
10
IEICE TRANS. COMMUN., VOL.E97–B, NO.1 JANUARY 2014

INVITED PAPER Special Section on Management for Flexible ICT Systems and Services

On Achieving High Survivability in Virtualized Data Centers

Md Golam RABBANI†a), Mohamed Faten ZHANI†b), and Raouf BOUTABA†c), Nonmembers

SUMMARY As businesses are increasingly relying on the cloud to host
their services, cloud providers are striving to offer guaranteed and highly-
available resources. To achieve this goal, recent proposals have advocated
to offer both computing and networking resources in the form of Virtual
Data Centers (VDCs). Subsequently, several attempts have been made to
improve the availability of VDCs through reliability-aware resource allo-
cation schemes and redundancy provisioning techniques. However, the re-
search to date has not considered the heterogeneity of the underlying phys-
ical components. Specifically, it does not consider recent findings showing
that failure rates and availability of data center equipments can vary sig-
nificantly depending on various parameters including their types and ages.
To address this limitation, in this paper we propose a High-availability Vir-
tual Infrastructure management framework (Hi-VI) that takes into account
the heterogeneity of cloud data center equipments to dynamically provision
backup resources in order to ensure required VDC availability. Specifically,
we propose a technique to compute the availability of a VDC that consid-
ers both (1) the heterogeneity of data center networking and computing
equipments in terms of failure rates and availability, and (2) the number of
redundant virtual nodes and links provisioned as backups. We then lever-
age this technique to propose an allocation scheme that jointly provisions
resources for VDCs and backups of virtual components with the goal of
achieving the required VDC availability while minimizing energy costs.
Through simulations, we demonstrate the effectiveness of our framework
compared to heterogeneity-oblivious solutions.
key words: cloud computing, virtualization, data center management, sur-
vivability

1. Introduction

In recent years, Cloud Computing has become the top plat-
form for service hosting and delivery. In typical cloud
environments, the Cloud Provider (CP) owns the physi-
cal infrastructure and leases resources to multiple Service
Providers (SPs). Each SP then leverages its dedicated re-
sources to deploy applications and services and offer them
to end users over the Internet. So far, CPs mainly roll out
computing resources (i.e., virtual machines) with no net-
work performance guarantees [1], [2]. This results in a vari-
able and unpredictable network performance in addition to
potential security risks [3]–[6].

To address these issues, recent research proposals
have advocated offering both computing and networking re-
sources in the form of Virtual Data Centers (VDCs). Ba-
sically, a VDC consists of virtual machines, routers and

Manuscript received June 10, 2013.
Manuscript revised August 23, 2013.
†The authors are with the D.R. Cheriton School of Computer

Science, University of Waterloo, Canada.
a) E-mail: m6rabban@uwaterloo.ca
b) E-mail: mfzhani@uwaterloo.ca
c) E-mail: rboutaba@uwaterloo.ca

DOI: 10.1587/transcom.E97.B.10

switches connected through virtual links with guaranteed
bandwidth. This allows CPs to achieve better perfor-
mance isolation between VDCs and to implement more fine-
grained resource allocation schemes. At the same time,
VDCs allow SPs to guarantee predictable network perfor-
mance for their applications.

A growing body of work has recently studied the prob-
lem of resource allocation for VDCs aiming to achieve sev-
eral objectives such as minimizing energy costs and max-
imizing revenues [3], [4], [6]. However, one primary chal-
lenge that has not been adequately addressed so far is how
to guarantee high VDC availability. On the one hand, for a
SP, a service disruption, even for seconds, may incur high
losses in revenue and also significantly impair the SP rep-
utation. A recent study by an IT analyst firm estimated SP
losses due to service downtime from $25,000 up to $150,000
per hour [7]. On the other hand, CPs could also incur signif-
icant penalties from not delivering the promised availabil-
ity specified in the service level agreements. For instance,
Amazon EC2 pledges to offer a service credit equal to 10%
of the bill to any customer whose resources’ annual avail-
ability falls below 99.95% [1]. As a result, providing high
resource availability has been pointed out as one of the pri-
mary challenges of CPs to exhort SPs to rely on the cloud.

Recently, few proposals have been made to improve
the availability of VDCs either through reliability-aware re-
source allocation schemes or redundancy provisioning tech-
niques [8]–[12]. However, these works did not consider the
heterogeneity of the underlying physical components. In-
deed, it has been reported that failure rates and availabilities
of the underlying physical components vary significantly de-
pending on various parameters such as the type of equip-
ments and their age [9], [12]. This observation suggests that
in order to achieve the required VDC availability, the het-
erogenous availability of the infrastructure equipments must
be considered to (1) determine the placement of the VDC
components and to (2) estimate more accurately the number
and the placement of redundant virtual nodes and links.

In this paper, we address this compelling challenge
and propose High-availability Virtual Infrastructure Man-
agement (Hi-VI) framework that takes into account the het-
erogeneity of data center computing and networking equip-
ments to dynamically provision backup resources in order
to ensure the required VDC availability. We first propose a
technique to compute the availability of a VDC that consid-
ers both (1) the heterogeneity of data center networking and
computing equipments in terms of failure rate and availabil-

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

RABBANI et al.: ON ACHIEVING HIGH SURVIVABILITY IN VIRTUALIZED DATA CENTERS
11

ity, and (2) the number of redundant virtual nodes and links
provisioned as backups. We then leverage this technique to
propose an allocation scheme that jointly provisions VDC
computing and networking resources as well as backups for
virtual machines and links with the goal of achieving the
availability required for each VDC while minimizing the
resources used for backups and the total operational costs
(e.g., energy costs) of the CP.

