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PAPER

A New SIDGS-Based Tunable BPF Design Method with
Controllable Bandwidth

Weiyu ZHOU†a) and Koji WADA†b), Members

SUMMARY This paper provides a new method to implement substrate
integrated defected ground structure (SIDGS)-based bandpass filter (BPF)
with adjustable frequency and controllable bandwidth. Compared with pre-
vious literature, this method implements a new SIDGS-like resonator capa-
ble of tunable frequency in the same plane as the slotted line using a varac-
tor diode, increasing the design flexibility. In addition, the method solves
the problem that the tunable BPF constituted by the SIDGS resonator can-
not control the bandwidth by introducing a T-shaped non-resonant unit. The
theoretical design method and the structural design are shown. Moreover,
the configured structure is fabricated and measured to show the validity of
the design method in this paper.
key words: substrate integrated defected ground structure (SIDGS), tun-
able band-pass filter (BPF), controllable bandwidth

1. Introduction

With the development of modern wireless systems, some
current communication devices require miniaturization
while also operating in multiple frequency bands. In or-
der to satisfy the development needs of these communica-
tion devices, bandpass filters (BPFs) are constantly being
updated and progressed. Therefore, there is a strong need
for a BPF filter that can operate in multiple frequency bands
while maintaining bandwidth and miniaturization.

SIDGS consists of slot lines and metal vias that
surround the slots [1]. Compared with waveguides and
SIWs [2], [3], it has a smaller volume [4], and also has
a lower radiation loss [5]. Compared with a microstrip
line [6], it has lower radiation loss, a more robust abil-
ity to resist interference from external circuits [7], and also
has the characteristic of the compact structure of a mi-
crostrip line [8], [9]. Therefore, it can satisfy the require-
ments of miniaturization and low radiation loss at the same
time. Regarding the realization of frequency adjustment,
the more common method is to connect the resonator to
a varactor diode [10]–[12] or MEMS to control the fre-
quency [13], [14], or to adjust the length of slot lines manu-
ally [15]. It is also possible to use a particular substrate, such
as liquid crystal materials [16], which a voltage can adjust
the dielectric constant ratio of the substrate to achieve fre-
quency tunability. The method of electronic control used in
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[10]–[14] cannot be directly applied to SIDGS for structural
reasons. In [17], a harmonic-controlled SIDGS resonator is
proposed, which uses a varactor diode to indirectly control
the equivalent inductance of the SIDGS to change the res-
onant frequency. Additionally, there is a method to adjust
the resonant frequency by crossing a varactor diode on both
sides of the slot of CSRR and DGS (similar to SIDGS in
structure), which changes the equivalent capacitance in the
equivalent circuit [18]–[20]. In the above method, all the ad-
justment circuits must pass through the substrate, and there
is a problem in that the center frequency and bandwidth can-
not be controlled independently.

In this paper, a new center frequency adjustment
method and bandwidth adjustment method are proposed,
which enables the center frequency and bandwidth to be ad-
justed independently, and the control circuit of the center
frequency will be in the same plane of the SIDGS and out-
side the SIDGS, significantly improving the flexibility of the
design. The principles of frequency control and bandwidth
control by this method are analyzed in detail in Sect. 2. In
Sect. 3, the practical application of the frequency adjustment
circuit and the bandwidth adjustment circuit is discussed, as
well as the effect on the external Q value after loading a var-
actor diode on the port. Next, Sect. 4 presents the design of a
tunable BPF with constant bandwidth. Finally, conclusions
are given in Sect. 5.

2. Adjustment Methods of Center Frequency and Cou-
pling Coefficient

2.1 An Adjustment Method of the Center Frequency

Figure 1 shows an SIDGS resonator cell designed for fre-
quency adjustment. The cell consists of two parts, a C-
shaped slotted line and metal vias surrounding the slot form-
ing the SIDGS resonator part (the part inside the red dotted
line), and a frequency adjustment circuit part consisting of
an I-shaped slotted line loaded with capacitors and grounded
metal vias.

When we change the capacitance of capacitor C, the
scattering parameters shown in Fig. 2 can be obtained. By
substituting the scattering parameters obtained in Fig. 2 into
Eq. (1) [21], we can obtain the equivalent impedance at the
resonant frequency under different capacitances of about
50Ω above 3.1GHz [22]. This is because, on the whole, Al-
though the width of the slot line of SIDGS is the same, it is
not a uniform transmission line, it does not have a constant
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Fig. 1 The structure of tunable SIDGS resonator unit. (a) Top view.
(b) Section view along the blue dotted line. εr = 3.4, h = 0.5 mm,
t = 18μm. Note that Via is not visible in (b), here is to show its positional
relationship with the.

