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SUMMARY Dynamic resource management has become an active area
of research in the Cloud Computing paradigm. Cost of resources varies
significantly depending on configuration for using them. Hence efficient
management of resources is of prime interest to both Cloud Providers and
Cloud Users. In this work we suggest a probabilistic resource provisioning
approach that can be exploited as the input of a dynamic resource manage-
ment scheme. Using a Video on Demand use case to justify our claims, we
propose an analytical model inspired from standard models developed for
epidemiology spreading, to represent sudden and intense workload varia-
tions. We show that the resulting model verifies a Large Deviation Prin-
ciple that statistically characterizes extreme rare events, such as the ones
produced by “buzz/flash crowd effects” that may cause workload overflow
in the VoD context. This analysis provides valuable insight on expectable
abnormal behaviors of systems. We exploit the information obtained using
the Large Deviation Principle for the proposed Video on Demand use-case
for defining policies (Service Level Agreements). We believe these policies
for elastic resource provisioning and usage may be of some interest to all
stakeholders in the emerging context of cloud networking.
key words: cloud networking, resource management, epidemic model,
workload generator, large deviation principle, service level agreements,
video on demand, buzz/flash crowd

1. Introduction

Users of a Cloud Computing platform can have several num-
bers of choices regarding server selection (some are com-
pute intensive, some provide better I/O performance, some
are superior in networking). Cloud provider such as Ama-
zon offers many different server instances that differ in many
aspects with respect to CPU speed, network bandwidth and
memory capacity. Each of these instances provides a certain
amount of dedicated resource and charges per instance-hour
consumed [1]. A Service Provider finds it to be extremely
difficult to optimize the best combination of servers to be de-
ployed in a Cloud for his business on a certain application.
This problem differs from the concept of traditional dis-
tributed computing (like Grid), since the numbers of servers
are virtually unlimited but bandwidth is limited. The choice
of deployment of resources can be dynamically tuned using
cloud virtualization, that abstracts the IT resources to allow
communication and control on-line. Cost of resources varies
significantly depending on server types and Cloud Service
Providers.

In most applications, the amount of IT resource that is
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actually used, is a highly variable quantity that follows the
instantaneous activity, and in particular the volume of ex-
changed traffic when network infrastructures are concerned.
Depending on the type of application, the generated work-
load can be a highly varying process that turns difficult
to find an acceptable trade-off between an expensive over-
provisioning able to anticipate peak loads and a sub per-
forming resource allocation that does not mobilize enough
resources. To bypass this challenge, dynamic bandwidth al-
location is an original approach that we chose to investigate
in the context of network virtualization. We aim to demon-
strate the proof of concept for the case of a Video on De-
mand (VoD) system by adaptively tuning the provisioned
bandwidth to the current application workload. In this paper
we have resorted to probabilistic provisioning of resource
management; however in some situations it can be used to
anticipate resource requirements that can serve as inputs for
dynamic resource allocation.

Our work attempts to capture some properties that de-
scribe user behaviors or workload generating mechanism of
the system and fits them to a mathematical model satisfy-
ing particular properties. We leverage these properties to
derive a probabilistic assumption on the mean workload of
the system at different time resolutions. Embedding the no-
tion of time scale is very important since time scale is by
essence intrinsic to dynamicity. In this study we build our
system using epidemic models where Markovian models are
widely used and happen to satisfy to the specific property
mentioned above.

Epidemic information dissemination has been an ac-
tive area of research in distributed systems, such as Peer-
to-Peer (P2P) or VoD systems. In [2], it has been already
demonstrated that the epidemic algorithms can be used as
an effective solution for information dissemination in the
P2P systems as deployed on Internet or ad-hoc networks.
The authors of [3] studied random epidemic strategies like
the random peer, latest useful chunk algorithm to achieve
optimal information dissemination. However the most rel-
evant work to our study is derived in [4] where the authors
proposed an approach to predict workload for cloud clients.
They used auto-scaling algorithm for resource provisioning
and validated the result with real-world Cloud client appli-
cation traces. Our approach encompasses both constructive
Markovian model to reproduce epidemic information dis-
semination and workload provisioning aspects. However,
we insist on the fact that its originality stems from the anal-
ysis of the Large Deviation property of the proposed Marko-
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vian model. The resulting characterization can be viewed as
a multi-resolution extension of the classical steady-state dis-
tribution for the observable mean value of the random pro-
cess over different aggregated time scales.