The remainder of the paper is organized as follows:
Sect. 2 surveys previous work on failure characterization in
data centers highlighting the heterogeneity in terms of fail-
ure rate and availability. We also summarize representative
work on reliability-aware VDC allocation schemes and dis-
cuss their limitations. We present in Sect. 3 our technique
to compute the availability of a VDC and we provide the
mathematical formulation of the availability-aware VDC al-
location problem. The proposed solution is then described
in Sect. 4. Simulation results are discussed in Sect. 5. Fi-
nally, we draw our conclusions in Sect. 6.

2. Literature Survey

In this section, we present related work on data center fail-
ure characterization and representative proposals addressing
survivable resource allocation in virtualized data centers.

2.1 Failure Characterization in Data Centers

Gill et al. [9] presented a large-scale study of failures in
several Microsoft data centers over one year. The authors
characterized failures of networking devices and assessed
the impact of their failures and the effectiveness of net-
work redundancy in data centers. Furthermore, they ob-
served that the failure rates of different equipments can vary
significantly depending on their type (servers, top-of-rack
switches, aggregation switches, routers, load balancers) and
model. For instance, Load Balancers (LBs) exhibit high
probability of failure during one-year period (over 20%),
whereas switches have lower failure probability (less than
5%). Furthermore, failure rates of different devices are un-
evenly distributed. For example, the number of failures
across load balancers are highly variable with a few outlier
LB devices experiencing more than 400 failures over the one
year period. Finally, the analysis of failure traces revealed
that correlated device and link failures are extremely rare.

Wu et al. [8] presented an automated failure mitiga-
tion system called NetPilot, which alleviates failures in large
scale data center network before operators diagnose and re-
pair the root cause. The authors built their system based on
an analysis of failures in several production data center net-
works over a six-month period. They identified three main
causes of failures: software failures which constitute 21%
of the total number of failures, hardware failures accounting
for 18% and finally misconfigurations, the most dominant
source of the failures (38%). The authors found that usu-
ally simple steps of mitigation are very effective in reduc-
ing repair times. However, certain failures incur much more

repair time and hence cause significant network downtime.
This concurs with the finding of [13] that reported that more
than 95% of network failures can be fixed within 10 minutes
whereas at least 0.09% of them can take more than 10 days
to resolve. This again shows the heterogenity of the failures
in terms of repair times and potential impact.

Vishwanath et al. [14] analyzed failures of more than
100,000 servers deployed in multiple Microsoft data centers
over a duration of 14 months. They found that hard disk,
memory and raid controller failures were the main reason for
server failures. For instance, they reported that failures of
hard disks represent 78% of the total failures causing service
disruption. They also noticed a high correlation between
the number of disk drives in the server and the number of
server failures. In addition, they found that servers that have
experienced failures are likely to fail again in the near future.
This results in a skewed distribution of server failure rate.

Based on these observations, we can summarize the
main characteristics of failures in data centers as follows:
(1) failure rates and availability are heterogenous across the
physical components, (2) correlated failures are extremely
rare. This suggests that heterogeneity should be considered
when mapping virtual components onto the physical infras-
tructure. Furthermore, since correlated failures are rare, it is
reasonable to assume failures to be independent.

2.2 Survivable VDC Embedding

Bodik et al. [11] proposed an allocation scheme that aims at
minimizing the impact of failures (i.e., maximizing fault-
tolerance) on the virtual data center (termed “service” in
the paper) while reducing bandwidth usage in the core of
the data center network. The VDC fault-tolerance is mea-
sured by the worst-case survival metric defined as the frac-
tion of VMs belonging to the same VDC that remain opera-
tional during a single worst-case failure. However, this work
does not consider the availability of the underlying physical
components. Besides, considering only worst-case failure
(which happens in aggregation/core switches) results in ig-
noring other failures (e.g., in top-of-rack switches). Further-
more, the authors assume a physical server can only host one
VM from the same VDC. As a result, the approach tends to
extensively spread VMs, leading to higher bandwidth usage.

Xu et al. [10] proposed a VDC allocation scheme that
considers embedding backup VMs and virtual links with the
goal of minimizing consumed resources. However, they
do not consider the availability of the physical machines
and they also assume that the number of backups is known
beforehand. Yeow et al. [16] addressed these limitations
and they proposed a reliable VDC embedding scheme that
achieves the desired availability for VDCs by estimating
the required number of backups for the virtual nodes based
on the availability of physical machines. They also intro-
duced a technique to allow VDCs to share backup nodes
and links. However, this work considers only homogenous
clusters, which means all servers have same probability of
failure and availability, which is an unrealistic assumption.

12
IEICE TRANS. COMMUN., VOL.E97–B, NO.1 JANUARY 2014

Table 1 Comparison of survivable embedding schemes.

