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SUMMARY The paper presents a survey on OpenFlow related tech-
nologies that have been proposed as a means for researchers, network ser-
vice creators, and others to easily design, test, and deploy their innovative
ideas in experimental or production networks to accelerate research activi-
ties on network technologies. Rather than having programmability within
each network node, separated OpenFlow controllers provide network con-
trol through pluggable software modules; thus, it is easy to develop new
network control functions in executable form and test them in production
networks. The emergence of OpenFlow has started various research activi-
ties. The paper surveys these activities and their results.
key words: OpenFlow, software-defined networking, network virtualiza-
tion

1. Introduction

The Internet has evolved to accommodate a variety of ser-
vices, including real-time voice communications (IP tele-
phony), IP-TV, on-line banking, sensor networking, and
content delivery, as well as computer-to-computer commu-
nication. These services impose very diverse demands on
networks. For example, real-time video delivery requires
high bandwidth and a low packet loss rate, whereas non-
real-time video delivery requires best-effort performance
and high network bandwidth. This diversity strains the cur-
rent network paradigm especially when it comes to the pro-
vision of quality of service (QoS), mobility, security, and
traceability.

Indeed, traditional network technologies, such as Eth-
ernet or IP, face a challenge that makes it hard for them to
evolve or accommodate new services and technologies, and
much effort has been made to accelerate the development of
innovative network technologies. This new era of network
research has already seen the creation of a number of initia-
tives focused on the “Future Internet”. The main motivation
of these initiatives is to give researchers, network service
creators, network operators, equipment vendors, and others
a way of easily developing, testing, and deploying their in-
novative ideas in a large network infrastructure. These ini-
tiatives include the National Science Foundation’s Future
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Internet Design (FIND) [1] and Future Internet Architecture
(FIA) [2], as well as the European Commission’s Seventh
Framework Programme (FP7) [3]. Large-scale testbed fa-
cilities have also been funded to accelerate the related re-
search. They include the Global Environment for Network
Innovations (GENI) [4] project sponsored by the National
Science Foundation and the Japan Gigabit Network (JGN-
X) [5] testbed sponsored by the National Institute of Infor-
mation and Communications Technology.

Network virtualization technologies, such as the slice-
based facility architecture [6], have enabled researchers to
share testbeds at the same time. Rather than a single unified
network substrate having a common set of control mecha-
nisms applied to all applications or users that share the net-
work substrate, this technology aims at creating multiple
network “slices” having different control mechanisms for
different users or applications. Virtualization technologies
enable an evolutionary cycle in which a variety of virtual
networks are easily created, some of which will soon dis-
appear and some of which will be widely used. This birth-
and-death and natural selection process help to ensure the
continuous evolution of network architectures.

To accelerate this process, technologies that separate
control and forwarding have been proposed [7]–[9]. They
provide programmability in separate controllers rather than
within each network node. This has enabled the control
plane to independently evolve; the resulting short evolution-
ary cycle has led to a wide variety of control algorithms be-
ing developed. In contrast, the data plane has a relatively
long evolutionary cycle and its developments are aimed at
faster packet delivery. OpenFlow is the most popular of
these technologies and is used in large network testbeds like
GENI and JGN-X.

OpenFlow defines atomic operations of an OpenFlow-
enabled switch to handle flows and an interface for instruct-
ing such operations from a separate controller. As Open-
Flow defines a flow as a set of arbitrary combinations of
packet header fields, it can be applied to flow-based fine-
grained control as well as to aggregated control using a des-
tination address or tunnel label. Researchers can easily de-
sign, test, and deploy their innovative ideas in experimen-
tal or production networks with these OpenFlow features.
Programming at a (possibly centralized) controller improves
such research productivity. Network research that exploits
OpenFlow can be found everywhere. For example, we pro-
posed a new network architecture based on OpenFlow [10].
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There has also been a lot of research on applying OpenFlow
to data center networks, enterprise networks, besides carrier
networks.

This paper surveys various research projects on Open-
Flow technologies. The standardized OpenFlow specifica-
tions are presented in Sect. 2. After that, a survey of re-
search is presented on applying OpenFlow to data center
networks (Sect. 3), carrier networks (Sect. 4), and network
security (Sect. 5). Section 6 presents platforms and frame-
works for developing OpenFlow controllers, and surveys re-
search on verifying, testing, and debugging the developed
controllers. Section 7 concludes the paper.

2. Overview of OpenFlow

2.1 OpenFlow Specification

Here, we explain the standardized OpenFlow specifica-
tions [11], which mainly define the behavior of Open-
Flow switches and the OpenFlow protocol that controls
these OpenFlow switches. We briefly introduce OpenFlow
switches and the OpenFlow protocol.

