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SUMMARY  Automatic modulation recognition(AMR) of radar signals
is a currently active area, especially in electronic reconnaissance, where
systems need to quickly identify the intercepted signal and formulate cor-
responding interference measures on computationally limited platforms.
However, previous methods generally have high computational complexity
and considerable network parameters, making the system unable to detect
the signal timely in resource-constrained environments. This letter firstly
proposes an efficient modulation recognition network(EMRNet) with tiny
and low latency models to match the requirements for mobile reconnais-
sance equipments. One-dimensional residual depthwise separable convo-
lutions block(1D-RDSB) with an adaptive size of receptive fields is devel-
oped in EMRNet to replace the traditional convolution block. With 1D-
RDSB, EMRNet achieves a high classification accuracy and dramatically
reduces computation cost and network paraments. The experiment results
show that EMRNet can achieve higher precision than existing 2D-CNN
methods, while the computational cost and parament amount of EMRNet
are reduced by about 13.93% and 80.88x, respectively.

key words: automatic modulation recognition, radar signals, efficient, low
latency, adaptive size of receptive fields

1. Introduction

Automatic modulation recognition (AMR) of radar signals
has attracted considerable attention in military and civil ap-
plications [1], [2]. In the past decades, there have been
two main categories of AMR methods for radar signals. In
the first category, handcrafted features have been extracted
from radar signals to classify waveforms [3], [4]. How-
ever, the selection of handcrafted features dramatically de-
pends on the experience of researchers. Moreover, these
features have to be re-selected when the system needs to
recognize new waveforms. Thus, alternative deep learn-
ing technologies are proposed to overcome the shortcom-
ings of handcrafted features. Deep learning, simulating the
human brain for learning the inner laws and representation
levels of sample data, can automate the feature-extracting
process. [5] utilized entire time-frequency images (TFI) as
inputs for LeNet-5 [6] to identify radar signals. In [7], TFIs
denoised by singular value decomposition are presented to
a shrinking ResNet-50 [8], which enhances the recognition
performance. [9], [10] adopted similar convolutional neu-
ral networks (CNN) to recognize radar signals from their
two-dimensional (2D) transform domain. Benefits from the
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powerful learning ability of CNN, the recognition accuracy
of radar signals have been further improved.

For most existing research, original 1D radar signals
have to be mapped into a 2D transform domain [11], [12].
And then, 2D CNN is employed to extract features from
2D transform-domain images. However, these approaches
suffer several limitations. First, the process of 2D trans-
formation, such as time-frequency transformation, is time-
consuming and complicated. Second, 2D CNNs mainly fo-
cus on images with a large number of samples. Thus, the
training and optimization of 2D CNNs will cost too much
time. Moreover, these methods concentrated on pulse-wave
(PW) signals and depended on an unrealistic assumption
that the pulse width of signals has been accurately obtained.
Continuous-wave (CW) radar has better anti-jamming capa-
bilities and has been widely applied in target tracking and
short-range detection system. Compared with PW radar,
CW radar spreads the signal energy over a much longer
time interval, resulting in a dramatic increase in the com-
putational complexity of subsequent processing. Thus, an
efficient recognition method for CW radar signals is urgent
to be proposed.

Recently, 1D CNN has been developed to deal with 1D
micro-Doppler signals for human activity classification and
demonstrates outstanding results in terms of precision and
complexity [13]. 1D CNNs are deployed to capture high-
level representations by utilizing a set of 1D kernels. There-
fore, the sequence can be directly input to 1D CNN, which
avoids the complex 2D transformation. The autocorrelation
function (ACF) calculates the similarity of the signal with
its time lag, which can keep the computational complexity
at a low level. Thus, it is an interesting issue to combine
1D CNN with ACF to identify CW radar signals. Neverthe-
less, a hurdle hampering the application of 1D CNN is that
numerous network weights generated by high-dimensional
input signals are difficult to be optimized. Additionally, the
fixed receptive field of the traditional framework limits the
learning ability of networks [14].

In this letter, we propose a novel efficient modulation
recognition network (EMRNet) to overcome these existing
hurdles in CNN and then utilize it to recognize CW radars.
The main contributions of this study are threefold:

* 1D residual depthwise separable convolutions block
(1D-RDSB) is firstly developed to extract features from au-
tocorrelation signals. Compared with the standard 1D con-
volutions block, 1D-RDSB has a more efficient architecture,
which dramatically reduces computation costs while main-
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taining accuracy.

e A multi-scale features fusion incorporating a
lightweight attention mechanism is proposed for the adap-
tive aggregation of information from different receptive
fields, further improving the representational capability of
the network.

« The sufficiently tiny model of EMRNet is specifically
tailored for mobile and resource-constrained environments,
which can be directly stored on almost all FPGA.

