
as Non-Coop) is defined. In this algorithm the probability
of detection of individual nodes on the sensing process is
measured and the average of these probabilities on each it-
eration is obtained.

The ROC curve shows that the detection probability in-
creases at the expense of the false alarm probability and vice
versa, which means that a compromise between these two
concepts must be sought when selecting the local thresholds
of decision. To achieve a minimum quality of service (QoS),
the requirements for sensitivity (Pd) and false alarm proba-
bility (Pfa) should be respectively, greater than 90% and less
than 10%.

The algorithms GF, LRT, CV and AND, can meet
the minimum QoS requirements in the considered scenario.
However, the results evidence that the proposedmethod out-
performs the conventional data fusion algorithms; the area
enclosed below the ROC curve and the axis of Pd=90% and
Pfa=10% is greater for the GF algorithms than the others.
For a false alarm probability of 10%, this schema achieves
a detection probability 14% greater than the Majority fusion
rule.

The second analyzed simulation scenario has the same
network characteristics as the first, except that ALWAYS-
NO or ALWAYS-YESmalicious users that repeatedly attack
the system are added. Simulations are carried out with each
one of these type of attacks separately. Firstly, the simu-
lation with ALWAYS-NO malicious users is shown in Fig-
ure 2. Secondly, Figure 3 represents results of the simu-
lation subject to ALWAYS-YES attacks. To assess the be-
havior of each method, for each algorithm, a local detec-
tion threshold that maximizes both the detection probability
and false-alarm probability in an attacker-free scenario is
set (this threshold is the same for the GF, CV, LRT, Majority
and Non-Coop algorithms). From here, the system’s detec-
tion probability and false alarm probability are analyzed as
ALWAYS-NO or ALWAYS-YES attackers are added to the
network, respectively.

Figure 2 illustrates that the AND rule is the least robust
method against ALWAYS-NO attacks as it experiences the
greatest decrease. By contrast, OR provides the best results
for this kind of attack but, as we will see next, if has a very
poor perfomance against ALWAYS-YES assaults. LRT and
the proposed method GF meet the minimum QoS require-
ments when the network has up to 36% of attackers. GF is
even a little better than LRT since taking into account the
operative range when detection probabilities are over 90%,
this method provides better results.
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Fig. 2 Detection Probability of the system vs. Percentage of ALWAYS-
NO attackers
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Fig. 3 False Alarm Probability of the system vs. Percentage of
ALWAYS-YES attackers

Regarding the detection probabilities for the CV, Ma-
jority and Non-cooperative methods, they decrease slightly
as malicious users are introduced in the system. Neverthe-
less the Majority fusion rule cannot assure a detection prob-
ability over 90% when there are more than 30% attackers in
the CR network, the CV for more than 21% attackers, and
the Non-cooperative for any case. The CV method has the
best performance of all when the attackers are very low (less
than 15%) but when more malicious nodes are introduced in
the system, its performance decreses very fast.

Figure 3 shows that the OR rule is the least robust
method against ALWAYS-YES attacks as it experiences the
greatest increase in the false alarm probability. The AND
rule has a good performance with this type of attack. How-
ever, as mentioned before, it can not counteract ALWAYS-
NO attacks.

Focusing on the results with a false alarm probability
below 10%, the best algorithm is the proposed GF scheme
that can handle up to 21% of attackers. The Majority rule
also presents interesting results since the slope of false alarm
probability increase under attacks is very smooth. However,
we seek algorithms that can maintain minimum error prob-
abilities for as much as attackers as possible, and so, the GF
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Fusion 10% Attacks 20% Attacks 40% Attacks
Algorithm Al.No Burst Al.No Burst Al.No Burst
GF 99,6 99,2 99,6 98,8 35,9 65,5
CV 99,9 97,1 99,6 48,2 0,0 0,0
AND 0,0 0,0 0,0 0,0 0,0 0,0
Maj. 99,6 99,6 99,5 99,5 30,7 30,7
OR 95,8 95,8 95,2 95,2 93,8 93,8

NCoop. 79,9 79,9 71,0 71,0 53,4 53,4
LRT 99,6 99,6 99,5 98,5 50,4 20,2

Table 1 Detection Probability with different attacks

is the best.
The proposed GF scheme is effective under less than

21% of ALWAYS-NO and ALWAYS-YES attackers. As
seen before, the Group Fusion scheme counteracts a greater
proportion of ALWAYS-NO attackers than ALWAYS-YES.
This performance is positive since the ALWAYS-NO attacks
produce miss detection failures which are more harmful to
the system than false alarm situations.

Lastly, the results of the system under burst attacks are
analyzed. The simulation scenario is composed of nodes
that, in general, are well-behaved and so, they enjoy a good
reputation. However, they can occasionally attack the sys-
tem when they believe that a successful attack may benefit
them. Table 1 illustrates the detection probabilities of the
algorithms for different percentages of attackers: 10%, 20%
and 40%. Columns labelled Al.No show the results under
ALWAYS-NO attacks, while columns labelled Burst indi-
cate the detection probability under burst attacks. As ex-
pected, results show that the fusion schemes without mem-
ory, such as the OR, AND, Majority and Non-cooperative
methods, behave in the same way when they get the sens-
ing reports from occasional attackers or reiterative ones. In
contrast, methods that have memory and learn from nodes’
past actions are in general more vulnerable to burst attacks
because the fusion center takes the reports sent by usually
good nodes as correct. The least robust algorithm of our
analysis is the CV. In CV nodes report the sensing result as
well as the confidence level they have in this result, which is
used to weight user’s contributions. Thus, sporadic attack-
ers can influence a lot the final decision and are a real threat
to the network.

The proposed method GF performs better than the rest
of the algorithms under burst attacks. In particular, for 10%
and 20% of attackers, the GF reacts correctly, maintaining a
detection probability around 99%. When the percentage of
attackers is high (40%) the detection probability is around
60%, whereas for the same percentage of reiterative attack-
ers, the method cannot detect the primary user.

Under reiterative attacks, GF and LRT are the best al-
gorithms with quite similar results. Yet, under burst attacks
the difference is outstanding, being the GF the most robust
method.

5. Conclusions

In this study, a cooperative sensing by groups schema (GF)
is describedwith the aim of improving the sensitivity and ro-

bustness of cognitive radio networks. The protocol is light
and efficient since it is based on hard-decision combining
techniques and so, few information has to traverse the net-
work. The proposal is analyzed using simulations and com-
pared with other common hard-decision techniques in order
to evaluate its performance. The results demonstrate that
the GF provides better detection probabilities than the oth-
ers. The strength of GF is that it can handle attacks from
both permanent and sporadic malicious users, and it is ro-
bust even in presence of 20% of any kind of attackers.
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[12] M.J. Blasco, J. Mut, and H. Rifà-Pous, “Detección robusta en grupos
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