OpenFlow switches separate the forwarding element
from the control element, whereas conventional switches
have both control and forwarding elements (Fig. 1). The
separated control element is called an OpenFlow controller.
An OpenFlow controller connects OpenFlow switches with
TCP or the transport layer security (TLS) [12].

An OpenFlow switch has a flow table for storing a set
of flow entries; each flow entry consists of header fields,
counters, and a set of actions to apply to matching pack-
ets. Header fields, which consist of the 12-tuples listed
in Table 1, are used for matching packets. A header field
can also be specified as a wildcard, in which case the other
fields are only used for matching. For example, the “incom-
ing port number is 1, and the destination MAC address is
FF:FF:FF:FF:FF:FF” and the “L4 protocol is TCP, and the
destination port number is 80” can be specified as header
fields. Actions specify the operations to be applied to pack-
ets that match header fields. The specifications define the ac-
tions in Table 2. A flow entry can include multiple actions,
e.g., “after rewriting the source IP address, output from a
specified port” and “after outputting from a specified port,
and output from another port”.

As outlined in Fig. 1, the OpenFlow protocol is used
by the controller to control switches. The OpenFlow proto-
col utilizes the messages summarized in Table 3. The most
distinctive messages are explained below.

Packet In This message is used for sending a packet re-
ceived by the switch to the controller, when there is no
match in the flow table for that packet. The controller
can use this message to create flow entries based on a
packet received by the switch.

Packet Out This message is used for sending a packet from
the controller to the switch. For example, a controller
uses this message when it wants to output a packet cre-
ated by itself from the switch, or when a packet in a

Fig. 1 Separation of forwarding and control.

Table 1 Header fields.

Field
Ingress port
Ethernet source address
Ethernet destination address
Ethernet type
VLAN ID
VLAN priority
IP source address
IP destination address
IP protocol number
IP ToS bits
Transport source port/ICMP type
Transport destination port/ICMP code

Table 2 Actions.

Action Description
Forward Forward a packet to a given port
Enqueue Forward a packet through a given queue
Drop Drop a packet
Modify-Field Rewrite header fields

“Packet In” message wants to be resent to an actual
destination.

Flow Mod This message is used for sending flow entries
created by the controller to the switch. The flow en-
tries contain two timers for hard timeout and idle time-
out. A flow entry with a hard timeout is removed after
a specified time elapses from its installation. A flow
entry with an idle timeout is removed if the flow entry
was not referred for the specified time.

Flow Removed The switch informs the controller when a
flow entry is removed from its flow table for some rea-
son. The message includes statistical information, e.g.,
the reference counter and lifetime of the removed flow
entry.

Barrier Request/Reply Switches that received a “Flow
Mod” or “Packet Out” message do not report the com-
pletion of their operations to the controller. If the con-
troller needs to know whether they are complete, it
sends a “Barrier Request” message to the switch. Af-
ter receiving a “Barrier Request” message, the switch
completes the pending operations, which it received
before the message, and then sends a “Barrier Reply”
message.
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Table 3 OpenFlow messages.

Message Description
Messages sent from controller to switch
Packet Out Send packets for output from given port
Flow Mod Send flow entries for setting flow table in switch
Port Mod Change state of given port
Set Config Set configuration parameters in switch
Messages to request from controller and reply by switch
Features Request/Reply Retrieve capabilities supported by switch
Stats Request/Reply Collect statistics in switch
Get Config Request/Reply Query configuration parameters in switch
Barrier Request/Reply Confirm completion of operations requested by controller
Queue Get Config Request/Reply Query queue configurations
Messages sent from switch to controller
Packet In Send packets received by switch
Flow Removed Inform that flow entry expired
Port Status Inform change in port status
Messages sent from both controller and switch
Hello For connection setup
Echo Request/Reply Confirm liveness of controller-switch connection
Error Inform of any errors
Vendor For vendor-defined uses

2.2 Design Variations

The OpenFlow specifications are flexible enough to support
many design variations in the behavioral model.

The OpenFlow protocol supports the programming of
various switch behaviors at the flow level. A flow, on which
a control is based, can be flexibly defined using arbitrary
parts of a packet header, whereas classical switches and
routers only use specific parts of the header. A flow can be
fine grained by defining a flow with a combination of multi-
ple parts of a header, or aggregated by defining a flow with
only a specific part of a header. For example, a flow can be
defined as a TCP/IP session or a tunnel. Various behaviors
can be defined for a flow, e.g., sending its packets to specific
ports, discarding its packets, and modifying specific header
fields. Therefore, the behaviors of OpenFlow switches are
not limited by the classical layered architecture and can be
made up of arbitrary combinations of flow definitions and
behavioral definitions. For example, a flow having a spe-
cific destination IP address can be destined to a specific port
after rewriting the source and destination MAC headers. In
this case, the switch behaves like an IP routers for the flow.
Another example is defining a flow to be a specific TCP/IP
session and instructing its packets to be discarded. In this
case, the switch behaves like a router with ACLs (Access
Control Lists) or a firewall.

