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VLSI Architecture of GMM Processing and Viterbi Decoder for
60,000-Word Real-Time Continuous Speech Recognition∗

Hiroki NOGUCHI†a), Student Member, Kazuo MIURA†, Tsuyoshi FUJINAGA†,
Takanobu SUGAHARA†, Nonmembers, Hiroshi KAWAGUCHI†, and Masahiko YOSHIMOTO†, Members

SUMMARY We propose a low-memory-bandwidth, high-efficiency
VLSI architecture for 60-k word real-time continuous speech recognition.
Our architecture includes a cache architecture using the locality of speech
recognition, beam pruning using a dynamic threshold, two-stage language
model searching, a parallel Gaussian Mixture Model (GMM) architec-
ture based on the mixture level and frame level, a parallel Viterbi archi-
tecture, and pipeline operation between Viterbi transition and GMM pro-
cessing. Results show that our architecture achieves 88.24% required fre-
quency reduction (66.74 MHz) and 84.04% memory bandwidth reduction
(549.91 MB/s) for real-time 60-k word continuous speech recognition.
key words: speech recognition, hidden Markov model (HMM), VLSI ar-
chitecture

1. Introduction

Speech recognition technology has been used recently
in various applications such as cellular telephones, car-
navigation systems, PDAs, wearable computers, and
robotics. Nevertheless, the large vocabulary — more
than 60-k words — real-time continuous speech recognition
(LVRCSR) with an accurate model is too resource-hungry
and power-sensitive for use in software applications [3].

A hardware approach, with implementation by VLSI
or an FPGA, can achieve more compact and more battery-
friendly speech recognition because of its advantageous pro-
cessing speed and power consumption. To enhance speech-
recognition performance, some studies have applied hard-
ware approaches. Lin et al. investigated FPGA implemen-
tations for 5-k word continuous speech recognition [4],
[5], but the applications did not run in real time. Choi
et al. investigated FPGA implementations for 20-k word
speech recognition [6], [7], but both consumed slightly
higher memory bandwidth (BW) and power. Ma et al. re-
ported memory-bandwidth reduction of Gaussian Mixture
Models (GMM) processing for real-time 20-k word speech
recognition [8], but that method did not treat Viterbi pro-
cessing. Therefore, memory bandwidth reduction on a
Viterbi processor remains as an important task because it
requires high memory bandwidth.

A comparison of external memory bandwidth among
recently described hardware-based speech recognizers is
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Fig. 1 Conventional architectures for real-time speech recognition and
our target performance.

shown in Fig. 1. To date, the hardware approach has never
achieved real-time operation with a 60-k word language
model because numerous computations and external mem-
ory bandwidth degrade as the vocabulary is increased. In the
future ubiquitous computing era, with further development
of robotics technology, speech recognition systems are ex-
pected to become the main technique for human interface
devices for mobile, wearable, and intelligent robots. Actu-
ally, LVRCSR is expected to become a key technology for
such applications.

As described in this paper, we propose a novel archi-
tecture to reduce the required computational cycle time and
memory bandwidth. Our architecture comprises special-
ized cache, threshold-cut beam pruning, two-stage language
model search, parallel processing, and pipeline operation
between Viterbi transition and GMM processing. Using that
architecture, high-efficiency and low memory-bandwidth
Viterbi and GMM processing can be implemented. Thereby,
more sophisticated LVRCSR can be applied to VLSI.

The remainder of this paper is organized as follows.
Section 2 introduces the theory and algorithms of speech
recognition with the HMM algorithm. Section 3 presents
novel architectural techniques for GMM and Viterbi proces-
sors. Section 4 specifically describes the GMM and Viterbi
architecture. Section 5 presents an assessment of the perfor-
mance of the architecture. Finally, Sect. 6 summarizes this
paper.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Speech recognition flow with the HMM algorithm.

