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Weighted Averages and Double Exponential Algorithms

Juan R. MOSIG†a), Member

SUMMARY This paper reviews two simple numerical algorithms par-
ticularly useful in Computational ElectroMagnetics (CEM): the Weighted
Averages (WA) algorithm and the Double Exponential (DE) quadrature.
After a short historical introduction and an elementary description of the
mathematical procedures underlying both techniques, they are applied to
the evaluation of Sommerfeld integrals, where WA and DE combine to-
gether to provide a numerical tool of unprecedented quality. It is also shown
that both algorithms have a much wider range of applications. A general-
ization of the WA algorithm, able to cope with integrands including prod-
ucts of Bessel and similar oscillatory functions, is described. Similarly, the
original DE algorithm is adapted with exceptional results to the evaluation
of the multidimensional singular integrals arising in the discretization of
Integral-Equation based CEM formulations. The new possibilities of WA
and DE algorithms are demonstrated through several practical numerical
examples.
key words: weighted averages, double exponential, Sommerfeld integrals,
multidimensional singular integrals, oscillatory functions

1. Historical Introduction

This paper expands a keynote lecture given during the
ISAP’2012 Symposium in Nagoya, Japan, for which only
an abstract was published [1]. In preparing this paper, the
keynote lecture has been carefully reviewed and some very
recent new material has been added. The paper’s subject
remains the combined description of two simple numeri-
cal procedures, the Weighted Averages (WA) algorithm and
the Double Exponential (DE) quadrature, that are showing
a lot of promises in Computational ElectroMagnetic (CEM)
problems.

Although their use by the CEM community is quite re-
cent, both algorithms are solidly rooted on well established
numerical mathematics. WA was first used in the eight-
ies, to evaluate the tails of the Sommerfeld integrals that
arise when microstrip antennas were analyzed in the con-
text of stratified media theory [2], [3]. The original rather
intuitive theory in [2], [3] was formalized in the nineties by
K. A. Michalski, who provided a solid mathematical frame-
work to WA [4]. Michalski identified the WA algorithm
as an “integration-then-summation” procedure akin to the
classic Euler transformation [5]. He discussed some possi-
ble variants and demonstrated that “the weighted averages
method emerge as the most versatile and efficient currently
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known convergence accelerators for Sommerfeld integral
tails” [4]. Indeed, WA can be used for the evaluation of
many other infinite integrals showing an oscillatory behav-
ior, like Fourier and Hankel transforms.

In 2000, the WA algorithm was extracted from its nar-
row original domain of applicability by H.H.H. Homeier [6].
Under the name “Mosig-Michalski algorithm”, WA was un-
derstood as an algebraic sequence transformation, able to
act as a convergence accelerator for series, transforming a
given sequence into a faster convergent one [6].

Recently, the introduction of a more powerful version
of the basic WA algorithm [7] has allowed a widening of its
scope. The decisive step here was to consider the implied
integrals as defined in the Abel’s sense and to apply to them
the well known Cèsaro and Hölder means [8], [9]. In ad-
dition to Sommerfeld tails [10], generalized WA algorithms
can cope now with divergent series [11] and with much more
complex integrals, like those involving products of Bessel
functions [12]. Thus, the transmutation of WA from a very
specific tool for a particular electromagnetic problem to a
generic numerical algorithm is being achieved.

On the other hand, the DE quadrature was introduced
in 1974 in a purely mathematical context, fully unrelated
to antennas and electromagnetics. Indeed, DE was the cre-
ation of two Japanese researchers, Hidetosi Takahasi (1915–
1985) and Masatake Mori (1937), both working in the Uni-
versity of Tokyo [13]. The fascinating history of DE has
been thoroughly described by Prof. Mori in a survey pa-
per published in 2005 [14]. During the preparation of the
ISAP’2012 keynote talk, the author of the present paper was
fortunate enough to get in touch with Prof. Mori, now a re-
tired Professor from Tokyo Denki University. Through Prof.
Mori, the author was also able to contact Dr. Takuya Ooura,
currently continuing the development of the DE algorithm
at RIMS, Kyoto University. The information obtained from
Mori and Ooura was very helpful to fully understand the
DE history and subtleties and to successfully apply it to our
electromagnetic problems.