Fig. 2 Scattering parameters of SIDGS resonator unit at different C.

Fig. 3 (a) A transmission line with a characteristic impedance of 50Ω.
(b) Equivalent circuit of SIDGS at resonant frequency.

characteristic impedance, but it can be regarded as a unit of
periodic lumped elements. It is similar to complementary
split rings resonators [23] in that the equivalent impedance
keeps changing with frequency and resonates when it is
equal to 50Ω. Therefore. Its equivalent circuit is shown
in Fig. 3, and it is equivalent to a transmission line with a

characteristic impedance of 50Ω at the resonant frequency.

ZB = ∓ 2b

a − d ∓ √(a + d)2 − 4
(1)

In Eq. (1), a, b, c, and d are ABCD parameters,
which can be obtained from the simulation results. Where
a =

(1+S11)(1−S22)+S12S21

2S21
, b = Z0

(1+S11)(1+S22)−S12S21

2S21
, c =

1
Z0

(1−S11)(1−S22)−S12S21

2S21
, d = (1−S11)(1+S22)+S12S21

2S21
, and the charac-

teristic impedance of the source Z0 = 50Ω. S11, S12, S21,
and S22 are scattering parameters.

In Fig. 3, Z1 and l1 are the characteristic impedance and
length of the 50Ω transmission line. Z2 and l2 are half of the
characteristic impedance and length of SIDGS. Zin (50Ω)
and ZL (50Ω) are input impedance and load impedance
respectively.

According to Fig. 3, we can obtain Eq. (2) and Eq. (3).

[A] =

[
cos(β1l1) jZ1 sin(β1l1)

jsin(β1l1)
Z1

cos(β1l1)

]
(2)

[B]

=

[
cos(β2l2) jZ1 sin(β2l2)

jsin(β2l2)
Z2

cos(β2l2)

] [
1 0

jω0C 1

] [
cos(β2l2) jZ1 sin(β2l2)

jsin(β2l2)
Z2

cos(β2l2)

]

=

[
cos(2β2l2)− Z2ω0C

2 sin(2β2l2) jZ2 sin(2β2l2)− jZ2
2ω0sin2(2β2l2)

jsin(2β2l2)
2Z2

+ jω0Ccos2(2β2l2) cos(2β2l2)− Z2ω0C
2 sin(2β2l2)

]
(3)

βx (x = 1 or 2) in Eq. (2) and Eq. (3) is the phase con-
stant ω0 is the central angular frequency.

At the resonant frequency f0 (= ω0/2π), [A] = [B],
and further, we can obtain Eq. (4). Since SIDGS is a half-
wavelength resonator [24], we can obtain Eq. (5) by substi-
tuting β1l1 = π into Eq. (4).

Cos(β1l1) = cos(2β2l2) − Z2ω0C
2

sin(2β2l2) (4)

C =
2(cos(2β2l2) + 1)
ω0Z2 sin(2β2l2)

(5)

In Eq. (5),

β2 =
2π f0

√
εreff

co
(6)

In Eq. (6), co = 3 × 108m/s is the speed of light in a
vacuum. εreff = 2.97 is the effective dielectric constant of
SIDGS in Fig. 1.

In addition, since the equivalent resistance of SIDGS
is 50Ω at the resonance frequency, Eq. (7) [25] can be listed
according to Fig. 3, thus obtaining Eq. (8).

Zin = Z2 +
1

jω0C
+

1/ω2
0C2

Z2 + 1/ jω0C + ZL
(7)

Z2 =

√
Z2

in −
2

jω0C
(8)

Substituting Eq. (5) into Eq. (8), the resonant frequency
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Fig. 4 Calculation and simulation results of Cf at different frequencies.

under different capacitances can be obtained. The calcu-
lation results were obtained using Matlab R2020b. Tak-
ing the center frequency of 4.33GHz as an example, Z2 =

49.98 − j 1.34 Ω and C = 0.55 + j 0.014 pF are calculated.
We will find that Z2 in the calculation result is a complex
value close to 50Ω, and C will also have a small imaginary
part, which is considered the equivalent impedance gener-
ated by the I-shaped slot and the metal via. The final calcu-
lation result takes real part.

