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SUMMARY  As process technology is scaled down, a typical system on
a chip (SoC) becomes denser. In scaled process technology, process varia-
tion becomes greater and increasingly affects the SoC circuits. Moreover,
the process variation strongly affects network-on-chips (NoCs) that have a
synchronous network across the chip. Therefore, its network frequency is
degraded. We propose a process-variation-adaptive NoC with a variation-
adaptive variable-cycle router (VAVCR). The proposed VAVCR can con-
figure its cycle latency adaptively on a processor core basis, corresponding
to the process variation. It can increase the network frequency, which is
limited by the process variation in a conventional router. Furthermore, we
propose a variable-cycle pipeline adaptive routing (VCPAR) method with
VAVCR; the proposed VCPAR can reduce packet latency and has tolerance
to network congestion. The total execution time reduction of the proposed
VAVCR with VCPAR is 15.7%, on average, for five task graphs.

key words: network-on-chip, process variation, adaptive circuits, routing
algorithm

1. Introduction

The minimum feature size of a CMOS process technology
is scaled down, which enables higher density and lower
chip fabrication cost. However, process variation is in-
creased by technology scaling. Process variation strongly
affects system-on-a-chip (SoC) circuit characteristics. A
network-on-chip (NoC), which is one SoC that is emerging
as a highly efficient network fabric for many-core proces-
sors [1],[12], [13], commonly adopts a synchronous design
for a network across the chip. The NoC in a many-core pro-
cessor has many network components, each of which is af-
fected by process variation. The network component delays
vary considerably as the network components become more
numerous. Therefore, the frequency of a large-scale chip-
wide synchronous network is degraded to the level of the
slowest network component. Many studies have been un-
dertaken to find means to mitigate the variations of many-
core processors using dynamic voltage and frequency scal-
ing (DVFS) [2], application scheduling [11], fine-grain body
biasing (FGBB) [2], and dynamic voltage frequency-core
scaling (DVFCS) [3]. However, no study has specifically
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addressed variation in a large-scale chip-wide synchronous
network. In this paper, we examine process variation in an
NoC.

The contribution of this paper is a proposal for a
process-variation-adaptive NoC using a variation-adaptive
variable-cycle router (VAVCR) and a novel routing scheme
named variable-cycle pipeline adaptive routing (VCPAR)
for the NoC with the VAVCR. The proposed VAVCR can
configure the cycle latency of the router in adaptation to the
spatial process variation. Thereby, the NoC with the pro-
posed VAVCR can enhance the network frequency and the
overall throughput. The proposed VCPAR is adaptive to the
variable cycle latency of the proposed VAVCR. The VCPAR
can reduce packet latency and can be tolerant of network
congestion.

The paper is organized as follows. Section 2 describes
the background of our work including the impact of pro-
cess variation on NoC circuits. Section 3 presents the pro-
posed VAVCR and VCPAR. In Sect. 4, we evaluate the pro-
posed VCPAR method with the proposed VAVCR, and ex-
hibit their effectiveness. Section 5 discusses the settings of
the network frequency. In Sect. 6, we conclude this paper.

2. Background
2.1 Process Variation

Technology scaling increases the threshold-voltage (Vi)
variation of MOS transistors composed of die-to-die (D2D)
and within-die (WID) variations, of which the WID varia-
tion is divided into systematic and random variations. This
paper considers the WID variation because it affects the
characteristics of individual cores within a die, which turns
out to be core-to-core (C2C) variation. Systematic variation
results mainly from lens aberration and has a spatial corre-
lation [14]. Therefore, neighboring transistors have similar
characteristics. In contrast, random variation results mainly
from random dopant fluctuation (RDF) and line-edge rough-
ness (LER): random variations show no spatial correlation.
For that reason, individual transistors have different charac-
teristics from those of neighboring transistors.