Backup provisioning
Proposals Virtual Nodes Virtual Links Estimation of the

number of
backups

Heterogenity Computing
Availability

VM Colocation

Xu et al. [10] Yes No No No No Yes
Yu et al. [15] Yes No No No No No

Yeow et al. [16] Yes No Yes No Yes No
Rahman et al. [17] No Yes N/A N/A No N/A
Bodik et al. [11] No No No No No No

Hi-VI Yes Yes Yes Yes Yes Yes

They also assumed that a physical node cannot host more
than one virtual node from the same VDC. Yu et al. [15]
proposed a backup provisioning scheme for improving vir-
tual infrastructure survivability while minimizing resources
used to provision backups. Assuming that only a single fail-
ure could occur at a time, they formulate a Mixed Integer
Linear Program (MILP) that estimates the required number
of redundant nodes and their placement in order to minimize
networking resources provisioned for the backup nodes.

Rahman et al. [17] presented two policies for solving
survivable virtual network embedding problem. The first
policy addresses failures proactively by provisioning backup
paths for potential failures in the future, however, this ap-
proach may lead to the wastage of up to 50% of physi-
cal resources. The second policy heuristic is a reactive ap-
proach that precomputes a set of possible backup detours for
each substrate link. When a substrate link fails, the affected
virtual links are rerouted along one of the backup detours.
However, this approach does not consider multiple link fail-
ures.

Table 1 compares the features of survivable embedding
proposals. The limitations of the state of the art research can
be summarized as follows:

• Previous proposals have either ignored the availabil-
ity of the underlying physical components (e.g., [10],
[11]) or considered that the cluster is homogenous, i.e.,
nodes have similar failure rates and availability (e.g.,
[16]). Hence, it is more realistic and challenging to
consider the heterogeneity existing in production data
center environments in order to take more informed re-
source allocation decisions and improve availability of
the embedded VDCs.

• Existing proposals (e.g., [15], [16]) assume a single
physical server can host at most one virtual node from
the same VDC. This assumption is not realistic in pro-
duction environments. For instance, if a VDC com-
prises hundreds of VMs, these schemes map them onto
hundreds of physical servers. This results in higher
bandwidth consumption and requires more physical
nodes to be active. Ideally, it should be possible to al-
low multiple VMs from the same VDC to be hosted on
a single physical node if the required availability is sat-
isfied. This will result in reduced bandwidth usage and
less active physical nodes, and lead to reduced enegy
costs, increased VDC acceptance and CP revenue.

• Previous work (e.g., [16]) does not consider the fail-
ure rate of networking components (e.g., physical
switches) when computing the VDC availability. How-
ever, virtual links are mapped onto physical paths that
may cross multiple physical switches. It is there-
fore mandatory to factor in switches’ availability when
computing the availability of VDCs.

In this paper, we aim to address these limitations by develop-
ping a technique to estimate VDC availability in a heteroge-
neous environment and then leverage it to devise a more ef-
ficient resource allocation scheme that achieves availability
requirements and at the same time minimizes energy costs.

3. Survivability in Virtualized Data Centers

In this section, we provide a technique to compute the
VDC availability and a mathematical formulation of the
availability-aware embedding problem.

3.1 VDC Availability in Heterogenous Environments

Once the SP provides the requirements of his VDC in terms
of resources and availability, the CP is responsible for map-
ping the VDC onto the physical data center such that the re-
quired availability is satisfied. Hence, the CP should be able
to (1) evaluate the availability of the embedded virtual com-
ponents based on the availability of the underlying physi-
cal infrastrucure, and to (2) estimate the number of backups
needed to meet the required availability.

In the following, we first describe how we model the
physical data center and the VDC requests. We then present
a technique to compute the availability of a VDC taking into
consideration the heterogenous characteristics of the physi-
cal equipments. Finally, we formulate the survivable VDC
embedding problem as an optimization problem that min-
imizes the number of active physical machines, the band-
width usage in the data center network as well as the number
of backups while satisfying the required VDC availability.

3.1.1 Physical Data Center

We model the data center network as a graph Ḡ = (N̄, L̄)
where N̄ is the set of physical nodes and L̄ is the set of phys-
ical links. N̄ includes the set of physical machines M̄ and
the set of physical switches and routers S̄ (i.e., N̄ = M̄ ∪ S̄).

RABBANI et al.: ON ACHIEVING HIGH SURVIVABILITY IN VIRTUALIZED DATA CENTERS
13

Each physical node n̄ ∈ N̄ has a residual capacity cr
n̄ for

each resource type r ∈ R where R = {1 . . . |R|} is the set of
resource types. Each link l̄ ∈ L̄ has a residual bandwidth
capacity bl̄. The availability An̄ ∈ [0, 1] of a physical com-
ponent n̄ is given by:

An̄ =
MT BFn̄

MT BFn̄ + MTTRn̄
(1)

where MT BFn̄ and MTTRn̄ represent respectively the Mean
Time Between Failures and the Mean Time To Repair for the
node n̄. Both MT BFn̄ and MTTRn̄ can be obtained from
historical records of failure events. Furthermore, we define
ūn̄l̄ and v̄n̄l̄ as boolean variables that indicate whether a phys-
ical node n̄ ∈ N̄ is the source and the destination of physical
link l̄ ∈ L̄, respectively.

