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A Dynamic Continuous Signature Monitoring Technique for
Reliable Microprocessors∗

Makoto SUGIHARA†,††, Member

SUMMARY Reliability issues such as a soft error and NBTI (negative
bias temperature instability) have become a matter of concern as integrated
circuits continue to shrink. It is getting more and more important to take re-
liability requirements into account even for consumer products. This paper
presents a dynamic continuous signature monitoring (DCSM) technique
for high reliable computer systems. The DCSM technique dynamically
generates reference signatures as well as runtime ones during executing a
program. The DCSM technique stores the generated signatures in a signa-
ture table, which is a small storage circuit in a microprocessor, unlike the
conventional static continuous signature monitoring techniques and con-
tributes to saving program or data memory space that stores the signatures.
Our experiments showed that our DCSM technique protected 1.4-100.0%
of executed instructions depending on the size of signature tables.
key words: Soft Error, NBTI, SEU, SET, Control Signal Error, Continuous
Signature Monitoring, Reliability, Vulnerability, Microprocessor

1. Introduction

Reliability issues such as a soft error and NBTI (negative
bias temperature instability) have become matters of con-
cern as a transistor pattern continues to shrink [9], [11]. De-
sign for reliability (DFR) will become more and more im-
portant for space integrated circuits (ICs) as well as con-
sumer ICs [13]–[17]. DFR techniques which achieve high
reliability, small chip area, and low performance overhead
are required for designing computer systems as traditional
DFR techniques such as a multiplicating technique such as
TMR (triple modular redundancy) are forbiddingly expen-
sive.

A soft error and NBTI cause a control signal error
which makes a computer jump to a wrong address, makes
a multiplexer select a wrong input, or makes an ALU do a
wrong operation. A continuous signature monitoring (CSM)
technique is the one which detects a control signal error dur-
ing executing a program [18]. A CSM technique exploits a
signature value onto which an invariable sequence of control
signals such as that of a program counter is mapped. A typ-
ical CSM technique embeds a reference signature, which is
precomputed for such an invariable sequence of control sig-
nals on compiling a program, into the program. A signature
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generator on a chip computes a runtime signature, which is
a signature computed during executing the program. The
comparison of a runtime signature with a reference signa-
ture exhibits whether or not a control signal error occurred.
Figure 1 shows an example of simple continuous signature
monitoring. In this example, a program is partitioned into
basic blocks [2] each of which has a single entry point. A
signature function V maps an invariable sequence of control
signals, that is a binary encoding of a consecutive stream
of control signals for a basic block, to a signature. A lin-
ear feed-back shift register is often used as a circuit imple-
menting a signature function [1]. A reference signature is
conventionally generated and embedded into a program on
compiling it. A signature instruction, which consists of op-
code and signature parts, is added to the end of each ba-
sic block. A runtime signature is generated by a hardware
signature generator during executing the basic block. The
reference and runtime signatures are compared in order to
check whether or not a control signal error has occurred
when a microprocessor encounters a signature instruction.
A control signal error is detected if there exists inconsis-
tency between the reference and runtime signatures.

Signature InstructionOp Signature

Op Signature Op Signature

V

Signature

Fig. 1 An example of simple control flow checking.

CSM techniques have been studied since the 1980s [8],
[10], [12], [18]. These techniques are to detect a control flow
error, that is an error causing to jump from an address to a
wrong address. The memory overhead and detection rate
of control flow errors are major measures in evaluating the
static CSM techniques. Namjoo’s, Shen’s and Wilken’s ap-
proaches increase 12-21%, 6-15% and 4-11% of memory
space respectively and also detect 99.5-99.9%, 85-93% and
99.9999% of control flow errors. Any of the approaches
involves high memory overheads and performance over-
heads. Embedding signatures into a program sets a limit to
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the width of the signatures because of memory overheads.
This means that the number of control signals for which
a signature is generated must be low in order to avoid in-
creasing memory space. The conventional techniques also
make a program to be incompatible between microproces-
sors because the approaches entail an incompatible hard-
ware mechanism and a modified program. The program
compatibility problem becomes critical in reusing software
as intellectual property.

