
IEICE TRANS. COMMUN., VOL.E97–B, NO.9 SEPTEMBER 2014
1865

PAPER

A Local Resource Sharing Platform in Mobile Cloud Computing∗

Wei LIU†a), Student Member, Ryoichi SHINKUMA†, Senior Member, and Tatsuro TAKAHASHI†, Fellow

SUMMARY Despite the increasing use of mobile computing, exploit-
ing its full potential is difficult due to its inherent characteristics such as
error-prone transmission channels, diverse node capabilities, frequent dis-
connections and mobility. Mobile Cloud Computing (MCC) is a paradigm
that is aimed at overcoming previous problems through integrating mobile
devices with cloud computing. Mobile devices, in the traditional client-
server architecture of MCC, offload their tasks to the cloud to utilize the
computation and storage resources of data centers. However, along with
the development of hardware and software technologies in mobile devices,
researchers have begun to take into consideration local resource sharing
among mobile devices themselves. This is defined as the cooperation based
architecture of MCC. Analogous to the conventional terminology, the re-
source platforms that are comprised of surrounding surrogate mobile de-
vices are called local resource clouds. Some researchers have recently ver-
ified the feasibility and benefits of this strategy. However, existing work has
neglected an important issue with this approach, i.e., how to construct local
resource clouds in dynamic mobile wireless networks. This paper presents
the concept and design of a local resource cloud that is both energy and time
efficient. Along with theoretical models and formal definitions of problems,
an efficient heuristic algorithm with low computational complexity is also
presented. The results from simulations demonstrate the effectiveness of
the proposed models and method.
key words: local resource sharing, energy-efficient, mobile cloud comput-
ing

1. Introduction

Mobile cloud computing (MCC) that is aimed at integrat-
ing mobile devices with cloud computing has been intro-
duced in the last few years. MCC can be roughly divided
into two different architectures that are client-server based
and cooperation based [1]. In the traditional client-server
based architecture, the cloud (data center) provides overall
resource management for mobile devices. Mobile devices
utilize resources in the cloud to enhance their functionality
and improve their processing capabilities.

However, along with the development of hardware and
software technologies, modern mobile devices (e.g., smart
phones, wearable devices, and smart vehicles) have many
more resources than previously, e.g., communication, com-
putational, and information resources. These resources are
not always fully utilized by their owners. Consequently, two
shortcomings of the client-server based architecture have

Manuscript received January 20, 2014.
Manuscript revised April 30, 2014.
†The authors are with the Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606-8501 Japan.
∗Part of the content of this paper has been published in pro-

ceedings of APNOMS 2013.
a) E-mail: liu@cube.kuee.kyoto-u.ac.jp

DOI: 10.1587/transcom.E97.B.1865

emerged: (1) Idle resources in the mobile devices them-
selves are not efficiently utilized. (2) Persistent connectivity
to the cloud may be unavailable for mobile devices. The co-
operation based architecture of MCC considers mobile de-
vices to be part of the cloud to solve these problems. Thus,
apart from utilizing resources in the traditional cloud (data
center), mobile devices in the local vicinity pool and share
idle resources among themselves. This approach not only
makes use of pervasive resources but also enables resource
sharing even when mobile devices are not able to be con-
nected to remote clouds. The resource platform that is com-
prised of surrounding surrogate devices is called a local re-
source cloud (LRC) in this paper to differentiate it from the
traditional cloud. Due to its huge potential value, the coop-
eration based architecture of MCC has attracted increasingly
more attention from both academic and industrial commu-
nities [1]–[5]. This architecture is also called “Fog Comput-
ing” [3], “wireless distributed computing” [4] and the “ve-
hicular cloud” in vehicular ad-hoc networks (VANETs) [5].

Error-prone transmission channels, diverse node capa-
bilities, the mobility of nodes, and limited apriori knowl-
edge of environments have a significant impact on the avail-
ability and reliability of devices running in mobile wireless
networks. Therefore, compared with wired networks, we
argue that four additional properties need to be considered
when constructing LRCs in mobile wireless networks: (1)
Multiple resource providers (RPs) are needed. Although re-
sources in mobile devices have increased rapidly, they are
still limited compared to traditional computing devices (e.g.,
PCs, servers, and clusters). As a result, resources from mul-
tiple RPs need to be gathered to facilitate task processing.
(2) Physical network conditions should be integrated. Error-
prone channels, locations and mobility of nodes signifi-
cantly impact the quality of resource sharing. (3) The com-
putational effectiveness of algorithms is important. Mobile
wireless networks are highly dynamic due to the mobility
of nodes. The LRCs must be in “real-time” and established
to utilize available resources opportunistically. (4) Energy
consumption should also be taken into account. Increasingly
more “heavy applications” (e.g., image processing for video
games, natural language processing, and streaming media)
are currently favored by mobile users. These applications
are expensive in terms of energy consumption. Considering
the trends in mobile devices and batteries (or gasoline prices
for vehicles), bottlenecks in energy consumption by mobile
devices are unlikely to be solved in the near future.

However, previous work has only concentrated on veri-

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

1866
IEICE TRANS. COMMUN., VOL.E97–B, NO.9 SEPTEMBER 2014

fying the effectiveness of the cooperative MCC to the best of
our knowledge [6], [7]. Neither of them have referred to how
LRCs are constructed, especially for the ones comprised of
multiple RPs in dynamic mobile environments. Therefore,
this paper presents the design of an LRC that selects multi-
ple RPs to construct local resource platforms in MCC. The
three main contributions of this paper are: (1) It presents
the concept and design of an energy-efficient LRC in mo-
bile networks that accelerates task completion through re-
source sharing among mobile devices in the local vicinity.
(2) Theoretical models and a formal problem definition of
an energy-efficient LRC are proposed. (3) A heuristic al-
gorithm is presented that we prove to be efficient through
extensive simulations.