2. Signal Model and Preprocessing
2.1 Signal Model

The received radio frequency (RF) radar signal is down-
converted and sampled discretely as below:

yln] = r[n] + a[n] (D

where r[n] symbolizes the noise-free radar signal, a[n] de-
notes channel noise supposed to be the additive white Gaus-
sian noise (AWGN).

This research considers ten types of CW radar sig-
nals. There are frequency modulated signals: linear fre-
quency modulation (LFM) and sinusoidal frequency modu-
lation (SFM); phase modulated signals: binary phase-shift
keying (BPSK) and Frank code signal; digital frequency
modulated signals: frequency-shift keying (FSK) and 4FSK;
amplitude modulated signals: binary amplitude-shift keying
(BASK); no modulated signal (NS); and combined modu-
lation signals: LFM-BPSK and SFM-BPSK. Detailed def-
initions of these CW radar signals can be found in related
publications [3]-[5].

2.2 Autocorrelation Feature

Autocorrelation analysis is a nonlinear tool for radar signal
processing, which measures the similarity between signals
separated by different time lags. The autocorrelation func-
tion (ACF) can detect non-randomness in signal, which can
be computed as:

Alm) = )" ylnl x y*[n = m]
= > [xfn] + win]] X [¥'[n = m] + w’[n - m]]

- Z[x[n] X x"[n = m]] + 6[m]

2)

Under the background of AWGN, the cross-correlation
between signal and noise is approximately equal to zero.
ACEF of noise can equal to 6[m]. Furthermore, A[0] can be
replaced by A[1] to eliminate the impact of noise.

3. Methodology

The network architecture of the proposed EMRNet is illus-
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Fig.1  Overall architecture of the proposed EMRNet. Here, PCon de-
notes pointwise convolution, DSCon represents depth separable convo-
lution, and AMIFB is the adaptive multi-scale information fusion block,
which will be detailed described in Fig. 2.
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Fig.2  Flowchart of the proposed adaptive multi-scale information fu-
sion block (AMIFB), where L and ¢ denote the length and thickness of the
feature map, respectively.

trated in Fig. 1. Due to the symmetry of ACF, half of the au-
tocorrelation sequence is selected as the input signal. At the
beginning of the EMRNet, the input layer has the same size
as the received 1D signal sequence. Then, seven 1D-RDSBs
connected in series are applied to extract abstract informa-
tion from ACF. The output of each block serves as the input
of the next block. The reason for utilizing seven 1D-RDSBs
is that we make a trade-off between recognition performance
and the number of operations. Features learned by seven
1D-RDSBs are flattened into a 1D vector and then mapped
to sample label space by fully connected layers (FC).

1D-RDSB, as the critical component of EMRNet, is de-
signed to decrease computational complexity and paraments
needed while maintaining excellent precision. The structure
of 1D-RDSB will be discussed in detail below.

3.1 1D Depthwise Separable Convolutions

Inspired by the MobileNet [15], the depth separable convo-
lution technique is applied in the proposed 1D-RDSB. To
build a more efficient neural network architecture, the depth
separable convolution technique replaces standard convolu-
tion with a combination of depthwise convolution and point-
wise convolution. Depthwise convolution utilizes a single-
layer filter to each input channel for spatial filtering. Then,
pointwise convolution maps features through computing a
linear aggregation of spatial filtering features.

3.2 Adaptive Multi-Scale Information Fusion

CNN is inspired by local receptive fields of neurons. In tra-
ditional CNN structures, the size of local receptive fields
is fixed, which results in the limited scale spatial infor-
mation of the extracted features. To collect information
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with different scales, inception modules [14] concatenate
a multi-branch structure, and each branch has a different
size of receptive fields. However, these linear aggrega-
tion approaches ignore the relationship between different
scale information. In the human cognitive system, multi-
scale information from different sizes of receptive fields
can be aggregated adaptively based on the importance of
information. This behavior of concentrating the alloca-
tion of resources towards the most informative components
is the attention mechanism [16], which has demonstrated
its validness in adaptively aggregating channel informa-
tion [17], [18]. Therefore, the adaptive aggregation of multi-
scale features through the channels attention mechanism
will dramatically enhance network learning ability [19]. As
demonstrated in Fig. 2, adaptive channel attention is applied
to fuse multi-scale information from multiple branches with
different receptive fields.

3.3 Deep Residual Learning

Deep residual learning and skip connection are further em-
bedded in the proposed network. [8], [20] has confirmed
that residual learning can solve the problem of gradient dis-
appearance existing in the training process and meanwhile
strengthen network learning capability.

