
IEICE TRANS. COMMUN., VOL.E94–B, NO.10 OCTOBER 2011
2715

INVITED PAPER Special Section on New Paradigm on Content Distribution and Sharing

Architecture, Implementation, and Experiments of Programmable
Network Using OpenFlow

Hideyuki SHIMONISHI†a), Member, Shuji ISHII†, Lei SUN†, and Yoshihiko KANAUMI††, Nonmembers

SUMMARY We propose a flexible and scalable architecture for a net-
work controller platform used for OpenFlow. The OpenFlow technology
was proposed as a means for researchers, network service creators, and
others to easily design, test, and virtually deploy their innovative ideas in
a large network infrastructure, which will accelerate research activities on
Future Internet architectures. The technology enables the independent evo-
lution of the network control plane and the data plane. Rather than hav-
ing programmability within each network node, the separated OpenFlow
controller provides network control through pluggable software. Our pro-
posed network controller architecture will enable researchers to use their
own software to control their own virtual networks. Flexibility and scala-
bility were achieved by designing the network controller as a modularized
and distributed system on a cluster of servers. Testing showed that a group
of servers can efficiently cooperate to serve as a scalable OpenFlow con-
troller. Testing using the nationwide JGN2plus network demonstrated that
high-definition video can be delivered through OpenFlow-based point-to-
point and point-to-multipoint paths.
key words: OpenFlow, network controller, distributed system

1. Introduction

The Internet has evolved to accommodate a variety of ser-
vices including real-time communication, broadcasting, and
content delivery as well as computer-to-computer commu-
nication. These services place very diverse demands on the
networks. For example, real-time video delivery requires
high bandwidth and a low packet loss rate whereas non-real
time video delivery requires best effort performance but still
high network bandwidth. Accordingly, a number of new
technologies, including ones for quality of service (QoS),
mobility, security, and traceability, need to be added to the
traditional TCP/IP communications paradigm.

This has led to the creation of a number of initiatives
focused on the “Future Internet.” The idea is to give re-
searchers, network service creators, and others a way to
easily develop, test, and deploy their innovative ideas in
a large network infrastructure. These initiatives include
the National Science Foundation’s Future Internet Design
(FIND) [1] and the European Commission’s Seventh Frame-
work Programme (FP7) [2]. Large-scale testbed facilities
have been funded to accelerate related research activities.
They included the Global Environment for Network Innova-

Manuscript received February 28, 2011.
Manuscript revised May 30, 2011.
†The authors are with System Platforms Researches Laborato-

ries, NEC Corp., Kawasaki-shi, 211-8666 Japan.
††The author is with Carrier Network Business Planning Divi-

sion, NEC Corp., Tokyo, 108-80001 Japan.
a) E-mail: h-shimonishi@cd.jp.nec.com

DOI: 10.1587/transcom.E94.B.2715

tions (GENI) [3] project sponsored by the National Science
Foundation and the Japan Gigabit Network (JGN2plus) [4]
testbed sponsored by the National Institute of Information
and Communications Technology. The slice-based facility
architecture [5], which supports network virtualization, en-
ables researchers to share a testbed and test their individual
ideas. Rather than aiming at a one-size-fits-all network, this
architecture aims at creating a diverse network structure that
does not rely on a single unchanging technology. The result
is an evolutionary cycle in which a variety of virtual net-
works are easily created, some of which soon disappear and
some of which become widely used. This birth-and-death
and natural selection process would promote the continuous
evolution of network architectures.

In addition to network virtualization, programmabil-
ity is a key to accelerating innovation. Rather than hav-
ing programmability within each network node, having pro-
grammability in a separate controller has been proposed [6]–
[8]. This enables independent evolution of the control plane,
which is used to implement a wide variety of control algo-
rithms and has a relatively short evolutionary cycle, and the
data plane, which supports faster packet delivery and has a
relatively long evolutionary cycle. For example, OpenFlow
[6], which is widely used in many campus networks, de-
fines atomic behaviors for flow handing within each switch-
ing element and an interface for manipulating the behaviors
from a separate controller. While this idea is not new, its
specific design has several advantages. For example, Open-
Flow defines a flow as a set of arbitrary combinations of
packet header fields, so it is applicable to flow-based fine-
grain control as well as to aggregated control using a des-
tination address or tunnel label. Also, it can easily be mi-
grated from the current network hardware and host because
it does not require placing a new label in a packet header.