The remainder of this paper is organized as follows.
Based on a literature review in Sect. 2, Sect. 3 defines the
concept of an LRC. Our analysis of the LRC and formal
problem definitions are presented in Sect. 4. The heuristic
algorithm is introduced in Sect. 5. Section 6 presents the
simulation results. Section 7 concludes the paper.

2. Related Work

2.1 Mobile Cloud Computing

Much research has recently focused on the cooperative ar-
chitecture of MCC. Huerta-Canepa and Lee [6] and Fitzek
et al. [7] demonstrated the feasibility of cooperative resource
sharing by surrounding surrogate mobile devices through
experiments. The former researchers [6] presented the mo-
tivation and preliminary design for a framework to create
virtual ad hoc cloud computing providers. They established
prototype system based on mobile phones. Their prelim-
inary results indicated the time efficiency of cooperation
by mobile devices. The later researchers [7] considered
an approach in which a centralized network (cellular) dy-
namically and collaboratively interacted with a local dis-
tributed network connected over short-range links (ad hoc
and peer-to-peer) that aimed at achieving better use of re-
sources (mostly energy and spectra). However, neither of
them referred to how local resource platforms were to be
constructed, especially in dynamic mobile environments.

Because battery capacity can’t cope with the develop-
ment of mobile applications, many researchers have pro-
posed different energy-efficient solutions in the background
of MCC. Cuervo et al. [8] implemented an mechanism that
dynamically offloaded applications from mobile phones to
surrounding infrastructures to conserve energy. Chun et
al. [9] adopted VM migration to offload part of their applica-
tion workload to a server with resources. Fernando et al. [2]
surveyed related work in MCC.

2.2 Conventional Service Selection Algorithm

There has been much research on the selection of RPs in
wired networks mainly in the field of Web services [10]–

[13]. Selecting RPs that are constrained by multiple re-
quirements is usually an NP-hard problem [14], [15]. Many
heuristic approaches have been proposed to strike a trade-
off between the level of computational complexity and op-
timization. However, the network considered by [10]–[12]
was a wired and fix network that is assumed to have constant
routes and round trip time. Although Gu et al. [13] explicitly
modelled link delay and availability in large wired networks,
the optimized Dijkstra algorithm provided by them required
a global view of the whole network. It is obvious that the
assumption of constant routes or global view of the whole
network is hardly holds in mobile wireless networks.

Yang et al. [14] and Luo et al. [16] took into account
the selection of RPs in mobile wireless environments to sat-
isfy quality of service (QoS) requirements. The former re-
searchers [14] modelled availability (stability) of links based
on the mobility of end nodes and took it into consideration
when making decisions. The later researchers [16] proposed
a heuristic method based on the Cross Entropy (CE) algo-
rithm that preferred RPs moving slowly under the same con-
ditions. Formal analysis of the impact of mobility was left
for future work in [16]. Compared with our proposal in this
paper, they focused on selecting of a single RP of best qual-
ity while neglecting the possibility of utilizing resources in
multiple RPs to improve the quality of resource sharing.

3. Definitions of the Local Resource Cloud

3.1 System Model

We should take into account three steps to achieve resource
sharing by mobile devices: (1) Authentication of mobile de-
vices. Not every user of mobile devices wants to share his
resources with unrelated people for security and economi-
cal reasons. However, users may be motivated to share re-
sources with acquaintances or people who share similar in-
terests with them [2]. As a result, the devices that take part
in resource sharing should be authenticated in advance. (2)
Resource discovery. Resource discovery is aimed at finding
potential candidates for resource providers (RP) that own
idle resources. Routes to access these candidates should
also be discovered in this phase. (3) Selection of RPs. The
resource requester (RR) selects a group of RPs from candi-
dates and utilizes their resources to process its task. Since
selection of RPs is independent of different authentication
and resource discovery protocols, we focus on the selection
phase in this paper. Cho et al. [17] and Ververidis et al. [18]
surveyd related work on trust management and resource dis-
covery protocols in mobile networks. The terminologies and
abbreviations that are used throughout this paper have been
summarized in Table 1.

Here, we have assumed all mobile nodes have
some kind of short-range communication capabilities (e.g.,
WLAN ad hoc, or Bluetooth). After the resource discovery
phase, the RR is aware of all the surrounding mobile nodes
that have idle resources that are required (candidates of RPs)
and routes to access these nodes. Multi-hop routes in mo-

LIU et al.: A LOCAL RESOURCE SHARING PLATFORM IN MOBILE CLOUD COMPUTING
1867

Table 1 Terminologies & abbreviations.

LRC Local resource cloud that is a resource platform com-
posed of local mobile devices through short-range com-
munications.

RR A resource requester that generates an LRC to acceler-
ate processing of its task.

RP A resource provider that provides resources to an RR
in an LRC.

RN A relay node that contributes to the LRC by relayng
packets between the RR and RP.

Task A job generated by mobile users that consumes re-
sources to finish it, e.g., data downloading (commu-
nication bandwidth resources) and image processing
(CPU’s computational resources).

