
IEICE TRANS. ELECTRON., VOL.E106–C, NO.11 NOVEMBER 2023
625

INVITED PAPER Special Section on Microwave and Millimeter-Wave Technologies

A 24–30 GHz Power Amplifier with >20-dBm Psat and <0.1-dB
AM-AM Distortion for 5G Applications in 130-nm SiGe BiCMOS
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SUMMARY This paper presents a power amplifier (PA) designed as a
part of a transceiver front-end fabricated in 130-nm SiGe BiCMOS. The
PA shares its output antenna port with a low noise amplifier using a low-
loss transmission/reception switch. The output matching network of the PA
is designed to provide high output power, low AM-AM distortion, and uni-
form performance over frequencies in the range of 24.25–29.5 GHz. Mea-
surements of the front-end in TX mode demonstrate peak S21 of 30.3 dB
at 26.7 GHz, S21 3-dB bandwidth of 9.8 GHz from 22.2 to 32.0 GHz, and
saturated output power (Psat) above 20 dBm with power-added efficiency
(PAE) above 22% from 24 to 30 GHz. For a 64-QAM 400 MHz bandwidth
orthogonal frequency division multiplexing (OFDM) signal, −25 dBc er-
ror vector magnitude (EVM) is measured at an average output power of
12.3 dBm and average PAE of 8.8%. The PA achieves a competitive ITRS
FoM of 92.9.
key words: 5G, mm-wave, power amplifier, SiGe BiCMOS tecnology,
EVM, ACLR, PAE, AM-AM, AM-PM

1. Introduction

The 5th generation of mobile technology (5G) has been
launched and is now being rapidly adopted all over the
world [1]–[5]. Applying mm-wave is a key technology for
the 5G networks and is also very challenging [6]–[8]. Sev-
eral mm-wave 5G phased array antenna modules (PAAM)
have been reported [9]–[21]. The authors have presented
PAAM consisting of multiple ICs of beamforming IC and
frequency conversion IC in multilayer antenna-in-package,
containing passive components such as liquid crystal poly-
mer (LCP) bandpass filters [22]–[26]. For Si-based phased
arrays, research has focused on how to improve the effective
isotropically radiated power (EIRP), as this can contribute
to covering larger areas for base stations. While the EIRP
can be improved by increasing the number of antenna ele-
ments, this comes at the expense of antenna array area and
cost. Alternatively, the EIRP can be improved by increasing
the output power of the power amplifier (PA). It is also very
important to improve the efficiency at the same time so as
to avoid the undesirable side-effect of requiring a complex
thermal solution. Moreover, PA designs for 5G applications
utilizing multi-carrier higher-order modulations are subject
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to strict linearity requirements, i.e., low AM-AM and AM-
PM [27]. Due to the high peak-to-average ratio (PAPR) and
sensitivity to distortion of the high-order quadrature ampli-
tude modulation (e.g., 64-QAM) signals, the PA needs to be
operated at considerable back-off, which leads to efficiency
degradation [28]. Lastly, a broadband PA architecture is de-
sired to cover multiple bands of 5G NR.

The performance of the PA has a significant impact
on wireless communications, so various proposals have
been made to meet the required specifications. For ex-
ample, techniques using GaN and GaAs have been re-
ported to show high output power for mm-wave applica-
tions [29], [30]. Nevertheless, since 5G mm-wave base sta-
tions perform beamforming using a large number of PAs,
they should be inexpensive, mass-producible and easy-to-
integrate with phase controller. For this reason, SiGe BiC-
MOS and CMOS PAs have been proposed as preferred for
this application [27], [28], [31]–[33]. In addition, while cir-
cuit topologies such as Doherty and outphasing are highly
efficient as described in [34], [35], they tend to be large in
size, so miniaturised PAs are preferable.

The authors have previously reported a transformer-
coupled 2-stage differential PA that meets the above-
mentioned requirements of the 5G mm-wave applica-
tions [36]. In this paper, we discuss the PA in detail.

The proposed PA shares its antenna port with a
co-designed low noise amplifier (LNA) and a transmis-
sion/reception switch (TRX SW) that comprise a transceiver
front-end. The output matching network (OMN) of the PA
includes the off-state LNA and the on-state TRX SW, and is
optimized using load pull simulations to obtain the desired
high output power and uniform frequency response. The
LNA and TRX SW topologies are similar to the design re-
ported in [25] and [26]. Our PA demonstrates a competitive
output power, a linearity and efficiency from 24 to 30 GHz
that cover multiple 5G NR FR2 bands, and a competitive
Figure of Merit (FoM) defined by the International Tech-
nology Roadmap for Semiconductors (ITRS) continuous-
wave (CW) test [37]. Modulation signal tests of the PA also
demonstrate a low error vector magnitude (EVM) perfor-
mance at a high average output power.
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Fig. 1 (a) Schematic of the proposed PA comprising a front-end. (b) Equivalent OMN circuit of the
proposal PA in TX mode.