2.2 Process Variation in NoC

Process variation in an NoC shows up as variation of op-

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers
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1,150 MHz
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1,300 MHz
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1,000 MHz
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R : Router P:Processor Core

Fig.1  Operating frequency variation in a GALS NoC. The operating
frequencies of processor cores (Fyax_pmn) Vary. The network frequency
(Fnetwork) 18 determined by the minimum operating frequency in routers.

erating frequencies of individual cores. Considering syn-
chronous designs for entire NoC processor cores in sit-
uations where operating frequencies vary, each core in
the NoC must synchronize with the slowest core. There-
fore, the throughput of the entire NoC processor degrades
with increasing impact of the process variation. Global-
asynchronous local-synchronous (GALS) designs, in which
the fabric with individual cores and network elements oper-
ate at their own maximum frequencies, are widely adopted
in NoC design. The network portion composed of routers,
wires, and buffers is designed frequently at a single fre-
quency and in a single voltage domain [3], [15],[16] be-
cause the design of the network portion in an NoC is
too complicated and overly costly when adopting multi-
frequency and multi-voltage design. However, when the net-
work portion is with a single frequency and a single voltage
domain, its operating frequency is determined by the slowest
component (such as a router and a buffer) because operating
frequencies of routers and buffers distributed across the en-
tire chip vary according to process variation. This issue is
extremely important in a large NoC fabricated using scaled
process technology.

Figure 1 portrays the operating frequency variation in
a GALS NoC. A processor core and a router communicate
asynchronously with each other at a different frequency. An
operating frequency in a processor core is determined by
each maximum operating frequency (Fmax_pmn)- The net-
work frequency on the entire NoC (Fework) 1S determined
by the minimum (= worst) operating frequency among all
routers. Detailed discussion of the variations in a processor
core and an NoC are presented respectively in Sects. 2.3 and
2.4.

2.3 Impact of Variation in Processor Core

This section presents a description of the impact of the pro-
cess variation to the processor core. Assuming a 20 FO4
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Table1 Parameters used for operating frequency estimation.

Technology 65-nm CMOS | Ogygiem | 0.063 / pyy,

Process corner TT O\nd_NMOS 43 mV

Temperature 25°C Oynd_pMoS 28 mvV

# of Monte Carlo 10,000

65-nm process, # of Monte Carlo : 10,000

800 _
700 _—— Fitted curve
. 1,200 MHz
> 600 - 1,100 MHz
—
S 500 | :
S 400 | 1,300 MHz
i 300 [
200
100 |
s s2ss8sss:88¢88
~R883 TS FBEES

Operating frequency (MHz)

Fig.2  Distribution of operating frequencies of 20 FO4 inverters. The
dashed line signifies the fitted normal distribution curve.

Table 2  Operating frequency characteristics.

plrequency 1s237-7 MHz pfrequency + 30frequency 116536 MHz
Otrequency | 145-4 MHZ | Prroquency = 30requency | 801.5 MHz
Maximum | 1,802.1 MHz 775.3 MHz

Minimum

inverter chain delay as a single pipeline stage in the proces-
sor core, we conducted Monte Carlo simulations in a 65-nm
process technology using a SPICE circuit simulator. The
systematic variation in a threshold voltage (Vy,) arises as
C2C variation. In this simulation, the standard deviation
of the systematic variation, o gysem, i calculated with [4],
as 6.3% of the average V. Random variation is apparent
at individual transistors. Consequently, it affects all circuits
in the core. We use standard deviations of random varia-
tions in NMOSes and PMOSes from actual measurement
[5]. We set the respective standard deviations, o d NMOS
and omd_pmos, t0 43 mV and 28 mV (in sizing of L = 60 nm
and W = 140nm). The parameters used for estimation of
the operating frequency are presented in Table 1.

Figure 2 shows the distribution of the operating fre-
quencies obtained through simulations of 20 FO4 invert-
ers. We set four frequency bins: 800 MHz, 1,100 MHz,
1,200 MHz, and 1,300 MHz. Details of the frequency bins
are presented in Table 4. Table 2 shows summary statistics
of the operating frequency distribution. From Fig. 2, the op-
erating frequency variation derived from the Vy;, variation is
apparent as a normal distribution. The standard deviation of
the operating frequencies, O frequency, in the 20 FO4 inverters
is 145.4MHz. Accordingly, the individual processor cores
in an NoC under the Vy, variation represent mutually differ-
ing operating frequency characteristics.
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Fig.3  Organization of the router. Parameters are the same as those of
Table 3.
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Fig.4  Gantt chart of each pipeline stage of the router.