Fig. 1 System architecture.

bile networks without any infrastructure are also composed
of mobile nodes. These nodes are called relay nodes (RN)
in this paper. Then, the RR selects a group of RPs from
all candidates to utilize their resources. As a result, the RR,
selected RPs, and RNs along the routes from RR to RPs con-
stitute a resource sharing platform through short-range wire-
less communications. As previously described, we called it
an LRC since all the participating nodes are within the local
area of RR.

Figure 1(a) shows an example scenario that four can-
didates of RPs (a, b, c, and d) were discovered after the
resource discovery phase. Without loss of generality, can-
didates a, b, and d are assumed to be super candidates (S-
candidates) that have plenty of idle resources and candidate
c is assumed to be a common candidate (C-candidate) that
has few idle resources. The routes between RR and a, b,
d are relatively stable (S-Routes), while that between RR
and c are unstable (U-Route)†. Intuitively, the RR prefers
S-candidates that are connected by S-Routes for the sake of
more available resources and less maintenance cost. There-
fore, the RR prefers a, b, d over c in this scenario. Fig-
ure 1(b) indicates the resulting LRC if the RR selected can-
didates a, b, and d as its RPs. Theoretical models that
are applicable to more complex scenarios are formalized in
Sect. 4.

Two characteristics of an LRC need to be noted: (1)

†It depends on the characteristics of mobile nodes that consti-
tute the route, e.g., moving speed and wireless transmission range.

On-demand creation. The LRC is only created when an RR
wants to utilize more resources than it owns to accelerate
processing of its task. (2) Limited lifetime. After a gener-
ated task has finished, the RR releases the generated LRC to
make resources in RPs available to other nodes. It is possible
for multiple LRCs to simultaneously coexist in the physical
network.

3.2 Problem Statement

We mainly considered the sharing of computational and
communication resources among mobile devices in this pa-
per††. The concept of LRCs efficiently utilizes distributed
resources in surrounding mobile devices to accelerate task
completion. Compared with existing solutions that only take
into consideration a single RP, the LRC proposed in this
paper is able to utilize more resources to achieve superior
time efficiency of task processing since it comprises multi-
ple RPs. However, extra energy is consumed by LRCs in
the process of resource sharing compared with conventional
computing strategies in which a user processes a generated
task by itself only.

One of such consumption is the energy consumed by
maintaining the structure of an LRC. The RR has to keep
connected to RPs in the LRC during the process of resource
sharing to utilize resources in them (e.g., if an RR that lacks
the capability of Internet access wants to utilize 3G or LTE
resources in other nodes, it has to send (receive) data pack-
ages to (from) RPs that own these resources through the
LRC. An RR also has to coordinate and synchronize com-
putation processes among different RPs through the LRC
to share computational resources [4]). However, because
nodes are mobile, routes composed of RNs are dynamic.
When a route in the LRC becomes unavailable, an alterna-
tive route has to be discovered by routing protocols to guar-
antee communications between RR and the lost RP. Energy
is consumed in discovering an alternative route. Another
kind of extra energy consumption in the LRC is the energy
consumed by RNs to relay packets between RR and RPs.
It increases along with the increasing number of RNs (hops)
along the routes from RR to RPs. It is important to minimize
these two kinds of extra energy consumption while retaining
time efficiency benefitted from resource sharing when con-
structing an LRC.

We mainly aimed at reducing the energy consumed by
maintaining the structure of an LRC to improve its energy
efficiency in this paper. To achieve this objective, the pro-
posed solution prefers to select RPs connected by stable
routes rather than select those connected by unstable routes.
What is more, since a route with more RNs (more hops)
tends to be more dynamic due to the mobility of nodes, the
proposed solution still prefers to select RPs that are con-
nected by routes with fewer RNs under the same condi-
††Information resources, as described by Nishio et al. [19], can

be regarded as an alternative of communication and computational
resources, e.g., if a Web page is cached by a node, the node does
not need to consume bandwidth to receive it from Web servers.

1868
IEICE TRANS. COMMUN., VOL.E97–B, NO.9 SEPTEMBER 2014

Fig. 2 Research focus of this paper.

tions. This implicitly reduces the amount of energy con-
sumed by relaying packets in the resulting LRC. Unlike
wireless sensor networks (WSNs), the lifetime of an LRC
is much shorter and the depleted battery can be replaced by
users in good time (e.g., at home or office). RPs and RNs can
also decide whether to join an LRC according to their own
statuses. As a result, we leave sustainability and fairness of
LRCs (e.g., remaining battery power of RPs and RNs) for
future work. Figure 2 indicates the main research focus of
this paper as well as its relationship with previous work.

4. Proposed Model of the Energy-Efficient LRC

Theoretical models of an energy-efficient LRC are estab-
lished in this section. Two metrics used in the models are
introduced in the first two subsections: first, we define avail-
ability, which represents the dynamics of an LRC and deter-
mines the energy efficiency of an LRC; then, we define task
latency, which measures the time spent in processing a task
and illustrates the time efficiency of an LRC. Finally, the
problem of constructing an energy-efficient LRC while re-
taining its time efficiency is formalized based on these two
metrics.

4.1 Availability of LRC

As described in Sect. 3, energy consumed by maintaining an
LRC is greatly related to the dynamics of the network. The
availability of a link in mobile networks is greatly related to
the mobility of its end nodes. If one node i moves beyond
the transmission range of its neighboring node j, the link be-
tween nodes i and j becomes unavailable. The availability
of a link also expresses the availability of a route. Conse-
quently, the availability of an LRC depends on the availabil-
ities of links and routes in it.