3.1.2 VDC Requests

In this work, we limit our study to VDC requests having a
star topology as shown in Fig. 1. Such a virtual topology is
suitable for hosting many types of applications like web ap-
plications, MapReduce and BLAST [3]. Hence, a SP has to
specify the number of virtual nodes constituting the VDC,
the amount of resources for each of the VMs (i.e., CPU,
memory and disk) and links (i.e., bandwidth) as well as the
required VDC availability (see Fig. 1(a)). Similar to a phys-
ical data center, a VDC request can be modelled as a graph
G = (N, L), where N is the set of virtual nodes (including the
virtual switch) and L is the set of virtual links. The required
availability of the VDC is denoted by A . Each virtual node
n ∈ N has a capacity cr

n for each resource type r ∈ R, and
each virtual link l ∈ L has a bandwidth capacity bl. Since
we have only a single virtual switch, we reserve for it the
index 0. We also define two boolean variables unl and vnl to
indicate whether a virtual node n ∈ N is the source or the
destination of virtual link l ∈ L, respectively.

Fig. 1 A sample VDC request and its embedding in physical data center.

3.1.3 Variable Definitions

We hereafter define variables that capture the mapping of
virtual nodes and links onto the physical infrastructure. Let
xnn̄ ∈ {0, 1} be a boolean variable that indicates whether vir-
tual node n is mapped onto the substrate machine n̄. Let
fll̄ ∈ {0, 1} be a boolean variable that indicates whether phys-
ical link l̄ is used to embed virtual link l.

We also define wns̄ ∈ {0, 1} that indicates whether phys-
ical switch s̄ is used to embed the virtual link connecting
the virtual switch to the virtual node n. In other words, if
wns̄ = 1 the failure of physical switch s̄ causes the virtual
node n to be unavailable. Hence, wns̄ can be expressed as:

wns̄ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if

∑
l∈L
∑

l̄∈L̄(unl fll̄usl̄ + unl fll̄vsl̄

+vnl fll̄usl̄ + vnl fll̄vsl̄) > 0

0 otherwise

(2)

where unl fll̄us̄l̄ indicates whether physical link l̄ is used to
embed virtual link l, and virtual node n is source of l, and
physical node s̄ is source of l̄. We also define yn̄ as a boolean
variable that indicates whether a physical node n̄ ∈ N̄ is used
either to embed a VM or switch or to embed a virtual link
(as an intermediate node in the physical path).

3.1.4 Computing VDC Availability

In the following, we provide a technique to compute the
availability of a VDC request G = (N, L). Let NB and LB de-
note the set of backup nodes and links that are provisioned
by the CP in order to improve the availability of the VDC.
The resulting graph including the backup links and nodes is
denoted by G′ = (N′, L′) where N′ = N∪NB and L′ = L∪LB

where NB and LB are the set of backup nodes and links, re-
spectively. Note that for the considered star topology we
have |NB| = |LB|. A VDC is available if the number of failed
virtual nodes is at most the number of provisioned backups.
Let Pr(k) be the probability that k virtual nodes fail. Hence,
the availability of the whole VDC Avdc can be written as:

Avdc =

K∑
k=0

Pr(k) = Pr(0) +
K∑

k=1

Pr(k) (3)

Let us first compute the probability that no virtual node fails
Pr(0). It can be written as the product of the availability of
all physical nodes hosting the VDC components:

Pr(0) =
∏

n̄:yn̄=1

yn̄An̄ (4)

Next, let us compute the probability Pr(k) where k ≥ 1.
The failure of k virtual nodes occurs only when physical
failures result in k VM failures. Let gm̄ be the number of
VMs mapped to physical machine m̄. It can be written as:

gm̄ =
∑
n∈N′

xnm̄ ∀m̄ ∈ M̄ (5)

14
IEICE TRANS. COMMUN., VOL.E97–B, NO.1 JANUARY 2014

Let gs̄ be the number of VMs that are disconnected if
the physical swtich s̄ fails. In other words, this switch is
used either to embed the virtual switch or as an intermediate
node between the physical server hosting the VM and the
physical node hosting the virtual switch. We have:

gs̄ =
∑
n∈N′
wns̄ ∀s̄ ∈ S̄ (6)

To evaluate the probability of k virtual nodes failure,
we need to consider every possible physical node failure that
will lead to k virtual nodes failure. The probability of hav-
ing a single physical node failure that causes k virtual nodes
failure can be written as:

∑
n̄:gn̄=k

⎛⎜⎜⎜⎜⎜⎜⎜⎝(1 −An̄)
∏

t̄∈N̄�{n̄}:yt̄=1

yt̄At̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠

where (1−An̄) is the probability of failure of physical node n̄
and
∏

t̄∈N̄�{n̄}:yt̄=1 yt̄At̄ is the probability that all other nodes
used to embed the VDC are available. Note that we con-
sider the failure of physical nodes that can impact k virtual
machines (i.e., gn̄ = k). However, in practice, multiple phys-
ical nodes can fail simultaneously and lead to k virtual node
failure. Therefore, we have:

Pr(k) ≥
∑

n̄:gn̄=k

⎛⎜⎜⎜⎜⎜⎜⎜⎝(1 −An̄)
∏

t̄∈N̄�{n̄}:yt̄=1

yt̄At̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (7)

Using Eqs. (3), (4), and (7), we have:

Avdc ≥
(∏

n̄:yn̄=1

yn̄An̄

)

+

K∑
k=1

(∑
n̄:gn̄=k

(
(1 −An̄)

∏
t̄∈N̄�{n̄}:yt̄=1

yt̄At̄
))

This provides a lower bound on the availability of the
VDC. Let A lb

vdc denote this lower bound, it can be written as:

A lb
vdc =

(∏
n̄:yn̄=1

yn̄An̄

)
(8)

+

K∑
k=1

(∑
n̄:gn̄=k

(
(1 −An̄)

∏
t̄∈N̄�{n̄}:yt̄=1

yt̄At̄
))

That is, the availability of the VDC Avdc is at least A lb
vdc.