2.4 TImpact of Variation in On-Chip Networks

Figure 3 depicts the organization of a router with virtual
channels (VCs) [12]. Figure 4 presents a Gantt chart of
each pipeline stage of the router. The pipeline stages are
described as follows. The next routing computation stage
(NRC) determines a hop direction for the next router, not for
the current router. The virtual channel allocation stage (VA)
allocates output VCs to the input packets. The switch allo-
cation stage (SA) arbitrates the crossbar switch for the flit.
The switch traversal stage (ST) delivers the packet across
the crossbar to the output buffer. The link traversal stage
(LT) traverses the packet from the output buffer to the next
router. The SA, ST, and LT stages operate on every flit of
the packet, differently from the NRC and VC stages, which
compute once per packet.

As described in Sect. 2.2, Fpework 1S degraded by a sin-
gle frequency domain for the entire network portion because
all components of the network portion must be synchronized
with the slowest one. In this section, the delay variation in
each pipeline stage of the router is evaluated. We used an
open-source RTL of a router [6]. The router was synthesized
using a 65-nm process technology with Synopsys Design
Compiler. The configurations of the router synthesis are
shown in Table 3. Then, the synthesized netlist was evalu-
ated using a SPICE circuit simulator, and the delay variation
was obtained. As parameters for the variation, the parame-
ters shown in Table 1 were used as described in Sect.2.1.
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Table3  Parameters for router delay estimation.
Topology 8 x 8 mesh
Flit size 64 bits
Routing X-Y DOR [19]
Router type Speculative, look ahead
# of VCs 4
VC buffer size 4 flits
# of input/output ports | 5 (X+/-, Y+/- and own node)

200 | "I“
0 1 1 1 1

NRC VA SA ST LT

Pipeline stage

Fig.5 Delay of each pipeline stage: NRC, next routing computation;
VA, virtual channel allocation; SA, switch allocation; ST, switch traversal;
and LT, link traversal.

We assumed the link length between nodes as 1 mm for the
delay evaluation.

The evaluated result for the delays of each pipeline
stage is depicted in Fig.5. The upper bound (i.e. the worst
delay) of each stage is assumed as 99.7% of the whole. The
longest delay in the pipeline stage is the virtual channel al-
location (VA) stage. The delay of the VA stage varies: 627—
1319 ps.

3. Proposed Process-Variation-Adaptive Variable-
Cycle Router and its Proposed Routing Algorithm

3.1 Process-Variation-Adaptive Variable-Cycle Router

In this section, a process-variation-adaptive variable-cycle
router (VAVCR) is proposed. The proposed VAVCR can
configure the cycle latency of the router corresponding
to spatial process variation. The VAVCR can realize a
variation-adaptive NoC configuration. Figure 6 presents
timing diagrams of the conventional and proposed router
pipelines. The values of the delays are brought from Fig. 5.
Figures 6(a) and 6(c) show the worst delays (i.e. combina-
tion of the upper-bound delays in Fig.5). Figures 6(b) and
6(d) show the best delays (i.e. the lower bounds in Fig. 5).

In the conventional router pipeline, the router fre-
quency is determined by the worst delay (Fig. 6(a)). Accord-
ingly, a great amount of slack emerges at the conventional
router pipeline that operates in the best delay (Fig. 6(b)).
Consequently, the larger the process variation, the greater
is the slack at the conventional router pipeline.
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Fig.6 Timing diagrams of the conventional and proposed router
pipelines. Here, (a) and (b) respectively correspond to the worst and best
delays in the conventional router pipeline; (c) and (d) respectively corre-
spond to the worst and best delays in the proposed router pipeline.

