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Abstract

Let p be an odd prime such that p ≡ 3 mod 4 and n be an odd integer.
In this paper, two new families of p-ary sequences of period N = pn−1

2 are
constructed by two decimated p-ary m-sequences m(2t) and m(dt), where d = 4
and d = (pn +1)/2 = N +1. The upper bound on the magnitude of correlation
values of two sequences in the family is derived using Weil bound. Their upper

bound is derived as 3√
2

√

N + 1
2 + 1

2 and the family size is 4N , which is four

times the period of the sequence.
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1. Introduction

Pseudorandom sequences with low correlation are widely used in wireless
communications, that is, code division multiple access, spread spectrum, cryp-
tography, and error correcting codes. Many papers of the sequence families with
good correlation properties have been published. Kasami [1], [2] proposed a bi-
nary sequence family with the optimal correlation property with respect to the
Welch’s lower bound. Further, there are lots of research results for the nonbinary
sequence families. Liu and Komo [3] generalized the Kasami sequence family to
p-ary case and Kumar and Moreno [4] constructed a p-ary sequence family with
correlation magnitude upper bounded by 1 +

√
pn using bent function. Muller

[5] also proposed two p-ary sequence families, whose correlation magnitude is
upper bounded by 1 + 2

√
pn and 1 +

√
pn, respectively. Seo, Kim, No, and

Shin [6] derived the cross-correlation distribution of p-ary sequences which have
good correlation property. Choi, Lim, No, and Jung [7] also proposed a p-ary
sequence family with correlation magnitude upper bound p+1

2

√
pn and family

size
√
pn.

Recently, p-ary sequence families with half period, that is, N = pn−1
2 have

been proposed. Generally half period sequences can have larger family size.
Kim, Choi, and No [8] constructed p-ary sequence family of half period using
Kloosterman sum. This sequence family has large family size of 4N and their

correlation magnitude is upper bounded by 2
√

N + 1
2 for an odd prime p ≡
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3 (mod 4) and an odd integer n. And this result is further generalized by Kim,
Chae, and Song [9], that is, they generalized this sequence family to all odd
prime p. Xia and Chen [10] constructed new sequence families having family

size 4N and the correlation magnitude upper bounded by 1
2

(

pe
√

pn + 1
p2e

)

.

Weil bound for exponential sums is often used to prove the upper bound on
the magnitude of correlation values [11]. There are three types of Weil bounds.
The first one is sum of multiplicative character. The second one is sum of
additive character, and the last one is sum of multiplication of additive and
multiplicative characters (hybrid type). Han and Yang [12] used multiplica-
tive characters of Weil bound to derive the upper bound on the magnitude of
correlation values. Wang and Gong [13] constructed polyphase sequence fami-
lies whose correlation magnitude is derived from the Weil bound of exponential
sums. They applied all three types of Weil bounds to the proof of the upper
bounds.

In this paper, new p-ary sequence families with low correlation are con-
structed. For an odd prime p ≡ 3 (mod 4) and an odd integer n, two new p-ary

sequence families of period N = pn−1
2 having the correlation magnitude upper

bounded by 3√
2

√

N + 1
2 + 1

2 are constructed. These sequence families can be

obtained from shift and addition of two decimated p-ary m-sequences by 2 and
d. One sequence family is obtained for d = 4 and the other sequence family is
constructed for d = N +1. The hybrid sum of Weil bound is used for the proof
of the upper bound of correlation magnitude.

2. Preliminaries

This section introduces some basic definitions and concepts used in this pa-
per.

A. Notations and Definitions
1) Let p be an odd prime such that p ≡ 3 mod 4 and n be an odd integer,

where q = pn.
2) Let Fq be the finite field with q elements and α be a primitive element of

Fq.
3) The trace function from Fq to Fp is defined as

Trn1 (x) =

n−1
∑

i=0

xp
i

.

4) ω = e
2πi
p is a primitive complex pth root of unity, where i =

√
−1.

5) For some β ∈ F
∗
q, a p-ary m-sequence of period q − 1 is defined as

m(t) = Trn1 (βα
t).
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6) Let a(t) and b(t) be p-ary sequences of period N . A cross-correlation
between a(t) and b(t) is defined as

Ca,b(τ) =
N−1
∑

t=0

ωa(t)−b(t+τ).

If a = b, then the cross-correlation function becomes the autocorrelation func-
tion, denoted by Ca(τ). Let S be a family of sequences of period N . Then the
maximum magnitude of correlation values of the sequences in S is defined as

Cmax = max {|Ca,b(τ)| : a, b ∈ S, 0 ≤ τ ≤ N − 1, τ 6= 0 if a = b} .

B. Characters and Weil Bound
There are two types of characters, that is, additive character and multiplica-

tive character as follows [14].

Definition 1. (Additive Character): For β ∈ Fq, an additive character of Fq

is defined as

ψ(x) = e
2πiTrn1 (βx)

p , x ∈ Fq

and ψ0, ψ(x) with β = 0, denotes the trivial additive character such that ψ0(x) =
1 for all x ∈ Fq.