2. Circuit Design

2.1 Circuit Configuration

Figure 1 (a) shows the schematic of the proposed front-end
consisting of the PA, LNA, and TRX SW. The first and
second stages of the PA use a differential common-emitter-
amplifier topology (Q1-2) and a differential cascode ampli-
fier topology (Q3-4-5-6), respectively. They are coupled
by an interstage matching network applying a doubly tuned
transformer network for wide bandwidth [38]. The power
supply of Vcc1 = 1.5 V for the first stage and the base bias
of the common-emitter (CE) transistors for the second stage
are provided through the center taps of the primary and sec-
ondary windings of the transformer. The base of the CE
transistors for both stages (Q1-2 and Q3-4, respectively) are
biased by current mirror circuit controlled by an external
current source. The base bias voltage of the common-base
(CB) transistors Q5-6 is set by an integrated regulator.

The transistor Q7 switches the RF signal path based on
TX or RX mode. In TX mode, it turns on and the OMN
of the PA configures the transformer-coupled doubly tuned
circuit as shown in Fig. 1 (b). The OMN is simultaneously
exploited for differential to single-ended conversion for con-
nection to an external antenna, which is typically single-
ended. The power supply of Vcc2 = 2.7 V for the sec-
ond stage is provided through the center taps of the primary
winding of the balun.

The second stage connects the degeneration transmis-
sion lines to the CE transistors Q3-4. They provide negative
feedback that is expected to reduce the distortion and de-
grade gain. The length of the lines is selected based on the
trade-off between AM-AM distortion improvement and of
PAE degradation.

2.2 Circuit Stability

Although a PA requires not only output power but also high
gain, this increases the possibility of oscillation. To improve

Fig. 2 EM model of thick metal interconnection of the second stage.

stability, both the stages utilize capacitive neutralization be-
tween the base and collector terminals of the CE transistors
to cancel out the Miller capacitance. The CB transistors can
reduce the Miller effect, so utilizing a cascode configuration
improves the stability of the second stage [39]. However,
since the degeneration lines in the second stage are placed
away from the transformers in layout, we had to lengthen
the transmission lines to the base of transistors Q3-4 and to
neutralizer capacitors, which increases the inductance and
create more instability and mismatching of neutralizing ca-
pacitance. The thick metal layers of the interconnections
of the second stage are therefore electromagnetically (EM)
modeled and simulated as shown in Fig. 2.

An unintentional coupling between inductors/trans-
formers can also degrade the stability. To verify this
by using the K-factor, the OMN balun and the interstage
transformer are simultaneously EM simulated as shown in
Fig. 3 (a) and subsequently integrated into a circuit simula-
tion together with EM models of the interconnections of the
second stage. Figure 3 (b) shows the K-factors of the PA un-
der an unstable PVT condition (low temperature of −40 ◦C,
+5% higher supply voltage, and fast BJT process corner)
with the above EM models. For comparison, the K-factor
without coupling between the transformer and balun is also
shown. Although the coupling leads to less stability, the
minimum value is still sufficiently larger than 1.



KAMIDAKI et al.: A 24–30 GHZ POWER AMPLIFIER WITH >20-DBM PSAT AND <0.1-DB AM-AM DISTORTION FOR 5G APPLICATIONS IN 130-NM SIGE BICMOS
627

Fig. 4 (a) Load-pull simulation of PA with input signal of 0 dBm at 28 GHz. (b) Peak AM-AM
contour across load impedance at 28 GHz. (c) AM-PM at P1dB contour across load impedance.

Fig. 3 (a) EM model of the interstage transformer and OMN balun.
(b) Comparison of simulated K-factor of the PA with and without coupling
between the transformer and balun.

2.3 Load Pull Simulations

Figure 4 (a) shows the simulated load-pull contours for out-
put power (Pout; blue) and power-added efficiency (PAE;
red) with an input power (Pin) of 0 dBm at 28 GHz. In
the simulation, a port with variable reflection coefficient and
supply chokes are connected to collector of Q5-6, and both
the PA stages are biased in class-AB. According to the sim-
ulated results of Pout, the TX-mode saturated output power
(Psat) of the proposed PA is expected to be 20 dBm by an
estimated 1-dB loss of the OMN, as discussed in next sub-
section. The PAE contours reach 30% efficiency and show
good agreement with the Pout contours; as a result, we de-
sign the input impedance of the OMN of the PA with an
antenna port (50Ω) by targeting the center of the efficiency
and Pout contours.