This paper proposes a dynamic continuous signature
monitoring (DCSM) technique for detecting control signal
errors in a microprocessor. Our DCSM technique computes
both reference and runtime signatures during executing a
program, stores the reference signatures in a signature ta-
ble (signature tables), and compares reference and runtime
signatures to find whether or not a control signal error oc-
curred. It is necessary that an instruction is executed twice
or more to generate both reference and runtime signatures
and compare them for detecting a control signal error. The
principle of locality [4] suggests that a part of a program
is executed frequently and that a signature table need store
a reference signature of the part of the program temporar-
ily. The principle helps the size of a signature table to be
relatively smaller than the size of all reference signatures
which the conventional techniques store in instruction and
data memory. Unlike the conventional techniques, our tech-
nique hardly requires memory space for storing reference
signatures. A small signature table is provided to store ref-
erence signatures instead. Our technique requires a constant
size of a signature table while the conventional approaches
require the memory overhead whose size is linear to that of a
program. This paper proposes a DCSM technique as well as
investigates how many instructions are protected from con-
trol signal errors by our DCSM technique.

The remainder of this paper is organized as follows:
Section 2 reviews conventional continuous signature moni-
toring techniques. Section 3 proposes a dynamic continuous
signature monitoring technique which achieves high relia-
bility with a small chip area. Section 4 quantitatively eval-
uates how many instructions our DCSM technique covers
and protects from control signal errors. Section 5 summa-
rizes this paper and provides concluding remarks.

2. Control Flow Error and Continuous Signature Mon-
itoring

This section reviews a control flow error and static continu-
ous signature monitoring techniques [8], [10], [18].

2.1 Control Flow Error

A soft error or NBTI unexpectedly and momentarily desta-
bilizes the value of a signal line and possibly causes a faulty
behavior of a computer system. Such an undesirable event
is modeled to cause a computer system to jump to a wrong
address. We call this fault behavior a control flow error.

A program can be represented by a program graph, a

directed graph that represents each block of a program by
a node and all legal transitions between blocks, which are
specified in a program, by an arc. Figure 2 shows an exam-
ple program graph. A control flow error is modeled as an
error which causes a transition between the nodes between
which there are no legal arc.

A

B

C

D

Fig. 2 An example program graph.

2.2 Static Continuous Signature Monitoring

The comparison between expected and occurred values at
all control signal lines is ideal for assuring correct behavior
of a microprocessor. Such a comparison, however, is unre-
alistic because it is impractical to observe billions of control
signals and prepare expect values for them.

A microprocessor generates a constant sequence of
control signals such as a program counter and control sig-
nals for a datapath as far as the microprocessor runs cor-
rectly. A constant sequence of control signals can be
mapped to a constant value with a mapping function which
can be implemented with a data compression circuit such
as a linear feed-back register (LFSR). We define a signa-
ture as a value to which a sequence of signals is mapped by
any mapping function. A signature is expected to be cor-
rect unless the corresponding signal lines are destabilized.
The correct execution of a microprocessor can be verified
by comparing a signature generated during executing a pro-
gram with the expected value for the signature. We call the
expected value for a signature a reference signature and a
signature computed during program execution a runtime sig-
nature.

The conventional CSM techniques compute a reference
signature for a sequence of control signals on compiling a
program. Reference signatures are often embedded into a
program code [8], [10], [18]. A signature instruction, which
compares reference and runtime signatures, is also embed-
ded into a program code. A signature instruction often con-
sists of an opcode and a reference signature. A runtime sig-
nature is generated during executing a program. Once the
microprocessor encounters a signature instruction, it com-
pares reference and runtime signatures to detect a control
flow error. The conventional approaches that embed sig-
nature instructions into a program code entail memory and
performance overheads because of embedded signature in-
structions and signatures.
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We overview the continuous signature monitoring the-
ory generalized by Wilken [18]. We define a sequence of
executed instructions as a path. A path consists of N in-
structions. Each instruction on the path is correlated with an
intermediate signature, which is intermediately obtained to
compute a signature for the path. Signature Si which is cor-
related with the i-th (1 ≤ i ≤ N) instruction is calculated
as follows:

Si = V (Si−1,Wi−1), 1 ≤ i ≤ N, (1)

where V is a signature function, S0 is an initial signature,
and Wi−1 is a set of signal values correlated with (i − 1)-
th instruction. Instruction i is correlated with Signature Si.
Signature Si is the signature which correlates with the sub-
sequence [0, i − 1].

The value of an intermediate signature determines
whether or not a control flow error is detectable [18]. As-
sume that the correct behavior of a program causes an exe-
cution of Instruction D after Instruction C. A control flow
error, the wrong behavior of a program, causes an execu-
tion of Instruction D∗ after Instruction C. A control flow
error is detectable by comparing runtime and reference sig-
natures if SD 6= SD∗ . A control flow error is not detectable
if SD = SD∗ . The coincidence of the two signatures causes
the signature calculations done after Instruction D∗ to coin-
cide with those for the correct path.