As can be seen in Fig. 2, user programs on the con-
troller can perform various network control tasks, includ-
ing routing, path management, and access control, and they
add flow entries to the flow tables in the switches. When a
packet arrives at a switch, the switch searches for a flow en-
try matching the packet and performs the actions specified
by the entry. This behavior can be reactive, i.e., dynamically
injecting flow entries when a new flow arrives at the switch,
or proactive, i.e., statically injecting flow entries in advance
into the arriving packets.

Fig. 2 OpenFlow architecture

Fig. 3 Multiple controllers

An OpenFlow controller can be centralized by having
a control server control all the switches, as shown in Fig. 2.
Otherwise, multiple controllers can be deployed to coopera-
tively control the network for scalability, as shown in Fig. 3.
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3. Data Center Networks

Data centers are used in various network services. However,
data center networks built with conventional technologies
are confronted with many problems, e.g., limits on scala-
bility, virtualization, and configurability. Many researchers
have undertaken studies in the hopes of solving these prob-
lems by using OpenFlow. This section introduces this re-
search.

3.1 Topology

The fat tree in Fig. 4 is an attractive topology for data center
networks. Conventional ethernet networks require loop-free
topologies like trees. Tree topologies have characteristics
that most traffic is concentrated at core switches, and these
core switches require high capacity. Al-Fares et al. [13] ap-
plied the fat tree topology to data center networks. Since
fat trees involve a multi-rooted topology, they can make the
traffic share multiple core switches that are composed of
low-capacity commodity hardware. The fat tree topology
includes loop paths, and this requires a forwarding method
that differs from the learning-based forwarding method of
the conventional ethernet. Some researchers [14], [15] have
proposed forwarding methods that use OpenFlow.

Portland [14] is a loop-free forwarding method on the
fat tree topology using OpenFlow. The method for loop-free
forwarding creates a pseudo-address encoding a forwarding
path, which is called a pseudo-MAC (PMAC) address, and
embeds it into the MAC address field in the packet. How-
ever, modifying MAC addresses forces end hosts to change
their MAC addresses. To avoid this, the method makes edge
switches translate between an actual MAC (AMAC) address
and a PMAC address.

A forwarding method that requires the switch to have
a large forwarding state capacity limits the scale of an L2
network. Portland relaxes this limitation by using PMAC
addresses, which have hierarchical location information en-
coded into their prefixes. Encoding is designed to enable
membership testing of an address to a switch subtree by
prefix matching with a switch ID. Loop-free forwarding can

Fig. 4 Fat tree topology

then be implemented by forwarding packets up toward the
root until they become members of the switch subtree and
start forwarding down to the end host. PMAC forwarding
can only be implemented using forwarding states that are
proportional to the number of ports on a switch.

Portland places a manager, which intercepts all ARP
requests and responds to them. To enable switches to for-
ward packets with PMAC addresses instead of AMAC ad-
dresses, the manager replies with a PMAC address. The
sender host sends a packet whose destination address is the
replied PMAC address, and the switches forward the packet
to an edge switch connected to the actual destination host.
To ensure that the destination host remains unaware that the
MAC address of the packet differs from the actual address
of the host, the edge switch rewrites the destination MAC
address of the packet from a PMAC address to an AMAC
address and sends the packet to the destination host. The
manager is implemented as part of the OpenFlow controller.

Tavakoli et al. [15] estimated the number of flow en-
tries installed in the switches in data center networks that
use Portland. In their study targeting data center networks
with 10K servers in 5000 racks, core switches needed 5000
entries (the most of all switches of the network). Be-
cause Portland uses location-based forwarding, the number
of flow entries in the core switches is at most the number
of top-of-rack (ToR) switches. The authors explained that,
since this number is not much different from the number of
access control lists supported by commodity conventional
switches, Portland is applicable to large-scale data centers.

Heller et al. [16] proposed ElasticTree, which is a man-
agement method to reduce energy consumption in data cen-
ter networks. It manages power consumption by dynami-
cally turning switches on or off in response to changes in
network usage. It determines whether switches are turned
on or off by referring to multiple parameters such as topol-
ogy, traffic, power models of switches, and fault tolerance
properties. OpenFlow controllers install flow entries into
the turned-on switches according to the results.