Figure 4 (b) shows the simulated peak AM-AM con-
tours derived from the simulation of the PA with the power-
swept input signal and variable impedance of the load at
28 GHz. Here, AM-AM is defined as the gain difference
from a small signal gain, and peak AM-AM is defined as
the difference between a small signal gain and the maximum

large-signal gain. The figure shows the impedance range
where AM-AM distortion suppression is improved by using
the transmission line degeneration (red vs. blue). The length
of the transmission line is set so that the AM-AM peak value
is in the range of 0.2 to 0.4 dB while maintaining a high out-
put 1 dB compression point (oP1dB).

Figure 4 (c) shows the simulated AM-PM at P1dB con-
tours across load impedances at 28 GHz obtained in the
same simulation as for Fig. 4 (b). In this work, AM-PM is
defined as the phase difference from phase at a small signal,
and we utilize AM-PM at P1dB to assess the phase varia-
tion at the point where the largest variation is shown in the
linear region. The load impedance range where PA exhibits
a low AM-PM at P1dB is shifted to a high impedance range
overall by the degeneration transmission line, which is not
a favorable transition for the OMN with matching at low
impedance.

To compensate for the AM-PM degradation, we ad-
justed the size of the CB transistors Q5-6. Figure 5 (a)
and (b) show the simulated AM-PM and AM-AM response
of the PA equipped with CB transistors of different sizes.
When the CB transistor is 20% larger than the CE transis-
tor, the peak AM-AM is actually a bit higher, but oP1dB
is improved, while maintaining the size of the CE transis-
tors which affects the DC current consumption. At the same
time, the peak AM-PM value is slightly higher, but the AM-
PM response is extended to higher output power. As de-
scribed in [25], the OMN contains a common impedance
due to the capacitor connected in parallel in TX mode and
in series in RX mode. The larger CB transistors increase the
capacitance connected in parallel to the common impedance
in RX mode, making it difficult for the LNA matching net-
work to absorb the load of the switched-off PA. Therefore
the size is selected based on trade-off between improvement
of AM-PM distortion and impedance matching of the LNA.

Guided by these contour simulations as a basis, we set
the optimized impedance of the PA OMN (ΓL; shown in
Fig. 6 (a)) from 24 to 30 GHz, as shown in green in Fig. 4.



628
IEICE TRANS. ELECTRON., VOL.E106–C, NO.11 NOVEMBER 2023

Fig. 5 Simulated AM-AM/AM-PM response of PA with the CB transis-
tors of the same size or 20% larger than the CE transistors. (a) AM-PM
response. (b) AM-AM response.

Fig. 6 (a) Equivalent OMN circuit in which the impedance of the output
transistor is replaced by Zs. (b) Insertion loss of OMN seen from Zs.

Assuming a port with a source impedance ZS equal to the
conjugate of ΓL, we can calculate the insertion loss of the
OMN as shown in Fig. 6 (b). The OMN shows extremely flat
response with less than 0.1 dB variation from 24 to 30 GHz.
Despite the inclusion of a transistor switch which introduces
a loss as shown in Fig. 6 (a), the OMN has a low inser-
tion loss of approximately 1.2 dB or less, assuming a load

Fig. 7 Simulated performances of the proposal PA at different frequen-
cies. (a) Psat, oP1dB, PAE peak, and PAE at P1dB. (b) Peak AM-AM and
AM-PM at P1dB.

impedance RL of 50Ω.
Figure 7 shows the simulated performance of the pro-

posed PA, Psat, oP1dB, PAE peak, PAE at P1dB, peak AM-
AM, and AM-PM at P1dB at the same frequencies. As ex-
pected from the power contour, Psat exhibits approximately
20 dBm and good flatness from 24 to 30 GHz. Also oP1dB is
kept above 18 dBm in the same frequency range. After mak-
ing adjustments based on the degeneration lines, the peak
AM-AM is suppressed to less than 0.4 dB, while AM-PM
at P1dB deteriorates as the frequency get lower, as expected
from load-pull simulations.

3. Measurement Results

The front-end circuit is fabricated in 130-nm SiGe BiCMOS
technology. The PA occupies a 0.63× 0.34 mm2 active area,
as shown in the micrograph in Fig. 8. A DC bias/supply
currents/voltages to each of the stages are provided from
pads on the top and bottom sides. Measurements are taken
at room temperature and the first and second stages are bi-
ased to have collector current densities of 5.6 mA/µm2 and
2.1 mA/µm2, respectively, at the DC operating point.