It can be safely said that one of the reasons why DE has
become so popular in many areas of Physics and Engineer-
ing is because H. Takahasi and M. Mori were both physicists
working in an Engineering Faculty. Their scientific output,
while keeping a strict mathematical rigor, has this immedi-
ateness and simplicity so appealing to engineers. Indeed,
Prof. Takahasi is probably better known in Japan as being
a pioneer in Computer Engineering [15], through the cre-
ation in 1958 of one of the first Japanese computers, the
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Parametron PC-1 [16]. Later, in 1970, Prof. Takahasi would
become the first director of a newly created Information Sci-
ence Laboratory in the University of Tokyo [17].

The DE algorithm was greatly popularized in the West-
ern World through the publications of a series of mathemati-
cians, among them D. H. Bailey and his group. For reasons
that will become apparent later, they dubbed the algorithm
as the “tanh-sinh quadrature”. Its popularity deserves even a
full Wikipedia page for it [18]. Bailey’s group performed an
intensive research on the DE algorithm and concluded that
“the tanh-sinh scheme appears to be the best for integrands
of the type most often encountered in experimental math re-
search” [19].

DE quadratures were originally intended to evaluate ef-
ficiently one-dimensional integrals with singularities at their
end-points [20], [21]. This makes them already attractive
to evaluate some portions of Sommerfeld integrals, heavily
populated by singularities.

However, the idea was quickly extended to multidi-
mensional singular integrals and successfully applied to
the double surface integrals arising in the Integral-Equation
treatment of metallic scatterers when discretized with a
Galerkin’s method [22]–[25]. A final development of
paramount relevance for this paper is the transformation,
obtained by T. Ooura, of the DE quadrature into a form
that can be applied to Fourier transforms of slowly decay-
ing functions [26], [27]. This modified DE version can be
easily applied to the evaluation of Sommerfeld integral tails
[10], [28], [29].

With these evolutions, DE was mature enough for be-
ing applied to specific electromagnetic problems in combi-
nation with WA. This is the subject of this paper. After some
mathematical preliminaries in Sects. 2 and 3, Sects. 4 and 5
describe the WA algoritm and its extensions. Similarly the
DE quadrature principles are briefly recalled in Sect. 6 and
a powerful multidimensional generalisation is introduced in
Sect. 7. In Sect. 8, WA and DE are combined together for a
complete evaluation of Sommerfeld integrals and the paper
ends with some conclusions.

2. Some Basic Integrals

To motivate the rationale behind the WA algorithm, we start
with an easy example taken from Electrostatics. The most
elementary electrostatic formulas are those giving the elec-
trostatic potential V and the electric field �E created at a point
�r by a point charge q situated at the origin:

V =
q

4πεr
; �E = −∇V =

q
4πεr2

êr (1)

The problem has spherical symmetry and therefore is better
formulated with spherical coordinates. But we could pre-
tend to solve the problem in cylindrical coordinates (ρ, z)
with r2 = ρ2 + z2. This is easily accomplished by solving
the Laplace equation in the two half-spaces defined by the
plane z = 0. The classical separation of variables method
leads to:

V =
q

4πε

∫ ∞

0
J0(λρ) exp(−λ|z|) dλ (2)

where λ is the spectral variable.
As for the electric field, it should be always obtainable

as the gradient of V . Of particular interest for our purposes
is the radial component, given by

Eρ = −∂V
∂ρ
=

q
4πε

∫ ∞

0
J1(λρ) exp(−λ|z|) λ dλ (3)

If we compare now the expressions (1) and (3) of the compo-
nent Eρ of the electric field in the specific point (ρ = 1, z =
0), we are forced to accept that:

I =
∫ ∞

0
J1(λ)λ dλ = 1 (4)

From a purely mathematical point of view, the integrand in
(4) is an oscillating divergent function and hence the inte-
gral I must be carefully defined. For instance, we could
introduce the bounded integral:

I(λ) =
∫ λ

0
J1(t)t dt (5)

and then define:

I = lim
λ→∞ I(λ) (6)

Figure 1 shows the behavior of the function to be integrated
(dotted line). Obviously, the usual Riemann definition of
integral (the area under the curve) doesn’t apply here. Also
plotted in Fig. 1 is the integral I(λ) in Eq. (5) as a function
of the upper integration limit λ (continuous line). It is clear
that the limit (6) cannot be calculated as an ordinary limit,
because I(λ) oscillates and diverges when t → ∞. The WA
algorithm was originally developed to provide a direct and
accurate numerical evaluation of this kind of integrals (4),
despite their lack of standard convergence.