3.2 Scalability

Pries et al. [17] evaluated the performance of controllers
that manage data center networks by using flow inter-arrival
times measured by Benson et al. [18] at actual data centers.
Their evaluations demonstrated that a centralized controller
could control not only campus-wide networks but also data
center networks. Since data center networks need to han-
dle a huge number of flows over the processing capacity of
the centralized controller, this causes data losses and long
sojourn times in the controller.

DIFANE [19] is an architecture for distributed flow
management that hierarchically distributes rules to switches
and handles all data traffic in the fast path. The rules repre-
sent flow entries for forwarding or blocking specified flows.
In the architecture, the OpenFlow controller makes flows hit
on the OpenFlow switches as much as possible. It can han-
dle wildcard rules and react quickly to network dynamics



SUZUKI et al.: A SURVEY ON OPENFLOW TECHNOLOGIES
379

such as changes to the network access policy or topology.
Yeganeh et al. [20] proposed Kandoo, a hierarchical

method of controlling OpenFlow networks. The method de-
ploys hierarchical OpenFlow controllers, local controllers,
and a root controller. The local controller manages a group
of switches and links between these switches, and it pro-
cesses only local events, such as the arrival of traffic from
inside the group or an inside link-down of the group. The
root controller manages all local controllers and only han-
dles events necessary for processes, such as the arrival of
traffic at switches managed by different local controllers or
a link-down between switches of different groups.

Macapuna et al. [21] tried to improve the scalability of
controllers with a bloom filter, which is a probabilistic data
structure for efficiently storing members of a set. They used
the bloom filter to indicate a set of switches through which
a packet goes. Their method separates the control of ToR
switches from that of core switches, aggregate switches,
etc., in order to achieve scalability. When a new flow ar-
rives, the rack manager, which is an OpenFlow controller
managing a ToR switch, calculates the end-to-end path and
generates a bloom filter that includes switches along with
the path. The rack manager then installs a flow entry to em-
bed the bloom filter in the MAC address fields of the arrived
packets. Flow entries created from the relationship between
neighboring switches and output ports are proactively in-
stalled in the core and aggregate switches. A core or aggre-
gate switch that has received a packet searches the bloom
filter embedded in the MAC address field for a neighboring
switch and forwards the packet to the neighboring switch.
Their method makes each rack manager only control its cor-
responding ToR switch. As a result, their method, which is
scalable, can be applied to large-scale data centers. Similar
approaches have been taken by other researchers [14], [22].

3.3 Virtualization

Modern data centers need to accommodate large numbers
of tenants that have isolated and independent networks. Vir-
tual networks that are composed over physical networks are
used to flexibly configure these networks of tenants. Thus
far, VLAN tagging [23] has been widely used for creating
virtual networks. However, the VLAN headers defined by
[23] have a 12-bit tag field for identifying virtual networks,
and so only 4094 networks can be created. However, virtual
networks that overcome these limitations can be created by
OpenFlow [24]. Because an OpenFlow controller can look
in a “Packet In” message including a received packet, it can
decide which virtual network the packet belongs to by in-
coming port or MAC address of the packet. Therefore, the
OpenFlow controller can create virtual networks without us-
ing VLAN tagging.

The above research [24] could only be applied to
networks consisting of OpenFlow switches. Barabash et
al. [25] proposed a virtualized method by using an overlay-
ing approach that utilizes tunnels between edge switches
that connect virtual machines on a server with a physical

network in order to achieve virtualization on existing physi-
cal networks. Packets forwarded to tunnels are encapsulated
into tunnel headers and delivered over the underlying phys-
ical network. Their approach can be applied to an existing
network without having to deploy any new facilities.

OpenFlow is useful (but not necessary) in the overlay
approach. Pettit et al. [26] stated the importance of edge
switching. The overlay approach is required to manage the
relationship between overlay networks composed of tunnels
and virtual machines that act on multiple servers at a data
center. Their research revealed that a centralized OpenFlow
controller can manage the relationship by controlling the
edge switches on each server.

It is important to monitor virtual networks. Because
more than one virtual network can be set up over one phys-
ical network, the performance of one virtual network will
influence the others. In order to manage their performance,
they need to be monitored. Monitoring is especially im-
portant in a data center network in which virtual networks
are assigned to different customers. Argyropoulos et al. [27]
proposed PaFloMon, a method of monitoring traffic through
virtual networks. The monitoring database server is de-
ployed in the OpenFlow network, and it collects monitor-
ing data by using various protocols, i.e., sFlow, SNMP, and
OpenFlow.

4. Carrier Networks

Some research projects have started to apply OpenFlow to
carrier networks. Most carrier networks use IP and multi-
protocol label switching (MPLS) [28] to forward traffic to
their customers. Any new technologies for carrier networks
are required to be able to work along with these forward-
ing mechanisms. Much of the OpenFlow research on car-
rier networks has focused on practical uses of MPLS/IP
networks. This section surveys the OpenFlow research on
MPLS and IP networks.