We have designed, implemented, and tested a pro-
grammable network controller that uses OpenFlow. It can be
used by network operators, service creators, and researchers
to create their own virtual networks. These users can eas-
ily create their own network controllers by flexibly arrang-
ing control modules provided by other users or ones they
have constructed themselves. In addition to flexibility, we
also focused on the scalability of the network controller.
Since a single server may be sufficient for controlling small
enterprise networks, whereas a cluster of servers may be
needed for large networks, we designed the controller as
a distributed system on a cluster of servers. Unlike other
OpenFlow controllers such as HyperFlow [14] and ONIX

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

2716
IEICE TRANS. COMMUN., VOL.E94–B, NO.10 OCTOBER 2011

[15], which enable homogeneous clustering, the proposed
network controller is much more flexible, so the control
modules can be distributed to multiple servers ether homo-
geneously or heterogeneously to maximize processing effi-
ciency.

In this paper, we first describe OpenFlow and discuss
its application to content delivery services. We then intro-
duce a model for network virtualization in which various
service networks are instantiated as independent virtual net-
works. These virtual networks have their own slice of the
shared data plane, as well as their own control plane, which
is implemented as a set of control programs. Next we de-
scribe our proposed programmable network controller. Fi-
nally, we present performance results demonstrating that
a group of servers can efficiently cooperate to serve as
an OpenFlow controller, confirming that it is scalable for
large and complex networks. We also present results for
video streaming over the nationwide JGN2plus network us-
ing 17 OpenFlow switches at 10 locations. They show that
high-definition video can be transmitted through OpenFlow-
based point-to-point and point-to-multipoint paths.

2. OpenFlow and Application to Content Delivery

2.1 Basics

The OpenFlow protocol supports the programming of vari-
ous switch behaviors at the flow level. The “Open” means
that the interface for externally controlling the switches is
open, enabling anyone to participate in modifying the switch
functions. The “Flow” means that the control is based on a
flow, which can be arbitrarily defined. As shown in Fig. 1,
user programs on the controller can perform various net-
work control tasks, including routing, path management,
and host management, and add flow entries to the flow ta-
bles in the switches. When a packet arrives at a switch, the
switch searches for a flow entry matching the packet and
performs the actions specified by the entry.

Fig. 1 Illustration of OpenFlow architecture.

2.2 Flow and Action

But what is a “flow,” and what is an “action”? A flow can
be flexibly defined using arbitrary parts of a packet header,
whereas classical switches and routers use only specific
parts of the header. The header parts used for flow matching
include

➢ Ingress port (either physical or logical port)
➢ MAC source/destination address
➢ Ethernet type
➢ VLAN id and priority
➢ IP source/destination address
➢ IP protocol
➢ Type of service
➢ Transport layer source and destination port.

When a packet matches a flow entry, one or more actions are
applied, including
- sending the packet to one or more physical ports
- redirecting the packet to the controller
- placing the packet in a specific switch queue, which may

have QoS control
- dropping the packet
- modifying specific fields in the header.
Therefore, the behaviors of OpenFlow switches are not lim-
ited by the classical layered architecture; for instance, var-
ious types of flow entries can be mixed in a switch. For
example, the following flow entry emulates the broadcast
operation of an Ethernet switch.

Rule: MAC DA = broadcast
Others = any

Action: OUTPUT = flood

Also, the following entry may be used for IP forwarding.

Rule: MAC DA =MAC address of virtual router
Ethernet type = IPv4
IP DA = destination host
Others = any

Action: MAC DA = next hop MAC address
OUTPUT = physical port to next hop

The following entry redirects packets having an HTTP port
number to a specific path.