After constructing the Markovian mathematical model,
we propose two possible and generic ways to exploit these
information in the context of probabilistic resource provi-
sioning. They can serve as the input of resource manage-
ment functionalities of the Cloud environment. It is evident
that we can not define elasticity without the notion of a time
scale; the Large Deviation Principle (LDP) is capable of au-
tomatically integrating the time resolution in automatic de-
scription of the system. It is to be noted that Markovian
processes do satisfy the LDP, but so do some other mod-
els as well. Hence, our proposed probabilistic approach is
very generic and can adapt to address any provisioning is-
sues, provided the resource volatility can be resiliently rep-
resented by a stochastic process for which the LDP holds
true.

The rest of the paper is organized as follows. In Sect. 2
we discuss the VoD system as our use case, followed by
a Markovian description of the model in the Sect. 3. Sec-
tion 4 presents Large Deviation Principle. We discuss the
numerical interpretations in Sect. 5. Section 6 deals with the
probabilistic provisioning scheme, derived from the Large
Deviation Spectrum for our use case followed by the con-
clusion in Sect. 7.

2. Use Case: Video on Demand (VoD)

A VoD service delivers video contents to consumers on re-
quest. According to Internet usage trends, users are increas-
ingly getting more involved in the VoD and this enthusiasm
is likely to grow. A popular VoD provider like Netflix ac-
counts for around 30 percent of the peak downstream traf-
fic in the North America and is the “largest source of In-
ternet traffic overall” [5]. In a VoD system, consumers are
video clients who are connected to a Network Provider. The
source video content is managed and distributed by a Ser-
vice Provider from a central data centre. With the evolu-
tion of Cloud Computing and Networking, the service in a
VoD system can be made more scalable by dynamically dis-
tributing the caching/transcoding servers across the network
providers. Video service providers interact with the network
service providers and describe the virtual infrastructures re-
quired to implement the service (like the number of servers
required, their placements and clustering of resources). The
resource provider reserves resource for certain time period
and may change it dynamically depending on resource re-
quirement. Such a dynamic approach brings benefits of cost
saving in the system through dynamic resource provisioning
which is important for service providers as VoD workload
is highly variable by nature. However, since the virtual re-
sources used by Cloud Networking have a set-up time which
is not negligible, analysis and provisioning of such a system
can be very critical from the operators perspective (capex
versus opex trade-off). Figure 1 shows a VoD schematic

Fig. 1 Basic schematics of a VoD system with transcoding/caching
servers.

where the back-end server is connected to the data centre
and the transcoding (caching) servers are placed across the
network providers.

Since VoD has stringent streaming rate requirements,
each VoD provider needs to reserve a sufficient amount
of server outgoing bandwidth to sustain continuous media
delivery. When multiple VoD providers (such as Netflix)
are on board to use cloud services from cloud providers,
there will be a market between VoD providers and cloud
providers, and commodities to be traded in such a market
consist of bandwidth reservations, so that VoD streaming
performance can be guaranteed.

As a buyer in such a market, each VoD provider can pe-
riodically make reservations for bandwidth capacity to sat-
isfy its random future demand. A simple way to achieve this
is to estimate expectation and variance of its future demand
using historical demand information, which can easily be
obtained from cloud monitoring services. As an example,
Amazon Cloud-Watch provides a free resource monitoring
service to Amazon Web Service customers for a given fre-
quency. Based on such estimates of future demand, each
VoD provider can individually reserve a sufficient amount
of bandwidth to satisfy in average its random future demand
within a reasonable confidence. However, this information
is not helpful in case of a “buzz” or a “flash crowd” when
a video becomes popular very quickly leading to a flood of
user requests on the VoD servers. Following is one example
of “buzz” where interest over a video“Star Wars Kid” [6]
grew very quickly within a very short timespan. According
to [7] it was viewed more than 900 million times within a
short interval of time making it one of the top viral videos.
Figure 2 plots the original server logs for the Star Wars Kid
debacle [6].
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Fig. 2 Video server workload: time series displaying a characteristic
pattern of flash crowd (buzz effect). Trace obtained from URL: http://
waxy.org/2008/05/star wars kid the data dump/

In situations like the one described in Fig. 2, variance
estimation or more generally steady state distribution can
not explain burstiness of such event as time resolution is
excluded from the description. The LDP, by virtue of its
multi-resolution extension of the classical steady-state dis-
tribution, can describe the dynamics of rare events like this,
which we believe can be of some interest for the VoD service
providers.

