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SUMMARY To accelerate deep learning (DL) processes on the super-
computer Fugaku, the authors have ported and optimized oneDNN for
Fugaku’s CPU, the Fujitsu A64FX. oneDNN is an open-source DL pro-
cessing library developed by Intel for the x86 64 architecture. The A64FX
CPU is based on the Armv8-A architecture. oneDNN dynamically creates
the execution code for the computation kernels, which are implemented at
the granularity of x86 64 instructions using Xbyak, the Just-In-Time (JIT)
assembler for x86 64 architecture. To port oneDNN to A64FX, it must be
rewritten into Armv8-A instructions using Xbyak aarch64, the JIT assem-
bler for the Armv8-A architecture. This is challenging because the number
of steps to be rewritten exceeds several tens of thousands of lines. This
study presents the Xbyak translator aarch64. Xbyak translator aarch64
is a binary translator that at runtime converts dynamically produced ex-
ecutable codes for the x86 64 architecture into executable codes for the
Armv8-A architecture. Xbyak translator aarch64 eliminates the need to
rewrite the source code for porting oneDNN to A64FX and allows us to
port oneDNN to A64FX quickly.
key words: deep learning, oneDNN, AArch64, just-in-time assembler, bi-
nary translator

1. Introduction

On March 9, 2021, the supercomputer Fugaku went on-
line [1]–[5]. Fugaku is a CPU-based supercomputer pow-
ered by the Fujitsu A64FX [6], [7]. The A64FX complies
with the Armv8-A architecture profile [8]. The Armv8-A ar-
chitecture has additional Scalable Vector Extension (SVE)
[9] instructions designed for high-performance computing
workloads. The A64FX CPU is the first in the world to sup-
port SVE instructions. AArch64 shall be referred to in this
paper as “Armv8-A + SVE.”

The authors have been working on a software (S/W)
stack that can run deep learning (DL) tasks at high speeds
on Fugaku. Figure 1 depicts the S/W stack for the DL
processes. The S/W stack consists of a front-end frame-
work S/W and a backend library S/W. The framework is re-
sponsible for describing neural network definitions and ex-
changing input and output data between users and computer
systems. The library S/W provides the functions needed
to perform the large number of computations required for
DL operations. TensorFlow [10], developed by Google, and
PyTorch [11], developed by Facebook, are the two leading
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Fig. 1 Software stack of deep learning processes.

frameworks. TensorFlow and PyTorch both support Linux
as an operating system, and their source code is open-source
software (OSS). Fugaku’s operating system [12] is RedHat
Linux. It is simple to develop and use these frameworks
from their source code on Fugaku.

Library S/Ws are optimized for each hardware plat-
form to perform the massive amounts of computing required
by DL processes at high speeds. CuDNN [13] is provided
by NVIDIA for NVIDIA GPUs, and oneDNN [14], [15] is
provided by Intel for Intel CPUs. A64FX-optimized DL li-
brary S/W is required to realize high-speed DL processes on
Fugaku. There is currently no DL library S/W optimized for
the AArch64 architecture, and it must be developed from
scratch. To address this issue, we have been porting and op-
timizing oneDNN for A64FX. The following are some of
the benefits of porting oneDNN.

• TensorFlow and PyTorch, two of the most popular DL
frameworks, both offer oneDNN as a backend.
• oneDNN is optimized for DL processes on CPUs. Mul-

tithread processes, for example, are used to accelerate
the calculation of computation kernels. OpenMP [16]
and Intel Threading Building Blocks [17] are both sup-
ported. Because Fugaku includes the OpenMP library,
the implementation of oneDNN’s multithreaded pro-
cesses can be used without modification.

We present the development of oneDNN for A64FX in
this work. The oneDNN dynamically generates the optimal
binary of the computation kernels based on the execution en-
vironment and conditions, which is then utilized repeatedly
to execute DL processing. The Just-In-Time (JIT) assem-
bler is used to achieve this capability at the x86 64 instruc-
tion level. To port it to A64FX, these implementations must
be replaced by AArch64 instructions. As oneDNN has tens
of thousands of source code lines, rewriting the source code
is time-consuming. To address this issue, we created a bi-
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nary translator that dynamically translates x86 64 binaries
into AArch64 binaries and integrates it into the oneDNN.
The binary translator includes mapping tables connecting
x86 64 instructions and AArch64 instruction sequence and
allows the current oneDNN to run on AArch64 with very
little modification of the source code for x86 64. With the
AVX512 instruction, the x86 64 CPU can perform SIMD
operations of up to 512 bits. SVE instructions are handled
by A64FX as 512-bit SIMD instructions, similar to AVX512
instructions. The binary translator can convert executable
code written in AVX512 instructions to SVE instructions
without compromising SIMD parallel performance, result-
ing in executable codes with high processing performance
on A64FX.