2. Speech Recognition Overview

Figure 2 presents the speech recognition flow with the HMM
algorithm. The following items describe concrete stages.
Step 1: Feature vector extraction: a feature vector is ex-
tracted on a frame-by-frame basis. Step 2: GMM calcu-
lation: a phonemic-model GMM is read and GMM prob-
ability, log[bj(xt)], is calculated for all active state nodes.
Step 3: Viterbi transition: δt( j) is calculated for all active
state nodes using GMM probabilities. Step 4: Beam prun-
ing: according to the beam width, active state nodes having
a higher score (accumulated probability) are selected; the
others are dumped. Step 5: Output sentence: The word-end
state and having the maximum score is output as a speech
recognition result after final-frame calculation and determi-
nation of the transition sequence.

2.1 GMM Computation

The GMM computation obtains log[bj(xt)] from a fea-
ture vector xt and parameters of a GMM, which is used
in the Viterbi search algorithm. As expressed in Eq. (1),
log[bj(xt)] is expressed as a logarithm of a sum of the Gaus-
sian distribution multiplied by weight functions. We assume
that Σi is a diagonal matrix and simplify it.
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In those equations, the following parameters are used: bj(xt)
is a GMM probability density function (PDF), N is a Gaus-
sian distribution PDF, P is the number of dimensions in a

feature vector, mix is the number of mixtures in the GMM,
xt is a feature vector, μ is a mean parameter, Σ is a variance-
covariance matrix, and λ is a weight function. Also, wi j is a
constant number that can be computed offline before speech
recognition. Equation (2) shows that the GMM computation
at one dimension consists of one addition, one subtraction,
two multiplications, P summations, and their respective log-
arithms.

2.2 Time-Synchronous Viterbi Beam Search

The following formulas show the log-Viterbi algorithm. To
prevent underflow, logarithms are usually taken.
Initialization:

δ0(0) = log π (3)

Recursion:

δt( j) = max
i= j−1, j

[δt−1(i) + log ai j] + log bj(xt)

for 1 ≤ t ≤ T, 1 ≤ j ≤ Nstate (4)

Termination:

P(w|x1, x2, · · · , xT ) = max
N f

[δT (i)] (5)

Therein, T represents the number of frames, Nstate denotes
the number of all HMM states, Nf stands for the states set
that correspond to word-end, and i and j are state indexes.
In addition, δt( j) is a likelihood value at a time index t and
state j; w is a recognition output sentence.

The speech wave form is divided into frames (15–
25 ms); a feature vector is calculated in each frame. Equa-
tion (4) shows that, once a feature vector is obtained, each
state in the HMM move to the next state that maximizes the
likelihood value. This is the reason why the transition se-
quence is uniquely determined.

In reality speech recognition, Nstate is from 1,000 to
5,000 states. It is too large to calculate all likelihood values.
To address this problem, after all transitions in one frame are
over, only a few (hereinafter, we call it the “beam width”)
nodes with large likelihood values are considered. The re-
maining nodes are terminated. We designate this process
as beam pruning. Nodes that are unpruned in later stages
are designated as active state nodes. In the next frame, only
the likelihood values in the active state nodes are computed.
After the final frame of computation, the maximum likeli-
hood value in the word-end state is output as the recognition
result.

2.3 Referential Hardware Design

We implemented referential hardware of a speech recog-
nition system based on the Julius 4.0 [3], a well-known
Japanese speech recognition system software by using Ver-
ilog hardware description language (HDL) [1], [2]. This ar-
chitecture comprised of a GMM processor and a Viterbi pro-
cessor. The GMM processor adopts a four-core parallelism,
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Fig. 3 Required frequency in a real-time process with the referential
hardware [1], [2].

Fig. 4 Required memory bandwidth in a real-time process with the
referential hardware [1], [2].

pipelined processing, and a vector look-ahead scheme [1].
In the vector look-ahead scheme, several feature vectors are
buffered in advance, and their output probabilities are com-
puted in parallel. Then, answers are stored in a cache. If
a duplicated state appears at a following frame, the answer
stored in the cache is read out. The Viterbi processor adopts
a dual-core parallelism and asynchronous scheduling to re-
duce the required minimum operating frequency and the idle
cycles [2].

2.4 Computation Amounts and Memory Bandwidth

We first profiled the referential hardware (mentioned in
Sect. 2.3) of speech recognition system, using 5-k, 20-k, and
60-k word speech recognition models. The beam widths
were, respectively, set to 500, 2,000, and 4,000 with 5-k,
20-k, and 60-k word models. We utilized an FPGA (Stratix
II; Altera Corp.) to obtain the required frequencies and the
memory bandwidths needed for the three models.