Fig. 1 A typical function to be integrated (dotted line) and its integral
(continuous line).
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The equivalent problem in Electrodynamics is related
to computing the Hertz potentials created by an elementary
dipole [30]. Here the governing equation is the Helmholtz
wave equation. When a direct solution of it is compared
with the solution obtained solving the equation by separa-
tion of variables in cylindrical coordinates we obtain the fa-
mous Sommerfeld identity [30]:

exp(− jkr)
r

=

∫ ∞

0
J0(λρ) exp(−u|z|)λ

u
dλ (7a)

with r2 = ρ2 + z2 and u2 = λ2 − k2

For more complex environments, like stratified media,
the above integral must be replaced by a Sommerfeld inte-
gral [31] of the type:

I =
∫ ∞

0
J0(λρ) G̃(λ, u, z)λ dλ (7b)

where G̃ is the spectral Green’s function of the considered
medium [31]. This Green’s function may exhibit singulari-
ties in the initial part λ ∈ [0, a] of the infinite integration do-
main (the “head”). Typically, different numerical strategies
are applied to the “head” and to the “tail” λ ∈ [a,∞]. In the
process of obtaining the electromagnetic fields created by an
elementary dipole, the expressions (7) must be repeatedly
derived with respect to the cylindrical coordinates. Again,
many interesting and challenging integrals can be obtained
from (7) and its derivatives by choosing specific values for
the coordinates.

3. Lossy Media and Integrals in the Abel Sense

In expressions like (3), the mathematical convergence of the
integral is guaranteed by the exponential term. The real nu-
merical difficulties only appear when making computations
in the z = 0 plane, where the exponential term becomes
unity. However, it is obvious that the electric field is well
behaved in all the points of the z = 0 plane with the excep-
tion of the origin.

The process of approaching the z = 0 values is some-
what equivalent to a typical lossless/lossy strategy in Elec-
tromagnetics. The lossless media models (frequently lead-
ing to mathematical ambiguities and numerical difficulties)
are obtained as the limiting case of lossy media models (al-
ways well defined) when the losses vanish. The equivalent
procedure in mathematics is the Abel integral, of which we
will just give an elementary example.
Consider the integral:

I =
∫ ∞

0
exp(−γx) dx (8)

where γ is a complex parameter γ = α + jβ.
As far as α is positive, the result I = 1/γ is evident.

Therefore, we should also accept the limiting case α = 0
and the corresponding particular cases of (8):∫ ∞

0
sin βx dx = 1/β;

∫ ∞

0
cos βx dx = 0 (9)

These are obviously improper integrals. Abel’s strat-
egy allows to solve them immediately, while a direct demon-
stration of their values would call for the use of generalized
Fourier transforms applied to distributions [32].

Using the Abel’s definition, it is easy to obtain results
for many other improper integrals like:∫ ∞

0
x sin βxdx = 0;

∫ ∞

0
x cos βxdx = −1/β2 (10)

∫ ∞

0
xJ0(βx)dx = 0;

∫ ∞

0
xJ1(βx)dx = 1/β2 (11)

Again, the WA algorithm should be able to handle these
improper integrals which will all become excellent testing
benchmarks.

4. The WA Algorithm

We recall now the most essential steps of the WA algorithm
[2]–[4], [7]. WA is intended to be applied to integrals of the
type:

I(γ) =
∫ ∞

a
f (x)g(γx) dx (12)

where g(γx) is an oscillating function, including the com-
plex parameter γ = α+ jβ, and f (x) is supposed to be smooth
and to behave asymptotically as a power function O(xq).
The canonical choice for the complex oscillating function
is g(γx) = exp(−γx). This choice guarantees the existence
of the integral in the Abel sense. However other asymp-
totically equivalent functions can be used, like Hankel and
Bessel functions. Thus, Sommerfeld integrals can be easily
included in the general type (12).

The basic idea behind the WA algorithm is to transform
a semi-infinite integral into an infinite series, by dividing it
into partial finite integrals which are individually computed
(the “integration-then-summation” procedure):

I =
∫ ∞

a
=

∞∑
n=0

∫ xn+1

xn

=

∞∑
n=0

I(0)
n (13)

where the integration intervals are usually selected in a pe-
riodic way as xn = a + nT .