The remainder of this work is organized as follows.
Section 2 describes the current implementation of oneDNN.
The porting and developing oneDNN for A64FX is de-
scribed in Sect. 3. This section also elaborates on the binary
translator, Xbyak translator aarch64. Section 4 describes
the effectiveness of Xbyak translator aarch64 in terms of
development. The processing performance of the execu-
tion code translated for A64FX using the binary translator
is shown in Sect. 5. The summary of this paper is provided
in Sect. 6.

2. oneDNN

2.1 Features of oneDNN

oneDNN is a S/W library for high-speed DL operations on
Intel architecture (x86 64) CPUs, Intel Processor Graphics,
and Xe architecture-based Graphics. Intel created oneDNN,
with an open-source source code that is available on GitHub
as an OSS. The following is a description of the oneDNN
implementation for Intel CPUs.

oneDNN runs on Intel CPUs and supports Microsoft
Windows, Linux, and macOS. It is written in C++ and
is compatible with GCC, LLVM, Intel Compiler, and Mi-
crosoft Visual Studio. In the DL software stack, oneDNN
is responsible for the quick execution of computations such
as convolution, ReLU, batch normalization, pooling, soft-
max, and reorder, which are executed repeatedly in DL pro-
cesses. These functions are known as primitives in oneDNN
(e.g., reorder primitive). The oneDNN provides primitive
implementations optimized for SSE4.1, AVX, AVX2, and
AVX512 instruction sets [18], with the best one chosen ac-
cording to the environment in which users run DL processes.
The implementations of the primitives optimized for each
instruction set are defined in the source code at the instruc-
tion level using Xbyak [19], the x86 64 architecture’s JIT
assembler. The implementation with Xbyak is detailed in
Sect. 2.1.1

Aside from the Xbyak implementation, each primitive
has a reference implementation written in C++. When uti-
lizing oneDNN on non-x86 64 architecture CPUs, none of
the SSE4.1, AVX, AVX2, or AVX512 implementations may
be utilized, hence the reference implementation is used. The

Table 1 Source code of a sample program written with Xbyak.

reference implementation performs the required computa-
tions for each primitive in a functionally accurate manner,
but the processing performance is slow since the implemen-
tation prioritizes source code readability. The reference im-
plementation is about 100 times slower than the Xbyak im-
plementation depending on the kind of primitives, the shape
of the tensor to be processed (the number of dimensions
of the input data array, the number of elements, data pre-
cision), and other characteristics. To accelerate DL opera-
tions on Fugaku utilizing oneDNN, the primitives optimized
for AArch64 architecture must be implemented using the
AArch64 JIT assembler.

2.1.1 Runtime Code Generation Using Xbyak

Xbyak is used in oneDNN to implement several primi-
tives for SSE4.1, AVX, AVX2, and AVX512 instruction
sets. Xbyak is a S/W library that generates runtime code
for the x86 64 architecture. Its source code is available as
OSS [19].

The source code for a sample program written with
Xbyak is shown in Table 1. C++ programs can take ad-
vantage of Xbyak. This sample program returns the N-
th Fibonacci number, where N is a nonzero positive in-
teger that is passed as an argument. At runtime, step(a)
produces and writes an x86 64 machine code sequence to
memory. The sequence is then called as the function in
step(b). The results of writing the machine code sequence
created in memory to a file and dumping it with the obj-
dump command† [20] are shown in Table 2. Xbyak provides

†objdump -D -b binary -m i386:x86-64 -M intel fibonacci.bin
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Table 2 The machine code sequence generated by the sample program.

a set of functions. Each function’s name is the same as the
x86 64 instruction mnemonics such as “mov,” “sub,” “cmp,”
“jle,” and “ret” (referred as the mnemonic functions in this
paper). The mnemonic functions can be used to produce
x86 64 machine code sequences. In memory, calling a sin-
gle mnemonic function generates a single x86 64 machine
code. The functions shown with blue text in Table 1 are
the mnemonic functions. The arguments of the mnemonic
function specify the instruction operands.

Xbyak has the ability to generate branch instructions.
The Label class is given to specify the jump destination la-
bels of branch instructions, and the L function can be used
to specify the branch destination address (Table 1 and 2).

If the machine code sequence created by Xbyak con-
forms to the x86 64 architecture’s application binary inter-
face (ABI) [21], [22], it can be utilized as a function with ar-
guments and a return value. The generated function can be
invoked at any time using a C++ function pointer, as seen in
step(b) of Table 1. In this paper, we refer to the JIT assem-
bler as the library S/W that includes mnemonic functions
and runtime-code-generating features, which are similar to
Xbyak.