3. Markov Model to Describe the Behavior of the Users

Epidemic models commonly subdivide a population into
several compartments: susceptible (noted S ) to designate
the persons who can get infected, and contagious (noted
C) for the persons who have contracted the disease. This
contagious class can further be categorized into two parts:
the infected subclass (I) corresponding to the persons who
are currently suffering from the disease and can spread it,
and the recovered class (R) for those who got cured and
do not spread the disease anymore [8]. There can be more
categories that fall outside the scope of our current work.
In these models (NS (t))t≥0, (NI(t))t≥0 and (NR(t))t≥0 are
stochastic processes representing the time evolution of sus-
ceptible, infected and recovered populations respectively.

Similarly, information dissemination in a social net-
work can be viewed as an epidemic spreading (through gos-
sip), where the “buzz” is a special event where interest for
some particular information increases drastically within a
very short period of time. Following the lines of related
works, we claim that the above mentioned epidemic mod-
els can appropriately be adapted to represent the way in-
formation spreads among the users in a VoD system. In
the case of a VoD system, infected I refers to the people
who are currently watching the video and can spread the in-
formation about it. In our setting, I directly represents the
current workload which is the current aggregated video re-
quests from the users. Here, we consider the workload as
the total number of current viewers, but it can also refer to
total bandwidth requested at the moment. The class R refers
to the past viewers. In contrast to the classical epidemic
case, we introduce a memory effect in our model, assuming

that the R compartment can still propagate the gossip dur-
ing a certain random latency period. Then, we define the
probability within a small time interval dt, for a susceptible
individual to turn into an active viewer, as follows:

PS→C = (l + (NI(t) + NR(t)) β)dt + o(dt) (1)

where β > 0 is the rate of information dissemination per unit
of time and l > 0 fixes the rate of spontaneous viewers. The
instantaneous rate of newly active viewers in the system at
time t is thus:

λ(t) = l + (NI(t) + NR(t))β. (2)

Equation (2) corresponds to the arrival rate λ(t) of a non-
homogeneous (state dependant) Poisson process. This rate
varies linearly with NI(t) and NR(t).

To complete our model we assume that the watch time
of a video is exponentially distributed with rate γ. As al-
ready mentioned, it also deems reasonable to consider that
a past viewer will not keep propagating the gossip about a
video indefinitely, but remains active only for a latency ran-
dom period that we also assume exponentially distributed
with rate μ (in general μ � γ). Another important consider-
ation of the model is the maximum allowable viewers (Imax)
at any instant of time. This assumption conforms to the fact
that the resources in the system are physically limited. For
the sake of numerical tractability and without loss of gen-
erality, we also assume the number of past (but spreading
rumour) viewers at a given instant to be bounded by a max-
imum value (Rmax). With these assumptions, and posing
(NI(t) = i,NR(t) = r) the current state of the Markov pro-
cesses, the probability that the process reaches a different
state (i′ < Imax, r′ < Rmax) at time t + dt (dt being small)
reads:

P(i′, r′|i, r) (3)

= (l + (i + r)β)dt + o(dt) for (i′ = i + 1, r′ = r),

= (γi)dt + o(dt) for (r′ = r + 1, i′ = i − 1),

= (μr)dt + o(dt) for (r′ = r − 1, i′ = i),

= o(dt) otherwise.

This process defining the evolution of the current viewer and
past viewer populations is a finite and irreducible Markov
chain. It is to be noted that l > 0 precludes the process to
reach an absorbing state. This chain is ergodic and admits a
stationary regime.