Rule: Dest. TCP port = HTTP
Action: OUTPUT = physical port X

2.3 Design Variations

The OpenFlow specifications are flexible enough to support
many design variations of the behavior model.
- Reactive vs. proactive
An OpenFlow controller can be reactive by dynamically in-
jecting flow entries when a new flow arrives at the switch.
The flow entry is removed when the flow ends. Or, it can be
proactive by statically injecting flow entries in advance into
the arriving packets.
- Fine grain vs. aggregated

SHIMONISHI et al.: ARCHITECTURE, IMPLEMENTATION, AND EXPERIMENTS OF PROGRAMMABLE NETWORK USING OPENFLOW
2717

A flow entry can be fine grain, i.e., per TCP/IP session, or
aggregated, i.e., per IP destination or tunnel. If the controller
runs an IP routing protocol like OSPF (open shortest path
first), it creates aggregated flow entries for IP destinations
and injects them into the switches proactively.
- Centralized vs. distributed
An OpenFlow controller can be centralized by having a con-
trol server control all the switches. Or multiple controllers
can be deployed to cooperatively control the network for
scalability or federation.

2.4 Application of OpenFlow to Video Delivery Services

Flow-by-flow control using OpenFlow would be useful for
various types of video delivery service, as shown in the fol-
lowing examples. Since their control mechanisms are im-
plemented as control programs on a controller, these ex-
amples can be easily deployed without constructing overlay
networks or modifying routers.
- High-quality and real-time video delivery
A dedicated path with a QoS guarantee is allocated to a
specific video delivery flow. The controller calculates the
path and injects flow entries and QoS configurations into
the switches. For reliable service, the controller may set up
bi-cast or tri-cast flows by instructing the switch to copy the
packets to multiple concurrent paths.
- Pseudo-real-time video file transfer
Web-based video streaming would be categorized as this
type of transfer. A QoS guarantee might not be needed, but
sufficient bandwidth is required for stable streaming. In this
case, the controller selects an appropriate path from various
path candidates that satisfy the transfer bandwidth require-
ment.
- Point-to-multipoint streaming
Single-rooted path trees are created for multicasting. Open-
Flow switches on the tree branches copy the packets to
the multiple links. This may be an easier and more cost-
effective solution than IP multicasting or application-layer
multicasting because OpenFlow provides optimum layer 2
trees for each video stream. Also, a centralized controller
can easily calculate the optimum tree.
- Video cache delivery
Video content transfer from an origin server to the cache
servers can be given low priority. The controller may actu-
ally calculate a least loaded path, one that even if detoured
does not disturb other communications.

3. Network Virtualization Model

3.1 Network Virtualization Based on OpenFlow

A network virtualization mechanism enables the coex-
istence of various content delivery services and other
application-specific services as well as regular IP-based
services. While widely used network virtualization tech-
niques, such as VLAN and tunneling, separate only the
name space and possibly the bandwidth, control separation

Fig. 2 Model for designing virtual network.

Fig. 3 Control model.

is also needed for the video delivery examples described
above to enable variations in flow path control. The model
we used for designing our virtual network is shown in Fig. 2.
It combines network control using OpenFlow with resource
slicing. As shown in the figure, physical resources such as
OpenFlow switches, servers, and other network and IT com-
ponents, are sliced and represented as virtual resources. For
example, a virtual OpenFlow switch is a virtualized switch
instance having a subset of the links and bandwidth of the
physical switch. A virtual network is created by gathering
such virtual resources and adding a control plane to control
them.

3.2 Control Model

In this virtual network model, programs for controlling the
various virtual networks are installed in the controllers. The
control programs may or may not cooperate. For example,
a virtual network might provide basic layer 2 point-to-point
connectivity service while another one provides video de-
livery service using a connectivity service, so their control
programs would cooperate. On the other hand, two video
delivery services might be allocated separate connectivity
services, so their control programs would not cooperate.

