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Analysis of Instantaneous Acoustic Fields Using Fast Inverse
Laplace Transform
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SUMMARY In this study, a computational method is proposed for
acoustic field analysis tasks that require lengthy observation times. The
acoustic fields at a given observation time are obtained using a fast inverse
Laplace transform with a finite-difference complex-frequency-domain. The
transient acoustic field can be evaluated at arbitrary sampling intervals by
obtaining the instantaneous acoustic field at the desired observation time
using the proposed method.
key words: acoustics, time-domain, finite-difference complex-frequency-
domain, fast inverse Laplace transform

1. Introduction

Simulations of propagating acoustic fields are useful for hall
design, room acoustics, and sound source design [1]–[7]. It
is important to evaluate the transition of sound propagation
from low to high frequencies based on the spatial distribu-
tion of the sound pressure. As the audible range of the hu-
man ear is 20–20,000 Hz, the simulation of audible sound is
a broadband problem.

Numerical simulation methods for acoustic fields in-
clude the finite element method, the boundary element
method, the finite-difference time-domain (FDTD) method,
and geometric acoustics [6]–[11]. The FDTD method,
which was developed for electromagnetic field analysis, can
be used to analyze time evolution problems from the per-
spective of wave acoustics [1], [6]–[8]. However, when the
FDTD method is used to analyze time responses, the max-
imum stable time step size is limited by the propagation
speed of the wave in the medium and the minimum size of
the spatial discrete section [8]. Moreover, the evaluation of
resonators with high Q values and the reverberation time for
hall design requires observation of time responses over a
long period. This inevitably increases the number of field
updates.

In this study, a computational method for acoustic
problems is proposed that can be used to observe sound
pressure distributions over any specified duration. To this
end, the governing equations of the sound field are ex-
tended to the complex-frequency domain and solved using
the finite-difference complex-frequency-domain (FDCFD)
method [12]. Then, the time-domain solution is obtained us-
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ing the fast inverse Laplace transform (FILT) method [13]–
[16]. FDCFD-FILT is applied to solve acoustic problems
for the first time by this study. The transient acoustic field
can be evaluated at arbitrary sampling intervals by esti-
mating the instantaneous acoustic field at the desired ob-
servation time using the proposed method. Further, time-
division complete parallel computing can be realized, and
the computational task can be temporally divided without
the requirement of data communication. Thus, the proposed
method is suitable for acoustic field analysis, which often
involves long observation times.

2. Computational Method

In this section, the proposed computational method to ana-
lyze acoustic fields in the time domain is described by com-
bining a complex-frequency domain solver with the FILT.

2.1 Fast Inverse Laplace Transform

FILT is a computational method used to numerically
perform the inverse Laplace transform [13]–[16]. The
Bromwich integral replaces the finite series for numerical
computations. In this method, the nth sampling complex fre-
quency, sn, required for the inverse transform can be deter-
mined from the poles of the approximated exponential func-
tion. The acoustic fields in the complex-frequency domain,
F(s), can be transformed into the time domain using the fol-
lowing equations:

f (t) =
eα

t
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K∑

n=1

Fn +
1

Aq0

q∑
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Fn = (−1)nIm[F(sn)] (2)

sn =
α + i(n − 0.5)π

t
(3)

Aqq = 1, Aq0 = 2q,

Aqm = Aqm−1 − (q + 1)!
m!(q + 1 − m)!

(4)

Here, f (t) is the acoustic field in the time domain, α is the
approximation parameter of the exponential function, K is
the truncation number, and q is the number of terms in the
Euler transformation. In FILT, the acoustic fields at an ob-
servation time, t, are obtained by calculating a function in
the complex-frequency domain. The second term of (1) is
the Euler transformation used to achieve rapid convergence
of the alternating series.

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



BRIEF PAPER
701

Fig. 1 Yee grid for finite difference scheme for space discretization. Δx
and Δy are the segmented areas. The particle velocity vector and the sound
pressure are discretized by half-cell displacement.