Comparing the calculated results with the model sim-
ulation results of HFSS 12.0, as shown in Fig. 4, we can
find that the error is within 0.04 pF in the range of 4.09–
4.86 GHz. However, the error generated becomes larger
as the frequency decreases below 4.09 GHz. The error is
considered to be the neglect of the influence from the I-slot
when calculating the value of C. According to the above re-
sults, the resonant frequency can be predicted by the method
in a certain range, the above equivalent circuit is reasonable,
and the loading capacitance in the same plane of the SIDGS
is also proved feasible.

2.2 An Adjustment Method of the Coupling Coefficient

Achieving independent control of the coupling between two
SIDGS is an unsolved problem. SIDGS cannot be controlled
by connecting two resonators with varactor diodes, similar
to literatures [26], [27] because of the structural reasons. In
this paper, a T-type non-resonator is provided between two
SIDGS. By loading the varactor diode on the T-type non-
resonator, the independent control of the coupling between
the SIDGS can be achieved, as shown in Fig. 5.

According to Fig. 5, due to the addition of this struc-
ture, a coupling path (R1-kn1-N-kn2-R2) through the non-
resonator is added to the original coupling of the two SIDGS
resonators. The coupling between the SIDGS and the non-
resonator can be changed by changing the bias voltage on
the varactor on the non-resonator so that the total coupling
k between the two SIDGS can be changed.

In order to study the influence of the structure of
the T-type non-resonator on the coupling, the T-type non-
resonator with different Lk1 and different capacitances
was simulated and calculated. The structure of T-type

Fig. 5 Topology Logic for SIDGS Bandwidth Controllable.

Fig. 6 Structure of the T-shaped non-resonator.

Fig. 7 An example of calculating coupling coefficient k.

non-resonator is shown in Fig. 6. Figure 7 shows the sim-
ulation results when Lk1 = 7 mm and Ck = 1 pF.

When calculating k, Eq. (9) is used [28].

k =
f 2
2 − f 2

1

f 2
2 + f 2

1

(9)

In Eq. (9), f1 and f2 are the lower resonant frequency
and the higher resonant frequency of the two resonators cou-
pled, respectively, as shown in Fig. 7. The results obtained
from Eq. (9) are collated in Fig. 8 and Fig. 9. According to
Fig. 8, we found that the longer the length of Lk1, the greater
the variation of k when adjusting Ck, and the greater the
tuning range. In the extreme case when the length of Lk1 is
0 mm, adjusting Ck does not cause k to change. We do not
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Fig. 8 When Lk1 is changed, the change tendency of k.

Fig. 9 When Ck is changed, the change tendency of k.

find any pattern in Fig. 8, but when we fix the length of Lk1

as in Fig. 9, we can see that k increases and converges to a
certain value as Ck increases. And the longer the length of
Lk1, the more significant the change.

3. Design of a Tunable BPF

3.1 Calculation of Qex and k

To further verify the feasibility of the above method, a BPF
with a frequency adjustment range of 3.7–4.2 GHz is de-
signed, and a tunable BPF with a constant bandwidth of 100
MHz can be made by voltage control. The design specifi-
cation of the tunable BPF is shown in Table 1. Since Qex

and k change monotonically and continuously, and take the
maximum and minimum values at 3.7 GHz and 4.2 GHz,
only the results at 3.7 GHz and 4.2 GHz are calculated for
Ref. [29].

3.2 Design of Frequency Adjustment Circuit

The reasonableness and validity of the method are verified
in Sect. 2.1, but the circuit can not be directly used for the
actual design of tunable BPF. A varactor diode needs to be
used in the actual design, and a bias voltage needs to be ap-
plied. Therefore, it is also necessary to modify the structure

Table 1 The design specifications

Fig. 10 Actual structure of the SIDGS resonator unit.

Fig. 11 When C f is changed, the change tendency of f0.

Fig. 12 Actual structure of the SIDGS loaded with T-type non-resonator.

of the frequency adjustment circuit of the SIDGS. The mod-
ified circuit is shown in Fig. 10.

Different C f cases are simulated, and the relationship
between C f and f0 is shown in Fig. 11. At 0.23–2.1 pF, f0
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Fig. 13 At 3.7 GHz and 4.2 GHz, when changing Ck, the change ten-
dency of k.

Fig. 14 Actual structure of the port.

Fig. 15 At 3.7 GHz and 4.2 GHz, when changing Cq, the change ten-
dency of Qex.

can be varied from 3.67 to 4.86 GHz. This circuit can satisfy
the design requirements.