Such a control model is shown in Fig. 3. The control
programs for the virtual networks are managed using a soft-

2718
IEICE TRANS. COMMUN., VOL.E94–B, NO.10 OCTOBER 2011

ware platform in the network controller. The platform has
three features in particular.
- Modularity
Control programs are modularized as independent software
modules for efficient development. A user creates his or her
own virtual network by collecting control modules for rout-
ing, network measurement, VM migration control, and so
on. The platform ensures both isolation and communication
among the modules.
- Virtualization and isolation
The platform provides managed communication among the
modules of different virtual networks to ensure their secure
cooperation. It also manages allocation of virtual resources
to the virtual networks for both cooperation and isolation
among them.
- Integrated control
The control and data planes are connected using open inter-
faces including OpenFlow, sFlow [10], and IPFIX [11], so
that various types of standard equipment can be included
in the network system. The network controller abstracts
the complexity of using multiple interfaces to the physical
components and provides open APIs to the application pro-
grams.

4. Programmable Network Controller

4.1 Architecture

Unlike other control models like Tesseract [9], we do not
define a specific network model in our architecture. Instead,
we define abstract “service” and “control module” models,
as shown in Fig. 4. Since the network model itself is a re-
search target, the network controller should provide a plat-
form on which users can run their own models.

4.1.1 Service

A service is used to control a virtual resource. It is de-
fined as the combination of a data structure with the APIs

Fig. 4 Basic structure of control model.

needed to control the resource. For example, the “Open-
Flow Switch” service contains a data structure for man-
aging the switch configuration and a flow table, and APIs
for flow table adding/modifying/deleting/showing. A “path
management” service contains a data structure for man-
aging a set of existing flow paths, and APIs for path
adding/modifying/deleting/showing.

A service may or may not have a direct relationship
with a specific physical resource. For example, an Open-
Flow switch service is used to control a physical OpenFlow
switch while a path management service has no physical
substance called “path.” A “path” is a virtual instance cre-
ated by a control module (the “path manager”) using a set of
OpenFlow switch services.

Therefore, we define a service as an instance recur-
sively created by control modules. As shown in Fig. 4, the
control model is structured as an iteration of services and
control modules. “Resource manager” and “service reposi-
tory” describe the structure of the specific control plane, as
shown in Fig. 5. The service repository is a registry used to
create a mapping of services and control modules. When a
control module creates a new service, it registers the service
in the service repository with its name, location, and other
attributes. The resource manager manages which control
module uses which resource that represented as a service.

4.1.2 Control Module

A control module is used to instantiate a service. When a
service is used by other control modules, its associated con-
trol module is called and the control program of the module
is activated to process the service. During the processing,
the control module may use other services. This recursive
iteration of services and control modules is the essence of
the control model.

A control module directly connected to physical re-
sources is called a “component manager.” A component
manager is used to abstract a physical resource and pro-
vide it as a service. For example, an OpenFlow component
manager creates a virtual instance of an OpenFlow switch
and provides it to other modules as a service. VM migra-

Fig. 5 Service repository and resource manager.

SHIMONISHI et al.: ARCHITECTURE, IMPLEMENTATION, AND EXPERIMENTS OF PROGRAMMABLE NETWORK USING OPENFLOW
2719

tion control and the IPFIX interface are other examples of a
component manager.

4.1.3 Virtualization

A control module can provide multiple services for a phys-
ical resource and is thus a mechanism for virtualization (or
isolation) of logical resources. For example, an OpenFlow
component manager creates multiple OpenFlow switch ser-
vices for a physical switch, some of which are allocated to
a virtual network and others are allocated to other virtual
networks. In this case, the OpenFlow component manager
ensures isolation of ports and bandwidth among the switch
services sharing the same physical switch. While this is sim-
ilar to the function provided by FlowVisor [12], it provides a
more integrated and unified way for resource virtualization,
not only for OpenFlow switches but also for other physical
and logical resources. For example, path manager module
creates two isolated sets of paths as different services. The
OpenFlow component manager and path manager module
are both used for network virtualization but at different lay-
ers. Then a set of switches, in which the path manager mod-
ule creates edge-to-edge paths, are abstracted into one vir-
tual switch and represented as a logical “OpenFlow switch”
service.