The number of undetected control flow errors can be
estimated by intermediate signatures. Assume that an inter-
mediate signature is given to every instruction. Let a set of
instructions whose intermediate signature is S be DS Let
a set of instructions whose next instruction belongs to DS

be CS . We assume that a control flow error occurs at any
instruction at the same probability and causes an incorrect
transition to any instruction. The sizes of DS and CS are
given by ds and cs respectively. The number of all instruc-
tions is m. The fraction of undetected control flow errors
which start at any instruction in CS is shown as

(dS − 1)/(m − 1) ≈ (dS − 1)/m. (2)

If any instruction is executed at the same frequency, the frac-
tion that a control flow error occurs in an instruction of CS

is shown as cS/m. The fraction of undetected control flow
errors is shown as follows:

e =
∑

i

(dS − 1)cS/m2 (3)

Note that the above calculation is an approximate calcula-
tion. The 90/10 rule suggests that the 10% of a program
code occupies 90% of its execution time [4]. This means
that some instructions are executed frequently and the oth-
ers not. We assume that any instruction is executed at the
same frequency for a simple explanation.

The number of undetected control flow errors becomes
minimal if the values of intermediate signatures distribute
uniformly. Correlation between intermediate signatures en-
larges the size of a set of the instructions which have the

same intermediate signature, and increases the number of
undetected control flow errors. A naive CSM technique
adopts the same initial signature for all paths. The adop-
tion of the same initial signatures for all paths causes the
first instructions of all the paths to belong to DS0 and the
last instruction of all the paths to belong to CS0 . Transition
from an instruction in CS0 to any but a correct instruction
in DS0 is not recognized as a control flow error even if a
signature is examined.

The lower bound of the fraction of undetected control
flow errors is given by the number of undetected control flow
errors attributed to the initial signature. Let the average path
length be p. The fraction of the instructions which belong
to DS0 is given by 1/p and the fraction of the instructions
which belong to CS0 is also given by 1/p. As the number of
paths is enough high, the fraction of the undetected control
flow errors attributed to S0 is given by

eS0 ≈ p−2. (4)

Several researches reported that the average path length is
from 4 to 10 [3], [6]–[8], [10]. Assuming that a signature
instruction is added to the end of each and every path, the
average path length becomes 5 to 11. From Equation (4),
the fraction of undetected control flow errors becomes 1-
4%. This control flow errors at the end of all paths are de-
tected by 96-99%. Assume that uniformly random values
are utilized for v-bit intermediate signatures. A control flow
errors causes the next signature to be one of 2v signatures in-
cluding a correct one. The utilization of v-bit intermediate
signatures causes the fraction 1−2−v of possibly detectable
control flow errors to be undetected.

Control Flow Error

Correlated

Int. Signature?

Possibly Detectable

Hashed Address Reference Sig.

Branch Taken

Detected

Not

Detected

Not

Detected

p^-2

1-p^-2

yes

no

1-b b

t

1/p1-1/p

1-t 1-2^-v

2^-v

Fig. 3 The Markov model for control flow errors.

Figure 3 shows the Markov model for control flow er-
rors. The adoption of the identical initial signature for all
paths makes p−2 of all the control flow errors undetectable.
The remaining control flow errors are probably detectable.
Let the fraction of the paths which end with a signature in-
struction be b. When a path ends with a signature instruc-
tion, the signature instruction is executed to compare refer-
ence and runtime signatures. The probability that a control
flow error happens to make the runtime signature identical to
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the correct one is 2−v . The probability that a control flow er-
ror happens to make the runtime signature distinct from the
correct one is 1 − 2−v . The fraction of the paths which end
with a jump/branch instruction is 1−b. The jump/branch in-
struction is applied the BAH (branch address hashing) [12]
to. The BAHed instruction retains the value of the destina-
tion address XORed with the intermediate signature. The
hashed address is XORed with the current intermediate sig-
nature on executing the instruction. A correct intermediate
signature correctly restores the destination address while an
incorrect intermediate signature incorrectly restores the des-
tination address. Let the fraction that the branch is taken be
t. The fraction 1− t of the BAHed branches is not taken and
a control flow error is expected to be probable detectable. A
control flow error causes to jump to the beginning of a path
at the probability of 1/p and results in being undetectable.
Otherwise, a control flow error is probably detectable with
a signature instruction which probably appears later.