Figures 6(c) and 6(d) portray timing diagrams of the
proposed VAVCR pipeline. The VAVCR pipeline applies
multi-cycle paths to NRC, VA, and SA stages (Fig. 6(c))
when a delay in the stages exceeds the predefined cycle time.
The cycle time is set to 1/1,050 MHz in this example. In the
case where no delay of the pipeline stage exceeds the pre-
defined cycle time, the VAVCR pipeline does not apply the
multi-cycle paths; it operates in the same way as the conven-
tional pipeline, but it can do so at a higher frequency (com-
pare Fig. 6(d) to Fig. 6(b)). Therefore, the proposed VAVCR
pipeline can reduce the large slack at the conventional router
pipeline, and can realize greater network throughput.

Figure 7 portrays a distribution of the router cycle la-
tency for an 8 X 8 mesh network. The number in the circle is
the latency of the router. Figures 7(a) and 7(b) respectively
depict the networks of the conventional router and proposed
VAVCR. In the proposed VAVCR, the routers are config-
ured as a three-cycle latency router or a four-cycle latency
router corresponding to the spatial process variation on the
chip. The pipeline delay of each router can be measured in

IEICE TRANS. ELECTRON., VOL.E95-C, NO.4 APRIL 2012

Conventional router Proposed VAVCR

Fnetwork= 700 MHz Fnetwork= 1,050 MHz

Fig.7 Distributions of the router latencies for 8 X 8 mesh networks: (a)
conventional router and the (b) proposed VAVCR.

a burn-in test, and can configure the cycle latency in a test-
ing process. Fework can be increased to 1,050 MHz from
700 MHz by applying the proposed VAVCR.

3.2 Variable-Cycle Pipeline Adaptive Routing

In the proposed VAVCR, the packet latency is increased by
the variable-cycle router pipeline. In this section, we pro-
pose a specific routing algorithm, considering the spatial
distribution of the router latency.

The proposed variable-cycle pipeline adaptive routing
(VCPAR) employs the odd-even turn model [18] to avoid
deadlocks; it can select a hop direction adaptively consid-
ering their pipeline latencies with neighboring VAVCRs.
VCPAR aims for low-latency routing in an NoC with the
VAVCRs. The detailed procedure in the VCPAR algorithm
is described as follows:

1 Each VAVCR has a distribution of the router latency sim-
ilar to that shown in Fig. 7(b). The distribution informa-
tion on the mutual router latencies is stored in a testing
process.

2 Five ports of a VAVCR have five transmission counters
storing the number of packet transmissions.

3 On the way to the destination router, if a next router po-
sition (NRP) is at the same row or at the same column,
the hop direction is set to a straight-ahead direction (the
row address and the column address are increased or de-
creased monotonically).

4 In a false case of Procedure 3 and if the destination is
toward east:

4.1 If the NRP is at an even column, then the available
direction can be set to east.

4.2 If the NRP is at an odd column, then the available
direction can be set to east or either north or south
according to the destination direction.

5 In a false case of Procedure 2 and if the destination is
toward the west:

5.1 If the NRP is at an odd column, then the available
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Fig.8 Overview of the proposed VCPAR method.

direction can be set to west.

5.2 If the NRP is at an even column, the available direc-
tion can be set to west or either north or south accord-
ing to the destination direction.

6 If only one direction is available, then the packet is trans-
mitted to that direction.

7 If two directions are available, then the VAVCR checks
the transmission counters of the two ports.

7.1 If the two transmission counters have equal values,
then the packet is transmitted to the direction which
has the least pipeline latency.

7.2 If the two transmission counters have different val-
ues, then the packet is transmitted to the direction
which has a lower value.

8 The transmission counter in the transmitted direction is
incremented by a size of the packet. All transmission
counters are decremented by one in each cycle.

The proposed VCPAR reduces packet latency with
preferential selection of three-cycle latency routers unless
the routers are congested (Fig.8). The VCPAR uses only
two-hop-ahead routers’ latencies and makes less complex-
ity routing than other routing methods that compute global-
variation-adaptive routing paths on an entire NoC. In ad-
dition, the transmission counter avoids congestion through
specific paths by preferential routing and enhances the com-
munication efficiency.