4.2 Implementation

We implemented our programmable network controller as
a middleware suite on top of Linux servers. As illustrated
in Fig. 6, the network controller platform is the basic plat-
form for the distributed system. Each control module is im-
plemented as an independent process on the platform and
placed in one of the servers in the controller cluster. All
the modules can be placed on one server for controlling a
small network, or they can be distributed to multiple servers
for controlling a large network. The modules are connected
through a server-client system. A control module wanting to
use a service calls the messaging API specifying the name of
the service. The messaging API refers to the service reposi-
tory to get the information for the control module providing
the service and sets up a connection between these modules

Fig. 6 Network controller implementation.

to control the service. Whether these modules are running
on the same server or not, the messaging API conceals the
physical assignment, so the modules can be distributed to
any of the servers.

The platform also provides a set of libraries for a spe-
cific class of applications, such as OpenFlow or network
measurement. Users develop their own control modules us-
ing the APIs provided by these libraries.

4.3 Application Example

Figure 7 shows an application example in which two virtual
networks are created on a controller platform. Six virtual
switch instances are created using three physical OpenFlow
switches. Three of them are allocated to virtual network A,
and three are allocated to virtual network B. Each virtual
network has its own set of control modules.
- The OpenFlow component manager module controls the

OpenFlow switches using TCP/SSL and provides Open-
Flow switch service to the other modules.

- The OpenFlow distributor module dispatches OpenFlow
messages from one module to another. For example, mes-
sages provided through the OpenFlow switch service are
examined and dispatched to the topology discovery mod-
ule if they are related to the link layer discovery proto-
col (LLDP) or switch link information, and they are dis-
patched to the application layer network (ALN) manager
module if they are related to a new flow, the address res-
olution protocol (ARP), the dynamic host configuration
protocol (DHCP), or other control protocols.

- The topology discovery module generates LLDP packets
and sends them to the links by sending them to the Open-
Flow switch service. It maintains the dynamic link status
and provides network topology information as a service to
the other modules.

- The path manager module provides path management ser-
vice. When it receives a path setup request, it identifies
a path between the specified source and destination using
the topology information provided by the topology man-

Fig. 7 Application example.

2720
IEICE TRANS. COMMUN., VOL.E94–B, NO.10 OCTOBER 2011

ager. Then it sends flow setup messages to the Open-
Flow switches via the OpenFlow distributor and Open-
Flow component manager. It also provides its path in-
formation as a service for visualization or management
purposes.

- The ALN manager module is the main module controlling
the network. It has functionalities for host management,
subnet management, ARP and DHCP handling, and so on
to provide basic layer 2 and layer 3 communications. It
receivers various types of packets from the switch services
and, when it decides to set up a new flow or to send a
packet, it calls the path management service or OpenFlow
switch service, respectively.

Independent of the two virtual networks is a flow visualiza-
tion service for both networks that uses the information from
the topology and path management services.

These two virtual networks do not necessarily have the
same modules. If one provides a video delivery service, it
may have a specialized path manager module that sets up a
QoS-aware path and an ALN manager module that provides
access control to a video server.

4.4 Distributed System

The example shown in Fig. 7 can be deployed as a dis-
tributed system by placing different modules on different
severs. This model is different from the ONIX and Hyper-
Flow models because it can support a heterogeneous dis-
tributed system in which a module with frequent state up-
dates is not necessarily distributed so as to avoid inefficiency
in sharing the state. In this example, the OpenFlow com-
ponent manager or path manager modules may not be dis-
tributed because they maintain flow information, which is
updated for each flow setup. In contrast, the ALN man-
ager module maintains host and subnet information, which
is modified only when hosts are moved so multiple ALN
manager modules can be load-balanced without incurring
the overhead of state sharing.

Figure 8 shows an implementation of ALN manager

Fig. 8 Example implementation of ALN manager modules distributed to
multiple servers.

modules distributed to multiple servers. These modules
share an information base in the database module. The other
modules are placed on sever 1. Dynamic message filtering
is implemented in the OpenFlow distributor module for dis-
patching messages to the ALN manager modules. For exam-
ple, when an ALN manager module sends an ARP request
message, the corresponding reply message is delivered to
the same ALN manager module.

5. Evaluation

5.1 Four-Server Implementation

We implemented the distributed controller shown in Fig. 8
on four servers and tested its performance. Server 1 had
all the modules while the others had only the ALN man-
ager module. Each server had a 4-core 2.40-GHz Intel Xeon
processer and 8-GB main memory. Four virtual OpenFlow-
enabled switch processes and two virtual host processes
were launched on the other servers using OpenVswitch [13]
and other related utilities for building an emulation network.