Using Xbyak, oneDNN generates the ideal machine
code sequences to speed up the DL processes based on the
type of instruction set available in the execution environ-
ment, the shape of the tensor to be processed, and other run-
time parameters. Table 3 shows the examples of the param-
eters that are considered during code generation. For exam-
ple, CPUs that support up to AVX2 have 16 SIMD registers,
while CPUs that support AVX512 have 32. If the CPU has
more SIMD registers, oneDNN can generate the machine
code sequence with a loop body that uses extra SIMD regis-
ters. Unrolling with twice the number of registers halves the
number of loop iterations, i.e., halves the number of condi-
tional branch instructions executed, resulting in faster pro-
cessing. Furthermore, for a multidimensional array given
as an input to be processed at runtime, if (the number of
elements in the innermost dimension) × (data size) is an in-
teger multiple of the SIMD register width, then there is no
need to consider the processing elements at the end of the
array that do not fit into the SIMD register. On this basis, it
is feasible to accelerate processing by creating and execut-
ing a machine code sequence that simplifies loop process-
ing. oneDNN attains faster processing by developing opti-
mal machine code sequences for various primitives that are
repeatedly executed in the DL processes. The development
of runtime code using the JIT assembler is a critical aspect

Table 3 Example of parameters considered for dynamic code genera-
tion.

Parameters Example
Available instruction set SSE4.1, AVX, AVX2, AVX512
# of SIMD registers 16, 32
SIMD register width [bits] 128, 256, 512
Input/Output data size [bits] 16, 32
Input/Output data precision float16, float32, int32, int8
Input/Output array dimension positive integer
# of array elements positive integer
Convolution kernel size positive integer
Scale parameter 1, 1.5, 2

of improving the performance of oneDNN.
oneDNN creates machine code sequences for each

primitive type and parameter combination. If the primitive
type and the considered parameters are the same, the cre-
ated sequences are saved in memory and reused. The time
taken to construct a machine code sequence is in millisec-
onds. The overhead is small compared to the characteris-
tics of the DL processes, which iterate through a significant
amount of data.

3. Development of oneDNN for A64FX

3.1 Xbyak aarch64; JIT Assembler for AArch64

The JIT assembler, as indicated in Sect. 2.1.1, is a key tech-
nology that enables fast processing of oneDNN. The authors
created the JIT assembler Xbyak aarch64 [23]–[25] for the
AArch64 platform to port oneDNN to A64FX. Runtime ma-
chine code generation for the AArch64 architecture, includ-
ing SVE instructions, is supported by Xbyak aarch64. Sim-
ilar to Xbyak, Xbyak aarch64 can be created using a stan-
dard C++ compiler and used from C++-based programs.

Table 4 displays the source code rewritten for AArch64
using Xbyak aarch64, corresponding to Table 1. Other than
the “Generator()” implementation, which is the same as in
Table 1, they are omitted. The names of the mnemonic
functions varies according to the AArch64 instruction set
architecture, as do the number and the types of arguments
passed to the mnemonic functions to describe the operands
and the names of the registers. The Label class and the
L function can also be used by Xbyak aarch64 to specify
the jump destination for branch instructions. The Label
class and the L function have the same implementations and
usage in Xbyak aarch64 and Xbyak. The syntax and ex-
amples are specified in “README.md” file included with
Xbyak aarch64, as well as the cpp files in the “sample” di-
rectory.

3.2 Development of Primitives for A64FX

It is now possible to port several primitives to A64FX
using JIT assembler technology by developing the
Xbyak aarch64. SSE4.1, AVX, AVX2, and AVX512 opti-
mizations are included in oneDNN. These instruction sets’
SIMD widths are 128, 256, and 512 bits, respectively.
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Table 4 Source code of the sample program rewritten with Xbyak aarch64.

Table 5 Comparison of # of registers between AVX512 CPU and
A64FX.

AVX512 A64FX
(Armv8-A + SVE)

# of general-purpose registers 16 32
SIMD register width 512 512
# of SIMD registers 32 32
# of mask (predicate) registers 8 16

AVX512, the implementation with the largest SIMD width,
achieves the fastest processing speed. The SVE instruc-
tions are SIMD instructions. The SIMD width of SVE is
CPU implementation-dependent and can be chosen from
128 × N (N = 1, 2, · · · , 16) by a CPU development ven-
dor [9]. SVE is implemented as 512-bit SIMD (N = 4) on
the A64FX. Because AVX512 and A64FX have identical
512-bit SIMD widths, the authors opted to use the AVX512
implementations as the basic implementations of A64FX.

Masked instructions in AVX512 can control whether or
not instructions are executed for each SIMD lane. Because
masked instructions have been included in SVE†, AVX512
masked instructions can be replaced with SVE instructions.

The CPU registers of AVX512 and A64FX are com-
pared in Table 5. A64FX features the same or more general-
purpose registers, SIMD registers, and mask registers than
AVX512 CPUs. As a result, when AVX512 primitive imple-
mentations are rewritten for A64FX using Xbyak aarch64,
the data-register relationship might be similar to that of
AVX512. For example, assume that an AVX512 implemen-
tation generates a machine code sequence that utilizes the
512-bit SIMD registers Zmm0 to 15 for loading input and
Zmm16 to 31 for storing the coefficients utilized in the cal-
culation. The machine code sequence for A64FX should be
created in the same fashion, with the 512-bit SIMD registers
z0 to 15 used for loading input data and z16 to 31 used for
retaining the coefficients.