4.1.1 Availability of Links

The definition for the availabilty of a link in this paper is the
same as it was in Yang et al. [14]. We briefly introduce it
here for completeness and convenience. Ni and Nj are two

Fig. 3 Availability of links.

end nodes of a link. The transmission range of a node is R†.
Every node moves randomly and its moving range is a cir-
cle with radius r. d is the distance between the two nodes.
We assume that transmission range R is known and every
node knows its location coordinates (e.g., through GPS or
peer based techniques [20]). As a result, distance d between
two nodes can be calculated with the Euclidean distance for-
mula:

d =
√

(xi − x j)2 + (yi − y j)2, (1)

where (xi, yi) and (x j, y j) are the coordinates of nodes Ni

and Nj. Finally, radius r of the moving range for a node
during the process of resource sharing is its moving speed
v multiplied by the period t in maintaining an LRC. Speed
v of a mobile node can be calculated based on its moving
distance during a period from t1 to t2 [21]:

v =
√

(xt1 − xt2)2 + (yt1 − yt2)2/(t2 − t1), (2)

where (xt1 , yt1) and (xt2 , yt2) are coordinates of a node at time
t1 and t2. The duration of period from t1 to t2 represents the
frequency of calculating speed. Therefore,

r = v × t. (3)

As Fig. 3 indicates, the possibility of node Ni stay-
ing within the communication range of node Nj is equal to
the area of node Ni’s moving range inside the transmission
range of node Nj divided by the overall area of node Ni’s
moving range. Consequently, the availability of a link com-
posed of two nodes is:

Al =
Areainter

Areamov
, (4)

where Areainter is the intersecting area of two circles and
Areamov is the area of Ni’s moving range. Equation (4) is
calculated by:

α = arccos

(
r2 + d2 − R2

2 × r × d

)
, (5)

β = arccos

(
R2 + d2 − r2

2 × R × d

)
, (6)

Al =
βR2 + αr2 − (R2sinβcosβ) + r2sinαcosα)

π × v2 × t2
. (7)

†Although bilateral communications were assumed in this pa-
per, this model can be applied to scenarios in which nodes have
different transmission ranges.

LIU et al.: A LOCAL RESOURCE SHARING PLATFORM IN MOBILE CLOUD COMPUTING
1869

Fig. 4 Availability of routes.

The proofs of Eqs. (5), (6), and (7) are in Yang et al. [14].

4.1.2 Availability of Routes

Routes in an LRC can be divided into three subcategories
of serial, parallel, and hybrid routes. Figure 4 outlines the
different subcategories of routes.

a) Serial routes
All the links in serial routes are connected in sequence.

A serial route is available if and only if all links in the route
are available. Therefore, the availability of a serial route is:

Ar =

k∏
i=1

Al−i, (8)

where k is the number of links in the route and Al−i is the
availability of the i-th link in the route.

b) Parallel routes
There are multiple links between two end nodes in par-

allel routes. A parallel route is available if and only if one
of the links in the routes is available. The availability of a
parallel route is:

Ar = 1 −
k∏

i=1

(1 − Al−i), (9)

where k is the number of links in the route and Al−i is the
availability of the i-th link in the route.

c) Hybrid routes
Both serial and parallel routes coexist in hybrid routes.

To calculate the availability of a hybrid route, we first con-
tract all the parallel routes to a serial link as Fig. 4 indi-
cates. The availability of the contracted link is calculated
with Eq. (9). After that, the hybrid route is reduced to a se-
rial route. Its availability can be calculated with Eq. (8).

4.1.3 Availability of LRC

The LRC generated by an RR is composed of routes to all
selected RPs. As a result, the availability of an LRC is:

Ao =

q∏
i=1

Ar−i. (10)

where q is the number of routes in the LRC and Ar−i is the
availability of the i-th route.

4.2 Task Latency

As presented in the last subsection, period t in maintaining
an LRC is a key variable in its availability. If t increases,
the availability of an LRC decreases. Therefore, more en-
ergy would be consumed to maintain the LRC. According
to the discussion in Sect. 3, an LRC is constructed when a
task is generated by an RR and is released after the task is
finished. As a result, we formally name the period t in main-
taining an LRC as task latency since it illustrates the effec-
tiveness of task processing from a user’s perspective. Task
latency includes three parts: the time to process the task, the
transmission delay of an LRC, and the delay in maintaining
routes†.

4.2.1 Time for Task Processing

Intuitively, the time consumed to process a task decreases if
the utilized resources increase. It could be simplified to the
following equation:

Tproc =
W
R

, (11)

for computational and communication resources, where W
is the size of the task and R is the number of resources.
For example, when using a link with throughput R bps to
transmit a package with W bits, the processing time can be
calculated with Eq. (11). The processing time can still be
calculated with Eq. (11) for computational resources, when
using CPUs that perform R operations per second to process
a computing task with W operations.

4.2.2 Transmission Delay of LRC

The transmission delay of an LRC also contributes to task
latency. To utilize computational and communication re-
sources in RPs, the RR distributes subtasks to different RPs
through different routes at the beginning. After the subtasks
have finished, RPs return results to the RR. Consequently, a
period is spent on the round trip time (RTT) for each route.
Obviously, the transmission delay of an LRC is the maxi-
mum RTT value for routes in it:

DLRC = Maxq
i=1RTTi, (12)

where q is the number of routes in the LRC and RTTi is the
RTT value for the i-th route. The transmission delay of an
LRC can be measured in the resource discovery phase.