A proper integral would result in a convergent series
while an improper integral would be transformed into a di-
vergent series. The WA algorithm should be able to deal
with both types of integrals. The choice of the period T is
of paramount relevance. Here are for instance two series
obtained from the same integral:∫ ∞

0
sin x dx=2−2+2−2 + . . . (a=0 and T =π) (14)

∫ ∞

0
sin x dx=0+0+0+0 + . . . (a=0 and T =2π) (15)

but in both cases the final result (Eq. (9)) should be 1!
The strategy to get the correct result is based on a pro-

cedure introduced in 1882 by O. Hölder, called the H-means
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[9]. Essentially a sequence of partial sums is computed from
the terms I(0)

i of the original series (12) as:

I(1)
n =

n∑
i=0

I(0)
i (16)

and then, mean values are generated as:

I(k+1)
n =

I(k)
n + I(k)

n+1

2
(17)

The procedure is iterated (k = 1, 2, 3 . . .) until an eventual
convergent result. For oscillating series, when the Hölder
H-means converges, it always does it towards the value I of
the original integral (12) in the Abel sense [9].

For instance, for the series in (14), the iterated H-means
give:

I(0)
n = 2,−2, 2,−2, . . .
I(1)
n = 2, 0, 2 . . .
I(2)
n = 1, 1 . . .
I(3)
n = 1 . . .

(18)

The true value “1” is recovered after only 2 iterations.
Of course, the convergence of the iterated H-means can

be much slower for less academic integrals. Aiming to speed
up this convergence, the original WA algorithm replaced the
simple arithmetic mean used in the Hölder procedure by a
weighted mean. Then, (17) becomes:

I(k+1)
n =

w(k)
n I(k)

n + w
(k)
n+1I(k)

n+1

w(k)
n + w

(k)
n+1

(19)

The critical point here is how to select the weights
w(k)

n when using Eq. (19). The question was definitely settled
by Michalski [4] who gave rigorous and exhaustive devel-
opments for the most interesting analytical forms of these
weights.

More recently, the iterated simple weighted means
have been replaced by an unique multiple weighted mean,
leading to a generalized WA algorithm [7] defined as:

I∗N =
N∑

n=1

wnI(1)
n

/ N∑
n=1

wn (20)

where the partial integrals I(1)
n are defined like in (16) and

the weights wn depend on the limits used for the partial in-
tegrals, on the asymptotic behavior of the function f and on
the complex parameter γ = α + jβ.

With the usual choice β( xn+1− xn) = π, the weights are
given by the simple expression [7]:

wn = exp(αxn)

(
N − 1
n − 1

)
xN−2−q

n (21)

where q is connected to the asymptotic behaviour O(xq)
of f (x) (Eq. (12)). In order to show the amazing accu-
racy of WA, the first improper integral in Eq. (11) has
been evaluated in Fig. 2 with three algoritms: the H-means

Fig. 2 Accuracy of the successive improved versions of the WA
algorithms for the first canonical integral in Eq. (11). After [7].

(Eq. (17)), the original WA (Eq. (19) with Michalski weights
[4]) and the generalized WA (Eq. (20) with weights given by
Eq. (21)).

While H-means converges very slowly (only 2 signif-
icant digits after 4 partial integrals), both WA versions be-
have much better, with the generalized WA reaching already
6 significant digits after the same 4 partial integrals.

5. Extension to Products of Oscillating Functions

The latest developments of WA algorithms allow their ap-
plication to semi-infinite integrals involving products of os-
cillatory functions like:

I(γ) =
∫ ∞

a
f (x)gA(px) gB(qx) dx (22)

If the oscillatory functions gA, gB are of sine/cosine type, the
strategy is obvious. Trigonometry tells us that a product of
sines/cosines can be easily transformed into a sum of sim-
ilar functions. Hence, in this case the integral (22) can be
transformed into a sum of integrals of the basic type (12), to
which WA applies.