Above mentioned descriptions define the mechanism
of information dissemination in the community in normal
situations. A buzz event differs from this situation by a
sudden increase of the dissemination rate β. In order to
adapt the model to buzz we resort to Hidden Markov Model
(HMM) to be able to reproduce the change in β. Without
loss of generality we consider only two states. One with dis-
semination rate β = β1 corresponds to the buzz-free case de-
scribed above, and another hidden state corresponding to the
buzz situation, where the value of β increases significantly
and takes on a value β2 � β1. Transitions between these
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Fig. 3 Markov chain diagram representing the evolution of the Current
viewers (i) and Past Viewers (r) populations with a Hidden Markov Model.

two hidden and memoryless Markov states occur with rates
a1 and a2 respectively (see Fig. 3). These rates characterize
the buzz in terms of frequency, magnitude and duration.

4. Large Deviation Principle

Consider a continuous-time Markov process (Xt)t≥0, tak-
ing values in a finite state space S , of rate matrix A =
(Ai j)i∈S , j∈S . In our case X is a vectorial process X(t) =
(NI(t),NR(t)) ,∀t ≥ 0, and S = {0, · · · , Imax} × {0, · · · ,Rmax}.
If the rate matrix A is irreducible, then the process X ad-
mits a unique steady-state distribution π satisfying πA = 0.
Moreover, by Birkhoff ergodic theorem, it is known that for
any mapping Φ : S → R, the sample mean of Φ(X) at scale
τ, i.e. 1/τ · ∫ τ

0
Φ(Xs)ds converges almost-surely towards the

mean of Φ(X) under the steady-state distribution, as τ tends
to infinity. The function Φ is often called the observable.
In our case, as we are interested in the variations of the cur-
rent number of users NI(t), Φ will simply be the function
that selects the first component: Φ(NI(t),NR(t)) = NI(t).
The large deviations principle (LDP), which holds for irre-
ducible Markov processes on a finite state space [9], gives
an efficient way to estimate the probability for the sample
mean calculated over a large period of time τ to be around a
value α ∈ R that deviates from the almost-sure mean:

lim
ε→0

lim
τ→∞

1
τ

log P

{∫ τ
0
Φ(Xs)ds ∈ [α − ε, α + ε]

}
= f (α). (4)

The mapping α �→ f (α) is called the large deviations spec-
trum (or the rate function). For a given function Φ, it is pos-
sible to compute the theoretical large deviations spectrum
from the rate matrix A as follows. One first computes, for
each values of q ∈ R, the quantityΛ(q) defined as the princi-
pal eigenvalue (i.e., the largest) of the matrix with elements
Ai j + qδi jΦ( j) (δi j = 1 if i = j and 0 otherwise). Then the
large deviations spectrum can be computed as the Legendre

transform of Λ:

f (α) = sup
q∈R
{qα − Λ(q)} ,∀α ∈ R. (5)

As described in Eq. (4), ατ = 〈i〉τ corresponds in our
study case, to the mean number of users i observable over a
period of time of length τ and f (α) relates to the probability
of its occurrence as follows:

P{〈i〉τ ≈ α} ∼ eτ· f (α). (6)

Interestingly also, if the process is strictly stationary
(i.e. the initial distribution is invariant) the same large de-
viation spectrum f (·) can be estimated from a single trace,
provided that it is “long enough” [10]. We proceed as fol-
lows: At a scale τ, the trace is chopped into kτ intervals
{I j,τ = [( j − 1)τ, jτ[, j = 1, . . . , kτ} of length τ and we have
(almost-surely), for all α ∈ R:

fτ(α, ετ) =
1
τ

log
#
{

j :
∫

I j,τ
Φ(Xs)ds ∈ [α − ετ, α + ετ]

}
kτ

and lim
τ→∞ fτ(α, ετ) = f (α).

(7)

In practice, for the empirical estimation of the large de-
viations spectrum, we use a similar estimator as the one de-
rived in [11] and also used in [12]. At scale τ, we compute
for each q ∈ R the values ofΛ′τ(q) andΛ′′τ (q), whereΛτ(q) =

τ−1 log
(
k−1
τ

∑kt

j=1 exp
(
q
∫

I j,τ
Φ(Xs)ds

))
. Then, for each value

of τ, we count the number of intervals I j,τ verifying the con-
dition in expression (7) and estimate the scale-dependant
empirical log-pdf fτ(α, ετ), with the adaptive choices derived
in [11]:

ατ = Λ
′
τ(q) and ετ =

√−Λ′′τ (q)

τ
. (8)

Let us now illustrate the LDP in the context of the spe-
cific VoD use case, where X would correspond to (i, r), the
bi-variate Markov process. Φ(X) is i, the observable and∫ τ

0
Φ(XS ) ds = 〈i〉τ corresponds to the average number of

users within a period τ.