However, care should be taken in primitive AVX512
implementations, where all SIMD registers are assigned to
data, and SIMD instructions with memory operands are
used. With a few exceptions, all arithmetic and logical in-
struction operands in AArch64 are register operands. When
AVX512 instructions with memory operands are replaced
with SVE instructions (Table 6 (a) and (b)), AArch64 must

†They are referred to as predicate instructions in AArch64.

Table 6 Example of replacing an instruction with a memory operand.

Fig. 2 Example of rewriting the implementation for A64FX.

replace them with multiple instructions specified in Table 6
(c) and (d). First, an instruction must be generated to tem-
porarily load data from memory into a SIMD register, fol-
lowed by an instruction to perform an operation using that
register as the source operand. If the SIMD register that is
used as a temporary register contains data that should not
be deleted, a store instruction is necessary to temporarily
preserve this data to stack memory and a load instruction is
required to retrieve it later.

To port oneDNN to A64FX, the source code written in
Xbyak for AVX512 will be rewritten in Xbyak aarch64, as
previously mentioned. This has the following drawbacks.

• The number of steps that must be rewritten is sub-
stantial. The files that implement the primitive us-
ing JIT technology in oneDNN are placed in the
“src/cpu/x64” directory, with file names beginning
with “jit .” Among these, the files beginning with
“jit avx512 ” and “jit uni ” must be rewritten for
A64FX. “jit avx512 ” contains the AVX512 primitive
implementation. “jit uni ” is the implementation of the
primitive shared by all instruction sets. The total num-
ber of steps in these source codes is in the tens of thou-
sands.
• To rewrite the code, the developer must be knowledge-

able in the processing details of each of the x86 64 and
AArch64 instruction sets, as well as their correspon-
dence (Fig. 2).
• When there is a rewriting error, it is difficult to debug

the source code. Debugging can be accomplished by
1) inspecting the source code written at the instruction
level abstraction with Xbyak aarch64, 2) inspecting the
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Fig. 3 Processing flow of Xbyak translator aarch64.

text file disassembled from the generated executable
code like Table 2, and 3) inspecting the generated ma-
chine code sequences while stepping through them at
the instruction level in GDB. It is difficult to isolate
a single instruction error, regardless of the mechanism
utilized. In most cases, the number of instructions in
the resulting machine code sequences exceeds 1,000.
Furthermore, the produced sequences vary depending
on the runtime parameters (test parameters).

Furthermore, oneDNN is regularly updated and improved.
To boost processing speed, new and current primitives are
added and updated, respectively. To stay up with these
developments and continue to deliver the most up-to-date
oneDNN for A64FX, it is vital to find a technique to lessen
the porting effort.

3.3 Binary Translator to Accelerate Development of
oneDNN for A64FX

To address the issue indicated in Sect. 3.2, the authors cre-
ated a binary translator, Xbyak translator aarch64 (here-
inafter referred to as the translator). When converting
oneDNN to A64FX, the translator can considerably reduce
the amount of modification required to the source code.
The configuration and flow of the translator are depicted
in Fig. 3. The translator consists of Xbyak, XED, Trans-
lation Table, and Xbyak aarch64. The interfaces of Xbyak
in the translator are the same as those of the original Xbyak.
OneDNN for x86 64 can be converted to A64FX by replac-
ing the Xbyak used in oneDNN for x86 64 with the transla-
tor. In the original Xbyak, each mnemonic function creates
the machine code for one corresponding x86 64 instruction.
The method depicted in Fig. 3, will be executed by replac-
ing Xbyak with the translator in oneDNN (except for the
mnemonic function for the branch instruction).

1. The Xbyak mnemonic function generates machine
code for one x86 64 instruction.

2. The preceding step’s information is fed into the trans-
lation table. The definitions of the x86 64 instruction
and the corresponding AArch64 instruction sequence
are provided in this table. The translation table calls the
relevant Xbyak aarch64 mnemonic function based on

Table 7 Instruction information extracted by XED.

Information Example
Mnemonic ADD, JMP, VPADDD,

RET
# of operands 0, 1, 2, 3, 4
Operand type Register operand

Memory operand
Immediate Value

Memory operand or not True, False
Mask method No, Zeroing, Merging
Broadcast True, False

the information about the mnemonic and operand types
output by XED to construct a sequence of AArch64
instructions that are equivalent to the x86 64 instruc-
tion. The operand type and value returned by XED
are converted to the type and value of the correspond-
ing Xbyak aarch64 and passed as arguments to the
mnemonic function.

Intel’s XED [26], [27] is an encoder/decoder for the
x86 64 instructions. XED may be accessible as OSS. The
translator outputs the necessary information from the ma-
chine code generated by Xbyak using the decoding function
of XED.