4.2.3 Delay in Maintaining Routes

Task latency is also influenced by the time spent to re-
discover a route from the RR to a lost RP when it became

†In this paper, we assumed an idealized situation: the RR par-
titioned and distributed subtasks to RPs seamlessly. Communica-
tions between nodes through the LRC were parallel to their com-
putational process.

1870
IEICE TRANS. COMMUN., VOL.E97–B, NO.9 SEPTEMBER 2014

unaccessible. Since the length of delay depends on different
routing protocols, this variable uses a history-based method
for calculation, viz., the average value of past statistics:

Droute =

∑n
i=1 Droute−i

n
, (13)

where Droute−i is the value of the i-th record of statistics and
n is the number of previous records. As a result, task latency
of a generated task is:

t = Tproc + DLRC + Droute. (14)

DLRC and Droute (tens or hundreds of milliseconds) are gen-
erally much shorter than Tproc (tens of seconds or minutes).
In that case, Tproc approximately presents task latency.

4.3 Problem Definition of Energy-Efficient LRC

An RR generally wants to utilize resources in RPs to reduce
task latency in its generated task [19]. The RR should select
more RPs in the LRC to obtain more resources to achieve
this goal. As the task latency decreases, the lifetime of the
LRC also decreases. Consequently, energy consumed to
maintain the LRC during its lifetime may decrease. How-
ever, if more RPs are selected, more routes to access these
RPs need to be maintained in the same time. Therefore, en-
ergy consumed to maintain the LRC may also increase.

We assume N potential candidates of RP are discovered
after the resource discovery phase and the i-th candidate has
ri units of the required resource. We define xi as an indicator
to show whether the i-th candidate is selected by the RR to
be part of the LRC:

xi =

⎧⎪⎪⎨⎪⎪⎩
1 the i-th candidate is selected

0 the i-th candidate is not selected.
(15)

As a result, every possible choice of an LRC is represented
by an N dimentional vector X comprised of xi. Then, the
task latency of each choice is:

t = Tproc + DLRC + Droute

=
W∑N

i=1 xi × ri

+ DLRC + Droute. (16)

The availability of every possible choice of LRC can be cal-
culated by substituting Eq. (16) into Eqs. (4), (8), (9), and
(10). Therefore, the problem of selecting RPs to comprise
an energy-efficient LRC is defined as: establish an LRC with
maximum availability from all possible choices with a con-
straint that resulted LRC having enough resources to finish
the generated task within a time threshold, Tthresh.

Objective: Maximize availability of the established LRC.
Constraints: t ≤ Tthresh, xi = 0 or 1 .

This is a non-linear 0-1 programming problem that is also
NP-hard (if the optimal number of RPs that need to be
selected is known in advance, this problem is reduced to

GELRC algorithm (C)
S = ∅ ;
C = all candidates ;
Ao−S = 0;

while (the constraint of task latency is not satisfied)
if(C == ∅)

task fails due to lack of resources ;
return ;

select i-th candidate that maximize Ao−S from C;
add i-th candidate to S and delete it from C ;

S
′
= S ; //S

′
is a temporary variable.

while (Ao−S ≤ Ao−S ′)
S = S

′
;

select i-th candidate that maximize Ao−S ′ from C;
add i-th candidate to S

′
and delete it from C ;

//make choice
S denotes resulting LRC ;

an NP-hard QoS-aware service composition problem [10],
[15]). A greedy heuristic algorithm is introduced in the next
section to solve it.

5. Proposed Heuristic Algorithm

As presented in the previous section, if N potential candi-
dates were discovered in the resource discovery phase, there
are 2N different combinations of RPs. It is not feasible to
compare all available choices when N is large. A greedy
heuristic algorithm is proposed in this section to solve this
problem. It is named as GELRC, short for Greedy algorithm
for constructing Energy-efficient Local Resource Clouds.

Set C contains all discovered candidates of RP. The RR
maintains set S that includes selected RPs in the LRC. It is
initialized by an empty set. The availability of S is rep-
resented by Ao−S . First, to satisfy the constraint of task
latency, the RR continues to select the i-th candidate that
makes Ao−S the largest of possible candidates in C. If the
constraint of task latency could not be satisfied even if C be-
came empty, the task fails due to a lack of resources. After
the constraint is satisfied, the RR continues to select candi-
dates from C if and only if Ao−S does not decrease. Finally,
the LRC denoted by S is used to process the generated task.

The asymptotic computational complexity of the pro-
posed GELRC algorithm is O(K ×N2), where K is the max-
imum length of routes in the hop count. An RR generally
searches for local resources with a constant hop limit, K
(TTL value). In that case, the computational complexity of
the method is O(N2). The pseudo-codes describe the algo-
rithm. A step-by-step example is presented in the Appendix
to illustrate it.

6. Simulations

Simulation results executed on Qualnet 5.2 are presented in
this section. A pure flooding method was used for resource

LIU et al.: A LOCAL RESOURCE SHARING PLATFORM IN MOBILE CLOUD COMPUTING
1871

discovery. Nodes were distributed randomly in a rectan-
gular area at the beginning. Every node generated a task
with an equal probability. Since the proposed algorithm for
constructing an LRC was not sensitive to bandwidth, IEEE
802.11b and 2 Mbps of link bandwidth were adopted to ver-
ify its performance in a constrained environment. Because
only comparisons of different methods were concerned, we
assumed that transmitting a byte consumed one unit of en-
ergy and receiving a byte consumed 0.6 unit of energy for
energy consumed to maintain an LRC. The transmission and
energy settings were the same as those in Ahmed et al. [22].

Mobile nodes in the area were divided into three cate-
gories according to their amounts of resources:

(1) Super nodes (SN): Nodes that had 70 units of re-
sources.