Compared with Fig. 4, we find that its variation range
is smaller. It is considered that the original I-shaped slot has
changed, and two small copper sheet structures and a series-
connected DC blocking capacitor Ccut1 (= 12 pF) have been
added, which makes the equivalent capacitance value of the
circuit smaller. However, the changing trend has stayed the

Fig. 16 (a) The overall structure of the tunable BPF. (b) Layer I.
(c) Layer II. (d) Layer III.

same, and the method is still valid.

3.3 Design of Bandwidth Adjustment Circuit

According to Fig. 9, the required capacitance and adjust-
ment range of Ck is very small, and the varactor diode with
the smallest capacitance that can be found is SMV-2201,
with an adjustment range of 0.23–2.1pF. Then the f0 will
be adjusted to 3.7GHz and 4.2GHz, respectively, and the
coupling coefficients at different values of Ck are calculated.

The measurement circuit of the adjusted T-type
non-resonator is shown in Fig. 12.

The value of k obtained from the circuit shown in
Fig. 12 is collated in Fig. 13.
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Fig. 17 Lossless scattering parameters at 3.7 GHz, 3.95 GHz, 4.2 GHz.

According to Fig. 13, when the value of Ck changes in
the range of 0.2 pF–2 pF at 3.7 GHz, k changes from 0.0126
to 0.0192, reaching the target value 0.0191, and at 4.2 GHz,
k changes from 0.0149 to 0.0265, reaching the target value
0.0169. The design requirements are met.

3.4 Design of the Adjustment Circuit of Qex

Regarding the adjustment of the Qex, the method in [27] is
adopted, and its structure is shown in Fig. 14. Among them,
Cq is the varactor diode of SMV-2201 (range: 0.23–2.1pF),
Ccut3 is the chip capacitor of 6 pF, and Rq is the chip resistor
of 100 kΩ.

By simulating Fig. 14, the Qex under different capaci-
tances of Cq can be obtained, and the simulation results are
arranged in Fig. 15. According to Fig. 15, the Qex changes
from 44 to 147.6 at 3.7 GHz when the capacitance of Cq

changes from 0.2 pF to 1.8 pF, reaching the target value of
52.2. At 4.2 GHz, the Qex changes from 16.4 to 138, reach-
ing the target value of 59.3. The design requirements are
met.

3.5 Simulation of Tunable BPF

According to Sects. 3.2, 3.3, and 3.4 a tunable BPF can be
composed, as shown in Fig. 16.

The circuit simulation in Fig. 16 can be obtained in
Fig. 17 and Fig. 18.

According to the simulation results, the circuit can be
adjusted from 3.7 to 4.2GHz, and the bandwidth can be
controlled individually by controlling Cq and keeping the
bandwidth at 100MHz. in the lossy case, the IL is 1.6 dB
for f0 = 3.7GHz. f0 = 3.95GHz, the IL is 1.61 dB.
f0 = 4.2 GHz, the IL is 1.9 dB, to the maximum insertion
loss.

According to Fig. 17 and Fig. 18, it is known that the
circuit can meet the design requirements in Table 1. In
addition, to more clearly demonstrate the effectiveness of
the individual bandwidth regulation proposed in Sect. 2.2 of
this paper, the simulation results for different bandwidths at
4.2 GHz are shown in Fig. 19. The bandwidths of 125 MHz,

Fig. 18 Lossy scattering parameters at 3.7 GHz, 3.95 GHz, 4.2 GHz.

Fig. 19 Lossless scattering parameters with different bandwidths at 4.2
GHz.

150 MHz, and 175MHz are achieved respectively. The
bandwidth tuning is mainly done by Ck, when the band-
width is 125 MHz, Ck = 1.1 pF, C f = 0.37 pF, and Cq =

0.95 pF. When the bandwidth is 150 MHz, Ck = 1.42 pF,
C f = 0.37 pF, and Cq = 0.87 pF. When the bandwidth is
175MHz, Ck = 2.2 pF, C f = 0.39 pF, and Cq = 0.81 pF.

4. Measured Results of Tunable BPF

The tunable BPF circuit in Fig. 16 was worked out in prac-
tice. The actual circuit structure is shown in Fig. 20.