The Xbyak utilized in the translation is a partially mod-
ified version of the original Xbyak. While in the original
Xbyak, each mnemonic function generates the correspond-
ing x86 64 machine code and completes the process. Ex-
cept for the branch instruction, each mnemonic function of
Xbyak in the translator is simply added as a single statement
“decodeAndTransToAArch64()” function, as shown in Ta-
ble 9 (a) that processes XED and beyond of Fig. 3.

Instead of creating the machine code for the branch
instructions in x86 64, the mnemonic functions for the
branch instructions in Xbyak have been altered to directly
call the mnemonic functions for the branch instructions in
Xbyak aarch64. Table 9 (b) is an example modification for
the x86 64 JG (Jump if greater than) instruction, in which
the Xbyak aarch64 mnemonic function is used to generate
the B.GT instruction in AArch64. The Label class of Xbyak
and Xbyak aarch64 has the same implementation, as indi-
cated in Sect. 3.1. As a result, the Label class passed to the
mnemonic function of the branch instruction of Xbyak from
oneDNN can be passed directly to the mnemonic function
of the branch instruction of Xbyak aarch64.

3.3.1 Implementation of Translation Table

The translation table in Fig. 3, is the most crucial compo-
nent of building the translator. It was necessary to support
229 mnemonics in the x86 64 instructions to support the
implementation of oneDNN for AVX512 in the translator.
To define the connection between the x86 64 instructions
and AArch64 instruction sequences, the authors created Mi-
crosoft Excel files for each mnemonic. An example of the
x86 64 VPADDD instruction is seen in Table 10. This ta-
ble elaborates how to convert the VPADDD instruction to
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Table 8 Operand information extracted by XED.

Information Example
Available if Operand is

Register Imm. Mem.
value addr.

Register 0, 1, · · · , 31 Yes No No
index
Operand 32, 64, 128, Yes No Yes
width 256, 512
Imm. Imm. No Yes No
value value
Base address 0, 1, · · · , 15 No No Yes
register index
Index address 0, 1, · · · , 15 No No Yes
register index
Index scale 0, 1, 2, 4 No No Yes
Index displacement Integer value No No Yes

Table 9 Example of modification of mnemonic function.

an AArch64 instruction sequence. Cells F4 through F10
are eliminated due to space constraints. The SIMD instruc-
tion VPADDD adds two 32-bit integers from two source
operands. Furthermore, there are variants with SIMD widths
of 128, 256, and 512 bits. Table 10 excerpts only the 512-bit
versions.

The instruction format description given in the
reference [18] is shown in column A. VPADD in-
structions have four operands, Zmm1:destination reg-
ister, {k1}{z}:mask register and masking mechanism
(zeroing/merging), Zmm2:first source operand, zmm3/
m512/m32bcst:second source operand. “{}” denotes that
it can be omitted. A 512-bit SIMD register, 512-bit data
in memory, or 32-bit data in memory can be used as the
second source operand. If the 32-bit data type “m32bcst”
is specified, the same 32-bit data is copied 16 times and
used for all SIMD lanes in the second source register.
For 512-bit operands, VPADDD instructions would have
nine variations: (no mask/zeroing mask/merging mask) ×
(zmm3/m512/m32bcst).

These nine variations† are addressed in rows 2–10 in
Table 10. All nine supported versions are mentioned in this
table. However, explanations for variations that do not occur
in oneDNN are omitted in the Excel files for other x86 64
instructions to reduce implementation effort.

Rows 2–10 of Table 10 describe the implementation

†The AVX512 primitives in oneDNN do not employ all of the
variations mentioned in the reference [18].

for creating the AArch64 machine code sequence for the
nine variations. The information retrieved by XED is com-
pared to the values described in each row’s columns B
through E, and matching rows are searched. There should
be one row that matches all of them. The description in
the row’s column F is utilized to generate the AArch64
instruction sequence. For example, if the information of
the VPADDD instruction collected by XED is “the third
operand is a zmm register, the first operand size equals 512
bits, no mask, and no broadcast,” the description of the
F2 cell is utilized to construct AArch64 machine code se-
quence. The F2 cell’s add function is the mnemonic function
of the ADD instruction in Xbyak aarch64. The ADD func-
tion takes as inputs the destination operand and two source
operands. The indexes of the three zmm register operands
of the VPADDD instruction are acquired via XED and set
to member variables of the “a64” structure by the “decode-
AndTransToAArch64()” function. As a result, if the instruc-
tion to be converted is “VPADDD zmm5, zmm6, zmm7,”
the instruction “ADD z5.s, z6.s, z7.s” is generated, which
is an AArch64 instruction that performs the same action as
“VPADDD zmm5, zmm6, zmm7.”