3.1 S-Parameter Measurement

TX-mode small-signal S-parameters are measured using a
Keysight N5247A Vector Network Analyzer. Figure 9 com-
pares the measured and simulated S-parameters. The TX-
mode S21 of the PA demonstrates a peak gain of 30.3 dB at
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Fig. 8 Micrograph of implemented front-end circuit fabricated in 130-
nm SiGe BiCMOS process. The PA active area is 0.63 × 0.34 mm2.

Fig. 9 Comparison of measured and simulated S-parameters of PA in TX
mode.

26.7 GHz, BW−3dB of 9.8 GHz from 22.2 to 32.0 GHz, and
S11 of < −10 dB from 20.6 to 32.2 GHz. The S22 < −3 dB
from 22.6 to 30.0 GHz, since the OMN has been optimized
for power match using load-pull simulations. The largest
difference between the simulated and measured S21 values
from 24 to 30 GHz is 0.96 dB at 30 GHz. Thanks to the de-
tailed parasitic and EM modeling, the measured frequency
response shows good matching with the simulations.

3.2 CW Large Signal Measurement

Figures 10 and 11 compare the measured and simulated CW
large-signal response of Pout and PAE, respectively, at 24,
26, 28 and 30 GHz. The input signal is generated from an
E8257 Signal Generator and the output power is monitored
using a Keysight N8487A Power Sensor. Overall, the mea-
surements are in good agreement with the simulations. Fig-
ure 12 shows comparison of the measured and simulated
AM-PM and AM-AM responses at 28 GHz. The phase of
the PA output is measured by N5247. The measured and
simulated AM-PM at P1dB is −8.0◦ and −8.7◦, respectively,

Fig. 10 Pout of PA by CW large-signal measurement and simulation.

Fig. 11 PAE of PA by CW large-signal measurement and simulation.

Fig. 12 Comparison of measured and simulated (a) AM-PM
response and (b) AM-AM response at 28 GHz.
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Table 1 Summary of PA performances.

Fig. 13 Measured performances of the proposal PA at different frequen-
cies. (a) Psat, oP1dB, PAE peak, and PAE at P1dB. (b) Peak AM-AM and
AM-PM at P1dB.

and the peak AM-AM is 0.0 and 0.4 dB, respectively. Fig-
ure 13 summarizes the measured performance of the pro-
posal PA, which is the counterpart of the simulated results
shown in Fig. 7. The PA demonstrates Psat > 20 dBm from
24 to 30 GHz as expected from the load-pull simulations.

Fig. 14 Measurement results of output spectrum and constellation using
64-QAM OFDM signals at 28 GHz with bandwidth of 400 MHz at EVM =
−25 dB.

Conversely, the loss of the OMN including TRX-SW is ap-
proximately 1 dB. The peak PAE of 30% expected by the
load-pull simulation is calculated to drop to 24% as the
output drops from 21 dBm to 20 dBm due to the loss of
the OMN, which approximately matches the measured PAE
peak. The measured AM-AM suppression agrees with the
simulated AM-AM peak contour. The measured TX-mode
oP1dB also shows good agreement with simulations.

3.3 Modulated Signal Measurement

Figure 14 shows the measured output spectrum and constel-
lation using 400-MHz 64-QAM OFDM signals at 28 GHz.
The modulated input signal is generated by a Keysight VXG
Signal Generator M9384B. The output from the PA is split
in two: one to a Keysight UXA Signal Analyzer N9040B to
measure the constellation and spectrum, and the other to a
Keysight N8487A to monitor the output power. The average
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Fig. 15 Measurement results of EVM depending on Pout.

output power, modulation PAE, and ACPR are 12.3 dBm,
8.8%, and −32.7 dBc at −25 dB (5.6%) EVM, respectively.
The EVM depending on Pout is shown in Fig. 15.

3.4 Comparison

Table 1 compares this work to recently reported PA ICs [27],
[28], [31]–[33]. The ITRS FoM is included to compare the
overall performance. It is noteworthy that even though the
compared works do not contain any TRX switch or LNA,
the proposal PA exhibits the highest ITRS FoM [37] of 92.9
at 28 GHz.

4. Conclusion

In this paper, we presented a linear wideband PA with low
AM-AM distortion in 130-nm SiGe BiCMOS for 5G ap-
plications. The proposed PA achieves a Psat higher than
20 dBm with the PAE between 22% and 27% in a CW test
over 24–30 GHz covering the 5G NR FR2 bands n257, n258
and n261. In a 64-QAM OFDM modulated signal test, the
PA achieved the output power of 12.3 dBm with the modula-
tion PAE of 8.8% at −25 dB EVM at 28 GHz. The achieved
FoM (ITRS-defined) of 92.9 is higher than published state
of the art PAs at similar frequencies.
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