The situation is somewhat more delicate with other os-
cillating functions and must be dealt with case by case. For
instance, it has been observed by Lucas [33] that the product
of two Bessel functions can be also written as a sum of two
functions that behave asymptotically as simple oscillating
functions of sine/cosine type:

Jm(px) Jn(qx)=g1(p, q,m, n, x)+g2(p, q,m, n, x) (23)

Here, the resulting functions g1, g2 are much more com-
plicated and involve combinations of Bessel’s functions of
first and second kind [33]. However, the relevant fact is its
simple asymptotic behavior, so WA can be applied to them.
The same is true for products of other types of Bessel func-
tions [12]. This opens the door to the numerical evaluation
of complicated integrals involving products of two or more
Bessel functions. These integrals play an important role in
many branches of Physics and Engineering [12] and WA
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Fig. 3 Precision of the generalized WA algorithm when compared with
the currently best available strategy to evaluate Eq. (24). After [12].

provides the possibility of evaluating them with unprece-
dented accuracy. To witness, WA has been applied to the
benchmark integral introduced and accurately computed by
Lucas [33]:

I =
∫ ∞

0

x
1 + x2

J0(x)J20(1.1x) dx (24)

Figure 3 compares the quality of the results obtained with
the Lucas’ approach and with the generalized WA [12].

WA reaches practically machine precision (13 signifi-
cant digits) with 10 intervals (=partial integrals), while af-
ter 20 intervals, Lucas provides only 10 significant digits.
In lower precision ranges, WA usually needs only half the
number of intervals used by Lucas to reach a given accu-
racy.

6. The Double Exponential Quadrature

As mentioned in the introduction, the DE quadrature was
originally introduced to provide an efficient numerical eval-
uation of integrals with singularities at their endpoints,
where standard interpolatory quadrature rules (Newton-
Cotes, Gauss-Legendre. . . ) would usually fail.

Other quadratures, like Gauss-Jacobi formulas, have
been widely used for integrands with infinite derivatives or
integrable singularities at the endpoints. But these quadra-
tures are strongly dependent on the type of singularity,
which prevents a widespread application. On the other hand,
DE is not specifically related to a type of singularity but to
an appropriate change of variables, which results in general
purpose quadrature formulas so robust and efficient that it
deserves nowadays a prominent place in standard mathemat-
ical subroutine libraries.

As described in the original article by Takahasi and
Mori [13, see also 14], DE starts by considering the canoni-
cal integral:

I =
∫ +1

−1
f (x) dx (25)

where f (x) exhibits singularities at the endpoints x = ±1.
Then the following change of variables is applied:

x = tanh(η sinh(t)) (26)

where η is a numerical parameter initially fixed by
Takahashi and Mori at the value η = π/2 [14]. The transfor-
mation (26) is at the origin of the name “tanh-sinh quadra-
ture” usually given to DE.

It is obvious that with this change, the original inter-
val x ∈ [−1, 1] is dilated and becomes the full real axis
t ∈ [−∞,∞]. But DE is not only about sending the sin-
gular points x = ±1 to infinity. An elementary derivative
calculation proves that the Jacobian of the transformation
is:

dx/dt = η cosh(t)/ cosh2(η sinh(t)) (27)

This is a very important result, since this function behaves
asymptotically like a double exponential exp(−η exp(t))
(hence the algorithm’s name). This function is so fast de-
creasing that it will “kill” the original singularities at infin-
ity, no matter which type they were in the original integral
(25).

Despite these facts, transforming a finite integration in-
terval [−1, 1] into an infinite one [−∞,∞] may not appear as
the best possible strategy to simplify numerical calculations.
But Takahashi and Mori had been able to prove that analyt-
ical functions could be optimally integrated over an infinite
interval by the use of a very simple trapezoidal rule with
equidistant sampling points [34]. Indeed, the optimality of
the trapezoidal formula played probably a crucial role in the
process of the discovery by Takahasi and Mori of the DE
quadrature [14].

All the above considerations should be better under-
stood with the following example, involving a function fre-
quently found in Electromagnetics:

I =
∫ +1

−1

dx√
1 − x2

(28)

The function to be integrated is shown as a dotted line in
Fig. 4, where the end singularities at x = ±1 are evident. DE
(with η = 1) transforms this integral into:

I =
∫ +∞

−∞
cosh t

cosh2(sinh(t))
dt (29)

The new integrand is also shown in Fig. 4 as a continuous
line. The singularity has been sent to infinity and “elimi-
nated” by the double exponential decrease of the denomina-
tor.

Indeed, this integrand reaches a peak unit value at the
origin, but decreases to values of the order of 10−13 for t = 3
and of 10−38 (!) for t = 4. So the need to deal with an infinite
integration interval in the transformed domain is not really
a hindrance.