2.2 Finite-Difference Complex-Frequency-Domain

The governing equations for the analysis of the acoustic
fields in the time domain are as follows:

ρ
∂v(r, t)
∂t

= −∇p(r, t) (5)

∂p(r, t)
∂t

= −ρc2∇ · v(r, t) + pin(r, t) (6)

where ρ is the density, v is the particle velocity vector in
the time domain, r is the position vector, p is the sound
pressure in the time domain, c is the sound velocity in the
medium, and pin(r, t) is the source of the incident wave.
In the conventional FDTD, the particle velocity vector and
sound pressure are discretized using Yee cells, as shown in
Fig. 1 [1], [6]–[8]. The temporal and spatial derivatives in
(5) and (6) are replaced with finite differences. The sound
pressure, pn, and the particle velocity vector, vn, are updated
using the sound pressure, pn−1, and particle velocity vector,
vn−1 of the previous time step.

To consider the complex-frequency domain, the
Laplace transform is applied to (5) and (6) to obtain the fol-
lowing equations [17], [18]:

ρsV(r, s) − ρv(r, 0) = −∇P(r, s) (7)

sP(r, s) − p(r, 0) = −ρc2∇ · V(r, s) + Pin(r, s) (8)

where V is the particle velocity vector in the complex-
frequency domain, P is the sound pressure in the complex-
frequency domain, and Pin is the image function of the in-
cident wave in the complex-frequency domain. To solve (7)
and (8), the particle velocity vector and sound pressure are
discretized using the Yee grid used for FDTD, i.e., the one
shown in Fig. 1. The central difference is applied using the
following equation.

ρsVx(x, y) +
P(x + 0.5Δx, y) − P(x − 0.5Δx, y)

Δx
= ρvx(x, y, 0) (9)

ρsVy(x, y) +
P(x, y + 0.5Δx) − P(x, y − 0.5Δy)

Δy
= ρvy(x, y, 0) (10)

Fig. 2 Flowchart for analysis of time response using (a) FDTD and (b)
FDCFD-FILT. In FDTD, the time evolution of the sound fields is deter-
mined via sequential calculations based on the information of the previous
time step. FDCFD-FILT can compute the instantaneous value of the obser-
vation time t from a function in the complex-frequency domain.

sP(x, y) + ρc2

(
Vx(x + 0.5Δx, y) − Vx(x − 0.5Δx, y)

Δx

+
Vy(x, y + 0.5Δy) − Vy(x, y − 0.5Δx)

Δy

)

= p(x, y, 0) (11)

where Δx and Δy represent the segmented areas. By ap-
plying (9)–(11) to the entire analysis space, a linear equa-
tion can be obtained. The particle velocity vector and
sound pressure in the complex-frequency domain can then
be obtained by solving that linear equation: These complex-
frequency functions can be transformed into the time do-
main by using the FILT given in (1).

Figure 2 (a) and (b) depict flowcharts for time-response
analysis using FDTD and the proposed method, respec-
tively. In FDTD, the time evolution is determined using a
sequential calculation based on the information of the pre-
vious time step. Here, the time step size, Δt, of the FDTD is
limited by the sound velocity, c, in the medium and Δx and
Δy in space, as follows:

Δt ≤
(
c
√

(Δx)−2 + (Δy)−2

)−1

(12)

In contrast, the proposed method is capable of computing
the instantaneous value at any observation time, t, using a
function in the complex-frequency domain. As this compu-
tation does not require information from previous time steps,
it does not impose any restriction on the selected time step
size.