We first ran the four servers to balance the loads on the
ALN manager modules, and then we shut down the servers
one by one. Before shutting down a server, we reconfigured
the OpenFlow distributor module so that the messages to be
dispatched to that server would be dispatched to the other
servers.

Figures 9 and 10 show the relationship between sys-
tem resource (CPU and memory) utilization on Server 1 and
the total number of servers under three system workloads:
1000, 750, and 500 flow setups per second (fps). As shown
in Fig. 9, the CPU utilization on Server 1 changed negli-
gibly as the number of servers was increased from 1 to 4.
This is because the processing cost of the ALN managers
is not significant and the cost of message passing among
the servers is small. As shown in Fig. 10, the memory uti-
lization on Server 1 decreased about 23% as the number of
servers was increased from 1 to 4 for fps = 1000. This is
because the flow information stored on Server 1 was moved
to the other servers. In fairly large-scale networks in which
the ALN managers would have many complicated tasks and
high workloads, the virtual networks cannot be easily con-
trolled using a single server but they can be using the pro-
posed distributed system.

5.2 Nationwide-Network Implementation

We also implemented the controller on the nationwide
JGN2plus network in Japan. We deployed 17 OpenFlow
switches at 10 locations in 5 major cities and used them to
deliver uncompressed or compressed high-definition video
captured at the 2010 Sapporo Snow Festival and at an Ok-
inawa Professional Baseball Camp. Figure 11 shows the
physical topology of the network. The OpenFlow switches
and legacy L2 switches are respectively shown as dark gray
and white boxes. We used IEEE 802.1 tunneling (QinQ)
to overlay the OpenFlow network on the existing JGN2plus

SHIMONISHI et al.: ARCHITECTURE, IMPLEMENTATION, AND EXPERIMENTS OF PROGRAMMABLE NETWORK USING OPENFLOW
2721

Fig. 9 CPU utilization of Server 1.

Fig. 10 Memory utilization of Server 1.

Fig. 11 Physical topology.

Ethernet-based network. Figure 12 shows the logical topol-
ogy of the OpenFlow switches in the network.

In this experiment, we modified the path manager mod-
ule to set up point-to-multipoint paths for multicasting the
video streams. We also conducted bi- and tri-casting, in
which packets are copied to multiple paths at an OpenFlow
switch and merged into one stream at a downstream node,
to evaluate streaming reliability.

The quality of the video was subjectively evaluated by
observing it on a receiver screen, and the frame rate and

Fig. 12 Logical topology.

Fig. 13 Sample video stream results.

packet loss rate were also measured. The results for one
of the video streams from Sapporo to Osaka are plotted for
two minutes in Fig. 13. The frame rate was high and stable
during the stream, and packet loss rate was quite negligible,
resulting in high-quality video reception. The average mea-
sured flow setup delay was 7.2 ms. Using the OpenFlow
thus provides more flexible and easier video delivery than
using IP multicasting and a much shorter flow setup time
than with other techniques.

6. Conclusion

We introduced the basics of OpenFlow and described ex-
amples of its application to video delivery services. We
proposed a flexible and scalable network controller archi-
tecture in which users (network operators, service creators,
researchers, etc.) can easily design their own network func-
tions and deploy them in a large network infrastructure. We
implemented and tested a programmable network controller
using OpenFlow. Testing on the nationwide JGN2plus net-
work showed that it is flexible and scalable. Future work in-
cludes developing various applications on the proposed net-
work controller to verify the functionality of its architecture.
Opening its source code will enable researchers to conduct
their own research using it and share their software asset to
help with each other.

2722
IEICE TRANS. COMMUN., VOL.E94–B, NO.10 OCTOBER 2011

References

[1] NSF NeTS FIND Initiative, http://www.nets-find.net/
[2] “Seventh Framework Programme (FP7),” available at http://cordis.

europa.eu/fp7/dc/index.cfm
[3] “GENI,” available at http://www.geni.net/
[4] “JGN2plus,” available at http://www.jgn.nict.go.jp/english/index.

html
[5] L. Peterson, S. Sevinc, J. Lepreau, R. Ricci, J. Wroclawski, T.