The cells framed by the red rectangles in Table 10
should be designed by the translator’s developer. The
instructions needed to identify the nine variations of
VPADDD instructions are detailed in columns B through
E. Columns G through U should be filled out to generate
the comparable AArch64 machine code sequences for each
variation. The description in column F is made up of Excel
formulas that are automatically updated when the columns
G through U are changed. The AArch64 instruction se-
quence to be generated for each variant has many similar-
ities. Cells G1 through U1 list the implementation details,
and each row explains whether or not to use them (complete
the columns G through U with 1 or leave them blank). Ta-
ble 10 generates the “vpaddd.h” header file automatically.
This file includes the implementation that determines which
row corresponds to the XED instruction information and ex-
ecutes the description indicated in column F. Except for the
branch instructions, the translator [28], [29] offers header
files for 221 mnemonic types.

3.4 Advantages of Xbyak translator aarch64

As of June 2021, Intel developers were working on
oneDNN, in which they were adding new primitives and op-
timizing current primitives for the Intel architecture. Even
if features are introduced or modified for the x86 64 ar-
chitecture, they can be quickly transferred to A64FX us-
ing the translator. When converting the latest oneDNN
to A64FX, the new and improved primitives may employ
x86 64 mnemonic functions that the translator does not cur-
rently support. In this situation, definition tables for new
mnemonics and operand variations must be created. When
oneDNN is upgraded, there are only a few new operand vari-
ations. It only takes a short time to describe and modify
the translation definition table to support the latest oneDNN
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Table 10 Example of translation definition table.

on A64FX. Xbyak can be updated by adding a “decode-
AndTransToAArch64()” statement, as indicated in Sect. 3.3.
The translator should always use the most recent version of
XED, and no special adjustments are necessary. As a result,
keeping up with oneDNN upgrades is simple.

4. Effectiveness of Translator in Porting oneDNN to
A64FX

We confirmed how much the translator improves develop-
ment efficiency. As a comparison, we used oneDNN’s re-
order primitive. The man-hours required for port develop-
ment and debugging are depicted in Fig. 4. a) The order-
ing primitive implemented with Xbyak is manually rewrit-
ten for AArch64 using Xbyak aarch64. b) is the case when
the translator is used. Both a) and b) were performed by
the same developer, who was familiar with the AArch64
instruction set but not the x86 64 instruction set when the
work began. The amount of steps in the source code to be
ported is approximately 1,000 lines, which comprises the
Xbyak implementation, the C++ implementation, and com-
ment lines. oneDNN includes a test program for continuous
integration (CI). We can utilize these to see if the porting
is done appropriately. It was not necessary to implement a
new test program in either case a) or b), because the CI test
program could be utilized to assess whether the porting was
done correctly.

In case a), it took 30 days, as described below.

1. Copy the files “cpu/x64/jit uni reorder.[h|c]pp” to the
“cpu/aarch64” directory. In the copied files, replace
“x64” with “aarch64.” Include some C++ codes. Add
the presence of a reorder primitive for the SVE instruc-
tion set, for example, to the primitive list.

Fig. 4 Efficiency of Xbyak translator aarch64 in reducing development
time.

2. Read the source code of the “jit uni reorder.[h|c]pp”
file to understand how the reorder primitive’s exe-
cutable code is generated.

3. Refer to the reference [18] to understand the x86 64
instruction used in the reorder primitive. Rewrite
the Xbyak implementation to be compatible with
Xbyak aarch64.

4. Resolve any build errors.
5. Execute the test and review the results. Debug test er-

rors using the method specified in Sect. 3.2.

In a), the number of days required for (2), (3), and (5) was
dominant.

(2) and (3) were not required in case b). Instead, the
translator has to be substituted for Xbyak of oneDNN by the
developer. The developer did not have to manually modify
Xbyak mnemonic functions into Xbyak aarch64 mnemonic
functions. (1) and the substitution of Xbyak into the trans-
lator took two days and another extra day for the test.
The work did not necessitate knowledge of the x86 64 and
AArch64 instructions. We also checked that all of the tests
passed on the first execution of the test program after the



KAWAKAMI et al.: A BINARY TRANSLATOR TO ACCELERATE DEVELOPMENT OF DEEP LEARNING PROCESSING LIBRARY FOR AARCH64 CPU
229

build error was resolved in (4). According to the data shown
above, using translator increases porting development effi-
ciency by tenfold (Fig. 4).

5. Performance Evaluation of the Binaries Translated
for A64FX

In this section, we describe the processing performance of
the translator’s A64FX machine code sequence.

When utilizing the translator, it takes several times
longer to generate binaries for A64FX than the original
oneDNN. This is due to the suggested method’s requirement
to build binaries for x86 64, decode them, and then generate
binaries for AArch64. However, given the processing char-
acteristics of the DL, as mentioned in Sect. 2.1.1, the time
required for this step is insignificant.