Figures 3 and 4 respectively show the required fre-
quency and the required memory bandwidth in the referen-
tial hardware to achieve real-time speech recognition. The
GMM processing dominates a large portion of the total com-
putation time, of which the computing output probabili-
ties occupy 81.9% considering a 20-k word LVRCSR. For
LVRCSR recognition, minimizing the computation time of

the output probabilities is effective in terms of the compu-
tational workload. In contrast, Viterbi search consumes a
larger share of the total memory bandwidth as the num-
ber of words increases. When developing a VLSI chip for
LVRCSR, a salient issue is the high memory bandwidth of
speech recognition processing, which engenders inefficient
power consumption. It is necessary to reduce the mem-
ory bandwidth to develop a low-power VLSI chip for use
with LVRCSR. Figure 4 shows that, when considering a
20-k word LVRCSR, memory bandwidths of the Viterbi,
GMM, and sort processing are estimated respectively as
534.32 MB/s, 485.71 MB/s, and 138.65 MB/s. Furthermore,
when considering a 60-k word LVRCSR, the memory band-
width of Viterbi search increases by 483% (2580.99 MB/s)
compared to a 20-k word LVRCSR. As described in this
paper, to realize a low-power and low-memory-bandwidth
60-k word recognition system, we propose several ideas to
reduce the workload and memory bandwidth.

3. Proposed Schemes

3.1 Burst GMM Calculation

The memory bandwidth in GMM calculations results from
large-sized GMM parameters. Each state in the HMM has
a specific GMM. To compute the likelihood log[bj(xt)],
the memory controller must read the Gaussian parameters,
the mean μi js and the standard deviation σi js, from exter-
nal memory. However, each phonemic HMM has a self-
transition; fortunately the GMM data used in the present
frame will be reused in the next frame at high probability.
This probability reaches more than 90%. To reduce the ex-
ternal memory bandwidth for reading the acoustic model,
we share the Gaussian parameters to compute GMM prob-
ability among several contiguous frames at a time [1]. If
we were to share the Gaussian parameters for 50 frames,
then we would need to increase the GMM result RAM used
for storing the calculated scores, and the input buffer, which
is stored the MFCC feature vectors, from 15 kB to 750 kB
and from 200 B to 10 kB. However, the external memory
bandwidth can be reduced to 1/50 if all Gaussian param-
eters can be shared. For 20-k and 60-k word recognition,
it is necessary to maintain sufficient beam width according
to the number of words to achieve highly accurate recog-
nition. Furthermore, it engenders a large amount of GMM
processing among approximately all GMM states. In our
novel GMM architecture, for all input feature vectors, ev-
ery GMM probability is computed. In doing so, a two-stage
pipeline between GMM and Viterbi can be applied easily.

3.2 Modified Unigram Language Model

A unigram language model was used for computing word-
internal transitions. The unigram language model comprises
HMM probabilities; each value corresponds individually to
a state of HMM trees. In the conventional scheme, if the
HMM state transitioned, then the probability of the previous
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state subtracted from the temporal score before being added
the new probability of the current state to the temporal score.
In terms of a unigram language model, the previous state of
every state is identifiable individually. For that reason, we
modified the unigram language model to hold only differ-
ence values between the probability of a new HMM state
and the probability of its previous HMM state. Using our
modified unigram language model, the extra memory access
to the previous state can be reduced. Furthermore, because
the unigram update process can be eliminated, word-internal
transitions, cross-word transitions to the isolated trees, and
cross-word transitions to shared trees can be treated using
the same process module simply. Furthermore, the internal
memory usage for storing unigram transitions can be saved.

3.3 Threshold-Cutting Scheme

In the conventional architecture, the sort is processed after
a Viterbi search at every frame before pruning the lower
score transitions. This necessitates a large workspace be-
cause all temporal scores that are generated by the Viterbi
transition must be retained until the Viterbi search of the
current frame is finished at every frame, although almost
all scores are pruned by the beam-cutting process at every
frame. Moreover, sort processing requires computational
amounts greater than 10 MIPS and consumes memory band-
width of more than 400 MB/s for 60-k word recognition
(shown in Figs. 3 and 4).