3.2 Availability-Aware Embedding

In the following we formulate the availability-aware embed-
ding problem. We start by describing the embedding con-
straints then provide the optimization objective function.

• Embedding constraints:

When embedding the VDC, there are many constraints that
should be satisfied. For instance, in order to ensure that the
capacities of physical resources are not violated, the follow-
ing constraints must be satisfied:

∑
n∈N′

xnn̄cr
n ≤ cr

n̄ ∀n̄ ∈ N̄, r ∈ R (9)

∑
l∈L′

fll̄bl ≤ bl̄ ∀l̄ ∈ L̄ (10)

We also require the link embedding to satisfy the flow con-
straint between every source and destination node pairs in
each VDC topology, namely:

−
∑
l̄∈L̄

v̄n̄l̄ fll̄ +
∑
l̄∈L̄

ūn̄l̄ fll̄ =
∑
n∈N

xnn̄unl −
∑
n∈N

xnn̄vnl

∀l ∈ L′, n̄ ∈ N̄ (11)

Here
∑

n∈N xnn̄unl is equal to 1 if n is the source of the link
l of VDC and n is embedded in the physical node n̄. Equa-
tion (11) essentially states that the total outgoing flows of a
physical node n̄ for a virtual link l is equal to the total in-
coming flows unless n̄ hosts either a source or a destination
virtual node.

Furthermore, we need to consider the node placement
constraints. For instance, VMs should only be placed in
physical servers whereas virtual switches may be placed
either in switches (e.g., flowvisor instance [18]) or servers
(e.g., open vSwitch instance [19]). Hence, we define x̃nn̄ to
indicate whether physical node n̄ is able to host virtual node
n of the VDC. Thus, if a virtual node n is a virtual machine
(not a switch), we have x̃nn̄ = 0∀n̄ ∈ S̄ and x̃nn̄ = 1∀n̄ ∈ M̄.
Hence, the the placement constraint can be written as:

xnn̄ ≤ x̃nn̄ ∀n ∈ N′, n̄ ∈ N̄ (12)

Additionally, we need to ensure that the minimum number
of provisioned virtual nodes is at least the number of nodes
required by the SP. Hence, we have:

∑
n∈N′

∑
n̄∈N̄

xnn̄ ≥ |N | (13)

Furthermore, to ensure that the virtual switch is mapped, the
following equation must hold:
∑
n̄∈N̄

x0n̄ = 1 (14)

Furhermore, yn̄ must be equal to 1 if the physical node n̄
is used to host any virtual node or used as an intermediate
node to embed a virtual link. This implies the following
constraints must hold:

yn̄ ≥ xnn̄ ∀n ∈ N′, n̄ ∈ N̄ (15)

yn̄ ≥ wnn̄ ∀n ∈ N′, n̄ ∈ S̄ (16)

yn̄ ≥ fll̄ūn̄l̄ ∀n̄ ∈ N̄, l ∈ L′, l̄ ∈ L̄ (17)

yn̄ ≥ fll̄v̄n̄l̄ ∀n̄ ∈ N̄, l ∈ L′ (18)

We have also to ensure that the VDC availability A lb
vdc

is higher than the required availability. That is:

A lb
vdc ≥ A (19)

RABBANI et al.: ON ACHIEVING HIGH SURVIVABILITY IN VIRTUALIZED DATA CENTERS
15

• Objective function:

The goal of the embedding is to minimize the number of
the physical nodes used for embedding the VDC as well as
the amount of consumed bandwidth while maintaining the
constraints of Eqs. (9)–(19). Hence our objective function
can be written as follows:

min

⎛⎜⎜⎜⎜⎜⎜⎝α
∑
n̄∈N̄

yn̄ pn̄+β
∑
l̄∈L̄

∑
l∈L′

fll̄bl+γ
∑
n̄∈N̄

∑
n∈N′

⎛⎜⎜⎜⎜⎜⎝xnn̄

∑
r∈R
wrcr

n

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

(20)

where pn̄ is the energy cost defined as:

pn̄ =

⎧⎪⎪⎨⎪⎪⎩
0 if the machine n̄ is already active

tcn̄ if the machine is off
(21)

tcn̄ is cost of turning on the machine n̄ and wr is the weight
factor for resource type r ∈ R, which depends on the scarcity
of the resource. The weight factor α, β and γ are used
to strike the balance between energy cost, communication
cost, and computation cost. This optimization problem is
NP-hard as it generalizes the multi-dimensional bin pack-
ing problem [4]. Therefore, we provide a heuristic to solve
the problem in the subsequent section.