4. Evaluation

In this section, we present an evaluation of the proposed
VAVCR and the proposed VCPAR. First, we present the
evaluation of routing methods for the NoC with the VAVCR
including the conventional routing and the proposed VC-
PAR in Sects. 4.1 and 4.2. From this evaluation, the routing
method suitable for the NoC with the proposed VAVCR and
the effectiveness of the proposed VCPAR can be obtained.
Second, we evaluate the proposed VAVCR with VCPAR us-
ing task graphs in Sects. 4.3 and 4.4. Lastly, we estimate the
area overhead of the proposed VAVCR with the VCPAR in
Sect. 4.5.
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Table4  Frequencies and ratios in the frequency bins and router latencies
in the proposed VAVCR.

Frequency bin |Frequency 0|Frequency 1|Frequency 2|Frequency 3

Frequency 800 MHz 1,100 MHz | 1,200 MHz | 1,300 MHz
Ratio 27.6% 25.8% 24.7% 23.2%
Router latency
of the proposed | 4 cycles 4 cycles 3 cycles 3 cycles

VAVCR

4.1 Evaluation Methodology of Routing Methods

We used a BookSim simulator [7] to evaluate the entire NoC
implemented with the proposed VAVCR. The BookSim sim-
ulator was modified to evaluate the proposed VAVCR and
proposed VCPAR. The router configuration is identical to
that shown in Table 3, except for the routing method.

The spatial process variation is modeled using a simpli-
fied VARIUS model [4]. The spatial correlation parameter
is assumed as @ = 0.5 We used a simple spatial process vari-
ation model that has the same Vy, value within a single tile,
which includes a processor core, router, and repeater buffers,
as shown in Fig. 1. The variation parameters in Table 1 are
used as explained in Sect. 2. The processor core frequencies
are determined by the Vy, variation map and the frequency
bins in Table 4. The router latencies of the proposed VAVCR
are four cycles for Frequency 0 and 1 bins, and three cycles
for Frequency 2 and 3 bins. Ten variation maps (chips) are
taken in this evaluation. We evaluate the conventional rout-
ing method including X-Y DOR [19], ROMM [20], Tog-
gle X-Y (TXY) [21], Odd-Even Random, and the proposed
VCPAR method. Odd-Even Random routing uses the Odd-
Even turn model in which the next hop direction is deter-
mined randomly if it has two available directions. All eval-
uation in this section, the NoC with the proposed VAVCR is
used.

Traffic patterns used for the routing evaluation are uni-
form random, transpose, bit reverse, hot spot with one hot
spot, and hot spot with four hot spots (the hot spot percent-
age is 6%) [22]. The packet size is four flits and 16 flits.

4.2 Evaluation of the Routing Method

Figures 9 and 10 present the evaluation results of routing
methods (respective packet size are four flits and 16 flits).
The X-axis shows the injected traffic (packets/ cycle/ node);
the Y-axis specifies the average packet latency (= cycles) for
the ten variation maps.

In the case of uniform random traffic (Fig.9(a) and
Fig. 10(a)), X-Y DOR outperforms the other routing meth-
ods. This is reasonable because the uniform random traffic
is uniform and suitable for X-Y DOR [18]. In the trans-
pose traffic (Fig. 9(b) and Fig. 10(b)) and the bit reverse traf-
fic (Fig.9(c) and Fig. 10(c)), the proposed VCPAR yields
the lowest latency and exhibits the best tolerance to net-
work congestion (except the transpose for the 16 flit packet
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Fig. 10

(d)

(e)

Evaluation results of routing methods (packet size is 16 flits): (a) uniform random traffic, (b)

transpose traffic, (c) bit reverse traffic, (d) hot spot traffic with one hot spot node (the hot spot percentage
is 6%), and (e) hot spot traffic with four hot spot nodes (the hot spot percentage is 6%).