(2) Common nodes (CN): Nodes that had 30 units of
resources.

(3) Relay nodes (RN): Nodes that did not have any re-
sources.

Four different methods of constructing an LRC were
compared in the simulations. The first two were the pro-
posed methods based on the energy-efficient model de-
scribed in Sect. 4.

(1) GELRC: The RR solved the energy-efficient model
with the proposed heuristic algorithm.

(2) Optimal: The RR solved the energy-efficient model
with a brute force strategy. The upper bound of the proposed
model was obtained with this method.

(3) Random: The RR selected RPs randomly until the
constraint for task latency was satisfied.

(4) LOSSA: The RR selected a single RP with best
availability from all candidates that had enough resources
to satisfy the constraint for task latency. This was proposed
by Yang et al. [14]†.

Of the four methods, the random method was unaware
of the availability of the resulting LRC. The LOSSA method
only concentrated on a single SN node with best availabil-
ity since only SN nodes were able to independently finish a
task within the threshold of task latency. Compared with the
previous two methods, both optimal and GELRC methods
were able to utilize resources in multiple SN and CN nodes
to increase the availability of the resulting LRC as well as
reducing task latencies. The parameters used in the simula-
tions are summarized in Table 2.

6.1 Computation Cost

The first series of simulations were aimed at comparing the
four methods previously described with respect to the com-
putational overhead involved in their construction phase of
an LRC. We measured the computation cost (in seconds) of
selecting RPs to construct an LRC from 25 candidates with
different approaches. We executed each method 10 times for

†It was a weighted average value in Yang et al. [14]. We elimi-
nated the “price of service” and “reliability of service” by assigning
zero to their weights because these two properties were beyond the
scope of this paper.

Table 2 Parameters for simulations.

Simulation area 500 × 500 m
Size of task 600
Number of SNs 5
Number of CNs 20
Number of RNs 25
Number of resources in SNs 70
Number of resources in CNs 30
Latency threshold 10 s
Routing protocol DSR
MAC protocol IEEE 802.11b
Link bandwidth 2 Mbps
Transmission range of nodes 150 m
Energy of transmission 1 unit/byte
Energy of reception 0.6 unit/byte
Mobility model Random way point
Mobility speed 1, 5, 10, 15, 20 (m/s)
Pause time 0 s
Interval of task generation 5 s
Simulation period 1000 s

Table 3 Computation cost.

GELRC Optimal Random LOSSA
0.002 s 285.318 s ≤ .001 s ≤ 0.001 s

Fig. 5 Energy consumed by different methods.

each test case on a PC with an Intel Core i7-2640M CPU @
2.80 GHz and 8.00 GB of RAM on Windows 7. The average
computation costs are summarized in Table 3.

As listed in Table 3, although the optimal method
achieved the upper bound for the energy-efficient model, it
cost hundreds of seconds to solve it. However, nodes in re-
alistic scenarios continue to move during this period of time.
Therefore, the resulting optimal point became meaningless
in the real-time distribution of nodes. The importance of the
optimal method in this paper was that it specified a bench-
mark to measure the gap between the GELRC method and
the upper bound of the proposed model.

6.2 Energy Consumption & Task Latency

The energy consumed to maintain an LRC under different
speeds of nodes is plotted in Fig. 5. As Fig. 5(a) indicates,
the random method consumed much more energy than the
other methods. This is because the selection of RPs with the

1872
IEICE TRANS. COMMUN., VOL.E97–B, NO.9 SEPTEMBER 2014

Fig. 6 Task latency of different methods.

random method did not take into consideration the avail-
ablity of the resulting LRC. We eliminated data for the ran-
dom method in Fig. 5(b) to make the comparison in other
three methods clearer. As it indicates, the GELRC method
consumed less energy (42–88% less according to differ-
ent speeds) than the LOSSA method. This is because the
GELRC method utilized available resources in multiple RPs
to reduce the task latency of an LRC. The differences be-
tween the GELRC and optimal methods were small (7–36%
according to different speeds).

This is also proved in Fig. 6 that plots the task latencies
of the four methods. The task latencies of both the GELRC
and optimal methods were much less than those of the other
two methods especially when the speeds of nodes were low.
The availability of an LRC remained high even if more RPs
were selected when the speeds of nodes were low. There-
fore, utilizing available resources in these RPs accelerated
task processing while preventing from extra energy being
consumed to maintain the structure of LRCs. As a result,
unlike the other two methods, both methods based on the
energy-efficient model were able to construct a reasonable
scale LRC that was adaptive to different levels of mobility.

6.3 Failure of RPs

We assumed that all RPs in an LRC remained “on-line” from
the begining to the end of task processing in previous sim-
ulations. However, in reality, mobile RPs may suddenly go
“off-line” due to reasons like system crashes or moving out
of communication range. The RR is usually not capable of
predicting this kind of “sudden failure of RPs” or is not no-
tified by RPs in advance. In this kind of scenario, the con-
straint for task latency can’t be guaranteed. As a result, we
defined a metric called “success ratio” to measure the capa-
bilities of fault tolerance by different methods. In this paper,
the “success ratio” is defined as the percentage of tasks that
are finished within the threshold of task latency without re-
establishing a new LRC. The lifetime of a node is defined
as the duration over which it is capable of sharing resources
with other nodes in the following descriptions.