4. Heuristic

This section describes a heuristic for solving the availability-
aware VDC embedding problem that ensures that each em-
bedded VDC satisfies its requirements in terms of availabil-
ity and resources. The goal is to minimize the number of
active machines and the consumed bandwidth in the data
center network with the goal of increasing CP’s income.

Our algorithm is described in Algorithm 1. The VDC
embedding is carried out in two phases: (1) VM mapping,
(2) virtual switch and link mapping. All physical servers are
sorted based on their status (active or inactive) and availabil-
ity. Since our aim is to reduce the number of active servers,
the algorithm tries first to embed VMs in the active servers.
When a VDC is received, the VMs are sorted in descend-
ing order according to size of their requested resources. The
size of VM n is captured by sizen defined as:

sizen =
∑
r∈R
wrcr

n ∀n ∈ N (22)

where wr is the weight factor for resource type r ∈ R, which
depends on the scarcity of the resource. The intuition is that
it is usally harder to map large VMs. The algorithm parses
the sorted list of servers and finds the one that can satisfy
the resource requirements of the VM n. This aims also at
embedding VMs in servers with the highest availability in
order to avoid the need for backups. After embedding all
VMs n ∈ N, we start mapping the virtual switch and the
links. If Avdc < A , we provision B backups where B is
the minimum number of VMs that are embedded in a single
physical server. That is:

B = min

⎛⎜⎜⎜⎜⎜⎝
∑
n∈N

xnn̄

⎞⎟⎟⎟⎟⎟⎠ ∀n̄ ∈ N̄ (23)

The idea is to provision enough backups to take over the
failure of the physical machines hosting the lowest number
of VMs. After embedding B backup VMs, we check again
Avdc. If it is still lower than the requested availability, an-
other VM backup is provisioned in a new physical node that
is not hosting any of the previously embedded VMs. This
process is repeated until the required availability is reached.
In this case, the VDC is accepted. In order to avoid overly
backup provisioning, the CP can set a maximum number of

Algorithm 1 Availability-aware VDC embedding
1: VM Mapping Phase:
2: Sort servers M̄ by status (active or not) and availability
3: Sort N by their sizei

n defined in Eq. (22)
4: for each virtual machine n ∈ N do
5: if EmbedNode(n, 1) = −1 then
6: Reject request
7: end if
8: end for
9: B← 0

10: while A lb
vdc < A and B ≤ Bmax do

11: if B = 0 then
12: B = (minn̄∈N̄

∑
n∈N xnn̄)

13: EmbedNode(nmax, B) {nmax: the node with the largest
size.}

14: else
15: B← B + 1
16: EmbedNode(nmax, 1)
17: end if
18: end while
19: Switch and Link Mapping Phase:
20: Cc,min ← ∞ {Cc,min is the minimum communication cost}
21: for each n̄ ∈ N̄ do
22: cost(n̄)← 0
23: Compute total communication cost Cc

24: if Cc < Cc,min then
25: Cc,min ← Cc ; p ← n̄ {p: candidate physical node for

hosting the switch}
26: end if
27: end for
28: if B ≤ Bmax then
29: Accept the VDC request
30: else
31: Reject the VDC request
32: end if

Algorithm 2 EmbedNode(n,b)
1: Input : virtual node n, number of replicas b
2: Output: Physical node n̄ or -1
3: Sort servers M̄ by status (active or not) and availability
4: for i← 1, b do
5: Find n̄ ∈ M̄ able to host n
6: if Not found then
7: Return -1
8: end if
9: Embed n in n̄

10: end for
11: Return n̄

16
IEICE TRANS. COMMUN., VOL.E97–B, NO.1 JANUARY 2014

backups Bmax. If the number of backups exceeds Bmax, the
request is rejected.

Once the VM mapping is done, the virtual switch and
link mapping are carried out jointly. To embed a virtual link,
we consider the shortest path between the physical node
hosting the switch and the one hosting a VM. We define
the virtual link communication cost as the total number of
hops in the corresponding physical path multiplied by the
link bandwidth (i.e., hop_count × bandwidth). The total
VDC communication cost (Cc) is then defined as the sum
of communication costs of all virtual links. In order to find
the optimal embedding for the virtual switch and the links,
the algorithm computes the VDC communication cost for
all possible placements of the virtual switch. The final em-
bedding is the one that minimizes this cost.

In our heuristic, we first try to embed VMs into physi-
cal servers that are already active. This leads to less energy
consumption, and hence to reduced costs. Furthermore, we
try to embed VMs of the same VDC as close as possible
to each other. This reduces communication costs between
VMs and the consumed bandwidth in the network. Finally,
the algorithm adds backup incrementally until the required
availability is met to avoid the over-estimation of backup re-
quirement. Therefore, our heuristic takes into consideration
the goals stated in the objective function (Eq. (20)).