Definition 2. (Multiplicative Character): Let g be a fixed primitive element of
Fq. For each j = 1, 2, · · ·, q − 2, a multiplicative character of Fq is defined as

χ(gk) = e
2πijk
q−1

where χ(0) = 0 and χ0, χ(g
k) with j = 0, denotes the trivial multiplicative

character such that χ0(x) = 1 for all x ∈ F
∗
q.

We consider the quadratic character η in this paper, which is defined as

η(y) =











1, if y is nonzero square in Fq

−1, if y is nonzero nonsquare in Fq

0, if y = 0.

Lemma 3. (Gaussian sum [14]): Let ψ be an additive character of Fq and χ
be a multiplicative character of Fq. Then the Gaussian sum G(ψ, χ) is defined
as

G(ψ, χ) =
∑

x∈Fq

ψ(x)χ(x),

which satisfies

G(ψ, χ) =











pn − 1 for ψ = ψ0 and χ = χ0

0 for ψ = ψ0 and χ 6= χ0

−1 for ψ 6= ψ0 and χ = χ0
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and for ψ 6= ψ0 and χ 6= χ0,

|G(ψ, χ)| = q1/2.

The following Weil bounds are often used to prove the correlation property
of the sequence.

Theorem 4. (Weil bound [11]): Let ψ be a nontrivial additive character of Fq

and χ be a nontrivial multiplicative character of Fq with order M and χ(0) = 0.
Let f(x) ∈ Fq[x] with degree e and g(x) ∈ Fq with s distinct roots in Fq, where
g(x) 6= c ·hM (x) for some c ∈ Fq and h(x) ∈ Fq[x], and Fq denotes the algebraic
closure of Fq. Then

∣

∣

∣

∣

∣

∣

∑

x∈Fq

χ(g(x))ψ(f(x))

∣

∣

∣

∣

∣

∣

≤ (e+ s− 1)
√
q.

Theorem 5. (Additive type of Weil bound [14]): Let f ∈ Fq[x] be of degree
n ≥ 1 with gcd(n, q) = 1 and let ψ be a nontrivial additive character of Fq.
Then

∣

∣

∣

∣

∣

∣

∑

x∈Fq

ψ(f(x))

∣

∣

∣

∣

∣

∣

≤ (n− 1)
√
q.

3. New Sequence Families and Their Correlation Bound

In this section, we will propose two new p-ary sequence families of period
N = pn−1

2 and family size 4N and derive their correlation bound. Let m(t) be
a p-ary m-sequence of period q− 1. We consider the sequence m(2t) and m(dt),
where d = 4 and N + 1. Since q − 1 is even, the decimated sequence m(2t) has
the period N . Since gcd(q − 1, d) = 2 for the both cases, the period of m(dt) is
also N . Then we define the new p-ary sequence family of period N and family
size 4N as

S = {m(2t+ i) +m(d(t+ l) + j)|0 ≤ i, j ≤ 1, 0 ≤ l ≤ N − 1}.
We will show that the magnitude of cross-correlation and nontrivial au-

tocorrelation values of the sequences in the family S is upper bounded by
√
3
2

√

N + 1
2 + 1

2 . For the proof of the upper bound, we use Theorems 4 and

5.
The correlation function between two sequences in S, m(2t+ i1) +m(d(t+

l1)+ j1) and m(2t+ i2)+m(d(t+ l2)+ j2), except for the trivial autocorrelation
(τ = 0, i1 = i2, j1 = j2, l1 = l2), is given as

C(τ) =

N−1
∑

t=0

ωTrn1 (α
2t+i1 )+Trn1 (α

d(t+l1)+j1 )−Trn1 (α
2(t+τ)+i2 )−Trn1 (α

d(t+τ+l2)+j2 )

=

N−1
∑

t=0

ωTrn1 (α
2t(αi1−α2τ+i2)+αdt(αdl1+j1−αdτ+dl2+j2 )).
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Let a = αi1 − α2τ+i2 and b = αdl1+j1 − αdτ+dl2+j2 . Then

C(τ) =

N−1
∑

t=0

ωTrn1 (aα
2t+bαdt).

We will derive the upper bound of Cmax for d = 4 and N +1 in the following
two theorems.

Theorem 6. : For d = 4, we have

C(τ) =

N−1
∑

t=0

ωTrn1 (aα
2t+bα4t).

Then, the maximum magnitude of C(τ) is given as

Cmax ≤ 3√
2

√

N +
1

2
+

1

2
.

Proof. Let x = α2t and QR be the set of quadratic residues of Fq. Then we
have

C(τ) =
∑

x∈QR

ωTrn1 (ax+bx2)

=
1

2





∑

x∈F∗

q

ωTrn1 (ax+bx2) +
∑

x∈F∗

q

η(x)ωTrn1 (ax+bx2)



 . (1)

Since the trivial autocorrelation case is excluded, it is easy to check that a =
b = 0 should not be considered because i1, i2, j1, j2 ∈ {0, 1}.