4.1 MPLS

Das et al. [29] tried to simplify the control of MPLS net-
works by using OpenFlow. Since conventional MPLS net-
works are large autonomous distributed systems, they re-
quire many control protocols. For example, each node in
a MPLS network utilizes OSPF [30] to collect topology and
bandwidth information about the network. When a label
switch path is created, MPLS nodes use the signaling pro-
tocol, e.g., LDP [31] or RSVP-TE [32]. Das et al. claimed
that a centralized control plane attained by OpenFlow makes
these protocols unnecessary.

Early work on OpenFlow MPLS [33] involved extend-
ing OpenFlow specifications to MPLS nodes. OpenFlow
version 1.0 specifications that target data center networks
do not support MPLS. Kempf et al. proposed that three ex-
tensions are needed for this purpose.

1. Extending header fields to identify MPLS labels,
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2. Adding new actions to push, pop, and swap MPLS
shim headers, and

3. Adding virtual ports and tables for the virtual port.

These extensions were later included in the OpenFlow ver-
sion 1.1 specifications [34].

Ferkouss et al. [35] proposed to use OpenFlow to
change the roles of MPLS nodes. MPLS nodes play dif-
ferent roles depending on their positions in the network.

• Label edge router (LER), which is an MPLS node
placed on the network border, classifies a received
packet into a Forwarding Equivalence Class (FEC) and
adds an MPLS shim header with a label assigned to
each FEC to the packet.
• Label switch router (LSR), which is in the network

core, swaps labels in a received packet and forwards
it.
• Egress LERs have to remove the MPLS shim header

from a received packet and to forward the packet
through standard routing operations. In order to re-
duce the load on the egress LER, the LSR positioned
one hop before the LER removes MPLS shim header
from a received packet and sends it to the LER. The
function of the LSR is called Penultimate Hop Popping
(PHP), and it lets the LER do only the standard routing
operations.

Ferkouss et al. stated that OpenFlow control could be used
to make an MPLS node able to assign the above roles. This
would make it easy to add (remove) nodes to (from) net-
works and to connect two MPLS networks. For example, an
MPLS node assigned to LSR could install flow entries for
forwarding packets in the network. More specifically, the
flow entry would consist of match fields including the MPLS
label and actions for swapping the MPLS label, decrement-
ing an MPLS-TTL value, and outputting the packet. An-
other example is when an MPLS node is assigned to the
ingress LER. The flow entry installed to the MPLS nodes in-
cludes match fields to identify the arrived packets as a flow
(fine-grained or aggregated, as mentioned in 2.2) and actions
for pushing an MPLS label and outputting the packets.

Path computation element (PCE) technology [36],
which can control networks in a centralized way like Open-
Flow, calculates an end-to-end path over multiple domains
without their sharing internal topology information. PCEs
deployed in each domain calculate an internal path that is
part of the end-to-end path by using internal topology in-
formation collected by routing protocols such as OSPF. One
PCE gathers the internal paths from the other PCEs and uses
that information to determine an end-to-end path. The end-
to-end path is then set up by using a signaling protocol such
as RSVP-TE.

Giorgetti et al. [37] compared PCE and OpenFlow
technologies by conducting a simulation of single-domain
MPLS networks. The results of the path creation time
showed that OpenFlow can create a path faster than PCE can
because the signaling protocol takes more time for setting up

a path calculated by PCE. On the other hand, an OpenFlow
controller only sends flow entries directly to switches on the
calculated path.

Although Giorgetti et al. presented only advantage of
OpenFlow technologies, they have also disadvantage. For
instance, PCE technology is designed to be utilized with ex-
isting routing and signaling protocols for MPLS networks.
RSVP-TE has a function to determine whether a created
path is available or not. In contrast, if MPLS networks
are to be controlled by OpenFlow, the controller itself must
have functions to collect topological information and main-
tain the created paths. As the size of the network increases,
the load of these functions increases. Consequently, net-
work operators hoping to use an OpenFlow controller must
know the size of the network that the OpenFlow controller
can control.

4.2 IP Networks

RouteFlow [38], previously called QuagFlow [39], is an
open source project to provide virtualized IP routing ser-
vices over OpenFlow networks. An OpenFlow controller
needs to collect route information through routing proto-
cols, e.g., OSPF or BGP [40]. For this purpose, RouteFlow
prepares a virtual machine (VM) to run the routing engine
and relates a physical interface with an interface of the VM
to enable communication between the routing engine and
neighbors. It thereby conserves on the labor involved in
tightly integrating a routing engine into the OpenFlow con-
troller. The OpenFlow controller of RouteFlow retrieves the
route information from the VM and creates flow entries for
IP routing services based on the collected information.