5. Experiments

In this section, we evaluate the effectiveness of our
availability-aware VDC embedding algorithm (Hi-VI)
through simulations. To this end, we simulate a physical
data center of 120 physical machines organized into four
racks. The data center network consists of 4 top-of-rack
switches, 4 aggregation switches, and 4 core switches con-
nected according to the VL2 topology. We assume each
physical machine contains 4 CPU cores, 8 GB of memory,
1 TB hard disk space, and 1 Gbps NIC cards. In order to
consider the heterogeneity of the data center equipments,
availabilities of servers and switches are selected randomly
from {0.99, 0.999, 0.9999, 0.99999}. VDC requests arrive
following a Poisson distribution with an average rate of 0.02
requests per second during day time and 0.01 requests per
second during night time. This reflects demand fluctuations
in data centers. We assume all VDCs have a star topology
consisting of a single virtual switch connected to multiple
VMs. The number of VMs per VDC is taken randomly be-
tween 1−20. The size of each VM in terms of CPU, memory
and disk is chosen randomly between 1 − 4 cores, 1 − 2 GB
of RAM and 1 − 10 GB of disk space, respectively. The ca-
pacity of virtual links are also generated randomly between
1−100 Mbps. Furthermore, the required availability for each
VDC is generated randomly from {0.99, 0.999, 0.9999} cho-
sen purposely to be higher than the availability guaranteed
by Google Apps SLA [20]. The lifetimes of VDCs are ex-
ponentially distributed with an average of 3 hours. Finally,
if a VDC is not accepted immediately because it is not pos-
sible to meet the requirements in terms of availability or re-

sources, it is kept in a waiting queue for a maximum of one
hour after which it is automatically withdrawn.

Since, previous proposals in the literature ignore equip-
ment heterogeneity in production data centers, it is not pos-
sible to directly compare them to Hi-VI. Therefore, we de-
veloped a baseline resource allocation algorithm that com-
bines [11] and [16]. Specifically, the baseline operates in
two steps: similar to [11], it starts by spreading VMs across
active physical nodes in order to maximize the availability.
Then, the algorithm provisions a backup VM in a randomly
selected physical node and evaluates the VDC availability.
This backup provisioning process is repeated until the re-
quired availability is satisfied. It is worth noting that, similar
to [16], the baseline is oblivious to the existent heterogene-
ity in terms of failure rates and availability of the underlying
physical components (since the placement of backups does
not consider the availability of physical nodes).

We first evaluate the instantaneous income of Hi-VI
and the number of accepted VDC requests compared to the
baseline algorithm. The instantaneous income is provided
by the following equation†:

Rinst =
∑
v∈V

⎛⎜⎜⎜⎜⎜⎝μb
∑
l∈L

bvl+
∑
n∈N

∑
r∈R
μrcvrn

⎞⎟⎟⎟⎟⎟⎠−μe
∑
n̄∈N̄

yn̄En̄ (24)

where μband μr are the unit selling prices for bandwidth and
resource type r for a single timeslot, respectively. V is the
set of embedded VDCs at the current timeslot and the su-
perscript v refers to VDC number v. The energy cost paid
by the CP and the energy consumed by machine n̄ during a
timeslot are denoted by μe and En̄, respectively.

Figure 2(a) shows that Hi-VI leads to much higher
instantaneous income than the baseline. Figure 2(b) con-
firms that our algorithm accepts more VDC requests than
the baseline. One reason for this higher income is the higher
acceptance of VDC requests. Another reason is that the
number of used physical machines is higher with the base-
line algorithm than with Hi-VI (Fig. 3). This is because the
baseline algorithm spreads the VMs across the physical ma-
chines, and hence turns on more servers. Thus, it leads to
a higher energy costs than Hi-VI. The utilization of the dif-

Fig. 2 Income and number of embedded VDCs.

†In order to compute the instantaneous income, resource de-
mands (in terms of CPU, memory and bandwidth) are normalized
between 0 and 1.

RABBANI et al.: ON ACHIEVING HIGH SURVIVABILITY IN VIRTUALIZED DATA CENTERS
17

Fig. 3 Number of active physical machines.

Fig. 4 Utilization of CPU, memory and bandwidth.

Fig. 5 Backup cost.

ferent resources (CPU, memory, and bandwidth) for Hi-VI
and the baseline is depicted in Fig. 4. We can notice that
the utilization of CPU and memory are comparable for both
algorithms. However, the baseline has accepted much less
VDCs, which means that the baseline has allocated a lot of
resources for provisioning the backups. We also notice a sig-
nificant difference in the bandwidth utilization. The baseline
requires more bandwidth than Hi-VI, although it accepts
less VDC requests. The baseline spreads the VMs across the
physical servers and thus uses more bandwidth to embed the
virtual links. Finally, Fig. 5 shows the cumulative backup
costs of CPU, memory and bandwidth for both algorithms.
The backup cost of a VDC is computed as the amount of
resources used by the provisioned backup multiplied by its
lifetime. We can see that the baseline has allocated much
more backup resources than Hi-VI in terms of cpu, mem-
ory and bandwidth. These results clearly show that Hi-VI
outperforms the baseline in terms of income, accepted VDC
requests and significantly reduces backup costs.

6. Conclusions

As resource availability is a prime concern for cloud users,
providers are prompted to roll out computing and network-
ing resources with more stringent availability guarantees.
Despite recent research on the problem, none has considered
the heterogeneity of the production data center components
in terms of failure rates and availability to estimate the re-
quired amount of backup resources reserved to ensure the
targeted availability.

In this paper we proposed Hi-VI, a VDC manage-
ment framework that takes into account the heterogeneity
of cloud data center equipments to dynamically provision
backup resources in order to ensure required VDC avail-
ability. Through simulations, we demonstrated that Hi-VI
is able to satisfy VDC’s availability and resource require-
ments while minimizing operational costs (notably energy
costs). Compared to heterogeneity-oblivious solutions, Hi-
VI increases by up to 20% the cloud provider net income
while minimizing by up to 40% the operational costs.