(i) b = 0 and a 6= 0:
In this case, (1) can be rewritten as

1

2





∑

x∈F∗

q

ωTrn1 (ax) +
∑

x∈F∗

q

η(x)ωTrn1 (ax)



 . (2)

The first term in (2) is given as

∑

x∈F∗

q

ωTrn1 (ax) = −1. (3)

Let χ = η, g(x) = x, and f(x) = ax in Theorem 4. Then the second term in (2)
is computed as

∣

∣

∣

∣

∣

∣

∑

x∈F∗

q

η(x)ωTrn1 (ax)

∣

∣

∣

∣

∣

∣

≤ √
q. (4)
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From (3) and (4), (2) can be computed as

|C(τ)| = 1

2

∣

∣

∣

∣

∣

∣





∑

x∈F∗

q

ωTrn1 (ax) +
∑

x∈F∗

q

η(x)ωTrn1 (ax)





∣

∣

∣

∣

∣

∣

≤
√
q + 1

2

=

√
2N + 1

2
+

1

2

=
1√
2

√

N +
1

2
+

1

2
. (5)

(ii) b 6= 0:
From Theorem 5 with f(x) = ax+ bx2, the first term in (1) can be derived as

∣

∣

∣

∣

∣

∣

∑

x∈F∗

q

ωTrn1 (ax+bx2)

∣

∣

∣

∣

∣

∣

≤ √
q + 1. (6)

Let χ = η, g(x) = x, and f(x) = ax+ bx2 in Theorem 4. Then, the second term
in (1) is computed as

∣

∣

∣

∣

∣

∣

∑

x∈F∗

q

η(x)ωTrn1 (ax+bx2)

∣

∣

∣

∣

∣

∣

≤ 2
√
q. (7)

From (6) and (7), we have

1

2

∣

∣

∣

∣

∣

∣





∑

x∈F∗

q

ωTrn1 (ax+bx2) +
∑

x∈F∗

q

η(x)ωTrn1 (ax+bx2)





∣

∣

∣

∣

∣

∣

≤ 3

2

√
q +

1

2

=
3√
2

√

q

2
+

1

2
=

3√
2

√

N +
1

2
+

1

2
.

(8)

From (5) and (8), we prove the theorem.

Theorem 7. : Let d = N + 1. C(τ) can be rewritten as

C(τ) =
N−1
∑

t=0

ωTrn1 (aα
2t+bα(N+1)t). (9)

Then, the maximum magnitude of C(τ) can also be derived as

Cmax ≤ 3√
2

√

N +
1

2
+

1

2
.
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Table 1: Simulation results of Cmax and number of correlation values for some p and n.

p n N Cmax√
N

Number of distinct values

3 13 2.1650 5
3 5 121 2.1259 6

7 1093 2.1219 6
9 9841 2.1214 6

7 3 171 2.0304 94
5 8403 2.0951 852

11 3 665 2.0003 450

Proof. Let x = αt. It is easy to check that −1 is a nonsquare in Fpn for an
odd integer n and an odd prime p ≡ 3 (mod 4). Let x = y2 for a square x and
x = −y2 for a nonsquare x.
Since N + 1 is even, we have the same form of

Trn1 (ax
2 + bx

N+1
2 ) = Trn1 (ay

4 + by2)

for both x = y2 and −y2. Then (9) can be rewritten as

C(τ) =
∑

y∈F∗

q

ωTrn1 (ay
4+by2)

=
1

2





∑

y∈F∗

q

ωTrn1 (ay
2+by) +

∑

y∈F∗

q

η(y)ωTrn1 (ay
2+by)



 . (10)

Since (10) is the same as (1) by swapping a and b, the proof is the same as
Theorem 6. Thus the proof is done.

Theorem 8. : The family size of S is 4N .

Proof. If there are two cyclically equivalent sequences in S, then their cross-
correlation value is equal to N . From Theorems 6 and 7, the magnitude of
the cross-correlation values of arbitrary two sequences are upper bounded by
3√
2

√

N + 1
2 + 1

2 and thus the sequences in S are cyclically inequivalent.

Even though the maximum magnitude of correlation values of the proposed
sequence families is upper bounded, the number of distinct correlation values
increases as N becomes large. Table I shows the number of distinct correlation
values and the normalized maximum magnitude of Cmax by

√
N for some p and

n. In case of p = 3 and odd n, the number of distinct correlation values is less
than 6 and the correlation distribution is researched in [10].

4. Conclusion

In this paper, for an odd integer n and an odd prime p such that p ≡
3 mod 4, two new families of p-ary sequences with low maximum correlation
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magnitude are constructed where the period of sequences is N = pn−1
2 and

the family size 4N . The sequences in the family are obtained using shift and
additions of the decimated p-ary m-sequencesm(2t) andm(dt), where d = 4 and
N + 1. The upper bound for the magnitude of cross-correlation and nontrivial
autocorrelation values of the sequences in the family S can be evaluated as
3√
2

√

N + 1
2 + 1

2 using the Weil bound and the family size is four times the

period of sequences, 4N .
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