5. Numerical Interpretations

We simulate the proposed workload model and generate two
time series corresponding to the buzz and to the buzz free
situations. We developed our simulator in C programming
environment, by creating several parallel child processes
(client) that communicate with a parent process (server) to
disseminate information. The child process is in any of the
susceptible, active viewers or past viewers states at a par-
ticular instant of time. When it is in the past viewers state
it randomly chooses another process (using process id) and
communicates with the parent to infect him. The parent pro-
cess maintains a table with the status (which state a process
is in) of each process. If the chosen process is not already in
active viewers or in past viewers states it gets infected. We
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Fig. 4 Plot (a): Workload NI (t) generated according to the model de-
picted in Fig. 3 (For the buzz case: β1 = 0.1, β2 = 0.8, γ = 0.7,
μ = 0.3, l = 1.0, a1 = 0.006 and a2 = 0.6. For the buzz-free case:
β1 = β2 = β = 0.1, γ = 0.7, μ = 0.3, l = 1.0). In both cases,
Imax = 30,Rmax = 60. Plot (b): Zoomed in view of a buzz event.

have chosen UDP socket-pairs in order to facilitate com-
munication between the processes. For fair and consistent
comparisons, we carefully tuned the values of the model pa-
rameters so as to obtain the same mean workload for both
resulting traces. In Fig. 4(a) the bursty transients represent
the buzz effect. It reflects sudden and sharp increases of
workload due to intense dissemination of popular videos.
The zoomed in view displayed in Fig. 4(b) shows the char-
acteristic pattern of a buzzy transient, that is to say a sharp
increase (β1 → β2) and a slower decrease (owing to β2 → β1

and to the memory effect of the model).
This clear evidence of our model’s ability to captur-

ing the buzz effect is moreover confirmed by the numerical
steady-state distributions P(i) displayed in Fig. 5. As com-

Fig. 5 Steady-state probabilities for the number of current viewers with
buzz and buzz-free scenarios (Y-axis in log-scale).

pared to the buzz-free case, the buzz distribution presents a
thicker tail indicating that the instantaneous workload i takes
on larger values with higher probability. To include the no-
tion of time scale in the results one needs to consider along
with the steady-state distribution the time coherence of the
underlying process, viz. its covariance structure. However,
except for the trivial case of uncorrelated processes, deriving
the statistics of the local average process at any resolution is
a hard problem in general.

Intrinsically, Large Deviation Principle naturally em-
beds this time scale notion into the statistical description of
the aggregated observable at different time resolutions. As
expected, the theoretical LD spectra displayed in Fig. 6(a)
reach their maximum for the same mean number of users.
This apex is the almost sure value as described in Sect. 4. As
the name suggests almost sure workload (αa.s) corresponds
to the mean value that we almost surely observe on the trace.
More interestingly though, the LD spectrum corresponding
to the buzz case, spans over a much larger interval of ob-
servable mean workloads than that of the buzz-free case.
This remarkable support widening of the theoretical spec-
trum shows that LDP can accurately quantify the occurrence
of extreme, yet rare events.

Plots (b)-(c) of Fig. 6 compare theoretical and empir-
ical large deviation spectra obtained for the two traces.
For each given scale (τ) the empirical estimation procedure
yields one LD estimate. These empirical estimates at dif-
ferent scales superimpose for a given range of α. This is
reminiscent of the scale invariant property underlying the
large deviation principle. If we focus on the supports of
the different estimated spectra, the larger the time scale τ is,
the smaller becomes the interval of observable value of α.
This is coherent with the fact that for a finite trace-length
the probability to observe a number of current viewers, that
in average, deviates from the nominal value (αa.s) during a
period of time (τ) decreases exponentially fast with τ. To fix
the ideas, the estimates of plot (c), indicate that for a time
scale τ = 400 sec., the maximum observable mean number
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Fig. 6 Large Deviations spectra corresponding to the traces of Fig. 4. (a) Theoretical spectra for the
buzz free (blue) and for the buzz (red) scenarii. (b) & (c) Empirical estimations of f (α) at different
scales from the buzz free and the buzz traces, respectively.

of users is around 5 with probability 2400·(−0.02) ≈ 35.10−5

(point A), while it increases up to 9 with the same probabil-
ity (2100·(−0.08)) for τ = 100 sec. (point B).