Figure 5 depicts the processing performance of
oneDNN’s 8-bit integer precision convolution primitive.
Benchdnn, a microbenchmark included with oneDNN, was
utilized for evaluation. The test patterns (Table A· 2) were
chosen from a set of 20 convolution patterns that formed
when the ResNet-50 [30] model was processed. Figure 5 (a)
represents the results of benchmarking the original oneDNN
on a Xeon with AVX512 capability, and (b) represents the
results of running it on A64FX with the translator. It should
be noted that the microarchitecture of the CPU cores, mem-
ory system, and operating clock frequency differ between
Xeon and A64FX; however, it can be observed that by em-
ploying the translator, A64FX can attain almost the same
performance as Xeon.

Because the translator converts x86 64 instructions on
an instruction-by-instruction basis, there may be redun-
dant instructions or the order of instructions may be ineffi-
cient for A64FX when considering the instruction sequence.
In this scenario, the part of the converted result that can
be optimized can be manually rewritten directly using the
Xbyak aarch64 functions. Even though the source code of
oneDNN is partially modified in Xbyak aarch64, the exe-
cutable code can be successfully created for A64FX. The
machine code of AArch64 is directly written into memory
for the component implemented with Xbyak aarch64, by-
passing the Xbyak, XED, and translation table processes.
Partially rewritten examples can be found in Appendix B.

Figure 5(c) depicts an example of optimization after
approximately two months of evaluating the bottleneck part
of the binary generated by the translator and partial rewrit-
ing using Xbyak aarch64. Manual optimization consists of
three steps: 1) removing unnecessary instructions, 2) re-
arranging instructions, and 3) adding software prefetch in-
structions. 1) and 2) increase the overall processing speed
for all patterns. Because the software prefetch instruction
has a detrimental effect on some patterns, it was carefully
implemented to ensure that the total processing speed of the
20 issues was high. The inclusion of software prefetching
instructions to problems 1, 3, and 14 resulted in slow pro-
cessing speed. Overall, the processing time for the 20 tasks
was improved by 5.5%. The performance of the binaries

Fig. 5 Processing time of oneDNN 8-bit integer convolution primitive.

created by the translator can be evaluated and profiled us-
ing performance counters [7] to detect bottlenecks, and then
partially optimized by hand depending on the difficulty of
fixing the bottlenecks and the person-hours required.

6. Conclusions

To speed up DL processing on the supercomputer Fugaku,
the DL library oneDNN was ported for A64FX CPU. To
accelerate DL processing, oneDNN can dynamically gen-
erate an executable code that is optimized for runtime con-
ditions. The JIT assembler, Xbyak is used to implement
oneDNN’s code generation functionality at the x86 64 in-
struction level. Xbyak aarch64, the AArch64 JIT assem-
bler, was developed to port oneDNN to A64FX. A binary
converter, Xbyak translator aarch64, has also been devel-
oped. It is now feasible to develop oneDNN for A64FX us-
ing Xbyak translator aarch64 without modifying the source
code of the original oneDNN implemented at the x86 64 in-
struction level. Xbyak translator aarch64 has been demon-
strated to increase oneDNN’s efficiency for A64FX de-
velopment by a factor of 10. The creation of oneDNN
for A64FX has significantly accelerated DL processing on
Fugaku. Xbyak aarch64, Xbyak translator aarch64, and
oneDNN for A64FX have all shared their source codes on
GitHub as OSS [23], [28], [31].
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Appendix A: Test Patterns Evaluated in Fig. 5

Table A· 1 displays the benchmarking commands, where
“problem” is one of the problems in Table A· 2. The
data types “u8” and “s8” of “-cfg” are unsigned 8-bit in-
teger and signed 8-bit integer, respectively. For example,
“–cfg=u8s8s8” indicates that the input data type is “u8”
and the weight and output data types are “s8.” The dis-
tinct “-cfg” for Xeon and A64FX is because the integer in-
ner product instruction VPDPBUSD (AVX512) and SDOT
(SVE) require (input 0, input 1, output) = (unsigned, signed,
signed), (signed, signed, signed), respectively. The trans-
lator can, of course, convert VPDPBUSD to SVE instruc-
tions, but this is unfavorable for A64FX since the trans-
lator inserts additional data conversion instructions before
and after the SDOT instruction. The original oneDNN
features a “s8s8s8” primitive for AVX512, but it also has
data conversion instructions before and after the VPDP-
BUSD instruction, which is inconvenient for Xeon. We
contrasted “u8s8s8” and “s8s8s8” to eliminate this inequity.
The “s8s8s8” implementation for A64FX may be handled
by simply replacing a few steps in the “u8s8s8” code for
AVX512 that use the VPDPBUSD instruction with a func-
tion of the SDOT instruction in Xbyak aarch64. This is
shown as (b) in Fig. 5.

Table A· 1 Benchdnn execution command.