Kotani et al. [41] proposed multicast tree management
for reliable streaming. It takes a lot of time to reconstruct
multicast trees in traditional networks when a switch fail-
ure or a link failure occurs because multicast trees cannot
be reconstructed until the unicast paths are stabilized. In
such situations, significant packet losses, and, say, degraded
video quality, cannot be avoided. One approach to solving
this problem is to use redundant trees, but it is very hard to
compute redundant trees in a distributed way. The proposed
controller allows redundant multicast trees under IP multi-
cast protocols. Kotani et al. devised an OpenFlow controller
that supports IP multicast protocols; e.g., it snoops IGMP
messages to manage multicast recipient groups, and it pro-
vides a method to set up multiple multicast trees for fast tree
switching.

5. Security

Network security is becoming one of the hottest topics in
OpenFlow research. The research can mostly be classified
into two categories: network access control and attack de-
tection and defense. This section introduces important re-
search in these categories.
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5.1 Network Access Control

Some of the research on access control uses OpenFlow to
oversee network access policies. It aims at automating the
isolation and configuration of complex physical and virtual
networks. Centralized control by an OpenFlow controller
prevents unauthorized access and information from being
leaked because of misconfigurations by network adminis-
trators.

Casado et al. [42] proposed Ethane, an access control
for enterprise networks by a centralized controller. The
controller manages high-level global policies and translates
them into local policies configured to individual switches.
All these policies are expressed in groups and have rules.
The groups are lists of users and services, e.g., http services
of servers. The rules are permissions per service for each
group. These policies are described in the original descrip-
tion language. Although Ethane itself does not uses Open-
Flow, the following research using OpenFlow is based on
the concept of Ethane.

Kim et al. [43] proposed Lithium, a method of event-
driven access control for campus and home networks. Traf-
fic patterns in campus networks are subject to time consid-
erations, e.g., when the semester starts. Lithium defines a
policy in four domains, i.e., time, users, flows and history,
which are past traffic patterns, in order to control access ac-
cording to the situation, e.g., time and traffic patterns. The
method allows network operators to specify the policies and
control flows according to the situation.

Watanabe et al. [44] proposed a method of roaming be-
tween campuses with flexible access control by using Open-
Flow. Suppose that visitors attempt to access the network
or the system of a campus. Their system obtains an ac-
cess policy defined for each user from the policy database
of their affiliation and installs flow entries for access con-
trol based on that policy. This is a flexible access control;
e.g., permission could be granted for visiting researchers to
access certain systems on campus during a conference for
attendees by interworking between OpenFlow and the au-
thentication system. Suenaga et al. [45] proposed a similar
method to enable OpenFlow networks and Shibboleth [46],
which is authentication system for single sign-on, to cooper-
ate and make it possible for users to connect to applications
between organizations.

5.2 Detection of Attacks and Defense Against Them

OpenFlow enables controllers to inspect all packets that ar-
rive at networks and to make switches drop suspicious pack-
ets. This feature of OpenFlow can be put to good use in de-
tect and defense against attacks. This subsection describes
the research on using OpenFlow in this way.

Yao et al. [47] proposed VAVE, a method to protect
against IP spoofing. VAVE embeds a source address val-
idation module in an OpenFlow controller. The module
hooks the “Packet In” messages and checks a white list of

valid source addresses. To reduce the processing load, the
method installs filtering rules for detecting and dropping in-
valid packets in the switches in advance.

Shin et al. [48] proposed CloudWatcher, another
method of network security that differs from VAVE. The
OpenFlow controller in their approach does not have any se-
curity modules, but instead has existing security appliances,
such as intrusion detection systems. The OpenFlow con-
troller captures packets that arrive at the network and for-
wards them into the security appliances that inspect all of
them. CloudWatcher has a simple policy language to help
network operators describe policies.

FRESCO [49] is a framework for the controller to eas-
ily implement security applications. In contrast with the
other frameworks described in 6.1, FRESCO provides de-
velopers with an original scripting language to easily im-
plement security modules for detection, protection, etc.
FRESCO has a resource controller that manages flows en-
tering the switches. If a flow table in which a security mod-
ule has attempted to install a flow entry is full, the resource
controller executes garbage collection on unimportant flow
entries that were not installed by security modules.

Instead of the OpenFlow controller, OpenFlow
switches can be used to inspect packets. Kumar et al. [50]
proposed that OpenFlow switches be equipped with a func-
tion to detect intrusions. The switches have a flow table,
which differs from the usual flow tables of standard Open-
Flow switches, that contains a blacklist of source IP ad-
dresses and signatures of various attacks. The switches
check ingress packets against the blacklist and signatures
before looking at the usual flow tables, and they drop any
anomalous packets that they discover.