3. Computational Results

Figure 3 shows a computational model of the acoustic scat-
tering problem. The scatterer is assumed to be a cylinder
with radius a = 0.5 m and consists of acoustic soft media,
where the sound pressure, p, is equal to 0 at the surface.
When the scatterer is a cylinder, a rigorous solution can be
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Fig. 3 Computational model for validation of the proposed method. The
scatterer is a cylinder of radius a and consists of acoustic soft medium
(p = 0 at the boundary).

mathematically obtained, as in the case of electromagnetic
scattering problems [14]. An observation point is set 0.5 m
from the surface of the cylinder along the +y axis. The
wave source is a continuous plane wave with a frequency,
f = 440 Hz, which is incident from a surface 2 m from the
center of the cylinder. The segmentation area, Δx, is set to
0.02 m, which is 1/50th of the diameter of the cylinder. For
the scattering analysis, the computational area is covered by
a perfectly matched layer (PML) [19], [20]. In this problem,
the FDCFD-FILT can be used to obtain the sound pressure
distribution at an arbitrary time. Furthermore, to validate
the acoustic field analysis performance of FDCFD-FILT, we
compared the computational results of FDTD and the exact
solution with our results.

The sound field distributions obtained using FDTD and
FDCFD-FILT are shown in Figs. 4 (a) and (b), respectively.
The observation time was set as t = 0.0135 s. In both re-
sults, the sound waves were scattered by the cylinder and
reduced in the shadowed area. As information of previ-
ous time steps is required in the FDTD method to update
the sound pressure, a sequential calculation is necessary to
obtain the sound field distribution at a specific observation
time. In contrast, the sound pressure distribution at any
given observation time can be obtained using FDCFD-FILT
without any such calculation.

Figure 5 illustrates the time responses of the sound
pressure at the observation point. The dots represent
the computational results obtained using the FDCFD-FILT
method. The blue solid line and the red dashed line repre-
sent the exact solution and the FDTD results, respectively.
All results are observed to be in good agreement. The cir-
cles and triangles indicate the time-step sizes of Δt = 1/20 f
and Δt = 1/2 f , respectively, where f denotes the frequency
of the incident wave. As instantaneous values can be com-
puted using our method, time steps of an arbitrary size can
be selected to calculate the time responses.

To verify the computational accuracy of the proposed
method, the convergence of FILT for varying truncation
numbers, K, in (1) was confirmed. The relative error be-
tween the exact solution and the results obtained using the
proposed method is shown in Fig. 6. The observation time

Fig. 4 Sound pressure distribution over the computational area. (a)
FDTD and (b) FDCFD-FILT. Observation time t = 0.0135 s. FDCFD-FILT
can compute the sound field at specific observation time.

Fig. 5 Time response of sound pressure at the observation point. The ex-
act solution, FDTD results, and results obtained using the proposed method
are in agreements. Arbitrary time step size can be selected in the proposed
method.

was set to t = 0.0135 s, where the sum of the incident and
scattered waves is the peak in Fig. 5. The number of terms
in the Euler transform was q = 18. The relative error con-
verged as the truncation number increased. Moreover, the
digits of the convergence value and the approximation pa-
rameter α were consistent. This establishes the capability of
the proposed method to control errors.

In terms of computational efficiency, unlike FDTD,
time-division complete parallel computing can be achieved
using FDCFD-FILT. After determining the time evolution
of the acoustic field, the instantaneous field computation for
each observation time can be distributed into independent
computational processes. Table 1 enumerates the speed up
rates achieved using parallel computing. The speed up rate
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Fig. 6 Convergence test of FILT for varying values of truncation num-
ber, K. The relative error converges with increasing truncation number, K.
The digits of the convergence value are consistent with the approximation
parameter, a.

Table 1 Speed up rate using time-division parallel computing.

corresponds to the number of computers.

4. Conclusions

In this paper, a time-domain analysis method is discussed
for audible sound field analysis that require lengthy obser-
vation times. By combining FILT and FDCFD, the proposed
method can be used to obtain the sound field distribution at
any given observation time. To verify its reliability, the re-
sults obtained using this method were compared with the
exact solutions and the FDTD results. The computational
accuracy of the proposed method was verified by confirm-
ing the convergence process when the number of truncations
was varied. The time responses could be evaluated using ar-
bitrary sampling points, which validated the computational
efficiency of the proposed method. Further, time-division
parallel computing could be achieved using the proposed
method by temporally dividing the computational task with-
out data communication.
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