CPU Command
Xeon OMP_NUM_THREADS=8 ./benchdnn --conv --mode=p \

--fix-times-per-prb=5 --reset --dir=FWD_B \

--cfg=u8s8s8 (problem)

A64FX OMP_NUM_THREADS=8 ./benchdnn --conv --mode=p \

--fix-times-per-prb=5 --reset --dir=FWD_B \

--cfg=s8s8s8 (problem)

Table A· 2 Problem list.

Index Problem
1 mb256ic3ih224iw224oc64oh112ow112kh7kw7sh2sw2ph3pw3n
2 mb256ic64ih56oc256oh56kh1ph0n
3 mb256ic64ih56oc64oh56kh1ph0n
4 mb256ic64ih56oc64oh56kh3ph1n
5 mb256ic256ih56oc64oh56kh1ph0n
6 mb256ic128ih28oc128oh28kh3ph1n
7 mb256ic128ih28oc512oh28kh1ph0n
8 mb256ic512ih28oc128oh28kh1ph0n
9 mb256ic256ih14oc256oh14kh3ph1n
10 mb256ic256ih14oc1024oh14kh1ph0n
11 mb256ic1024ih14oc256oh14kh1ph0n
12 mb256ic512ih7oc512oh7kh3ph1n
13 mb256ic512ih7oc2048oh7kh1ph0n
14 mb256ic2048ih7oc512oh7kh1ph0n
15 mb256ic256ih56oc128oh56kh1ph0n
16 mb256ic128ih56oc128oh28kh3sh2ph1n
17 mb256ic512ih28oc256oh28kh1ph0n
18 mb256ic256ih28oc256oh14kh3sh2ph1n
19 mb256ic1024ih14oc512oh14kh1ph0n
20 mb256ic512ih14oc512oh7kh3sh2ph1n
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Table A· 3 Example of optimization by hand.

Appendix B: Example of Optimization by Hand

An example of manual optimization is shown in Table A· 3.
The original implementation (a) produces seven VMULPS
instructions with the memory operand “ZMMWORD PTR
[r9]].” The translator converts these to (c) for A64FX. Be-
cause the data given by the memory operand of VMULPS
must be loaded into the register, each VMULPS is trans-
lated into six AArch64 instructions in (c). If the original im-
plementation (a) is rewritten by hand with (d), the machine
code sequence created for A64FX becomes (e), reducing the
total number of instructions generated for A64FX to 13.

Since Xbyak in the translator includes an instance
“xa ” of Xbyak aarch64, we can use the mnemonic func-
tions of Xbyak aarch64 by writing like “xa ->sub” in (d).

Kentaro Kawakami was born in 1977
in Ishikawa, Japan. From 1995 to 1997, he
majored in Physics at Osaka University. He
later changed his major and received a B.E. de-
gree in Electrical and Information Engineering
in 2002 and M.E. degree in Electronic and In-
formation Systems in 2004 from Kanazawa Uni-
versity, Ishikawa, Japan. He received his Ph.D.
degree in engineering from Kobe University,
Kobe, Japan, in 2007. He joined Fujitsu Lab-
oratories Ltd. in 2007. He has been involved in

R&D of image codec LSIs and wireless sensor nodes and is currently en-
gaged in the R&D of AI software for Arm high-performance computing
systems.

Kouji Kurihara received a B.E. from the
Department of Electrical Engineering and Com-
puter Science, School of Engineering, Kyushu
University in 2007, and M.E. degrees from the
Graduate School of Information Science and
Electrical Engineering, Kyushu University in
2009. In the same year, he joined the Fujitsu
laboratories LTD., Kawasaki, Japan, where he
has been engaged in research and development
work on embedded multicore processor soft-
ware, HEVC codec LSIs, wireless sensor nodes

system, and visualization of wireless communication interference from
2007 to 2018. His current research interests include AI software for Arm
HPC.

Masafumi Yamazaki received his B.E. and
M.E. in Mechanical and Materials Engineering
from Yokohama National University, Japan in
1994 and 1996, respectively. He joined Fujitsu’s
semiconductor division in 1996 and worked on
the semiconductor circuit design for products
such as high-performance custom memory and
dynamically reconfigurable processors. Since
2010, he has been involved in the development
and operation of large-scale distributed systems.
In 2015, he was transferred to Fujitsu Laborato-

ries. His research interests are deep learning applications and acceleration
of them using parallel computing.

Takumi Honda received B.E., M.E., and
D.E. degrees from the Hiroshima University,
Japan, in 2014, 2015, and 2017, respectively. In
2017, he joined Fujitsu Laboratories Ltd., and
has engaged in the research and development of
high-performance computing. He is currently
a senior researcher at the Advanced Computing
project in the ICT Systems Laboratory of Fujitsu
Ltd. His research interests are in parallel com-
puting and performance optimization on parallel
and distributed systems.

Naoto Fukumoto has led the R&D of
AI software as a research manager in Fujitsu
Ltd. He received his Ph.D. degree in en-
gineering from Kyushu University, Japan, in
2012. His current research interests include
high-performance computing systems.