6. Developing Controllers

OpenFlow is the first standard that has been accepted by
both academia and industry for programmable networks.
We can automate network control and management pro-
cesses by using OpenFlow technology. However, the Open-
Flow protocol controls the forwarding of packets, and its
level seems to be too low for advanced network program-
ming. Although we need a more advanced, productive pro-
gramming foundation for network programming, OpenFlow
is at present immature in this regard. Bugs will be inevitable
if networks become dynamically programmable and config-
urable with software. Therefore, it is also important to pro-
vide various “debugging” techniques/methods for network
operators and network programmers to make software de-
fined networking more reliable. However, the networks in
use today do not have any systematic approaches to making
themselves more reliable.

There is, however, research on “programmable net-
works” (e.g., [51], [52]). Moreover, there is research on
verification of network protocols [53], network configura-
tions [54], implementation of network stacks [55] and dis-
covery of network security vulnerabilities [56]. Moreover,
with the spread of the OpenFlow protocol, research on pro-
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Table 4 Platforms of the OpenFlow controller.

Platform Language Major contributor
NOX[61] C++/Python Nicira
POX[61] Python James McCauley
Floodlight[62] Java Big Switch Networks
Trema[63] Ruby/C NEC

gramming, verifying, and debugging OpenFlow-based net-
works has started accelerating. For example, McKeown [57]
advocated the importance of formally verifying network be-
haviors and systematically identifying bugs and their root
causes. He also introduced his own group’s research on this
topic (header space analysis [58], automatic test packet gen-
eration [59], and network debugger [60]).

This section mentions the currently available Open-
Flow controller platforms of various open source projects
and reviews the following three topics of current research:

1. Higher-level programming languages and domain spe-
cific languages (DSL) for OpenFlow,

2. Formal verification of OpenFlow network behaviors,
and

3. Effective testing and trouble shooting techniques for
OpenFlow networks.

6.1 Platform and Framework

There are various open source projects on making Open-
Flow controller platforms for accelerating the development
of controllers (Table 4).

NOX [64] is an OpenFlow controller platform support-
ing C++ and Python. NOX is an early development, and it
is widely used in many research projects. However, devel-
opment of NOX itself has finished. A subsequent project,
POX, which supports Python, is now under development.

Floodlight is a controller platform for Java language
that has a modular architecture consisting of controller and
application modules. The controller modules provide func-
tions which a majority of applications commonly use, such
as those for discovering the network topology and control-
ling switches with the OpenFlow protocol. The application
modules, which run with the controller modules, control
the OpenFlow network as the user likes by giving them the
means to easily set up firewalls, learning switches, and so
on. The modular architecture enables diverse applications
to be executed simultaneously.

Unlike other OpenFlow controller platforms, Trema
[65] focuses on productivity; it provides not only a platform
for OpenFlow controllers but also a modularized program-
ming framework on top of it. Users can develop their own
OpenFlow controllers by combining multiple control mod-
ules which they can develop themselves or obtain from oth-
ers. In addition, Trema has an integrated network emulator,
so that users can easily test the controllers they are develop-
ing.

Section 5 presented various security research on us-
ing OpenFlow. It is also important to ensure the security

of the OpenFlow controller itself. In particular, FortNOX
[66] has a kernel module with its own security functions for
role-based authorization and conflict detection in flows cre-
ated by NOX. The role-based authorization function strictly
manages the production of flows in compliance with roles
such as operators, secure applications, and non-security-
related OpenFlow applications. The conflict detection func-
tion detects conflicts between rules defined by the admin-
istrator and requests to add, delete or modify a flow from
NOX. A request is executed only if a conflict is not detected.

6.2 Higher Level Programming Language and DSL

The current mainstream OpenFlow controller platforms and
frameworks (See 6.1) are based on event-driven styles that
model the OpenFlow protocol as an event stream. Although
frameworks in this style that resemble early window sys-
tem’s frameworks are easy to implement and enable fine-
grained packet control over protocols, they are error-prone
and hard to modularize except in small applications. Higher
level programming languages or DSLs have recently been
proposed for making OpenFlow-based programming easier
and modular. These are based on the programming language
concepts of logic programming [67], [68], functional reac-
tive programming [69], [70], and declarative policies [71].
NetCore [72] and the hierarchical flow table (HFT) [73] are
also declarative languages for packet forwarding descrip-
tions, but they focus on using formal semantics to verify the
behaviors of OpenFlow based systems.