We introduce the threshold-cutting scheme to reduce
the workspace and memory bandwidth instead of sort pro-
cessing. In this scheme, the threshold is set adaptively to
a constant value at every frame. All transitions that have
a lower score than the threshold are pruned while process-
ing Viterbi search of current frame. Only selected tran-
sitions with a higher score than the threshold are stored
in workspace memory. Therefore, the proposed threshold-
cutting scheme cut off the superfluous workspace.

Why is the threshold changed adaptively? This pre-
vents degradation of the beam cutting accuracy. An im-
proper threshold causes inconvenient cases in which too
many nodes remain or too many nodes are cut off in compar-
ison to the beam width. An adaptive threshold is set based
on the difference between the average scores of the previous
frame and the current frame and the number of selected tran-
sitions between the previous frame and the current frame.

Figure 5 shows beam width variation with the
threshold-cut scheme when the target width is set to 1,500.
The threshold cut results have ±500 variations. Regarding
actual speech recognition results with a 20-k word language
model, the speech recognition accuracy is unaffected by this
variation of beam width because almost all transitions that
engender the final speech recognition output trellis output
higher scores than the others.

3.4 Two-Stage Language Model Search

The Viterbi transition comprises word-internal transitions,

Fig. 5 Beam width variation with the threshold-cut scheme.

Fig. 6 Appearance ratios of three transition types in Viterbi search in
Julius 4.0.

cross-word transitions to isolated trees and cross-word tran-
sitions to shared trees. Figure 6 presents a comparison
of these transition appearance ratios derived from profil-
ing with Julius 4.0 and Visual Studio C++. In the fig-
ure, the cross-word transitions to isolated trees are dom-
inant. Consequently, to reduce the computational amount
for the cross-word transitions to isolated trees, we propose
a novel two-stage language model search scheme. This
scheme is derived from the transition frequency difference
between phonemic HMM and language HMM: in actual hu-
man speech, the appearance ratio of syllabic transitions is
much lower than the MFCC frame rate: 100 Hz. In this
scheme, the cross-word transition search is divided into two
stages. The first stage is a simplified language model search
for the top 10 important transitions of bigram probability.
The second stage is a detailed language model search for
all cross-word transitions. In the traditional language model
search, only our second search treated every frame. How-
ever, in our proposed language model search, the second
stage is treated at every five frames. By applying this pro-
posed search, when the frequency of detail language search
is set to 1/5, the computational amount and memory band-
width can be reduced to 1/5, corresponding to a 78% reduc-
tion in the total Viterbi processing. The accuracy degrada-
tion that occurs when using this scheme is less than 1%, as
shown by actual speech recognition measurements with the
20-k word language model.

4. VLSI Architecture

The GMM memory bandwidth was reduced as explained in
Sect. 3.1. Nevertheless, this reduction of GMM processing
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Table 1 Memory bandwidth in 20-k word Viterbi search.

Fig. 7 Cache architecture concept in Viterbi search processing.

is not efficient when considering the total LVRCSR because
the GMM memory bandwidth does not increase depending
on the vocabulary library scale. However, as explained in
this subsection, we specifically examine the Viterbi beam
search algorithm and reduce its memory-bandwidth because
the memory bandwidth of the Viterbi processor increases
with the vocabulary number.

Table 1 shows the memory bandwidth of each com-
ponent in Viterbi processing when considering 20-k word
recognition, obtained from the hardware simulation using
the referential hardware; we applied the proposed two-
stage language model search to this hardware simulation.
The dominant memory accesses are to the transported to-
ken lists (144.21 MB/s) that are address tables of the ex-
ternal memory for active state nodes, and to the bigram
database (346.60 MB/s). Therefore, we introduce custom
caches to these memory accesses and reduce memory band-
width. Here, the memory bandwidth of the bigram was re-
duced to 29.26 MB/s, as described in the previous subsec-
tion.