3. Dynamic Continuous Signature Monitoring Tech-
nique

This section presents a dynamic continuous signature moni-
toring (DCSM) technique which dynamically generates run-
time signatures as well as reference ones and compares them
in order to detect a control signal error during executing a
program for detecting a control signal error.

3.1 The Overview of Dynamic Continuous Signature
Checking

The conventional static CSM techniques embed signatures
and signature instructions into a program/data memory on
compiling a program. Embedding signatures and signature
instructions into program/data memory causes the size of
program/data memory to increase. The execution of the em-
bedded signature instructions also causes the execution time
of a program to increase. The program code into which sig-
nature instructions are embedded loses program compatibil-
ity with static CSM-incompliant microprocessors.

In contrast, our DCSM technique which we propose
in this paper computes a reference signature for a part of
a program during executing a program and stores the ref-
erence signature into a signature table, which is a small
storage circuit in a microprocessor. Our DCSM technique

stores reference signatures in a small signature table instead
of program/data memory. The first execution of a part of a
program generates a reference signature and stores it into a
signature table. The next execution of the program gener-
ates a runtime signature to compare with the corresponding
reference signature if the reference signature exists in the
signature table. The runtime signature is registered into the
signature table as a reference signature if the corresponding
reference signature does not exist. A control flow error is not
detected if a part of a program is executed only once. Our
DCSM technique passes the instructions which are executed
only once. The DCSM-compliant microprocessor automat-
ically compares the reference and runtime signatures to de-
termine whether or not a control signal error occurred when
both reference and runtime signatures are available for the
part of a program. No signature instructions are necessary
for the DCSM-compliant microprocessors to detect control
signal errors. The DCSM technique does not lose program
compatibility at all between DCSM-compliant and DCSM-
incompliant microprocessors.

Figure 4 gives an overview of a DCSM hardware mech-
anism. The DCSM hardware typically consists of three
parts: a signature generator, path analyzer, and signature ta-
ble. A path analyzer and signature table are peculiar to the
DCSM technique. These hardware components cause chip
area overhead and should be designed carefully. A path ana-
lyzer detects a path, an instruction stream for which a signa-
ture is generated, with the value of the program counter and
the instruction pointed by the program counter. A path is
defined as a unique instruction stream specified by a pair of
start and end addresses. The signature table retains entries
each of which consists of the beginning and end addresses,
a reference signature and an initialization signature. The
path analyzer looks the corresponding entry up in the sig-
nature table once the path analyzer detects the beginning of
a path. All the paths which start at an identical beginning
address have the same initial signature. The signature gen-
erator is initialized with the initial signature of the path if
the corresponding entry is found. The signature generator
is initialized with the current value of the signature gener-
ator otherwise. The path analyzer looks the corresponding
entry up when reaching the end of a path. The runtime and
reference signatures are compared to determine whether or
not a control signal error occurred if the corresponding entry
exists in the signature table.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Path Analyzer

Signature

Generator

Instruction

Signature Table

Write a sig. Read a sig.

Register
an entry

Read an entry

Program
Counter

Fig. 4 An overview of dynamic control-flow checking hardware.
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3.2 Path Detection for Dynamic Continuous Signature
Monitoring

This subsection gives an example of path detection for dy-
namic continuous signature monitoring. The DCSM tech-
nique requires automatically detecting a path for which the
DCSM technique generates reference and runtime signa-
tures. The conventional static CSM techniques may spend
a long computation time on compiling a program in finding
the optimal paths for a program such that they minimize the
memory size or the number of executions for signature in-
structions. In contrast, the DCSM technique cannot afford
to spend such a long computation time because a long com-
putation time degrades the performance of a microproces-
sor. This paper focuses on not optimizing a set of paths but
detecting them with a simple hardware mechanism. We cat-
egorize paths into two kinds. The first kind is for the paths in
which the addresses of an instruction stream is consecutive.
The paths of the first kind satisfy the requirement that a path
is a unique instruction stream under the condition that any
of conditioned jump and branch instructions is not taken.
The second kind is for the paths which commence with a
conditioned jump or branch instruction and finish with the
destination of the conditioned jump or branch instruction.
The paths of the second kind also satisfy the path require-
ment under the condition that the corresponding conditioned
jump or branch instruction is always taken.