When the uniform distribution of points imposed by
the trapezoidal rule in the transformed infinite domain is
mapped back into the original domain, it is easily seen
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Fig. 4 Original singular integrand (discontinuous line) and transformed
bounded integral over an infinite interval (continuous line). The area under
both curves is the same.

Fig. 5 Distribution of sampling points in the canonical interval [−1,+1]
for Gauss-Legendre and DE quadratures of order 25.

(Fig. 5) that DE concentrates the sampling points near the
ends of the original finite interval much more strongly than
standard Gaussian-Legendre (GL) quadratures. This is the
basic strength of DE.

7. DE and Multidimensional Singular Integrals

Since the DE quadrature had shown excellent results for
evaluating one-dimensional integrals with arbitrary singu-
larities in their end-points, the obvious idea was to extend it
to multi-dimensional integrals that show singularities in the
external boundaries of their integration domains. This has
been recently accomplished for the singular integrals aris-
ing in the Galerkin discretization of the Integral Equation
formulations used to model the current density in the sur-
face of metallic scatterers [22].

A typical double surface integral is:

I =
∫∫

P
ds fP(�r)

∫∫
Q

ds′ fQ(�r′)G(�r|�r′) (30)

where P and Q are discretization subdomains (typically tri-
angles), fP and fQ are test and basis functions defined in
these subdomains and G(�r|�r′) a generic Green’s function.

The most simple particular case of (30) frequently used
as numerical benchmark correspond to using constant basis
and test functions and consider the free space scalar poten-
tial Green function:

Fig. 6 Precision of Gauss-Legendre and DE formulas when evaluating
the four-fold integral (31) over triangular domains. The improvent obtained
by the optimization of the DE parameter is particularly evident for low
numbers of sampling points. After [25].

I =
∫∫

P
ds

∫∫
Q

ds′
exp(− jk|�r − �r′|)
|�r − �r′| (31)

Usually, the four-fold integral (30) can be seen as an iterated
surface integral. First there is the inner source integral:

IS (�r) =
∫∫

Q
ds′ fQ(�r′)G(�r|�r′) (32)

and then an outer test integral:

I =
∫∫

P
ds fP(�r)IS (�r) (33)

thus retrieving the original integral (30).
The inner integral (32) has always a Green’s function

singularity at �r = �r′. Among the multiple possibilities for
solving the inner integral, the source domain can be decom-
posed to push the singularity to the edges of the new sub-
domains and DE can be used [22]. Less recognized is the
obvious fact that, once evaluated, the inner integral (32) will
show some type of singularity if the domains P and Q touch
at a point, share an edge or are identical [22]. In all these
cases, DE should be a preferred choice to evaluate the outer
integral (33).

A recently exploited additional advantage of DE is the
possible adjustement of the parameter η in (26). Although,
as mentioned, the historical choice has been η = π/2 and
this choice has given consistently excellent results in one-
dimensional integrals, nothing prevents to try to optimize
this parameter for multidimensional integrals. Indeed an
exhaustive study for 4D-integrals of type (31) shows that
a lower value η = 0.3π (closer to unity) is a better choice in
this case [25], [35]. As a typical example, Fig. 6 compares
the results obtained for the 4D integral (31) when Gauss-
Legendre and DE quadratures are used. The domains P and
Q are here the same (self-case corresponding to diagonal el-
ements in the Galerkin matrix) and have the canonical form
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of a right-angle isosceles triangle with unit length sides. The
different versions of DE always lead to machine precision
results, while Gauss-Legendre painfully reaches 6 accurate
digits. When the optimized value η = 0.3π is used, DE
becomes competitive even for small accuracies and always
outperforms Gauss-Legendre.

8. Sommerfeld Integrals Evaluated with WA & DE

As mentioned in Sect. 2, a generic Sommerfeld integral,
given by Eq. (7b), is defined over the real positive axis λ.
In the study of these integrals, it is a usual strategy to use
analytical continuation procedures and to consider λ as a
complex variable. In Fig. 7, a typical Sommerfeld integrand
is represented in the complex plane kρ/k0 ≡ λ. This Som-
merfeld integral represents the xx component of the dyadic
Green function for the vector potential in the case of a
single-layer microstrip antenna working at 8 GHz. The sub-
strate thickness is 3.75 mm and its relative permittivity 4.0.