Figure 7 portrays the Viterbi cache architecture con-
cept. Two caches are introduced to the bigram and the
transported token list because their memory bandwidths are
wider than those for other data in Viterbi processing (shown
in Table 1). The stored data are bigram probabilities for bi-
gram cache and the temporal calculated token list for the
beam cache.

Figure 8 shows a block diagram of a 60-k word speech
recognition processor using our proposed schemes. To re-
duce the operation cycle time and external memory band-
width, our architecture contains some schemes such as (1)
cache architecture using the locality of speech recogni-
tion, (2) beam-pruning using a dynamic threshold, (3) two-
stage language model search, (4) parallel GMM architecture
based on mixture level and frame level, (5) parallel Viterbi
architecture, and (6) pipelining operation between Viterbi

Fig. 8 Block diagram of proposed processor architecture for a 60-k word
speech recognition system.

transition and GMM processing. We used an FPGA (Stratix
II; Altera Corp.) to verify the architecture at the RTL level.

In Fig. 8, the memory sizes of three types of DBs
are derived from the 2,000-state Gaussian four mixture tri-
phone model and the 60-k word Japanese language model.
The burst GMM calculation shares 50 frames, the two-stage
language model search has 1/5 frequency of detail language
search, and Viterbi beam width is set to 4,000. These pa-
rameters lead to the buffer sizes (6.63 kB, 10 kB and 1.3 kB),
cache sizes (100 kB and 75 kB), and GMM result RAM size
(750 kB), as shown in the figure. All external database sizes
and the external memory size are also determined by the
number of language-model vocabulary (60 k) and the Viterbi
beam width (4,000).

4.1 Implementation of GMM Computation

To achieve speech recognition in real time, but at a lower
operating frequency, we propose a parallel architecture with
low memory bandwidth. Our proposed scheme features the
following three points.

• Parallel computing of Gaussian distributions as to the
number of GMM mixtures and frame-based parallel pro-
cessing.
• Parallelization in taking logarithms based on a look-up

table.
• Pipeline architecture for reading Gaussian distribution pa-

rameters and calculating them.

In the first feature, the parallelism can be increased the-
oretically to the number of mixtures in the GMM. However,
it increases memory bandwidth linearly. For this reason, in
our architecture, the parallelism in computing the Gaussian
distributions is expanded to a frame base, as described in
Sect. 3.1.

As the second feature, we prepare two-input add-log
units. The two-input add-log unit calculates an approximate
logarithmic value of a sum of two inputs. For instance, to
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Fig. 9 GMM computation flow.

Fig. 10 GMM processor data path.

carry out four “add log”s, four data are divided into two
groups: each group is input to two two-input add-log units,
and each is calculated individually simultaneously. The two
two-input add-log units output two results. Repeating this
operation, we can obtain a desired output for any number
of data. This method reduces the computation cycles. The
number of parallelism in taking logarithms is 16.

The third one shows that memory reading and Gaus-
sian distribution calculations are performed simultaneously
in our dedicated hardware.

Figure 9 shows the operation flow of the GMM calcula-
tion. The GMM calculation is divisible into two steps. The
first step comprises the data load and calculation processes.
In our architecture, this step is treated in the Gaussian pro-
cessor module. The second step is add-log computation; this
step is calculated in the Add log processor module in our ar-
chitecture.

Figure 10 shows the proposed GMM architecture. In-
put data are feature vectors among 50 frames and GMM
model parameters comprising 2,000 states. Output shows
the output probabilities of 50 frames that correspond to ev-

Fig. 11 Viterbi computation flow.

ery state.

4.2 Viterbi and N-gram Architecture

Figure 11 presents the Viterbi transition flow. The Viterbi
transition in a frame is roughly divided into three steps:
word-internal transition, trellis-saving, and cross-word tran-
sition.

The Viterbi transition is performed to all active state
nodes left in the previous frame. First, fetch an active state
node from an active nodes queue. 1) Word-internal transi-
tion: perform word-internal transition when the transition
source node and destination node belong in the same word.
2) Trellis saves: save a trellis when the active state node
is the end of a word. The trellis is a dataset, with a word
history and a score of the word-end node. It is used to deter-
mine the recognition result in the last frame. 3) Cross-word
transition: perform cross-word transition after a trellis save.
In this step, the transition is performed from an active state
node, which is a word-end state node, to all word-beginning
nodes.