In Fig. 20, the substrate uses MEGTRON7 R-5785(N)
with a thickness of 0.5 mm, a relative dielectric constant of
3.4, and a dielectric dissipation factor of 0.002. The cir-
cuit size is 32 × 18mm2. C f , Ck, and Cq all use MSV2201-
040LF, R f and Rq all use 667-ERJ-PA2F1003X, Ccut1 and
Ccut2 use UMK-105-CH060DW, Ccut3 and Ccut4 use UMK-
105-CH120JW, and the input of the black wire is the DC
voltage V f that controls C f , the input of the blue wire is the
DC voltage Vk that controls Ck, and the yellow wire is the
DC voltage Vq that controls Cq.

Figure 21 and Fig. 22 show the measurement results at
different frequencies when the BW is held constant. When
V f = 6.6 V, Vk = 7.6 V, Vq = 23.5 V, f0 = 4.65 GHz,
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Table 2 Comparison of this work with other tunable BPFs.

Fig. 20 The actual circuit structure of tunable SIDGS BPF. (a) top view.
(b) front view.

Fig. 21 The S21 at different center frequencies.

BW = 198 HMz, IL = 10.3 dB. When V f = 8.2 V,
Vk = 14.3 V, Vq = 23.5 V, f0 = 4.75 GHz, BW = 201 HMz,
IL = 6.8 dB. When V f = 17.6 V, Vk = 18 V, Vq = 21.3 V,
f0 = 4.85 GHz, BW = 200 HMz, IL = 4 dB. All voltage
values are readings from the constant voltage source. Com-
paring Fig. 18 and Fig. 21, it can be found that the measured
results show a higher frequency, wider BW, larger IL, and
tilted waveforms than the simulated results. The reasons
are as follows: 1. During soldering, each component is not
entirely asymmetrical, and there is an inevitable error in
each component itself, which causes the frequency of the
two resonators to be different, thus widening the BW and
tilting the waveform. 2. Due to the larger BW, the re-
quired Qex becomes smaller, and a gap of about 0.1mm be-
tween the two substrates, which makes Qex larger, even if
Vq is adjusted to 23.5 V (near the maximum voltage that the

Fig. 22 The S11 at different center frequencies.

Fig. 23 The S21 for different bandwidths.

Fig. 24 The S11 for different bandwidths.

SMV2201 can withstand after voltage division). It cannot be
reduced to the target value, causing IL to increase sharply.
3. The ideal components are used in the simulation, but the
influence of parasitic inductance and parasitic capacitance
of various components at high frequencies, in reality, will
become apparent, which results in higher insertion loss and
a higher resonant frequency.

Figure 23 and Fig. 24 show the measurement results
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Fig. 25 The relationship between V f and f0.

Fig. 26 The relationship between Vk and Δ f .

under different bandwidths when f0 is 4.8 GHz. When Vk

changes from 20 V to 0 V, BW changes from 202 MHz to
276 MHz. Figure 23 also has the same problem as Fig. 21.
However, through Fig. 21, Fig. 22, Fig. 23 and Fig. 24, it can
be demonstrated the amount of their variation decreases as
the voltage increases that the adjustable method proposed in
this paper is effective and can achieve independent control
of frequency and bandwidth. If the manufacturing process
is improved, a circuit close to the simulation result can be
obtained. About the improvement methods: 1. In the case
of conditions permitting, we can use such as low tempera-
ture co-fired ceramic substrate to make the circuit to reduce
the structural error. 2. Use higher precision chip capacitors,
resistors, and varactor diodes to reduce the degree of incon-
sistency in the center frequency of the resonator.

To further demonstrate the controllability of f0 and
BW, the relationship between V f and f0, and the relation-
ship between Vk and Δ f are shown in Fig. 25 and Fig. 26,
respectively. Δf represents the bandwidth between the two
resonant frequencies. f0 becomes higher as V f increases,
and Δ f decreases as Vk increases, but the amount of varia-
tion decreases as the voltage increases. Due to insufficient
external Q, the IL will increase as the frequency becomes
lower, resulting in the waveform becoming indistinguish-
able, and its maximum tuning range cannot be known. How-

ever, it can be determined that the maximum tuning range of
f0 contains 4.65–4.85 GHz, and the maximum tuning range
of Δf contains 0.87–0.2 GHz, and the maximum insertion
loss at 4.65 GHz is 10.3 dB.

Finally, a comparison with other tunable miniaturiza-
tion BPFs is made in Table 2. The tunable center fre-
quency and bandwidth are achieved while maintaining the
miniaturization.

5. Conclusion

This paper proposes a new independently adjustable method
of frequency and bandwidth based on SIDGS BPF and
proves the method’s effectiveness through simulation and
actual measurement.
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