The summarized procedure for detecting the paths of
the first kind is shown as follows.

• Regard the beginning address of a program as the be-
ginning of a path.

• Regard the destination instruction of a conditioned
jump or branch instruction as the beginning of a path.

• Regard a taken jump or branch instruction as the end of
a path if a microprocessor does not adopt delay slots.

• Regard the end of instructions within its delay slots as
the end of a path if a microprocessor adopts delay slots.

The summarized procedure for detecting the paths of
the second kind is shown as follows.

• Regard a conditioned jump or branch instruction as the
beginning of a path if the instruction is taken.

• Regard the destination instruction of the above condi-
tioned jump or branch instruction as the end of the path.

The above two procedures to detect paths are just exam-
ples. The unique instruction stream which appears before
the taken jump or branch instruction may be included in the
path of the second. The unique stream which appears after
the destination instruction of the taken jump of branch may
also be included in the path of the second. These paths also
satisfy the path requirement under the condition that the cor-
responding conditioned jump or branch is taken. The above
procedures are summarized in Figure 5.

Dynamic continuous signature monitoring algorithm
Procedure DCSM
Input C: the given program code.
Input Dgiven: the number of delay slots of a microprocessor.
Variable I: the instruction currently being executed.
Variable IB1: the beginning instruction of a path of the first kind.
Variable IB2: the beginning instruction of a path of the second kind.
Variable IE1: the end instruction of a path of the first kind.
Variable IE2: the end instruction of a path of the second kind.
Variable SR1,SR2: the runtime signatures for the first and second kinds.
Variable SI1,SI2: the init. signatures for the first and second kinds.
Variable P1,P2: the current paths for the first and second kinds. Given

by a pair of beginning and end addresses.
Variable D: the remaining delay slots.
Variable jump flag : the flag which indicates the PC has just jumped.
begin

/* Initialize the variables. */
Set I to the first instrn. of the program C.
Initialize SI1 and SI2.
D := 0; IB1 := I; jump flag := false;
repeat

/* A path of the second kind is registered just after jump/branch */
if jump flag == true then
IE2 := I; P2 := (IB2, IE2);
if the sig. of path P2 exists in the sig. table T2 then

Compare the ref. and runtime sigs.
else

Register path P2, its init. sig., its ref. sig. to the sig. table T2.
end if
if there exists a path whose beginning instrn. is I then

Set SI1 to the init. sig. of the path.
end if
jump flag == false; IB1 := I;

else /* jump flag := false */
/* For the instrn. within the delay slots. */
if D > 0 then /* Currently within delay slots */
D−−;
/* A path of the first kind is registered just before jumping. */
if D == 0 then

if the conditioned jump/branch is taken then
/* for registering a path of the second kind. */
jump flag := true;
if there exists a path whose beginning instrn. is I then

Set SI2 to the init. sig. of the path.
end if
/* Regard the current instrn. as the end of a path. */
/* of the first kind. */
IE1 := I; P1 := (IB1, IE1);
if the sig. of path P1 exists in the sig. table T1 then

Compare the ref. and runtime sigs.
else

Register path P1, its init. sig., its ref. sig. to the
sig. table T1.

end if
end if

end if
end if

end if
if the instrn. I is a conditioned jump/branch then

/* The beginning instrn. for the path of the second kind. */
Set IB2 to the current instrn. I.
/* Set the variable D for counting delay slots down. */
D := Dgiven;

end if
Set variable I to the next instrn.
Compute new runtime sigs. with the current runtime sigs.
and control signals and set them to SR1 and SR2.

until the given program C finishes
end

Fig. 5 Pseudo-code for dynamic continuous signature monitoring.
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4. Experiment

This section provides experimental evaluation and discus-
sion on the DCSM technique. Subsection 4.1 explains the
program trace, simulator and signature table which we uti-
lized for experiments. Subsection 4.2 details the metric for
experiments and shows experimental results on four bench-
mark programs and the different sizes of a signature table.
We discuss our DCSM technique in Subsection 4.3.