6.3 Verification

Formal techniques are important because they can mathe-
matically verify the “correctness” of OpenFlow controller
programs and detect bugs in them. Substantial research has
been carried out in this direction. For example, McGeer [74]
described a framework to deal with the verification problem
with OpenFlow networks as a satisfiability problem, and he
discussed its computational cost. Reitblatt et al. [75] pro-
posed update mechanisms for flow tables in an OpenFlow
network with consistency before and after updates, and they
formally proved the correctness of the mechanisms with a
theorem prover called Coq. McGeer [76] proposed a sim-
ilar update protocol for OpenFlow networks and manually
proved it to be correct.

A number of tools have been developed to verify the
properties of controller programs. NICE [77] verifies a
Python program executed on a NOX controller by using
model checking [78] (a technique for automatically verify-
ing properties of a target system or software by representing
the target as a finite automaton and exhaustively exploring
it) together with symbolic execution [79] (a technique for
analyzing a program to determine what inputs cause each
part of it to execute by running the program with symbolic
inputs and computing constraints to run each part). Verifi-
care [80] translates a controller model written in VML, the
language of Verificare, into a model written in one or more
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input languages of off-the-shelf model checkers and verifies
the model with these checkers.

There are tools that collect messages passed in
OpenFlow networks and that dynamically verify them.
FlowChecker [81] extracts the slice policies of controllers
and flow tables of switches in networks with FlowVisor,
which models a state machine that encodes the entire behav-
ior of switches as a binary decision diagram (BDD) and veri-
fies properties written in temporal logic, e.g., computational
tree logic (CTL). VeriFlow [82] intercepts new rules sent to
switches from controllers, builds forwarding graphs based
on these rules, and explores them to check if any problems
occur in the network after the rules are updated. Anteater
[83] collects information on the network topology and de-
vices’ forwarding information bases (FIBs), translates them
into a satisfiability problem (SAT) with an invariant to be
verified, and checks if there are any potential bugs with an
off-the-shelf SAT solver.

Furthermore, the compilers of some of the languages
described in 6.2 have been formally verified as to whether
they generate “correct” operations. For instance, Coq has
been used to verify the translation rules of PANE [73], [84]’s
compiler that generates operations from network policies
written in the form of HFTs [73]. Guha et al. [85] used Coq
to prove that the compiler of NetCore [72] is correct, and
they also verified the correctness of a NetCore run-time sys-
tem.

6.4 Testing, Trouble Shooting and Debugging

Networks are inherently physically, geographically and or-
ganizationally distributed systems of nodes and links that
face difficulties such as asynchronicity and partial failure.
It is therefore hard to test, debug, and troubleshoot the net-
works. In contrast, network operators and administrators
do not have systematic techniques for accomplishing these
tasks. Although there does not seem to be any silver bul-
let to solve this difficult problem, researchers have started
to develop techniques and tools for testing, troubleshooting,
and debugging OpenFlow networks.

As previously noted, NICE [77] tries to verify or find
bugs in controller programs. In contrast, SOFT [86] tries
to test the interoperability of OpenFlow switches through
symbolic execution, and OFTEN [87] tries to test (physical)
OpenFlow switches in a test environment with a scenario-
based dummy OpenFlow controller.

It is also important to generate test packets to check
whether the physical network is working correctly. Auto-
matic test packet generation (ATPG) [59] tries to minimize
automatically generated, periodically sent test packets for
physical network testing with header space analysis [58].

Simulation is a traditional networking technique, espe-
cially for traffic engineering. Jin et al. [88] tried to extend
their discrete time network simulator testbed with virtual-
machine based emulation and parallel simulation to support
OpenFlow.

It is also a hard task to troubleshoot running net-

works and large data centers. OFRewind [89] introduced
a record/replay debugging mechanism into the OpenFlow
network. The SDN trouble shooting simulator (STS) [90] is
a similar trouble shooting tool that uses delta debugging to
minimize ‘input’ data that reproduced invalid statuses. The
network debugger (NDB) [60] enables operational Open-
Flow networks to have breakpoint capabilities.

7. Conclusion

We introduced the various studies on OpenFlow technolo-
gies. After presenting standardized OpenFlow specifica-
tions, we surveyed research on applying OpenFlow to data
center networks, carrier networks, and network security.
Since it is important to develop controllers that effectively
utilize OpenFlow, we presented platforms and frameworks
to develop OpenFlow controllers and surveyed research on
verifying, testing and debugging the developed controllers.

Although OpenFlow is a novel technology for control-
ling networks and has many distinctive features, conven-
tional technologies can do most of what OpenFlow can do.
Therefore, it is worthless to simply replace conventional
networks with OpenFlow networks. It is important for re-
searchers to have viewpoints as to how OpenFlow can be uti-
lized to solve problems. We summarized these viewpoints
and hope that this paper will be useful in future research.
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