size (Fig. 10(b)). TXY can avoid congestion on the spe-
cific paths in the transpose because it can select the next
hop direction randomly from two available directions). This

fact demonstrates that preferentially selecting three-cycle
latency routers can reduce the packet latency; adaptability
based on direction selection with the transmission counter
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(described in Sect. 4.1) alleviates network congestion. The
same tendency is observed for hot spot traffic (Figs. 9(d) and
9(e), Figs. 10(d) and 10(e)). The proposed VCPAR outper-
forms the other routing methods in the hot spot traffic. The
proposed VCPAR with the VAVCR makes use of process
variation and has a low-latency feature even in the network
congestion.

4.3 Evaluation Methodology of VAVCR with VCPAR

To evaluate the proposed VAVCR with the VCPAR, we
use the same methodologies and parameters described in
Sect.4.1. In this evaluation, 100 different variation maps
(chips) are assessed. The network frequency for the con-
ventional router and proposed VAVCR are 700 MHz and
1,050 MHz, respectively. The conventional router adopts X-
Y DOR as a routing method.

In reality, the optimal network frequency for the pro-
posed VAVCR, which maximizes throughput, depends on
characteristics of the traffic pattern. In this evaluation, we
took 1,050 MHz as Fpework- The detailed discussion on the
optimal network frequency will follows in Sect. 5.

As the traffic pattern used in this evaluation, we used
the standard task graph set (STG) [8] and task graphs for free
(TGFF) [9]. For the STG, we used random (500 tasks, the
task graph number is 0000), robot", sparse’, and fpppp''.
We set the packet size of each edge as 16 + 8 flits. For

Normalized latency

Normalized latency
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TGFF, we set parameters as follows: number of tasks = 500,
processing cycle of tasks = 3,000 + 1,500; and packet size
=32 + 16 flits [10]. Each task in the task graph is assigned
to the processor core based on the critical path method [23].

4.4 Evaluation of VAVCR with VCPAR

Figures 11-15 present the evaluation results for the conven-
tional router and the proposed VAVCR with the VCPAR.
They signify the total execution times of the task graphs.
Each result includes the evaluation of 100 variation maps
(chips): The index number is from 0 to 99 in the figures.
The execution times are normalized by the average of the
conventional router. The dashed and chained lines respec-
tively represent the average of the conventional router and
the proposed VAVCR with the VCPAR.

In Fig. 11, the proposed VAVCR is shown to reduce
the total execution time of the STG-random by 14.6% on
average. The packet latency of the STG-random is in-
creased by 31% on average. The execution time is re-
duced because of the increase in the network frequency.

fSTG-robot: is a task graph for Newton—Euler dynamic control
calculation.
TTSTG-sparse is a task graph for a random sparse matrix solver
of an electronic circuit simulation.
TTSTG-fpppp is a task graph for subroutine of SPEC95fp fpppp.
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Fig.15  Evaluation results of TGFF: (a) normalized execution time and (b) normalized latency.

The packet latency of the STG-random is increased because

of the existence of the four-cycle routers. Irrespective of Table 5 Evaluation results of 100 variation maps. (Fyetwork =
the amount of the increase in the packet latency, the pro- 1,050 MHz)

posed VAVCR reduces the total execution time. Similarly, Reductionof [incresse [, T, .| Gy | Gy
the proposed VAVCR reduces the total execution times of execution time | latency | ©f €OMV- | ©f Prop. | of conv. | of prop.
the STG-robot (Fig. 12(a)), STG-sparse (Fig. 13(a)), STG- STG-random | 14.6% 31% | 2.97% | 2.68% | 6.42% | 9.28%
fpppp (Fig. 14(a)), and TGFF (Fig. 15(a)) by 12.3%, 29.3%, STG-robot 12.3% 17.5% | 2.79% | 3.4% | 1.75% | 4.45%
22.1%, and 0.3% on average, respectively. The packet laten- STG-sparse | 29.3% 8.6% | 0.78% | 1.95% | 0.86% | 2.75%
cies of the STG-robot (Fig. 12(b)), STG-sparse (Fig. 13(b)), s:;;;p[':‘;]p 202;;/" ;;;Z" f:::f ‘:-::Zo 05-59;1; ?-z::;o
STG-fpppp (Fig. 14(b)), and TGFF (Fig. 15(b)) were in- Avg.of 5TGs| 15.7% | 20.2% | 2.85% | 2.79% | 3.29% | 4.87%