4.1 Experimental Setup

We developed a trace-driven simulator in C++ which sim-
ulates the behavior of a DCSM-compliant CPU. We gen-
erated program traces with Imperas OVPsim, the Imperas
instruction set simulator [5], and used them as the input to
our trace-driven simulator. We excluded the program trace
of system calls because of a restriction of OVPsim. We
used two signature tables: one for consecutively executed
instruction streams (paths of the first kind), and the other
for jump and branch instruction streams (paths of the sec-
ond kind). We adopted the set associative mechanism as the
storing mechanism of the signature tables. We also adopted
the LRU policy as the line replacement policy of the signa-
ture tables. We experimented on the numbers of sets and
ways as shown in Table 1. The number of entries is calcu-
lated by the product of the number of sets and that of ways.
We utilized four programs, dhrystone, fibonacci, linpack,
and peakSpeed1 as benchmark programs. Table 2 shows
the number of instruction executions and that of instructions
for each benchmark program.

Table 1 Parameters for a signature table.

# Sets 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K
# Ways 1, 2, 4, 8, 16, 32, 64

# Entries 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 32K, 64K

Table 2 Benchmark programs.

dhrystone fibonacci linpack peakSpeed1

# Instrn executions
[M executions] 1,012 747 1,704 3,440

# Instrns 6,944 5,730 10,770 5,778

4.2 Experimental Results

We introduce the instruction coverage Cinsts as the reliabil-
ity measure for our DCSM technique as follows.

Cinsts =
INSTcovered

INSTall
× 100, (5)

where INSTcovered is the number of instruction executions
protected by the DCSM technique, and INSTall is the num-
ber of all instruction executions.

Table 3 shows the instruction coverages for consecutive
instruction streams (paths of the first kind) and jump/branch
instruction streams (paths of the second kind) of the four
benchmark programs. The instruction coverages were ex-
amined by simulating the DCSM-compliant microprocessor
on the different numbers of sets and ways. Table 3 shows
that the fraction of instruction executions for consecutively
executed instruction streams amounts to a large portion of
the total of instruction executions. Control signal errors in
jump/branch instruction streams are not negligible as the
fraction of them amounts to more than 10% of instruction
coverage at most.

Table 3 Instruction coverage.

dhrystone fibonacci linpack peakSpeed1

Cinsts

(consecutive instrns) 39.1-91.3 22.2-88.0 1.2-93.5 97.7-97.7

Cinsts

(jump/branch) 2.6-8.7 1.7-12.0 0.2-6.5 2.3-2.3

Cinsts

(all) 41.8-100.0 23.9-100.0 1.4-100.0 100.0-100.0

Figures 6-11 show the instruction coverage for dhrys-
tone, fibonacci and linpack on 77 configurations of signa-
ture tables. Each configuration of a signature table is dif-
ferent from others regarding the numbers of sets and ways.
The figures for peakSpeed1 is omitted because the DCSM
technique achieved almost 100.0% of the instruction cover-
age for peakSpeed1 with any signature table parameter. The
instruction coverages generally increase as the size of a sig-
nature table increases.

Table 4 shows the number and ratio of instructions
sorted by execution count. Instructions are sorted threefold:
(i) Never executed, (ii) Executed once, and (iii) Executed
twice or more. No errors were assumed for the instructions
sorted in the item (i) because the instructions were never
executed. The DCSM technique is incapable of detecting
errors being occurred on executing instructions sorted in the
item (ii) because it generates only a reference signature. The
DCSM technique is expected to detect errors being occurred
on executing instructions sorted in the item (iii) because it
ideally generates reference and runtime signatures for an in-
struction stream and compares them for detecting an error.

Table 4 The number of instructions sorted by execution count.

dhrystone fibonacci linpack peakSpeed1

Never executed 5,011 4,908 5,753 4,915
(72.2%) (85.7%) (53.4%) (85.1%)

Executed once 661 293 1,335 653
(9.5%) (5.1%) (12.4%) (11.3%)

Executed twice
or more

1,272 529 3,682 210
(18.3%) (9.2%) (34.2%) (3.6%)

Total 6,944 5,730 10,770 5,778

Table 5 shows the number and ratio of unprotected in-
struction executions sorted by two factors: (a) the onetime
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Fig. 6 Instruction coverage for consecutive instructions (dhrystone).
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Fig. 7 Instruction coverage for jump/branch (dhrystone).
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Fig. 8 Instruction coverage for consecutive instructions (fibonacci).
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Fig. 9 Instruction coverage for jump/branch (fibonacci).
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Fig. 10 Instruction coverage for consecutive instructions (linpack).
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Fig. 11 Instruction coverage for jump/branch (linpack).
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instruction execution, and (b) the incapability of signature
tables to keep storing reference signatures. The table shows
that the number of unprotected instruction executions due to
the item (a) is lower than that due to the item (b) in all bench-
mark programs. The size and the set associative mechanism
of signature tables are the major factor to lower the instruc-
tion coverage.