The word-internal transition and cross-word transition
can be expressed with the same flow. 1.1) Calculate score:
The transition probability from the HMM dictionary is
added to the score of active state node. 1.2) Fetch transition
destination node date: fetch the information of a transition
destination node from a HMM dictionary and Result RAM.
1.3) Create active state node: create an active state node
when no active state node exists on the transition destina-
tion. 1.4) Overwrite active state node: overwrite the active
state node on destination when a lower probable active state
node exists on the transition destination.

Figure 12 portrays the proposed architecture for reduc-
ing the Viterbi processor memory bandwidth. The proposed
architecture employs a specialized cache, threshold cut, and
two-stage language model search. The Viterbi cache is set
between the external memory and Viterbi processor.

The following subsections show the specialized cache
architecture in detail. The number of words in the vocab-
ulary dictionary is set to 20,000. The beam width is set
to 2,000. The start nodes are 1,000. To limit the memory
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Fig. 12 Proposed Viterbi architecture.

Fig. 13 Correlation rate of bigram accesses between adjacent frames
profiled with Julius 4.0.

capacity of buffered RAM for VLSI, a Viterbi processor is
necessary for efficient processing by implementing a spe-
cialized cache.

4.3 Bigram Cache

Locality of data is important to implement a cache. How-
ever, no chance of reading the same bigram probability ex-
ists in a frame in HMM algorithm. Therefore, to implement
a bigram cache, data correlation between frames is impor-
tant. Figure 13 shows the correlation that we researched
by using software profiling with Visual C++ and Julius 4.0.
The figure means that a correlation exists between frames,
which accounts for about 60–90%. From this research, we
decided that the target value of the hit rate is about 70%.

The top 10 data are read in using a two-stage language
model search process. We then decide that the cache line
size is 40 B (= 10 × 4 B) to fit it. Figure 14 shows the rela-
tion between the hit rate and cache size with a direct map-
ping scheme by hardware-emulated profiling using Visual
C++ based on custom array corresponding to cache archi-
tecture. Additionally, to achieve a higher hit rate, we employ
another scheme using a feature of speech recognition flow.
In the bigram step, a node with a higher score tends to sur-
vive in the next frame. To set the timing of writing a score

Fig. 14 Bigram cache hit rate profiled with Julius 4.0.

Fig. 15 Proposed two-way cache.

to the cache as the score is overwritten, the higher score is
stored in the cache late in the same frame because the exist-
ing score is overwritten when a higher score appears. Using
such features of speech recognition, we propose a cache as
shown below.

The proposed cache scheme is presented in Fig. 15.
The cache adopts a two-way set associative scheme. In the
two-way set associative scheme in Fig. 15, a lower bit of
word ID is used to create an index, and the whole word ID
is used as a tag. The two-way consists of two parts: one for
a higher score and one for a lower score. When a mis-hit
occurs, a new bigram probability is stored in the high score
part because the bigram probability of late in the frame is
higher. On this occasion, the score in the higher part is set-
tled to the lower part; a new bigram score is stored in the
higher part. In doing so, a bigram probability computed late
in the frame tends to remain in the cache. Therefore, the
hit rate becomes high. Figure 14 shows the hit rate. Using
the proposed architecture in this paper, we decide that the
cache size is 100 kB to achieve the target hit rate of 70%.
By implementing the bigram cache and two-stage language
model search, we can reduce the memory bandwidth of bi-
gram probability by about 94%.

4.4 Token List Cache

We adopt a direct mapping cache for the token list cache.
The cache line size is set to 4 bits, which is the same as
the size of a transitioned token list data. In our architecture,
to guarantee high-accuracy recognition, the beam width is
targeted to 2,000. In fact, 60% of node information is occu-
pied by start-node data, and the bigram calculates frequently
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Fig. 16 Token list cache hit rate.

accessed start-node data. Therefore, the start-node data al-
ways hold in the token list cache. The hit rate of the token
list cache is presented in Fig. 16. Using the architecture pro-
posed in this paper, we decide that the cache size is 75 kB to
achieve the target hit rate of 70%.