Faber, and S. Schwab, “Slice-based facility architecture,” available
at http://www.cs.princeton.edu/˜llp/arch abridged.pdf

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow: En-
abling innovation in campus networks,” SIGCOMM Comput. Com-
mun. Rev., vol.38, no.2, pp.69–74, 2008.

[7] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe, “The case for separating routing from routers,” Proc. ACM
SIGCOMM Workshop on Future Directions in Network Architec-
ture, 2004.

[8] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh, N.
McKeown, and S. Shenker, “SANE: A protection architecture for
enterprise networks,” Usenix Security, 2006.

[9] H. Yan, D.A. Maltz, T.S. Eugene Ng, H. Gogineni, H. Zhang,
and Zheng Cai., “Tesseract: A 4D network control plane,” I Proc.
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’07), 2007.

[10] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow:
A method for monitoring traffic in switched and routed networks,”
Internet Engineering Task Force, RFC-3176.

[11] “IP Flow Information Export (ipfix),” Internet Engineering Task
Force, http://www.ietf.org/dyn/wg/charter/ipfix-charter.html

[12] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N.
McKeown, and G. Parulkar, “FlowVisor: A network virtualization
layer,” Tech. Rep. OPENFLOW-TR-2009-01, OpenFlow Consor-
tium, 2009.

[13] “Open vSwitch — An Open Virtual Switch,” available at http://
www.openvswitch.org

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M.
Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker,
“Onix: A distributed control platform for large-scale production net-
works,” Proc. 9th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 10), 2010.

[15] A. Tootoocian, Y. Ganjali, HyperFlow, “A distributed control
plane for OpenFlow,” Proc. NSDI Internet Network Manage-
ment Workshop/Workshop on Research on Enterprise Networking
(INM/WREN), 2010.

Hideyuki Shimonishi received M.E. and
Ph.D. degrees from the Graduate School of En-
gineering Science, Osaka University, Osaka,
Japan, in 1996 and 2002. He joined NEC Cor-
poration in 1996 and has been engaged in re-
search on traffic management in high-speed net-
works, switch and router architectures, and traf-
fic control protocols. As a visiting scholar in the
Computer Science Department at the University
of California at Los Angeles, he studied next-
generation transport protocols. He now works

in NEC’s System Platforms Research Laboratories, engaged in research on
technologies for future Internet architectures including OpenFlow.

Shuji Ishii received an M.E. degree from the
Graduate School of Computer Science, Univer-
sity of Electro-Communications, Tokyo, Japan,
in 1992. He joined NEC Corporation in 1995
and now works in NEC’s System Platforms Re-
search Laboratories. He has been engaged in the
development of the IPv6 (IPSec) protocol stack
for routers and hosts at NEC as well as research
on software architectures for the OpenFlow con-
troller.

Lei Sun received B.E. and M.E. degrees
from the Department of Computer Science and
Technology, Tsinghua University, Beijing, P.
R. China, in 2001 and 2004 and a Ph.D. de-
gree from the Department of Computer Science,
Waseda University, Tokyo, Japan, in 2010. He
worked as a research associate at the Research
Institute of Open Source Software, Waseda Uni-
versity, and is now a researcher in NEC’s Sys-
tem Platform Laboratories.

Yoshihiko Kanaumi received an M.E. de-
gree from the Graduate School of Engineering
Science, Osaka Prefecture University, Osaka,
Japan, in 1998 and is currently a Ph.D. can-
didate in the Graduate School of Engineering,
University of Tokyo, Tokyo, Japan. He joined
NEC Corporation in 1998 and now works in
NEC’s Carrier Network Business Planning Di-
vision. He has been engaged in the develop-
ment of hardware architectures for routers and
of SDH/SONET, ATM, and IP networks. He has

also been involved in research at the National Institution of Information and
Communication Technology on the operation and management of the Fu-
ture Internet, including the OpenFlow controller.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