We assumed the lifetimes of both SN and CN nodes
conformed to an exponential distribution (RNs were not
taken into account because they have no resources. The

Fig. 7 Success ratios for different methods.

failure of RN nodes was the same as the failure of simu-
lated routes discussed in the previous subsection). Nodes
were disabled after their lifetimes expired. If a disabled
node acted as an RP in an LRC, the RR of the LRC de-
tected the node had failed through a keep-alive timer. The
keep-alive timer was set to 2 s in the simulation†. After the
disabled node was detected, we assumed the RR could ide-
ally distribute remaining subtasks for the disabled node to
all remaining RPs including itself (when it had resources).
A new node with the same number of resources was en-
abled at a random location to replace the disabled node to
keep node densities constant. The resulting success ratios of
different methods are plotted in Fig. 7 (speed of nodes was
10 m/s). According to the results, both the GELRC and op-
timal methods outperformed the other two methods in dy-
namic environments. This mainly benefitted from the fact
that both GELRC and optimal methods reduced task laten-
cies as shown in Fig. 6. As a result, (1) the probability of
the failure of RPs within a shorter period of task processing
time decreased, and (2) a larger room was reserved for the
failure of RPs (e.g., even if task latencies were delayed by
4 seconds due to the failure of RPs, both GELRC and opti-
mal methods were able to finish it within the threshold (10
seconds) as shown in Fig. 6. LOSSA and random methods
failed to do this).

Based on previous simulation results, it can be con-
cluded that: (1) The proposed model and methods are able
to construct an LRC that is both energy and time efficient in
mobile wireless networks. (2) When the failure of nodes was
taken into consideration, the proposed methods were capa-
ble of higher success ratios than the conventional methods.
(3) The proposed GELRC method performed close to the
upper bound (optimal method) of the energy-efficient model
while dramatically decreasing the compuation cost.

7. Conclusions

The design of an energy-efficient local resource cloud
(LRC) in cooperative MCC was proposed in this paper. It
is constructed of an on-demand local resource platform to

†Two seconds was enough for this simulation because the
RTTs of most routes were within 200 ms. This value could be ad-
justed according to different network statuses.

LIU et al.: A LOCAL RESOURCE SHARING PLATFORM IN MOBILE CLOUD COMPUTING
1873

enable resource sharing among mobile devices. Simula-
tion results indicated that the proposed model and methods
were efficient in terms of both energy consumption and time.
The proposed heuristic method (GELRC) with low com-
putational complexity is suitable for dynamic mobile wire-
less environments. For future work, explicit considerations
of energy consumed by relaying packets, sustainability and
fairness of LRCs are interesting research areas in local re-
source sharing.

Acknowledgment

This work was supported in part by the National Institute
of Information and Communications Technology (NICT),
Japan.

References

[1] L. Guan, X. Ke, M. Song, and J. Song, “A survey of research on mo-
bile cloud computing,” Computer and Information Science (ICIS),
2011 IEEE/ACIS 10th International Conference on, pp.387–392,
IEEE, 2011.

[2] N. Fernando, S.W. Loke, and W. Rahayu, “Mobile cloud comput-
ing: A survey,” Future Generation Computer Systems, vol.29, no.1,
pp.84–106, 2013.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” Proc. First Edition of the MCC
Workshop on Mobile Cloud Computing, pp.13–16, 2012.

[4] D. Datla, X. Chen, T. Tsou, S. Raghunandan, S.S. Hasan, J.H. Reed,
C.B. Dietrich, T. Bose, B. Fette, and J. Kim, “Wireless distributed
computing: A survey of research challenges,” IEEE Commun. Mag.,
vol.50, no.1, pp.144–152, 2012.

[5] S. Olariu, I. Khalil, and M. Abuelela, “Taking vanet to the clouds,”
Int. J. Pervasive Computing and Communications, vol.7, no.1, pp.7–
21, 2011.

[6] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider
for mobile devices,” Proc. 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond, p.6, 2010.

[7] F.H. Fitzek, M. Katz, and Q. Zhang, “Cellular controlled short-
range communication for cooperative p2p networking,” Wireless
Pers. Commun., vol.48, no.1, pp.141–155, 2009.

[8] E. Cuervo, A. Balasubramanian, D.k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” Proc. 8th International Conference on Mobile
Systems, Applications, and Services, pp.49–62, 2010.

[9] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” Proc. Sixth
Conference on Computer Systems, pp.301–314, 2011.

[10] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,”
IEEE Trans. Softw. Eng., vol.30, no.5, pp.311–327, 2004.

[11] E.M. Maximilien and M.P. Singh, “A framework and ontology for
dynamic web services selection,” IEEE Internet Comput., vol.8,
no.5, pp.84–93, 2004.

[12] D. Ardagna and B. Pernici, “Adaptive service composition in flexi-
ble processes,” IEEE Trans. Softw. Eng., vol.33, no.6, pp.369–384,
2007.

[13] X. Gu, K. Nahrstedt, and B. Yu, “Spidernet: An integrated peer-to-
peer service composition framework,” Proc. 13th IEEE International
Symposium on High performance Distributed Computing, 2004,
pp.110–119, 2004.

[14] K. Yang, A. Galis, and H.H. Chen, “Qos-aware service selection
algorithms for pervasive service composition in mobile wireless
environments,” Mobile Networks and Applications, vol.15, no.4,

pp.488–501, 2010.
[15] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani, “An ap-

proach for qos-aware service composition based on genetic algo-
rithms,” Proc. 2005 Conference on Genetic and Evolutionary Com-
putation, pp.1069–1075, 2005.