Acknowledgment

This work was supported by the Natural Science and Engi-
neering Council of Canada (NSERC) under the Smart Ap-
plications on Virtual Infrastructure (SAVI) Research Net-
work.

References

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.
com/ec2/

[2] Google Compute Engine. https://cloud.google.com/
[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-

dictable datacenter networks,” Proc. ACM SIGCOMM, Aug. 2011.
[4] M.F. Zhani, Q. Zhang, G. Simon, and R. Boutaba, “VDC Plan-

ner: Dynamic migration-aware virtual data center embedding for
clouds,” IM, 2013.

[5] M. Rabbani, R. Esteves, M. Podlesny, G. Simon, L.Z. Granville, and
R. Boutaba, “On tackling virtual data center embedding problem,”
IM, 2013.

[6] C. Guo, G. Lu, H.J. Wang, S. Yang, C. Kong, and P. Sun, “Sec-
ondnet: A data center network virtualization architecture with band-
width guarantees,” ACM CoNEXT, 2010.

[7] Downtime Outages and failures, understanding their true costs.
http://www.evolven.com/blog/downtime-outages-and-failures-under
standing-their-true-costs.html

[8] X. Wu, D. Turner, C.C. Chen, D.A. Maltz, X. Yang, L. Yuan, and
M. Zhang, “Netpilot: Automating datacenter network failure mit-
igation,” SIGCOMM Comput. Commun. Rev., vol.42, no.4, Aug.
2012.

[9] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” Proc.
ACM SIGCOMM, 2011.

[10] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable virtual
infrastructure mapping in virtualized data centers,” IEEE Interna-
tional Conference on Cloud Computing (CLOUD), 2012.

[11] P. Bodík, I. Menache, M. Chowdhury, P. Mani, D.A. Maltz, and
I. Stoica, “Surviving failures in bandwidth-constrained datacenters,”
Proc. ACM SIGCOMM, 2012.

18
IEICE TRANS. COMMUN., VOL.E97–B, NO.1 JANUARY 2014

[12] W.L. Yeow, C. Westphal, and U.C. Kozat, “Designing and embed-
ding reliable virtual infrastructures,” Tech. Rep., March 2010.

[13] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D.A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” Proc. ACM SIGCOMM, 2009.

[14] K.V. Vishwanath and N. Nagappan, “Characterizing cloud comput-
ing hardware reliability,” Proc. ACM Symposium On Cloud Com-
puting, SOCC, 2010.

[15] H. Yu, V. Anand, C. Qiao, and G. Sun, “Cost efficient design of sur-
vivable virtual infrastructure to recover from facility node failures,”
IEEE ICC, pp.1–6, 2011.

[16] W.L. Yeow, C. Westphal, and U.C. Kozat, “Designing and embed-
ding reliable virtual infrastructures,” SIGCOMM Comput. Com-
mun. Rev., vol.41, no.2, April 2011.

[17] M. Rahman and R. Boutaba, “SVNE: Survivable virtual network
embedding algorithms for network virtualization,” pp.1–14, 2013.

[18] R. Sherwood, G. Gibb, K.K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network be the
testbed?,” Proc. USENIX Conference on Operating Systems Design
and Implementation, OSDI, 2010.

[19] Open vSwitch. http://openvswitch.org/
[20] Google Apps Service Level Agreement. http://www.google.com/

apps/intl/en/terms/sla.html

Md Golam Rabbani is currently pursu-
ing his M.Math. degree in Computer Science at
University of Waterloo, under the supervision of
Prof. Raouf Boutaba. He received the Master
of Information Technology degree from Monash
University, Australia, in 2011, and the B.Sc.
degree in Computer Science and Engineering
from Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh, in 2007. He
worked as a system engineer in a telecommu-
nication company from 2007 to 2009. His re-

search interests include data center, cloud computing, future Internet archi-
tecture, and wireless communication.

Mohamed Faten Zhani is currently
a postdoctoral research fellow at the Univer-
sity of Waterloo, Canada (advisor: Raouf
Boutaba). He received his Ph.D. in Com-
puter science from the University of Quebec
in Montreal, Canada in 2011. His research
interests include virtualization, resource man-
agement in cloud computing environment and
network performance evaluation. Web page:
https://cs.uwaterloo.ca/~mfzhani/

Raouf Boutaba received the M.Sc. and
Ph.D. degrees in computer science from the Uni-
versity Pierre & Marie Curie, Paris, in 1990
and 1994, respectively. He is currently a pro-
fessor of computer science at the University of
Waterloo and a distinguished visiting profes-
sor at the division of IT convergence engineer-
ing at POSTECH. His research interests include
network, resource and service management in
wired and wireless networks. He is the found-
ing editor in chief of the IEEE Transactions on

Network and Service Management (2007–2010) and on the editorial boards
of other journals. He has received several best paper awards and other
recognitions such as the Premiers Research Excellence Award, the IEEE
Hal Sobol Award in 2007, the Fred W. Ellersick Prize in 2008, and the Joe
LociCero and the Dan Stokesbury awards in 2009. He is a fellow of the
IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