creased by 17.5%, 8.6%, 11.1%, and 32.5% on average, re-
spectively.
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The proposed VAVCR can efficiently reduce the total
execution time necessary for executing network-bound tasks
such as STG-random, STG-sparse, and STG-fpppp. In con-
trast, the proposed VAVCR reduces it inefficiently when ex-
ecuting computation-bound tasks such as TGFF.

Table 5 presents a summary of the reductions of the to-
tal execution time, the increases in the packet latency, the
standard deviations of the total execution times in the con-
ventional router, and the proposed VAVCR with the VC-
PAR, the standard deviations of the packet latencies in the
conventional router, and the proposed VAVCR with the VC-
PAR. They are 15.7%, 20.2%, 2.85%, 2.79%, 3.29%, and
4.87% on average of the five task graphs (TGs), respectively.

4.5 Area Overhead of the VAVCR w/ VCPAR

To estimate the area overhead of the proposed VAVCR with
the VCPAR, its transistor count is to be compared with that
of the conventional router. The transistor count of the con-
ventional router and the proposed VAVCR with the VCPAR
are 618.1 k and 629.1 k, respectively. The area overhead of
the proposed VAVCR with the VCPAR is 1.78% as a single
router, which infers that the total area overhead will turn out
almost negligible because a router portion is much smaller
than a processor portion in an NoC.

5. Discussion on the Network Frequency Optimization

In this section, the optimization of the network frequency is
discussed. The execution time and packet latency depends
on Fiework- Figures 16(a) and 16(b) show the reduction of
the total execution time and increase in the packet latency
when Fiework 1S varied. 100 variation maps are again uti-
lized as well as in Sect.4.4. “Static” in the figure means
“full use of the network™, in which a single packet has 16
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flits. We utilize “Static” as a reference to be compared with
the other five task graphs.

The reductions in the total execution times of the
STG-random and STG-fpppp monotonically increase with
Fretwork because they do not incur network congestion; a
faster Fpewwork 1 better in these cases. The STG-random
presents degradation of the execution time at a network fre-
quency of 850MHz or less because its traffic is uniform
and thus X-Y DOR is eligible for it (we have already dis-
cussed this in Sect.4.2). In contrast, the STG-sparse and
STG-robot that incur network congestion have local maxi-
mums at 1,100 MHz and 950 MHz, respectively, in terms of
reduction in the execution time. Note that they have similar
shapes to “Static” that fully uses the network. The TGFF is
not affected by Fiemwork at all because it is a compute-bound
task; the computation occupies over 99% of the total execu-
tion cycles.

From this discussion, an appropriate Fyework Should be
set by designers based on characteristics of a traffic pattern.

6. Conclusion

As described in this paper, we proposed a process-variation-
adaptive NoC with a variation-adaptive variable-cycle router
(VAVCR) and a variable-cycle pipeline adaptive routing
method (VCPAR). The proposed VAVCR can configure its
cycle latency adaptively corresponding to the spatial process
variation. It increases the network frequency, which is lim-
ited by the slowest network component in the conventional
router. The proposed VAVCR can reduce the total execution
time by 15.7% based on an average of the five task graphs
at a network frequency of 1,050 MHz. The proposed VC-
PAR can reduce packet latencies in the NoC adaptively with
variable cycle router and can efficiently suppress network
congestion.

—— STG-random -=- STG-robot -~ STG-sparse
—— STG-fpppp —+ TGFF -+ Avg.of 5TGs -= Static
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Fig.16  (a) reduction of the total execution time versus Fperwork (averaged by 100 variation maps) and
(b) increase in the packet latency versus Fpewwork (averaged by 100 variation maps).
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