4. Results and Analysis

In this section, experiments based on ten kinds of CW radar
signals are conducted to verify the performance of the de-
signed EMRNet. The evaluation indicators adopted in our
experiments include recognition accuracy, the number of
multiply-accumulate operations (MACC), and paraments of
the network. LFM, SFM, BPSK, Frank, FSK 4FSK, BASK,
NS, LFM-BPSK, and SFM-BPSK are considered in experi-
ments. The length of the received signal is set as L = 1024,
which is the same as [5], [7], [20] for a fair comparison. The
sampling rate utilized in the experiment is 400 MHz. Signal
parameters are set with the normalized sampling frequency
and the normalized length of the signal to demonstrate the
generalizability of the model. The carrier frequency of all
signals is distributed in (0.1 ~ 0.4) = f;. The range of band-
width of FM signals is in (0.1 ~ 0.2) = f;. To guarantee that
the intercepted signal contains at least one complete time
interval, the number of samples per signal period is set as
(1/3 ~ 1/2) = L. For BPSK, the Barker codes length is any
of 5,7, 11, and 13. BASK, FSK, and 4FSK adopt the ran-
dom code. The phase number of polyphase code signals is
from 4 to 7. From —4 dB to 20 dB, each signal generates 500
samples at a step of 2dB for model training. In the testing
set, 100 samples per 2 dB for each signal are produced from
—10dB to 10dB. There are a total of 65000 samples in the
training set and 11000 samples in the testing set. The opti-
mization utilized in experiments is Adam, and the batch size
is 128. The learning rate is 0.001 at the first 100 epochs, and
then the learning rate is reduced tenfold every 50 epochs. A
total of 200 epochs have been run.
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Fig.3  Recognition accuracy of ten kinds of signals.
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Fig.4 Comparison with other methods.
Table 1  Complexity and size of different models
Method MACC Parameters
LeNet-5 [5] 1,890,792 114,106
SResNet-50 [7] 23,289,664 1,497,514
1D-ResNet [20] 42,419,456 212,490
EMRNet 1,671,680 18,516

The first experiment shows the recognition accuracy of
the proposed EMRNet for ten types of CW radar signals in
detail. Figure 3 indicates that the recognition accuracy of
various signals is positively correlated with SNR. All sig-
nals maintain a 100% recognition performance when SNR
exceeds 0dB. The precision of LFM, LFM-BPSK, BPSK,
and Frank signals declines sharply once the SNR is below
0dB. While EMRNet can identify SFM, NS, FSK, 4FSK,
BASK, and SFM-BPSK signals with a precision of more
than 95% at the SNR of —6dB. EMRNet collects multi-
scale information with different receptive fields, provid-
ing a stronger multi-scale representation ability. Moreover,
the adaptive multi-scale information aggregation effectively
compensates for the loss of single-scale information caused
by intense noise, which significantly improves the robust-
ness of the model under low SNR conditions.

In order to exhibit the excellent performance of the de-
signed approach, comparative experiments with other state-
of-the-art algorithms are shown in Fig.4. In [4], hand-
crafted features are extracted from the ambiguity function
to classify radar signals. LeNet-5, consisting of two con-
volutional layers, is proposed in [5] to identify the TFIs
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of radar signals. In [7], shrinking ResNet-50 (SResNet)
is adopted. In addition, the 1D-ResNet[20] based on I/Q
samples is added to the comparison. For the traditional
machine learning (ML) method [4], recognition precision is
low due to the limitations of handcraft features. The ac-
curacy of 1D-ResNet[20] is significantly higher than that
of the ML method. Nevertheless, due to the poor robust-
ness of the 1Q samples, the classification effect is reduced
considerably when the SNR is lower than 0 dB. Deep learn-
ing methods [5], [7] based on 2D CNN can recognize vari-
ous radar signals with relatively high accuracy, but it is still
not as good as the proposed method. In addition, the EM-
RNet has 1,671,680 MACCs, which is reduced by 13.93x
compared with SResNet. 1D-ResNet also holds a 25.37x
amount of computation than EMRNet. The fewer MACCs
mean a lower network delay. This allows EMRNet to com-
plete tasks efficiently, even on computationally limited plat-
forms. Last but not least, EMRNet has 18,516 parameters,
which is much less than other models. Such a tiny model of
EMRNet can be embedded in almost any device. Compara-
tive experiments reveal that EMRNet has both accuracy and
efficiency, which is significantly better than previous meth-
ods.

5. Conclusion

In this letter, we proposed an efficient model, namely EM-
RNet, for CW radar waveform recognition. In the de-
signed EMRNet, 1D depthwise separable convolutions and
adaptive multi-scale information feature fusion techniques
are first integrated to efficiently trade-off latency and accu-
racy. Comparative experiments verify that EMRNet can re-
alize better recognition accuracy than other state-of-the-art
methods while maintaining an extraordinarily computation-
efficient and lightweight architecture.
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