[16] Y.s. Luo, K. Yang, Q. Tang, J. Zhang, and B. Xiong, “A multi-criteria
network-aware service composition algorithm in wireless environ-
ments,” Comput. Commun., vol.35, no.15, pp.1882–1892, 2012.

[17] J.H. Cho, A. Swami, and R. Chen, “A survey on trust management
for mobile ad hoc networks,” IEEE Communications Surveys & Tu-
torials, vol.13, no.4, pp.562–583, 2011.

[18] C. Ververidis and G. Polyzos, “Service discovery for mobile ad hoc
networks: A survey of issues and techniques,” IEEE Communica-
tions Surveys & Tutorials, vol.10, no.3, pp.30–45, 2008.

[19] T. Nishio, R. Shinkuma, T. Takahashi, and N.B. Mandayam,
“Service-oriented heterogeneous resource sharing for optimizing
service latency in mobile cloud,” Proc. First International Workshop
on Mobile Cloud Computing & Networking, pp.19–26, 2013.

[20] R. Mayrhofer, C. Holzmann, and R. Koprivec, “Friends radar: To-
wards a private P2P location sharing platform,” Computer Aided
Systems Theory — EUROCAST 2011, pp.527–535, Springer, 2012.

[21] Y.B. Ko and N.H. Vaidya, “Location-aided routing (LAR) in mobile
ad hoc networks,” Proc. 4th Annual ACM/IEEE International Con-
ference on Mobile Computing and Networking, pp.66–75, 1998.

[22] A. Ahmed, K. Yasumoto, N. Shibata, and T. Kitani, “Hdar: Highly
distributed adaptive service replication for manets,” IEICE Trans.
Inf. & Syst., vol.E94-D, no.1, pp.91–103, Jan. 2011.

Appendix

An example is presented to illustrate the GELRC algorithm
proposed in Sect. 5. The scenario outlined in Fig. 1 is used
in this part. At the beginning of executing the GELRC algo-
rithm, the set S was empty, S = ∅. The set C contained all
discovered candidates of RPs, C = {a, b, c, d}.

The RR firstly selected candidate a into S if the avail-
ability of S , Ao−{a}, was larger than Ao−{b}, Ao−{c}, and Ao−{d}.
Then S = {a} and C = {b, c, d}. Assuming that the task la-
tency of resulting S was still larger than the value of thresh-
old, the RR had to select RPs from remaining candidates to
satisfy the constraint. Therefore, candidate b was selected
if the availability of S , Ao−{a,b}, is larger than Ao−{a,c} and
Ao−{a,d}. After that S = {a, b} and C = {c, d}. Assuming
that the constraint of task latency was satisfied after select-
ing b into S , the RR continued to search for additional re-
sources in other RPs to further reduce the task latency with a
constraint that selecting that RP into S did not decrease the
availability of the resulting LRC. It was possible because al-
though an additional route from RR to the selected RP had
to be maintained, additional resources in the selected RP
also reduced the maintaining period of all the routes in the
LRC. As a result, candidate d was selected into S if Ao−{a,b,d}
was larger than Ao−{a,b,c} and Ao−{a,b}. Then, S = {a, b, d}
and C = {c}. At last, assuming that Ao−{a,b,c,d} was less than
Ao−{a,b,d}, the RR gave up candidate c and used an LRC com-
prised of {a, b, d} to process its task.

1874
IEICE TRANS. COMMUN., VOL.E97–B, NO.9 SEPTEMBER 2014

Wei Liu received the B.E. and M.E. de-
gree in Software Engineering from Chongqing
University, China, in 2006 and 2009. He is cur-
rently working toward the Ph.D. degree in Com-
munications and Computer Engineering, Gradu-
ate School of Informatics, Kyoto University. His
current research interests include overlay net-
works and mobile cloud computing.

Ryoichi Shinkuma received the B.E.,
M.E., and Ph.D. degrees in Communications
Engineering from Osaka University, Japan, in
2000, 2001, and 2003, respectively. In 2003,
he joined the faculty of Communications and
Computer Engineering, Graduate School of In-
formatics, Kyoto University, Japan, where he is
currently an Associate Professor. He was a Vis-
iting Scholar at Wireless Information Network
Laboratory (WINLAB), Rutgers, the State Uni-
versity of New Jersey, USA, from 2008 Fall to

2009 Fall. His research interests include network design and control crite-
ria, particularly inspired by economic and social aspects. He received the
Young Researchers’ Award from IEICE in 2006 and the Young Scientist
Award from Ericsson Japan in 2007, respectively. He is a member of IEEE.

Tatsuro Takahashi received the B.E. and
M.E. in Electrical Engineering from Kyoto Uni-
versity, Kyoto, Japan, in 1973 and 1975 respec-
tively, and Dr. of Engineering in Information
Science from Kyoto University in 1997. He was
with NTT Laboratories from 1975 to 2000, mak-
ing R&D on high speed networks and switching
systems for circuit switching, packet switching,
frame relaying, and ATM. Since July 1, 2000,
he is a Professor, Communications and Com-
puter Engineering, Graduate School of Infor-

matics, Kyoto University. His current research interests include high-speed
networking, photonic networks and mobile networks. Prof. Takahashi re-
ceived the Achievement Award from IEICE in 1996, the Minister of Sci-
ence and Technology Award in 1998, and the Distinguished Achievement
of Contributions Award from IEICE in 2011. He was a Vice President of
the ATM Forum from 1996 to 1997, and the Chairman of the Network Sys-
tems (NS) Technical Group in the Communications Society of IEICE from
2001 to 2002. Prof. Takahashi is an IEEE Fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