Table 5 The number of unprotected instruction executions.

dhrystone fibonacci linpack peakSpeed1

(a) 661 293 1,335 653
653.4 ppb 392.5 ppb 783.2 ppb 189.8 ppb

(b)
min 926 447 2,956 867

915.4 ppb 598.7 ppb 1734.3 ppb 252.0 ppb

max 589 M 568 M 1,681 M 1,337
58.23% 76.09% 98.64% 388.7 ppb

# Total executions 1,012 M 747 M 1,704 M 3,440 M

4.3 Discussion

4.3.1 Instruction Coverage

The instruction coverage tends to be high in the programs
whose execution time is occupied by a lot of loops. The
instruction coverages of consecutively executed instruction
streams in dhrystone and fibonacci (91.3% and 88.0% re-
spectively) became lower than linpack and peakSpeed1
(93.5% and 97.7% respectively) because dhrystone and fi-
bonacci presumably executed the specific part of them less
frequently than linpack and peakSpeed1 did. The instruction
coverages of jump/branch instructions streams show a simi-
lar tendency to consecutively executed instruction streams.

The static signature techniques like Namjoo’s, Shen’s,
and Wilken’s techniques [8], [10], [18] basically achieve
100% of the instruction coverage because they statically
embed reference signatures for all instruction streams into
a program at the expense of program memory space. Our
technique is expected to achieve a high instruction cover-
age close to 100.0% with two large signature tables. Our
technique, however, has a definite drawback in covering all
executed instruction streams because reference and runtime
signatures are not compared for some instruction streams
which are executed only one time, i.e. an initializing instruc-
tion sequence. Control signal errors on executing such in-
struction streams seldom occur as shown in Table 5.

4.3.2 Memory Overheads

The DCSM technique causes no program memory over-
heads unlike the conventional static signature ones. Table 6
shows the program memory overheads of a basic technique,
PSA [8], SIS [10], CSM [18] and DCSM. The basic tech-
nique initializes a signature in the signature generator just
before the first instruction of every basic block is executed,
completes generating a runtime signature just after execut-
ing the last instruction of the basic block, and compares the

Table 6 Estimated program memory overhead.

Basic PSA SIS CSM DCSM
10-25% 12-21% 6-15% 4-11% 0%

runtime signature with the reference one which is embedded
with a signature instruction just after the instruction stream
in the program memory. We assumed the program which
was given by Wilken [18] for Table 6. The program memory
overheads for the basic technique, PSA, SIS, and CSM were
originally presented by Wilken [18] and that for the DCSM
technique is added in the table. Table 6 shows that the con-
ventional CSM technique causes 4-11% of memory over-
heads while the DCSM technique causes no program mem-
ory overheads. We emphasize that the conventional static
techniques cause program memory overheads linear to the
size of a program because the number of reference signa-
tures and signature instructions is linear to the size of a pro-
gram. In contrast, the DCSM technique requires a constant
size of a signature table because it exploits temporal locality
of instructions for storing signatures. The DCSM technique
efficiently stores and discards reference signatures. The size
of signature tables is the most dominant factor in the chip
area overheads of the DCSM technique.

The DCSM technique becomes more and more benefi-
cial as the size of a program becomes larger. We show an ex-
ample in which the overheads in chip area and performance
are compared between the DCSM and conventional tech-
niques. We assume two signature tables for paths of the first
and second kinds as shown in Table 7. We further assume
that an entry consists of four words: a beginning address, an
end address, an initialization signature, and a reference sig-
nature. It takes 16 bytes to store an entry in a signature table
if a 32-bit signature is utilized for a 32-bit CPU. It costs chip
area for a 4K-byte storage to implement the two signature
table. On the other hand, it takes the program memory over-
heads shown in Table 8 to adopt the static CSM technique
for the four benchmark programs assuming that its memory
overhead is 4-11%. Table 8 shows that the DCSM tech-
nique may be beneficial only to executing a single program
for linpack regarding the memory overheads with the num-
ber of unprotected instruction executions increased. What
if all the four benchmark programs are executed in the sys-
tem? The DCSM technique definitely becomes more bene-
ficial than the conventional CSM one regarding the program
memory overheads with about 37 ppm of instruction execu-
tions unprotected as shown in the last column of Table 8.

Table 7 An example of signature tables.