On the real axis (Fig. 7), a first singularity (infinite
derivative) is due to the square root u in Eq. (7). Then, the
spectral Green’s function in Eq. (7) shows in this particular
case no less than 3 additional singularities (poles = surface
waves), which are also readily apparent in Fig. 7. The part of
the real axis containing the singularities is called the “head”
of the integrand. After this, the integrand sets into a typical
oscillatory behavior, not shown in Fig. 7 but similar to the
one depicted in Fig. 1. This part of the real axis, extending
to infinity is the “tail” of the integrand.

A common practice to avoid the singularities is to leave
the real axis and to make a detour through the complex
plane, as shown in Fig. 7 [10]. But this was always a delicate
maneuver, due to the wild behavior of the Bessel functions
in the complex plane.

Nowadays, the introduction of DE in Electromagnetics,
has made it possible to remain on the real axis for the full
integration path. The poles in the “head” are first extracted.
Then DE can directly and accurately evaluate the Sommer-
feld head despite all the remaining singularities. Moreover,
adaptive schemes and error estimation are readily available
[36].

As for the Sommerfeld tails, oscillating and eventually
diverging but regular and smooth, they can be always solved
with a WA algorithm [10]. However, Ooura’s DE versions
[26], [27] has paved the way for DE being also applied to
the semi-infinite tails [29]. Thus, two efficient options are
now currently available for the numerical evaluation of com-
plete&general Sommerfeld integrals: the DE+WA strategy
or the DE+DE strategy [10]. Since they differ in the treat-
ment of the tail, a canonical Sommerfeld integral with a
standard tail can provide a perfect benchmark.

In Fig. 8, the tail corresponding to the second derivative
∂2/∂ρ∂z of Eq. (7a), has been computed with the standard
WA (Mosig-Michalski), the new generalized WA and the
DE. In order to obtain a fair comparison, the 3 algorithms
use exactly the same number of 160 integration points. It
can be seen that the generalized WA provides the best solu-

Fig. 7 A typical complex plane landscape for a Sommerfeld integral,
showing the real axis singularities and the strongly growing behavior of
Bessel function for high imaginary values.

Fig. 8 Precision of WA and DE formulas when evaluating the tail of the
second-order mixed derivative of Eq. (7a). The three tested approaches per-
form very well. After [10].

tion, with relative errors better than 10−12 (close to machine
precision) in the full range 0.001 < kρ < 10. DE never goes
above 10−10, while standard WA provides intermediate ac-
curacies. On the other hand, if properly implemented, DE
can be 4–5 times faster than WA and therefore a trade-off
speed/accuracy can be made if both WA and DE are consid-
ered.

9. Conclusions

This paper has reviewed two numerical procedures, the
Weighted Averages (WA) algorithm and the Double Expo-
nential (DE) quadrature. WA has been familiar to the An-
tenna & Electromagnetics engineering community for more
than 30 years. It started as an empirical procedure for solv-
ing a specific problem related to the mathematical model
of single layer microstrip antennas. But soon its relation
to existing and more general mathematical procedures was
discovered and the WA algorithm was put on a solid theoret-
ical ground. Today, WA remains the best choice to integrate
smooth functions oscillating over semi-infinite integrals and
to sum the series associated to the discretization of these
integrals. An exciting feature of WA is that it can be also
applied without further difficulty to improper integrals and
diverging series. Also complex behaviors resulting form the
product of functions oscillating with different periods can be
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also harnessed with WA.
DE has gone through the opposite path, starting in the

seventies as a general purpose numerical quadrature for sin-
gular integrals. Recently, our community has discovered its
power and potentialities for solving the multidimensional
integrals related to Galerkin and Method of Moments ap-
proaches when formulating electromagnetic scattering prob-
lems with integral equation models.

WA and DE share at least one quality: their mathemat-
ical simplicity. Therefore they lead to very simple and fast
computer algorithms producing very accurate results, fre-
quently up to machine precision. Another important aspect
worth mentioning is their complementarity. This is partic-
ularly obvious when they are used together to evaluate the
Sommerfeld integrals arising the modeling of multilayered
planar antennas and scatterers embedded in stratified media.
Here, the combination WA+DE results in efficient numeri-
cal tools whose accuracy cannot be beaten today.
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