6. Probabilistic Provisioning

Retuning to our VoD use case, we now sketch two possible
schemes for exploiting the Large Deviation description of
the system to dynamically provision the allocated resources:

• Identification of the reactive time scale for reconfigu-
ration: Find a relevant time scale that realizes a good
trade-off between the expectable level of overflow asso-
ciated to this scale and a sustainable opex cost induced
by the resources reconfiguration needed to cope with
the corresponding flash crowd.
• Link capacity dimensioning: Considering a maximum

admissible loss probability, find the safety margin that
it is necessary to provision on the link capacity, to guar-
antee the corresponding QoS.

6.1 Identification of the Reactive Time Scale for Recon-
figuration

We consider the case of a VoD service provider who wants
to determine the reactivity scale at which it needs to recon-
figure its resource allocation. This quantity should clearly
derive from a good compromise between the level of con-
gestion (or losses) it is ready to undergo, i.e. a tolerable per-
formance degradation, and the price it is willing to pay for
a frequent reconfiguration of its infrastructure. Let us then
assume that the VoD provider has fixed admissible bounds
for these two competing factors, having determined the fol-
lowing quantities:

• α∗ > αa.s.: the deviation threshold beyond which it be-
comes worth (or mandatory) considering to reconfigure
the resource allocation. This choice is uniquely deter-
mined by a capex performance concern.
• σ∗: an acceptable probability of occurrence of these

overflows. This choice is essentially guided by the cor-
responding opex cost.

Let us moreover suppose, that the LD spectrum f (α)
of the workload process was previously estimated, either
by identifying the parameters of the Markov model used
to describe the application, or empirically from collected
traces. Then, recalling the probabilistic interpretation we
surmised in relation (6), the minimum reconfiguration time
scale τ∗ for dynamic resource allocation, that verifies the
sought compromise, is simply the solution of the following
inequality:

τ∗ = max{τ : P{〈i〉τ ≥ α∗} =
∫ ∞
α∗

eτ fτ(α) dα ≥ σ∗}, (9)

with fτ(α) as defined in expression (7).
From a more general perspective though, we can see

this problem as an underdetermined system involving 3 un-
knowns (α∗,τ∗ and σ∗) and only one relation (9). Therefore,
and depending on the sought objectives, we can imagine to
fix any other two of these variables and to determine the re-
sulting third so that it abides with the same inequality as in
expression (9).

6.2 Link Capacity Dimensioning

We now consider an architecture dimensioning problem
from the infrastructure provider perspective. Let us assume
that the infrastructure and the service providers have come
to a Service Level Agreement (SLA), which among other
things, fixes a tolerable level of losses due to link conges-
tion. We start considering the case of a single VoD server
and address the following question: What is the minimum
link capacity C that has to be provisioned such that we meet
the negotiated QoS in terms of loss probability? Like in the
previous case, we assume that the estimated LD spectrum
f (α) characterizing the application has been priorly iden-
tified. A rudimentary SLA would be to guarantee a loss
free transmission for the normal traffic load only: this loose
QoS would simply amount to fix C to the almost sure work-
load αa.s.. Naturally then, any load overflow beyond this
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value will result in goodput limitation (or losses, if there is
no buffer to smooth out exceeding loads). For a more de-
manding QoS, we are led to determine the necessary safety
margin C0 > 0 one has to provision above αa.s. to absorb the
exact amount of overruns corresponding to the loss proba-
bility ploss that was negotiated in the SLA. From the inter-
pretation of the large deviation spectrum provided in Sect. 4,
this margin C0 is determined by the resolution of the follow-
ing inequality:

C0 :
∫ ∞
αa.s.+C0

∫ τmax

τmin

eτ· f (α) dτ dα ≤ ploss

:
∫ ∞
αa.s.+C0

eτmax· f (α) − eτmin· f (α)

f (α)
dα ≤ ploss (10)

In this expression, τmin is typically determined by the size
Q of the buffers that is usually provisioned to dampen the
traffic volatility. In that case,

τmin =
Q

α − (αa.s. +C0)
, (11)

corresponds to the maximum burst duration that can be
buffered without causing any loss at rate α > C = αa.s. +C0.
As for τmax, it relates to the maximum period of reservation
dedicated to the application. Most often though, the char-
acteristic time scale of the application exceeds the dynamic
scale of flash crowds by several orders of magnitude, and
τmax can then simply be set to infinity. With these particular
integration bounds, Eq. (10) simplifies to

C0 = C − αa.s. :
∫ ∞

C

−1
f (α)

e
Q
α−C f (α) dα ≤ ploss, (12)

a decreasing function of C, which can be solved using a sim-
ple bisection technique.

As long as the server workload remains below C, this
resource dimensioning guarantees that no loss occurs. All
overrun above this value will produce losses, but we ensure
that the frequency (probability) and duration of these over-
runs are such that the loss rate remains conformed to the
SLA. The proposed approach clearly contrasts with resource
over-provisioning that does not seek at optimizing the capex
to comply with the loss probability tolerated in the SLA.

The same provisioning scheme can straightforwardly
be generalized to the case of several applications sharing
a common set of resources. To fix the idea, let us con-
sider an infrastructure provider that wants to host K VoD
servers over the same shared link (as schematized in Fig. 7).
A corollary question is then to determine how many servers
K can the fixed link capacity C support, while guarantee-
ing a prescribed level of losses. If the servers are inde-
pendent, the probability for two of them to undergo a flash
crowd simultaneously is negligible. For ease and without
loss of generality, we moreover suppose that they are iden-
tically distributed and modeled by the same LD spectrum
f (k)(α) = f (α) with the same nominal workload α(k)

a.s. =

αa.s., k = 1, . . .K. Then, following the same reasoning as
in the previous case of a single server, the maximum num-
ber K of servers reads:

Fig. 7 Dimensioning K, the number of hosted servers sharing a fixed
capacity link C. The safety margin C0 is determined according to the prob-
abilistic loss rate negotiated in the Service Level Agreement between the
infrastructure provider and the VoD service provider.

K = arg max
K

(C − K · αa.s.) ≤ C0, (13)

where the safety margin C0 is defined as in expression (12).
Then, depending on the agreed Service Level Agree-

ments, the infrastructure provider can easily offer different
levels of probability losses (QoS) to its VoD clients, and
adapt the number of hosted servers, accordingly.

7. Conclusion

The objective of this work is to harness probabilistic meth-
ods for resource provisioning in the Clouds. We illustrate
our purpose with a Video on Demand scenario, a character-
istic service whose demand relies on information spreading.
Adopting a constructive approach to capture the users’ be-
havior, we proposed a simple, concise and versatile model
for generating the workload variations in such context. A
key-point of this model is that it permits to reproduce the
workload time series with a Markovian process, which is
known to verify a Large Deviation Principle (LDP). This
particularly interesting property yields a large deviation
spectrum whose interpretation enriches the information con-
veyed by the standard steady state distribution: For a given
observation (workload trace), LDP allows to infer (theoret-
ically and empirically) the probability that the time average
workload, calculated at an arbitrary aggregation scale, devi-
ates from its nominal value (i.e. almost sure value).

We leveraged this multiresolution probabilistic de-
scription to conceptualize two different management
schemes for dynamic resource provisioning. As explained,
the rationale is to use large deviation information to help
network and service providers together to agree on the best
capex-opex trade-off. Two major stakes of this negotiation
are: (i) to determine the largest reconfiguration time scale
adapted to the workload elasticity and (ii) to dimension VoD
server so as to guarantee with upmost probability the Quality
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of Service imposed by the negotiated Service Level Agree-
ment.

More generally though, the same LDP based concepts
can benefit any other “Service on Demand” scenarii to be
deployed on dynamic cloud environments.
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