5. Implementation Results

As described in Sect. 2, we first implemented this architec-
ture on an FPGA (Stratix II; Altera Corp.) to verify the
VLSI architecture at the register transfer level (RTL) basis.
However, our VLSI architecture described in Sect. 4 has to
utilize a larger size of internal memory than the FPGA has.
Therefore, to exploit the cache operation and its effect, we
simulate SRAM models and corresponding logic operation
in speech recognition using a Verilog simulator, and obtain
a required frequency and memory bandwidth for real-time
operation.

5.1 Required Frequency and Memory Bandwidth

Figure 17 shows the required operating frequencies of the
proposed architecture and referential architecture (shown in
Fig. 3) in each number of vocabularies. The proposed ar-
chitecture incorporates the proposed schemes described in
Sect. 3 (the referential hardware does not). Especially, the
two-stage language model search in the proposed architec-
ture contributes to reduce the required frequency by almost
“1/5”. In Fig. 17, our proposed architecture can operate
real-time speech recognition at 21.71 MHz for 5-k words,
at 41.71 MHz for 20-k words, and at 66.74 MHz for 60-k
words. Our proposed architecture can reduce the required
frequency for real-time speech recognition by 87.82% for
5-k words, by 86.76% for 20-k words, and by 88.24% for
60-k words.

Figure 18 shows the required memory bandwidth of
our proposed architecture and referential architecture and
referential architecture (shown in Fig. 4). Our proposed ar-
chitecture achieves 82.96% reduction (73.64 MB/s) for 5-k
words, 81.12% reduction (218.63 MB/s) for 20-k words, and
84.04% reduction (549.91 MB/s) for 60-k words.

5.2 Comparison with Other Architectures

Table 2 presents a comparison of specifications with other

Fig. 17 Required frequency comparison with conventional architecture.

Fig. 18 Required memory bandwidth using the real-time process.

hardware-based systems. This table shows the vocabulary
size, GMM model, Viterbi beam width, accuracy, real-time
factor frequency, memory bandwidth, logic size, memory
size, and platform. The vocabulary size represents the num-
ber of words in the language model dictionary. The accuracy
is the recognition rate. The real-time factor means how fast
the hardware is: for example, a real-time factor of “0.5” cor-
responds to “×2” faster than a real-time operation. The fre-
quency represents the operating frequency of the hardware
speech recognition system. The external memory bandwidth
equals the data transfer traffic between an FPGA/VLSI chip
and external SDRAM/DRAM memory.

The comparison reveals that our architecture achieves
the lowest external memory bandwidth with the same-
size vocabulary. Our architecture reduces the required
minimum operating frequency and external memory band-
width for real-time operation to 58% (= 41.71/72) and
38% (= 218.63/576) in the 20-k word speech recogni-
tion, respectively, compared to the SNU architecture (re-
quired frequency: 72 MHz, and external memory band-
width: 576 MB/s, considering the real-time factor: 0.72)
[7]. This is because, our architecture utilizes the advan-
tages derived from the novel techniques: the burst GMM
calculation (described in Sect. 3.1), the two-stage language
model search (Sect. 3.4), and the specific cache implementa-
tion (denoted in Sects. 4.3 and 4.4). These techniques enable
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Table 2 Comparison with other hardware-based systems.

our architecture to process 60-k word speech recognition in
real time. Our architecture can be easily applied to limited
hardware-resource devices, such as ubiquitous/wearable ap-
plications, because of its low external memory bandwidth
with a large vocabulary language model.

6. Conclusion

We proposed a VLSI architecture to support real-time con-
tinuous speech recognition. To reduce the operation cycle
time and external memory bandwidth, our architecture con-
tains cache architecture using the locality of speech recog-
nition, beam pruning using a dynamic threshold, two-stage
language model search, parallel GMM architecture based
on mixture level and frame level, parallel Viterbi archi-
tecture, and pipeline operation between Viterbi transition
and GMM processing. Results show that our architecture
achieves 88.24% required frequency reduction (66.74 MHz)
and 84.04% memory bandwidth reduction (549.91 MB/s)
for real-time 60-k word continuous speech recognition.
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