# Sets # Ways
Sig. table for paths of the first kind 2 64

Sig. table For paths of the second kind 2 64

The DCSM technique has an advantage in sizing the
width of signatures. The exploitation of a large width of
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Table 8 Chip area overheads in bytes and unprotected instruction executions in the CSM and DCSM
techniques.

dhrystone fibonacci linpack peakSpeed1 all programs

Chip area overhead
[Bytes]

CSM 1,111 – 3,055 916 – 2,521 1,723 – 4738 924 – 2,542 4,674 – 12,856
DCSM 4,096 4,096 4,096 4,096 4,096

# Unprotected
executions

CSM 0 0 0 0 0
DCSM 1,058 447 250,907 867 253,279

Unprotected
executions ratio [ppb]

CSM 0 0 0 0 0
DCSM 1,045.9 598.7 147,2052 252.0 36,693.2

signatures generally causes many control signals to be mon-
itored and is expected to find many errors on control signal
lines. It also causes high program memory overheads and
performance degradation in the conventional techniques.
The conventional techniques fold a signature into words if
the signature is larger than the width of a word. Folding
a signature into words causes to increase the overheads in
not only a program memory size but also instruction fetch
time. Signals from the program counter are usually cho-
sen as monitored control signals in the conventional tech-
niques due to the limitation of the overheads in both pro-
gram memory size and runtime. In contrast, the exploita-
tion of a large width of signatures causes to increase the
size of signature tables in the DCSM technique. It does not
cause performance degradation as far as an access to an en-
try finishes within given clock cycles. The overheads in the
size of signature tables are linear to the width of signatures.
The DCSM technique is, however, easier to adopt than the
conventional ones because the chip area overheads in sig-
nature tables for the DCSM technique are much lower than
the program memory overheads for the conventional ones.
As the size of a program and the width of signatures are N
and M respectively, the chip area overheads for the conven-
tional techniques are O(NM ) and those for the DCSM one
is O(M).

4.3.3 Performance Overheads

The DCSM technique does not have overheads in instruction
fetches while the existing techniques have ones. The con-
ventional CSM technique embeds justifying-signature in-
structions into a program memory [18]. We introduce two
assumptions: (i) All the memory overheads in the conven-
tional CSM technique are attributed to justifying-signature
instructions. (ii) Justifying-signature instructions are uni-
formly executed. The two assumptions and Table 6 imply
that the conventional CSM technique increases 4-11% of in-
struction executions that result in performance degradation.
In contrast, the DCSM technique does not use any signature
instruction at all and does not increase instruction execu-
tions. The performance degradation is the major drawback
in the existing techniques.

5. Conclusion

This paper proposed a dynamic continuous signature mon-

itoring technique for detecting a control signal error at the
expense of small chip area. The DCSM technique holds pro-
gram compatibility between microprocessors as the DCSM
technique embeds no signature instructions unlike conven-
tional ones. The DCSM technique requires no space to store
reference signatures in a program memory. A signature table
is provided to store reference signatures instead. The prin-
ciple of locality suggests that a signature table need store a
reference signature for a part of a program for a short time.
The principle of locality helps the size of a signature table to
be relatively smaller than the size of all reference signatures
which conventional techniques store in a program memory.
We presented an instance of reference signature generations
and examined how many instruction executions it covers to
protect from control signal errors. Our experimental results
showed that the usage of two 64K-entry signature tables pro-
tected about 100.0% of instructions. Even a 128-entry sig-
nature table achieves as nearly high as a 64K-entry signature
table. System designers should determine the size of a sig-
nature table considering the trade-off between reliability and
chip cost.

The DCSM technique may not cover detection of er-
rors on control signal lines which are out of signaturing. It
does not cover detection of errors on data signal lines either
because a value on a data signal line is transitory and is not
temporally redundant. We think that an error on a control
signal line is more serious than that on a data signal line
from the following reason. An error on a control signal line
presumably generates a wrong computation result which has
a high probability to be used by the subsequent instruction
executions. In contrast, it depends on a program that an er-
roneous value on a data signal line is used by the subsequent
instruction executions. The erroneous value would often be
unused or masked by overwriting it with another value. We
think that circuitry for data calculation should be made spa-
tially redundant for the products for which system designers
want extremely high reliability.

Future work includes a compilation technique which
explicitly makes onetime instruction executions temporally
redundant for increasing the instruction coverage. A com-
bined static and dynamic CSM technique should also be
studied for higher reliability at the expense of increasing the
memory size and losing program compatibility.
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